
‘GPU-accelerated Multiphysics Simulation’

James Glenn-Anderson, Ph.D.
CTO/enParallel, Inc.

Abstract

In recent technology developments General Purpose computation on Graphics Processor
Units (GPGPU) has been recognized a viable HPC technique. In this context, GPU-
acceleration is rooted in high-order Single Instruction Multiple Data (SIMD)/Single
Instruction Multiple Thread (SIMT) vector-processing capability, combined with high-
speed asynchronous I/O and sophisticated parallel cache memory architecture. In this
presentation we examine the enParallel, Inc. (ePX) approach in leveraging this
technology for accelerated multiphysics computation {1}{2}{3}.

As is well understood, both complexity and size impact realizable multiphysics
simulation performance. Multiphysics applications by definition incorporate diverse
model components, each of which employs characteristic algorithmic kernels, (e.g.
sparse/dense linear solvers, gradient optimizers, multidimensional FFT/IFFT, wavelet,
random variate generators). This complexity is further increased by any requirement for
structured communications across module boundaries, (e.g. dynamic boundary
conditions, multi-grid (re)discretization, and management of disparate time-scales).
Further, multiphysics applications tend toward large scale and long runtimes due to; (a)
presence of multiple physical processes and (b) high-order discretization as result of
persistent nonlinearity, chaotic dynamics, etc. It then follows acceleration is highly
motivated, and any associated performance optimization schema must be sufficiently
sophisticated so as to address all salient aspects of process resource mapping and
scheduling, and datapath movement. For the GPU-accelerated cluster, this remains a
particularly important consideration due to the fact GPU lends an additional degree of
freedom to any choice of processing resource; multiphysics performance optimization
then reduces to a goal of achieving highest possible effective parallelism across all
available HPC resources, each of which is associated with a characteristic process model.

In ePX applications, processing models are organized hierarchically so as to structurally
minimize high-overhead interprocess communications; process optimization is then
performed based upon an assumed scatter-gather principle recursively applied at
distributed (cluster) and Symmetric Multi-Processor (SMP; multicore CPU) hierarchy
levels. This approach supports flexible optimization across all physics modules. In
particular, explicit pipelining of cluster, CPU, and GPU processes is implemented based
upon asynchronous transaction calls at an associated Application Programming Interface
(API). This generally improves effective parallelization beyond what might otherwise be
possible. Further, a complete multiphysics application must be accelerated consistent
with dictates of Amdahl’s Law. In this context, ePX is shown to exhibit a full-featured
supercomputer processing model, highly optimized for GPU-accelerated clusters or
workstations, and particularly well suited to multiphysics applications. The ePX
framework is then presented as a generic and reusable multiphysics development solution

featuring scatter-gather infrastructure as a software architectural component and
obviating any need for specialized compilation technology or OS runtime support.

Introduction

HPC is the dominant enabling technology for advanced multiphysics simulation. Thus,
dramatic improvements recently observed in HPC price/performance have rendered
multiphysics applications a practical reality at unprecedented scale and complexity. This
trend is based in emergence of enterprise cluster computing in the HPC market sector,
concurrent with appearance of new multicore CPU and GPGPU technologies.

By definition, multiphysics simulation involves expression of multiple physical
processes. Further, distinct mathematical formalisms may be employed for each process,
with coupling amongst those processes imposed at defined boundaries and all within
context of a single computational process. Thus, where multiphysics simulation is
considered, complexity is increased over that of a scale-equivalent unitary physics
simulation on at least two axes; (1) algorithmic kernel diversity, and (2) dynamic
boundaries between processes. The cited dynamic boundaries may also engender
rediscretization on coupled processes, further impacting problem representation scale and
complexity. A characteristic example is the ORNL MFIX application combining (TDFD)
computational fluid dynamics and discrete event physics modules {4}. The upshot is
simulations involving unitary physics remain generally far easier to optimize than those
involving multiphysics. In what follows, a new software architecture is presented as basis
for optimized multiphysics simulation on GPU-accelerated clusters and workstations.

Hardware Architecture

GPU architecture

We assume the NVIDIA GPU as a more or less generic architectural template {4}. As
displayed in figure-1, GPU processing resources are organized as an assembly of ‘N’
distinct multiprocessors, each of which consists of ‘M’ distinct thread processors. In this
context, multiprocessor operation is defined modulo an ensemble of threads scheduled
and managed as a single entity, (i.e. ‘warp’). In this manner, shared-memory access,
SIMT instruction fetch and execution, and cache operations are maximally synchronized.
Here, SIMT is distinguished from SIMD by virtue of the fact hardware vector
organization is not exposed at software level and programmers are enabled to flexibly
compose parallel code for both independent and coordinated (data-parallel) threads.
While certainly a useful innovation, a subtle complexity is also introduced in that
programmers must assume responsibility for minimizing warp divergence, (i.e. along
logical branches), so as to achieve peak performance. In other respects the terms remain
essentially equivalent and with noted exception will be used synonymously.

At high level, CPU/GPU memory is organized hierarchically: Global → Device →
Shared. In this context, Global/Device memory transactions are understood as mediated
by high-speed bus transactions, (e.g. PCIe, HyperTransport, QPI), and shared memory

accrues in form of a parallel data cache available to all multiprocessor scalar cores. At a
more fine-grained level, ancillary memory resources include; per-processor register
banks, read-only constant cache shared by all scalar processor cores, and read-only
texture cache again shared by all scalar processor cores and by which datapath spatio-
temporal coherences may be exploited.

Figure-1: GPU Architecture

The GPU-accelerated PC/Server

Multiple GPU’s are appended as ancillary processing resource to a PC/Server hardware
platform via high-speed internal bus to form a vector processing array. In Figure-2, a PC-
based architectural variant is displayed whereby 4x GPU’s are attached to a multicore
CPU via a Northbridge↔Southbridge↔PCIe x16 pathway.

Figure-2: PC-based CPU/GPU System Architecture

Tailored Application Programming Interface (API) components {6}{13}{20} provide
concurrent access to multicore CPU and GPU Array (GPA) processing resources. A key

subtlety associated with the CPU/GPU processing is GPU resources may be accessed
based upon a non-blocking transaction model. Thus, CPU processing may continue as
soon as a work-unit has been written to the GPU process queue. As result, host (CPU)
processing and GPU processing may be overlapped as displayed in figure-3. In principle,
GPU work unit assembly/disassembly and I/O at the GPU transaction buffer may to large
extent be hidden. In such case, one can expect GPU performance will effectively
dominate system performance. Thus, optimal GPU processing gain is realized within an
I/O constraint boundary whereby thread processors never stall due to lack of data.

Figure-3: CPU/GPU Process Overlap

In the ePX approach, the traditional GPU coprocessor model is abandoned in favor of a
scatter-gather approach by which full advantage is taken of Node/CPU/GPU process
pipelining. In this manner, two fundamental objectives may be achieved; (1) acceleration
of complete applications and (2) performance scaling across broad classes of algorithmic
kernels. In effect, a full-featured supercomputing processing model is employed, for
which dynamic resource mapping and scheduling, instruction pipeline reuse, and
CPU/GPU process pipelining remain key features. While applied here to various forms
of the (multicore) CPU/GPA architectural template, these features generally duplicate
those found in traditional supercomputing systems.

The GPU-accelerated cluster

The ePX supercomputer processing model finds full expression when applied to a GPU-
accelerated cluster. In this instance, a third API component {18} is added as basis for
distributed interprocess communication. Depending upon application requirements,
Operating System (OS), and specific architectural template, a variety of API’s are
supported; (1) MPI (cluster) {18}, (2) OpenMP (multicore CPU) {16}, (3) OpenCL
(multicore CPU + GPA) {20}, CAL/CTM (GPA) {13}, and CUDA (GPA) {6}. The
aforementioned scatter-gather service routines then implement API-specific calls for
concurrent and transparent access to any given processing resource. The resulting
processing model is distinguished by globally optimal map and schedule of algorithmic

kernels across all Cluster/CPU/GPA processing resources. In particular, vectorized
algorithmic kernels are dynamically assigned to GPU instances based upon; (1) GPU-
element availability and (2) opportunistic SIMT instruction pipeline reuse. In this manner
SIMT Cyclostatic Thread Residency (CTR) is maximized at any GPU instance1,
maximizing effective process parallelism cluster-wide.

Associated scatter-gather work-unit distribution2 is performed according to scheduler
state. A given thread-set may be applied to a GPU instance at initialization or may
already exist in situ as result of a previous processing cycle. In the latter case, the
scheduler will opportunistically forego pipeline reinitialization, (re: instruction pipeline
reuse), and apply only datapath during a given scatter cycle. In this manner, algorithmic
kernels are parallelized at the GPA transaction buffer and thread-sets optimally processed
in parallel within GPU/SIMT instruction pipelines. This bipartite parallelism critically
depends upon the fact scatter at the GPA transaction buffer is non-blocking. Thus, the
CPU does not have to wait for completion of a GPU processing cycle. In this manner,
CPU/GPA thread processing may be effectively overlapped3. The ePX Framework
further implements all required scheduler, scatter-gather, and CPU/GPA pipelining
management functionality based upon an abstraction by which work-unit structure and
interprocess communications implementation details are effectively hidden. In effect, all
such details are pushed to process-queue service routines. Thus, ePX management
operations remain generic across all multicore-CPU/GPA and derivative cluster
architectural templates regardless of the specific nature and location of process
components.

A characteristic GPU-accelerated cluster architecture displayed schematically in figure-4.
In this context, NODE0 acts as a more or less standard ‘head-end’ resource at which
cluster management, ePX Framework, and software development components have been
placed. NODE1 through NODEN represent processing nodes to which GPU arrays have
been appended, (i.e. with internals expanded at NODE1). In addition, the traditional
Network File Server (NFS) resource is replaced with an ePX/NFS variant intended to
provide high-performance multiphysics scatter-gather functionality. Internode
communications is based upon a dual-pathway network communications backbone, with
node-management and interprocess communications transactions mapped to respective
ETHERNET and Infiniband ports.

Figure-4: The GPU-accelerated Cluster

Multiphysics simulation may be characterized in terms of a collection of physics
processes communicating with one another. For the large-scale problems typical of
multiphysics, one would expect presence of a top-level scatter-gather process involving
iteration on massive datasets featuring diverse and arbitrarily complex storage patterns. In
current GPU-accelerated cluster state-of-the-art, this processing would be performed at
the head-end, effectively as a non-parallelizable process component. However, ePX/NFS
incorporates two key technology innovations by which critical performance bottlenecks
are avoided; (1) use of an ancillary datapath server, and (2) GPU-accelerated
(multiphysics) scatter-gather. In this context, ePX/NFS implements a demand-driven
protocol by which data is moved only to that node actually processing a work-unit; any
associated work-unit assembly/disassembly, (i.e. within context of hierarchical scatter-
gather), is then performed based upon abstract datapath references. Further, localized
GPU resources are employed to accelerate required transformations on component
physics processes prior to (RAID) write-back. In this manner, any required head-end
intervention is effectively eliminated, scatter-gather work-unit composition is greatly
simplified, and internode communication overhead is significantly reduced.

At any ePX node, distinct scatter-gather process queues are maintained for each mapped
GPA, CPU, and NODE processing resource {3}. Service methods attached to these
queues implement work-unit transactions at associated buffers based upon nominal
scatter-gather pathways displayed in figure-5. In this specific case, component-tasks
originate at NODE0 (head-end) and are propagated to all other nodes4. As shown in
expanded view at cluster NODE1, tasks are resolved into component algorithmic kernels
and distributed to local CPU/GPA resources. Global multiphysics solution assembly is
performed at ePX/NFS.

Figure-5: GPU-accelerated Cluster Scatter-Gather Patterns

GPGPU Multiphysics Processing Model

The GPU-accelerated cluster when combined with ePX scatter-gather reveals unique
advantages pertinent to GPGPU multiphysics supercomputing. In particular, a nominal
two-order-of-magnitude increase in processing threads may be efficiently accessed at
each processing node. Further, integration of distributed (cluster), SMP (multicore CPU),
and SIMT (GPU/GPA) processing models is well matched to the characteristic
granularity of multiphysics processes when resolved along physics module, subprocess,
and algorithmic kernel boundaries. To see this, we examine a simple dataflow example
typical of multiphysics simulation.

In figure-6, four distinct physics processes are displayed, color-coded in red, teal-yellow-
green, and purple-blue-black. Dotted lines indicate simple graph decomposition in form
of recursive partitions. This decomposition is calculated based upon map/schedule
optimization and serves to impose a process-subprocess-algorithmic kernel scatter-gather
hierarchy matched to characteristic coarse-grained/medium-grained/fine-grained
parallelism typified by cluster/multi-core CPU/GPU processing resources. In this manner,
the ePX processing hierarchy is defined. Here, the red process is characterized by four
subprocesses consisting of a single algorithmic kernel and for which there is no
communication among subprocesses. The teal-yellow-green process consists of three sub-
processes consisting of three distinct algorithmic kernels, with a single kernel-type
reserved to each branch. In this case however, there exists communication among
subprocesses, as indicated by internal datapath scatter-gather junctures. Finally, each of
two purple-blue-black processes is characterized by two distinct subprocesses, each of
which is composed of three distinct algorithmic kernels. There is also no communication
among subprocesses.

The simplicity of this dataflow admits naïve map and schedule process optimization.
Given fully resolved scatter-gather points at the boundaries of each physics module and
availability of four GPU instances at each cluster node, modules are first distributed to

distinct cluster nodes and all component algorithmic kernels processed on local
CPU/GPU resources where additional optimizations become available; (1) as algorithmic
kernels recur along subprocesses, instruction pipelines may be reused, and (2) as
algorithmic kernels persist along subprocesses, intermediate results need not be updated
in (CPU) global memory, (i.e. intermediate results are left in GPU device memory until
subprocess terminates). Under circumstances where subprocesses communicate,
intermediate datapath must be updated in global memory. However, explicit CPU/GPU
process pipelining based upon asynchronous datapath transfers may be employed to hide
much of the associated overhead.

Figure-6: Example Multiphysics Dataflow Component

A simplified version of the optimized process schedule is displayed schematically in
figure-7; processing resources are organized vertically and time horizontally. The process
schedule is organized into three distinct (vertical) regions, each of which also
corresponds to a distinct component of hierarchical scatter-gather. The upper-half
indicates launch of four tasks at distinct cluster nodes (‘CTK’) based upon a distributed
processing model. Each of these processes is padded on the left with an interval
encapsulating all transaction and process launch overhead components (‘OV’). We note
an asynchronous-sequential scatter-gather cycle is implied at the cluster head-end CPU
(NODE0). The lower-half expands local process scheduling at cluster NODE1/CT1. The
lower-most resource schedule refers to local CPU/SMP processing, with four GPU/SIMT
resources scheduled immediately above (‘GPU0-3’). For simplicity, we assume a single
CPU core with multithreading. We note sequential launch of four CPU threads, each of
which is associated with a single GPU resource. In this case, overlap of CPU and GPU
processing implies asynchronous I/O transactions at each GPU process queue and derived
parallelism across the entire Distributed/SMP/SIMT hierarchy. Specific CPU processes
include; get_work_unit(..), get_gpu_buffer(..), work_unit_assembly(..), gpu_scatter(..),
gpu_gather(..), and solution_assembly(..).

Figure-7: Optimized Process Schedule (local)

As previously mentioned, realistic multiphysics dataflow will typically incorporate
internal communications among physics modules, (re: dynamic boundary conditions and
mesh rediscretization). Thus, one would expect interprocess communication among
cluster nodes at module boundaries. In figure-8, we consider a simple two-stage iterated
relaxation among all four physics modules whereby intermediate solutions are exchanged
based upon a top-level global iteration.

Figure-8: Example Multiphysics Relaxation Dataflow

An essential point is the corresponding process schedule is generated based upon the
complete dataflow and for which map/schedule optimization is fully elaborated in terms
of; (1) an arbitrarily diverse set of algorithmic kernels, (2) the complete set of available
processing resources, and (3) the entire process timeline. Thus, the globally optimal
nature of the ePX supercomputer processing model is expected to exhibit a generally

superior effective parallelism when applied to multiphysics applications, as compared to
that typical of a standard coprocessor model.

The GPU-accelerated MultiCluster

As displayed in figure-6, the GPU-accelerated cluster is easily integrated with existing
cluster and enterprise network infrastructure. In particular, combination of Desktop
SuperComputer (DSC) workstations with GPU-accelerated cluster and enterprise HPC
cluster resources creates a third option to the traditional ‘client/server’ versus
‘distributed’ discussion in that local processing capability may be tailored according to
needs of a (scientific) software ‘developer’ versus that of a ‘user’. More specifically,
GPU-accelerated DSC workstations provide algorithm designers and library developers
with a low capital investment, low life cycle cost, high-availability HPC resource well
suited to rapid prototyping, benchmarking and verification of library components
essentially independent of software updates at a cluster head-end. When incorporated
within a suitable software engineering methodology, this capability can lead to
significantly reduced development costs, based upon fast turnaround, extended test
protocols, and complete portability between cluster and DSC build environments. Yet
another advantage is reservation of incremental development work to DSC’s will
significantly improve overall cluster availability and efficiency.

Figure-6: The GPU-accelerated Multi-Cluster

Multiphysics Software Architecture

The ePX software architecture is expressed in form of a generic and reusable framework
for multiphysics applications. In effect, this architecture serves to add full-featured
supercomputing infrastructure without requirement for specialized compilation

technology, (e.g. ‘parallelizing’ compilers), or modification to the run-time environment,
(e.g. OS-based parallel resource scheduler, scatter-gather manager, MMU). As shown in
figure-9, ePX framework features scheduler, dispatcher, and scatter-gather engine
components communicating with generalized process queues associated with each level
of the Distributed/SMP/SIMT hierarchy. In this manner, cluster, multicore CPU, and
GPA resources may be efficiently accessed at any available processing node. Attached to
each process queue are methods communicating with Application Programming Interface
(API) components that effectively abstract-away all hardware detail at higher levels of
software hierarchy. Thus, ePX multiphysics software architecture remains more or less
uniform across all applications. In nominal configuration, OpenMPI, OpenMP, and
CUDA/OpenCL API’s are employed. However, alternative API combinations may be
supported with little architectural impact, (e.g. AMD CAL/CTM {13}, PVM {21}, and
alternate MPI flavors {14}{18}).

Figure-9: ePX Software Architecture

Multiphysics applications development is further simplified with use of ePX
C/C++/FORTRAN acceleration libraries. These libraries feature standard compilation
bindings and may higher performance based upon functional aggregation and improved
local optimizations. In all cases, only standard OS runtime environments, (e.g. Linux,
UNIX, Mac OS-X, and Windows XP/Vista), and development tools, (e.g. GCC, and
MSVS), are required.

Amdahl’s Law

As previously reported, ePX technology is directed toward acceleration of complete
applications {1}{2}. The basis of this claim is substantiated based upon a simple
interpretation of the ePX processing model, based upon Amdahl’s Law {22} for which
the basic mathematical model is:

()
N
PP

A
+−

=
1

1 (1)

Here, ‘A’ is the acceleration factor, ‘P’ the parallelizable code fraction, and ‘N’ the order
of parallelization. We first consider hyperthreaded parallelization at a single cluster node.
Thus ‘1’ becomes:

()
GPUTPGPU

GPU

CPU

CPU
GPUCPU NN

P
N
P

PP
A

/

1

1

++−−
= (2)

Here, NCPU ≡ multicore order, NGPU ≡ GPU array order, and NTP/GPU ≡ Number thread
processors per GPU. With use of asynchronous GPU transactions, we assume CPU-GPU
pipelining at efficiency CCPU , (constant ∈ [0,1]). Thus, CPU and GPU processes are
mutually parallelizable. Consequently, ‘2’ becomes:

()
GPUTPGPUCPU

GPUCPUCPU
GPUCPUCPU NNN

PPC
PPC

A

/

1

1
+

+−−
= (3)

For simplicity, we will assume identical processes at ‘NNODE’ cluster nodes, mutually
parallelizable with efficiency ‘CNODE’. The resulting total acceleration is then:

()() ()
GPUTPGPUCPUNODE

GPUCPUCPUNODE
GPUCPUCPUNODE NNNN

PPCC
PPCC

A

/

1

1
+

++−
= (4a)

Simplifying, we obtain:

()

GPUTPGPUCPUNODE NNNN
PP

A

/

1

1
′

+′−
= (4b)

Of particular interest is the limiting case:

() P
NNNN

PP
Lim

GPUTPGPUCPUNODE

NNNN GPUTPGPUCPUNODE ′−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

′
+′−

∞→ 1
1

1

1

/

/

 (5)

Thus, with the term ‘ (GPUCPUCPUNODE PPCC)− ‘sufficiently large:

1
1

111 >>
′−

=→<<′−
P

AP (6)

In this limiting case, ‘A’ is ‘large’ only if the multiphysics application is parallelizable to
a sufficiently high degree. Similarly, approximate linear scaling should be observed over
some range of composite thread order:

() GPUTPGPUCPUNODE
GPUTPGPUCPUNODE

NNNNAP
NNNN

P
/

/

1 ≅→′−>>
′

 (7)

Acceleration factors have been experimentally confirmed for a number of characteristic
simulations5:

Algorithmic Kernel Acceleration

Finite Difference: Heat Equation,
SOR (Gauss-Seidel solver)

x310

FEM multi-grid: Mixed Precision
Linear Solvers

x505

Image Processing: Optical Flow x1030
CFD: 3D Euler solver x540
CFD: Navier-Stokes (Lattice
Boltzmann)

x1875

Signal Processing: Sparse Signal
Recovery from Random
Projections (NP-hard
combinatorial optimization)

x580

Computational Finance:
Quantitative Risk Analysis and
Algorithmic Trading

x935

Computational Finance: Monte
Carlo Pricing

x1500

Table-1: Acceleration Performance Test Kernels

Scaling is verified based upon measured acceleration as function of problem scale and
composite thread order, post map/schedule optimization. The fundamental experimental
methodology is characterized by the following steps:

(1) Select problem size (assume constant dataflow),
(2) Perform map/schedule optimization (assume unconstrained resource pool),
(3) Build/Run test-case,
(4) Measure acceleration factor,
(5) Plot against composite thread order,

It should be noted interpretation of any results thus generated is greatly complicated by
an essential nonlinearity between assumed problem order and composite thread order as
result of map/schedule optimization. Nevertheless, an approximate
‘ ’ scaling has been verified for each application cited in table-1
with test-points at NNODE values {2,4,8}, (4xC1060/NODE). According to equations
‘4a,b’ this scaling is expected to first become sublinear as problem size is further
increased and then converge to a maximum.

GPUTPGPUCPUNODE NNNN /

Summary

Arguably, GPU-accelerated clusters represent a very promising ‘enabling technology’ for
large-scale multiphysics simulation; massively parallel GPU arrays appended to multi-
CPU, multicore servers at cluster nodes provide incredible aggregate peak-performance
capability, and at unprecedented price-performance ratios. However, effectively
harnessing this capability has proven difficult. Part of the reason for this is the technology
is very new and also rapidly evolving. Yet another aspect is multiphysics is characterized
by complex mathematical formulation involving distinct physics processes and must
therefore be considered fundamentally difficult where; (1) diverse algorithmic content,
(2) dynamically varying boundary conditions, (3) adaptive discretization, and (4)
management of large-scale and arbitrarily complex datasets are implied. Further, where
the GPU-accelerated cluster is considered, maximal parallelization demands efficient
integration of three distinct processing models (Distributed/SMP/SIMT) for which
CPU/GPU code components are inherently multithreaded. The upshot is any realization
of performance potential comes at cost of significantly increased complexity in terms of
processing model, software architecture, system infrastructure, and programming.

In this paper, the ePX accelerated multiphysics simulation solution is presented in form
of two categories of technical innovation; (1) software architecture, and (2) system
infrastructure. A fundamental technical goal of efficient utilization of all available
processing resources is adopted. Ancillary goals of reusable software architecture,
compatibility with standard OS and software development platforms, and global process
optimization are also assumed. Traditional supercomputing is based upon use of
parallelizing compilers and specialized runtime support for concurrent thread scheduling,
SMP memory management, etc. From the perspective of software architecture, ePX
reverses this principle with explicit addition of map, scheduler, and generalized process
queue infrastructure directly to the application in form of a generic framework. This
framework is then leveraged as basis for implementation of a scatter-gather
(supercomputer) processing model; multiphysics dataflow is hierarchically parsed and
corresponding process components applied to cluster/CPU/GPU processing resources
based upon a custom map/schedule optimization across an entire execution timeline. The
scatter-gather engine then employs methods attached to each process queue to
asynchronously launch processes/threads at associated API’s, and subsequently
synchronize according to reductions on the dataflow graph. In this manner, ePX
maximizes effective parallelization for complete applications of virtually arbitrary scale
and complexity. Traditional cluster technology practice maps top-level multiphysics
scatter-gather to non-parallelizable processes residing at head-end and NFS nodes. From

a system infrastructure perspective, this approach creates fundamental performance-
bottleneck issues associated with cluster-wide datapath movement. ePX addresses this
problem with new NFS technology that; (1) abstracts datapath references within context
of work-unit scatter-gather, and (2) implements multiphysics scatter-gather based upon
GPU-accelerated post-processing prior to write-back.

Where use of GPU-accelerated cluster technology is considered, enParallel, Inc. ePX
technology is seen to address three fundamental aspects of the multiphysics simulation
performance equation; (1) integration of Distributed, multicore SMP, and GPU/SIMT
processing models, (2) optimization of effective parallelization, and (3) minimization of
scatter-gather datapath movement and ancillary head-end processing overhead.

Note1 - In present context, CTR is defined as a measure on the expected proportion of time during which
the instruction pipeline is performing actual datapath calculations, (e.g. as opposed to device I/O,
instruction pipeline initialization, and thread synchronization).
Note2 – A ‘work-unit’ consists of instructions + datapath sufficient to a map/schedule instance on any
Node/CPU/GPU processing resource.
Note3 – ‘gather’ remains blocking according to the associated dataflow representation and implied
scheduler synchronization semantics
Note4 - Any of MPI, PVM, or MOSIX distributed processing models may be employed for this purpose.
Note5 – Test platform is single multithreaded DSC using 4xC1060 GPU’s (4-TFLOPS aggregate).

Bibliography

{1} “GPU-based Desktop Supercomputing”; J. Glenn-Anderson, enParallel, Inc. 10/2008
{2} “ePX Supercomputing Technology”; J. Glenn-Anderson, enParallel, Inc. 11/2008
{3} “ePX Cluster Supercomputing”; J. Glenn-Anderson, enParallel, Inc. 1/2009
{4} “Hybrid (OpenMP and MPI) Parallelization of MFIX: A multiphase CFD Code for

 Modeling Fluidized Beds” S. Pannala, E. D’Azevedo, M. Syamlal SAC 2003
{5} “NVIDIA CUDA Compute Unified Device Architecture – Reference

 Manual”; Version 2.0, June 2008
{6} “NVIDIA CUDA Compute Unified Device Architecture – Programming

 Guide”; Version 2.0, 6/7/2008
{7} “NVIDIA CUDA CUBLAS Library”; PG-00000-002_V2.0, March 2008
{8} “NVIDIA Compute PTX: Parallel Thread Execution”; ISA Version 1.2,
 2008-04-16, SP-03483-001_v1.2
{9} “GPU Cluster for Scientific Computing and Large-Scale Simulation” Z. Fan, et

al. Stony Brook University ACM Workshop on General Purpose Computing on
Graphics Processors 2004

{10} http://www.gpgpu.com
{11} “A Performance-Oriented Data Parallel Virtual Machine for GPUs”; M. Segal,

M. Peercy, ATI Technologies, Inc.
{12} “ATI CTM Guide – Technical Reference Manual”; V1.01 2006AMD
{13} “ATI Stream Computing – Technical Overview”; V1.01 2009AMD

{14} “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation”;

 E. Gabriel, et al. Proceedings 11th European PVM/MPI Users’ Group Meeting
 http://www.open-mpi.org

{15} “MPI Parallelization Problems and Solutions” UCRL-WEB-200945
 https://computing.llnl.gov

http://www.gpgpu.com/
http://www.open-mpi.org/
https://computing.llnl.gov/

{16} “OpenMP Application Program Interface”; Version 3.0 May 2008
 OpenMP Architecture Review Board http://openmp.org

{17} “MPI: A Message Passing Interface Standard Version 1.3”; Message Passing Interface
 Forum, May 30, 2008

{18} “MPI: A Message Passing Interface Standard Version 2.1”; Message Passing Interface
 Forum, June 23, 2008

{19} “Installation and User’s Guide to MPICH, a Portable Implementation of MPI 1.2.7;
 The ch.nt Device for Workstations and Clusters of Microsoft Windows machines”;
 D. Aston, et al. Mathematics and Computer Science Division, Argonne National
 Laboratory

{20} “The OpenCL Specification”; Khronos OpenCL Working Group, A. Munshi Ed. Version
 1.0, Document Revision 29
{21} “PVM: Parallel Virtual Machine – A User’s Guide and Tutorial for Networked

 Parallel Computing”; A. Geist, et al. MIT Press 1994
{22} “Principles of Parallel Programming”; C. Lin, L. Snyder 1st Ed. Addison-Wesley 2008

http://openmp.org/

