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Abstract 
 
In recent technology developments General Purpose computation on Graphics Processor 
Units (GPGPU) has been recognized a viable HPC technique. In this context, GPU-
acceleration is rooted in high-order Single Instruction Multiple Data (SIMD)/Single 
Instruction Multiple Thread (SIMT) vector-processing capability, combined with high-
speed asynchronous I/O and sophisticated parallel cache memory architecture. In this 
presentation we examine the enParallel, Inc. (ePX) approach in leveraging this 
technology for accelerated multiphysics computation {1}{2}{3}. 
 
As is well understood, both complexity and size impact realizable multiphysics 
simulation performance. Multiphysics applications by definition incorporate diverse 
model components, each of which employs characteristic algorithmic kernels, (e.g. 
sparse/dense linear solvers, gradient optimizers, multidimensional FFT/IFFT, wavelet, 
random variate generators). This complexity is further increased by any requirement for 
structured communications across module boundaries, (e.g. dynamic boundary 
conditions, multi-grid (re)discretization, and management of disparate time-scales). 
Further, multiphysics applications tend toward large scale and long runtimes due to; (a) 
presence of multiple physical processes and (b) high-order discretization as result of 
persistent nonlinearity, chaotic dynamics, etc. It then follows acceleration is highly 
motivated, and any associated performance optimization schema must be sufficiently 
sophisticated so as to address all salient aspects of process resource mapping and 
scheduling, and datapath movement. For the GPU-accelerated cluster, this remains a 
particularly important consideration due to the fact GPU lends an additional degree of 
freedom to any choice of processing resource; multiphysics performance optimization 
then reduces to a goal of achieving highest possible effective parallelism across all 
available HPC resources, each of which is associated with a characteristic process model. 
 
In ePX applications, processing models are organized hierarchically so as to structurally 
minimize high-overhead interprocess communications; process optimization is then 
performed based upon an assumed scatter-gather principle recursively applied at 
distributed (cluster) and Symmetric Multi-Processor (SMP; multicore CPU) hierarchy 
levels. This approach supports flexible optimization across all physics modules. In 
particular, explicit pipelining of cluster, CPU, and GPU processes is implemented based 
upon asynchronous transaction calls at an associated Application Programming Interface 
(API). This generally improves effective parallelization beyond what might otherwise be 
possible. Further, a complete multiphysics application must be accelerated consistent 
with dictates of Amdahl’s Law. In this context, ePX is shown to exhibit a full-featured 
supercomputer processing model, highly optimized for GPU-accelerated clusters or 
workstations, and particularly well suited to multiphysics applications. The ePX 
framework is then presented as a generic and reusable multiphysics development solution 



featuring scatter-gather infrastructure as a software architectural component and 
obviating any need for specialized compilation technology or OS runtime support. 
 
Introduction 
 
HPC is the dominant enabling technology for advanced multiphysics simulation. Thus, 
dramatic improvements recently observed in HPC price/performance have rendered 
multiphysics applications a practical reality at unprecedented scale and complexity. This 
trend is based in emergence of enterprise cluster computing in the HPC market sector, 
concurrent with appearance of new multicore CPU and GPGPU technologies. 
 
By definition, multiphysics simulation involves expression of multiple physical 
processes. Further, distinct mathematical formalisms may be employed for each process, 
with coupling amongst those processes imposed at defined boundaries and all within 
context of a single computational process. Thus, where multiphysics simulation is 
considered, complexity is increased over that of a scale-equivalent unitary physics 
simulation on at least two axes; (1) algorithmic kernel diversity, and (2) dynamic 
boundaries between processes. The cited dynamic boundaries may also engender 
rediscretization on coupled processes, further impacting problem representation scale and 
complexity. A characteristic example is the ORNL MFIX application combining (TDFD) 
computational fluid dynamics and discrete event physics modules {4}. The upshot is 
simulations involving unitary physics remain generally far easier to optimize than those 
involving multiphysics. In what follows, a new software architecture is presented as basis 
for optimized multiphysics simulation on GPU-accelerated clusters and workstations. 
 
Hardware Architecture 
 
GPU architecture 
 
We assume the NVIDIA GPU as a more or less generic architectural template {4}. As 
displayed in figure-1, GPU processing resources are organized as an assembly of ‘N’ 
distinct multiprocessors, each of which consists of ‘M’ distinct thread processors. In this 
context, multiprocessor operation is defined modulo an ensemble of threads scheduled 
and managed as a single entity, (i.e. ‘warp’). In this manner, shared-memory access, 
SIMT instruction fetch and execution, and cache operations are maximally synchronized. 
Here, SIMT is distinguished from SIMD by virtue of the fact hardware vector 
organization is not exposed at software level and programmers are enabled to flexibly 
compose parallel code for both independent and coordinated (data-parallel) threads. 
While certainly a useful innovation, a subtle complexity is also introduced in that 
programmers must assume responsibility for minimizing warp divergence, (i.e. along 
logical branches), so as to achieve peak performance. In other respects the terms remain 
essentially equivalent and with noted exception will be used synonymously. 
 
At high level, CPU/GPU memory is organized hierarchically: Global → Device → 
Shared. In this context, Global/Device memory transactions are understood as mediated 
by high-speed bus transactions, (e.g. PCIe, HyperTransport, QPI), and shared memory 



accrues in form of a parallel data cache available to all multiprocessor scalar cores. At a 
more fine-grained level, ancillary memory resources include; per-processor register 
banks, read-only constant cache shared by all scalar processor cores, and read-only 
texture cache again shared by all scalar processor cores and by which datapath spatio-
temporal coherences may be exploited. 
 

 
 

Figure-1: GPU Architecture 
 
The GPU-accelerated PC/Server 
 
Multiple GPU’s are appended as ancillary processing resource to a PC/Server hardware 
platform via high-speed internal bus to form a vector processing array. In Figure-2, a PC-
based architectural variant is displayed whereby 4x GPU’s are attached to a multicore 
CPU via a Northbridge↔Southbridge↔PCIe x16 pathway. 
 

 
 

Figure-2: PC-based CPU/GPU System Architecture 
 
Tailored Application Programming Interface (API) components {6}{13}{20} provide 
concurrent access to multicore CPU and GPU Array (GPA) processing resources. A key 



subtlety associated with the CPU/GPU processing is GPU resources may be accessed 
based upon a non-blocking transaction model. Thus, CPU processing may continue as 
soon as a work-unit has been written to the GPU process queue. As result, host (CPU) 
processing and GPU processing may be overlapped as displayed in figure-3. In principle, 
GPU work unit assembly/disassembly and I/O at the GPU transaction buffer may to large 
extent be hidden. In such case, one can expect GPU performance will effectively 
dominate system performance. Thus, optimal GPU processing gain is realized within an 
I/O constraint boundary whereby thread processors never stall due to lack of data. 

 

 
 

Figure-3: CPU/GPU Process Overlap 
 
In the ePX approach, the traditional GPU coprocessor model is abandoned in favor of a 
scatter-gather approach by which full advantage is taken of Node/CPU/GPU process 
pipelining. In this manner, two fundamental objectives may be achieved; (1) acceleration 
of complete applications and (2) performance scaling across broad classes of algorithmic 
kernels. In effect, a full-featured supercomputing processing model is employed, for 
which dynamic resource mapping and scheduling, instruction pipeline reuse, and 
CPU/GPU process pipelining remain key features. While applied here to various forms 
of the (multicore) CPU/GPA architectural template, these features generally duplicate 
those found in traditional supercomputing systems. 
 
The GPU-accelerated cluster 
 
The ePX supercomputer processing model finds full expression when applied to a GPU-
accelerated cluster. In this instance, a third API component {18} is added as basis for 
distributed interprocess communication. Depending upon application requirements, 
Operating System (OS), and specific architectural template, a variety of API’s are 
supported; (1) MPI (cluster) {18}, (2) OpenMP (multicore CPU) {16}, (3) OpenCL 
(multicore CPU + GPA) {20}, CAL/CTM (GPA) {13}, and CUDA (GPA) {6}. The 
aforementioned scatter-gather service routines then implement API-specific calls for 
concurrent and transparent access to any given processing resource. The resulting 
processing model is distinguished by globally optimal map and schedule of algorithmic 



kernels across all Cluster/CPU/GPA processing resources. In particular, vectorized 
algorithmic kernels are dynamically assigned to GPU instances based upon; (1) GPU-
element availability and (2) opportunistic SIMT instruction pipeline reuse. In this manner 
SIMT Cyclostatic Thread Residency (CTR) is maximized at any GPU instance1, 
maximizing effective process parallelism cluster-wide. 
 
Associated scatter-gather work-unit distribution2 is performed according to scheduler 
state. A given thread-set may be applied to a GPU instance at initialization or may 
already exist in situ as result of a previous processing cycle. In the latter case, the 
scheduler will opportunistically forego pipeline reinitialization, (re: instruction pipeline 
reuse), and apply only datapath during a given scatter cycle. In this manner, algorithmic 
kernels are parallelized at the GPA transaction buffer and thread-sets optimally processed 
in parallel within GPU/SIMT instruction pipelines. This bipartite parallelism critically 
depends upon the fact scatter at the GPA transaction buffer is non-blocking. Thus, the 
CPU does not have to wait for completion of a GPU processing cycle. In this manner, 
CPU/GPA thread processing may be effectively overlapped3. The ePX Framework 
further implements all required scheduler, scatter-gather, and CPU/GPA pipelining 
management functionality based upon an abstraction by which work-unit structure and 
interprocess communications implementation details are effectively hidden. In effect, all 
such details are pushed to process-queue service routines. Thus, ePX management 
operations remain generic across all multicore-CPU/GPA and derivative cluster 
architectural templates regardless of the specific nature and location of process 
components. 
 
A characteristic GPU-accelerated cluster architecture displayed schematically in figure-4. 
In this context, NODE0 acts as a more or less standard ‘head-end’ resource at which 
cluster management, ePX Framework, and software development components have been 
placed. NODE1 through NODEN represent processing nodes to which GPU arrays have 
been appended, (i.e. with internals expanded at NODE1). In addition, the traditional 
Network File Server (NFS) resource is replaced with an ePX/NFS variant intended to 
provide high-performance multiphysics scatter-gather functionality. Internode 
communications is based upon a dual-pathway network communications backbone, with 
node-management and interprocess communications transactions mapped to respective 
ETHERNET and Infiniband ports. 
 



 
 

Figure-4: The GPU-accelerated Cluster 
 
Multiphysics simulation may be characterized in terms of a collection of physics 
processes communicating with one another. For the large-scale problems typical of 
multiphysics, one would expect presence of a top-level scatter-gather process involving 
iteration on massive datasets featuring diverse and arbitrarily complex storage patterns. In 
current GPU-accelerated cluster state-of-the-art, this processing would be performed at 
the head-end, effectively as a non-parallelizable process component. However, ePX/NFS 
incorporates two key technology innovations by which critical performance bottlenecks 
are avoided; (1) use of an ancillary datapath server, and (2) GPU-accelerated 
(multiphysics) scatter-gather. In this context, ePX/NFS implements a demand-driven 
protocol by which data is moved only to that node actually processing a work-unit; any 
associated work-unit assembly/disassembly, (i.e. within context of hierarchical scatter-
gather), is then performed based upon abstract datapath references. Further, localized 
GPU resources are employed to accelerate required transformations on component 
physics processes prior to (RAID) write-back. In this manner, any required head-end 
intervention is effectively eliminated, scatter-gather work-unit composition is greatly 
simplified, and internode communication overhead is significantly reduced. 
 
At any ePX node, distinct scatter-gather process queues are maintained for each mapped 
GPA, CPU, and NODE processing resource {3}. Service methods attached to these 
queues implement work-unit transactions at associated buffers based upon nominal 
scatter-gather pathways displayed in figure-5. In this specific case, component-tasks 
originate at NODE0 (head-end) and are propagated to all other nodes4. As shown in 
expanded view at cluster NODE1, tasks are resolved into component algorithmic kernels 
and distributed to local CPU/GPA resources. Global multiphysics solution assembly is 
performed at ePX/NFS. 
 



 
 

Figure-5: GPU-accelerated Cluster Scatter-Gather Patterns 
 

GPGPU Multiphysics Processing Model 
 
The GPU-accelerated cluster when combined with ePX scatter-gather reveals unique 
advantages pertinent to GPGPU multiphysics supercomputing. In particular, a nominal 
two-order-of-magnitude increase in processing threads may be efficiently accessed at 
each processing node. Further, integration of distributed (cluster), SMP (multicore CPU), 
and SIMT (GPU/GPA) processing models is well matched to the characteristic 
granularity of multiphysics processes when resolved along physics module, subprocess, 
and algorithmic kernel boundaries. To see this, we examine a simple dataflow example 
typical of multiphysics simulation. 
 
In figure-6, four distinct physics processes are displayed, color-coded in red, teal-yellow-
green, and purple-blue-black. Dotted lines indicate simple graph decomposition in form 
of recursive partitions. This decomposition is calculated based upon map/schedule 
optimization and serves to impose a process-subprocess-algorithmic kernel scatter-gather 
hierarchy matched to characteristic coarse-grained/medium-grained/fine-grained 
parallelism typified by cluster/multi-core CPU/GPU processing resources. In this manner, 
the ePX processing hierarchy is defined. Here, the red process is characterized by four 
subprocesses consisting of a single algorithmic kernel and for which there is no 
communication among subprocesses. The teal-yellow-green process consists of three sub-
processes consisting of three distinct algorithmic kernels, with a single kernel-type 
reserved to each branch. In this case however, there exists communication among 
subprocesses, as indicated by internal datapath scatter-gather junctures. Finally, each of 
two purple-blue-black processes is characterized by two distinct subprocesses, each of 
which is composed of three distinct algorithmic kernels. There is also no communication 
among subprocesses. 
 
The simplicity of this dataflow admits naïve map and schedule process optimization. 
Given fully resolved scatter-gather points at the boundaries of each physics module and 
availability of four GPU instances at each cluster node, modules are first distributed to 



distinct cluster nodes and all component algorithmic kernels processed on local 
CPU/GPU resources where additional optimizations become available; (1) as algorithmic 
kernels recur along subprocesses, instruction pipelines may be reused, and (2) as 
algorithmic kernels persist along subprocesses, intermediate results need not be updated 
in (CPU) global memory, (i.e. intermediate results are left in GPU device memory until 
subprocess terminates). Under circumstances where subprocesses communicate, 
intermediate datapath must be updated in global memory. However, explicit CPU/GPU 
process pipelining based upon asynchronous datapath transfers may be employed to hide 
much of the associated overhead. 
 

 
 

Figure-6: Example Multiphysics Dataflow Component 
 
A simplified version of the optimized process schedule is displayed schematically in 
figure-7; processing resources are organized vertically and time horizontally. The process 
schedule is organized into three distinct (vertical) regions, each of which also 
corresponds to a distinct component of hierarchical scatter-gather. The upper-half 
indicates launch of four tasks at distinct cluster nodes (‘CTK’) based upon a distributed 
processing model. Each of these processes is padded on the left with an interval 
encapsulating all transaction and process launch overhead components (‘OV’). We note 
an asynchronous-sequential scatter-gather cycle is implied at the cluster head-end CPU 
(NODE0). The lower-half expands local process scheduling at cluster NODE1/CT1. The 
lower-most resource schedule refers to local CPU/SMP processing, with four GPU/SIMT 
resources scheduled immediately above (‘GPU0-3’). For simplicity, we assume a single 
CPU core with multithreading. We note sequential launch of four CPU threads, each of 
which is associated with a single GPU resource. In this case, overlap of CPU and GPU 
processing implies asynchronous I/O transactions at each GPU process queue and derived 
parallelism across the entire Distributed/SMP/SIMT hierarchy. Specific CPU processes 
include; get_work_unit(..), get_gpu_buffer(..), work_unit_assembly(..), gpu_scatter(..), 
gpu_gather(..), and solution_assembly(..). 
 



 
 

Figure-7: Optimized Process Schedule (local) 
 

As previously mentioned, realistic multiphysics dataflow will typically incorporate 
internal communications among physics modules, (re: dynamic boundary conditions and 
mesh rediscretization). Thus, one would expect interprocess communication among 
cluster nodes at module boundaries. In figure-8, we consider a simple two-stage iterated 
relaxation among all four physics modules whereby intermediate solutions are exchanged 
based upon a top-level global iteration. 
 

 
 

Figure-8: Example Multiphysics Relaxation Dataflow 
 

An essential point is the corresponding process schedule is generated based upon the 
complete dataflow and for which map/schedule optimization is fully elaborated in terms 
of; (1) an arbitrarily diverse set of algorithmic kernels, (2) the complete set of available 
processing resources, and (3) the entire process timeline. Thus, the globally optimal 
nature of the ePX supercomputer processing model is expected to exhibit a generally 



superior effective parallelism when applied to multiphysics applications, as compared to 
that typical of a standard coprocessor model. 
 
The GPU-accelerated MultiCluster 
 
As displayed in figure-6, the GPU-accelerated cluster is easily integrated with existing 
cluster and enterprise network infrastructure. In particular, combination of Desktop 
SuperComputer (DSC) workstations with GPU-accelerated cluster and enterprise HPC 
cluster resources creates a third option to the traditional ‘client/server’ versus 
‘distributed’ discussion in that local processing capability may be tailored according to 
needs of a (scientific) software ‘developer’ versus that of a ‘user’. More specifically, 
GPU-accelerated DSC workstations provide algorithm designers and library developers 
with a low capital investment, low life cycle cost, high-availability HPC resource well 
suited to rapid prototyping, benchmarking and verification of library components 
essentially independent of software updates at a cluster head-end. When incorporated 
within a suitable software engineering methodology, this capability can lead to 
significantly reduced development costs, based upon fast turnaround, extended test 
protocols, and complete portability between cluster and DSC build environments. Yet 
another advantage is reservation of incremental development work to DSC’s will 
significantly improve overall cluster availability and efficiency. 
 

 
 

Figure-6: The GPU-accelerated Multi-Cluster 
 
 
 
Multiphysics Software Architecture 
 
The ePX software architecture is expressed in form of a generic and reusable framework 
for multiphysics applications. In effect, this architecture serves to add full-featured 
supercomputing infrastructure without requirement for specialized compilation 



technology, (e.g. ‘parallelizing’ compilers), or modification to the run-time environment, 
(e.g. OS-based parallel resource scheduler, scatter-gather manager, MMU). As shown in 
figure-9, ePX framework features scheduler, dispatcher, and scatter-gather engine 
components communicating with generalized process queues associated with each level 
of the Distributed/SMP/SIMT hierarchy. In this manner, cluster, multicore CPU, and 
GPA resources may be efficiently accessed at any available processing node. Attached to 
each process queue are methods communicating with Application Programming Interface 
(API) components that effectively abstract-away all hardware detail at higher levels of 
software hierarchy. Thus, ePX multiphysics software architecture remains more or less 
uniform across all applications. In nominal configuration, OpenMPI, OpenMP, and 
CUDA/OpenCL API’s are employed. However, alternative API combinations may be 
supported with little architectural impact, (e.g. AMD CAL/CTM {13}, PVM {21}, and 
alternate MPI flavors {14}{18}). 

 

 
 

Figure-9: ePX Software Architecture 
 

Multiphysics applications development is further simplified with use of ePX 
C/C++/FORTRAN acceleration libraries. These libraries feature standard compilation 
bindings and may higher performance based upon functional aggregation and improved 
local optimizations. In all cases, only standard OS runtime environments, (e.g. Linux, 
UNIX, Mac OS-X, and Windows XP/Vista), and development tools, (e.g. GCC, and 
MSVS), are required. 
 
Amdahl’s Law 
 
As previously reported, ePX technology is directed toward acceleration of complete 
applications {1}{2}. The basis of this claim is substantiated based upon a simple 
interpretation of the ePX processing model, based upon Amdahl’s Law {22} for which 
the basic mathematical model is: 
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Here, ‘A’ is the acceleration factor, ‘P’ the parallelizable code fraction, and ‘N’ the order 
of parallelization. We first consider hyperthreaded parallelization at a single cluster node. 
Thus ‘1’ becomes: 
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Here, NCPU ≡ multicore order, NGPU ≡ GPU array order, and NTP/GPU ≡ Number thread 
processors per GPU. With use of asynchronous GPU transactions, we assume CPU-GPU 
pipelining at efficiency CCPU , (constant ∈ [0,1]). Thus, CPU and GPU processes are 
mutually parallelizable. Consequently, ‘2’ becomes: 
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For simplicity, we will assume identical processes at ‘NNODE’ cluster nodes, mutually 
parallelizable with efficiency ‘CNODE’. The resulting total acceleration is then: 
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Simplifying, we obtain: 
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Of particular interest is the limiting case: 
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Thus, with the term ‘ ( GPUCPUCPUNODE PPCC )− ‘sufficiently large: 
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In this limiting case, ‘A’ is ‘large’ only if the multiphysics application is parallelizable to 
a sufficiently high degree. Similarly, approximate linear scaling should be observed over 
some range of composite thread order: 
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Acceleration factors have been experimentally confirmed for a number of characteristic 
simulations5: 
  

Algorithmic Kernel Acceleration 
  

Finite Difference: Heat Equation, 
SOR (Gauss-Seidel solver) 

x310 

FEM multi-grid: Mixed Precision 
Linear Solvers 

x505 

Image Processing: Optical Flow x1030 
CFD: 3D Euler solver x540 
CFD: Navier-Stokes (Lattice 
Boltzmann) 

x1875 

Signal Processing: Sparse Signal 
Recovery from Random 
Projections (NP-hard 
combinatorial optimization) 

x580 

Computational Finance: 
Quantitative Risk Analysis and 
Algorithmic Trading 

x935 

Computational Finance: Monte 
Carlo Pricing 

x1500 

 
Table-1: Acceleration Performance Test Kernels 

 
Scaling is verified based upon measured acceleration as function of problem scale and 
composite thread order, post map/schedule optimization. The fundamental experimental 
methodology is characterized by the following steps: 
 

(1) Select problem size (assume constant dataflow), 
(2) Perform map/schedule optimization (assume unconstrained resource pool), 
(3) Build/Run test-case, 
(4) Measure acceleration factor, 
(5) Plot against composite thread order, 

 



It should be noted interpretation of any results thus generated is greatly complicated by 
an essential nonlinearity between assumed problem order and composite thread order as 
result of map/schedule optimization. Nevertheless, an approximate 
‘ ’ scaling has been verified for each application cited in table-1 
with test-points at NNODE values {2,4,8}, (4xC1060/NODE). According to equations 
‘4a,b’ this scaling is expected to first become sublinear as problem size is further 
increased and then converge to a maximum. 

GPUTPGPUCPUNODE NNNN /

 
Summary 
 
Arguably, GPU-accelerated clusters represent a very promising ‘enabling technology’ for 
large-scale multiphysics simulation; massively parallel GPU arrays appended to multi-
CPU, multicore servers at cluster nodes provide incredible aggregate peak-performance 
capability, and at unprecedented price-performance ratios. However, effectively 
harnessing this capability has proven difficult. Part of the reason for this is the technology 
is very new and also rapidly evolving. Yet another aspect is multiphysics is characterized 
by complex mathematical formulation involving distinct physics processes and must 
therefore be considered fundamentally difficult where; (1) diverse algorithmic content, 
(2) dynamically varying boundary conditions, (3) adaptive discretization, and (4) 
management of large-scale and arbitrarily complex datasets are implied. Further, where 
the GPU-accelerated cluster is considered, maximal parallelization demands efficient 
integration of three distinct processing models (Distributed/SMP/SIMT) for which 
CPU/GPU code components are inherently multithreaded. The upshot is any realization 
of performance potential comes at cost of significantly increased complexity in terms of 
processing model, software architecture, system infrastructure, and programming. 
 
In this paper, the ePX accelerated multiphysics simulation solution is presented in form 
of two categories of technical innovation; (1) software architecture, and (2) system 
infrastructure. A fundamental technical goal of efficient utilization of all available 
processing resources is adopted. Ancillary goals of reusable software architecture, 
compatibility with standard OS and software development platforms, and global process 
optimization are also assumed. Traditional supercomputing is based upon use of 
parallelizing compilers and specialized runtime support for concurrent thread scheduling, 
SMP memory management, etc. From the perspective of software architecture, ePX 
reverses this principle with explicit addition of map, scheduler, and generalized process 
queue infrastructure directly to the application in form of a generic framework. This 
framework is then leveraged as basis for implementation of a scatter-gather 
(supercomputer) processing model; multiphysics dataflow is hierarchically parsed and 
corresponding process components applied to cluster/CPU/GPU processing resources 
based upon a custom map/schedule optimization across an entire execution timeline. The 
scatter-gather engine then employs methods attached to each process queue to 
asynchronously launch processes/threads at associated API’s, and subsequently 
synchronize according to reductions on the dataflow graph. In this manner, ePX 
maximizes effective parallelization for complete applications of virtually arbitrary scale 
and complexity. Traditional cluster technology practice maps top-level multiphysics 
scatter-gather to non-parallelizable processes residing at head-end and NFS nodes. From 



a system infrastructure perspective, this approach creates fundamental performance-
bottleneck issues associated with cluster-wide datapath movement. ePX addresses this 
problem with new NFS technology that; (1) abstracts datapath references within context 
of work-unit scatter-gather, and (2) implements multiphysics scatter-gather based upon 
GPU-accelerated post-processing prior to write-back. 
 
Where use of GPU-accelerated cluster technology is considered, enParallel, Inc. ePX 
technology is seen to address three fundamental aspects of the multiphysics simulation 
performance equation; (1) integration of Distributed, multicore SMP, and GPU/SIMT 
processing models, (2) optimization of effective parallelization, and (3) minimization of 
scatter-gather datapath movement and ancillary head-end processing overhead. 
 
Note1 - In present context, CTR is defined as a measure on the expected proportion of time during which 
the instruction pipeline is performing actual datapath calculations, (e.g. as opposed to device I/O, 
instruction pipeline initialization, and thread synchronization). 
Note2 – A ‘work-unit’ consists of instructions + datapath sufficient to a map/schedule instance on any 
Node/CPU/GPU processing resource. 
Note3 – ‘gather’ remains blocking according to the associated dataflow representation and implied 
scheduler synchronization semantics 
Note4 - Any of MPI, PVM, or MOSIX distributed processing models may be employed for this purpose. 
Note5 – Test platform is single multithreaded DSC using 4xC1060 GPU’s (4-TFLOPS aggregate). 
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