
1 gameworks.nvidia.com

GPU Computing

for Games

Cem Cebenoyan

https://developer.nvidia.com/gameworks

2 gameworks.nvidia.com

Overview

GPU Computing in games case studies

Just Cause 2

CUDA C Bokeh

CUDA C Water

Metro 2033

DirectCompute Depth of Field

JX3 Online

CUDA C Animation

https://developer.nvidia.com/gameworks

3 gameworks.nvidia.com

GPU Computing for Games

What is GPU Computing for Games?

Using a general purpose language to enable and

accelerate game algorithms

Languages like CUDA C, DirectCompute, OpenCL

Algorithms like post processing, animation, simulation,

and much more

Enables new classes of algorithms, and easier

access to massive parallel horsepower of GPUs

This presentation focuses on visual effects

https://developer.nvidia.com/gameworks

4 gameworks.nvidia.com

Just Cause 2 - Background

Dev: Avalanche, Stockholm

Pub: Square Enix

3rd person action shooter; huge sandbox world

» More background in devtech wiki

https://developer.nvidia.com/gameworks
https://wiki.nvidia.com/engwiki/index.php/Devtech/Games/JustCause2
https://wiki.nvidia.com/engwiki/index.php/Devtech/Games/JustCause2
https://wiki.nvidia.com/engwiki/index.php/Devtech/Games/JustCause2

5 gameworks.nvidia.com

Just Cause 2 – Original

https://developer.nvidia.com/gameworks

6 gameworks.nvidia.com

Just Cause 2 – With Bokeh

https://developer.nvidia.com/gameworks

7 gameworks.nvidia.com

Why Bokeh?

Provide artistic, filmic quality to depth of field

Movie examples:

Convolving with 8-bit, LDR scene doesn’t work

Needs small, sharp, high-contrast points

https://developer.nvidia.com/gameworks

8 gameworks.nvidia.com

CUDA C Bokeh Blur

Replace existing, usual PS blur

No other changes to Depth of Field

Brute-force, image-space convolution kernel

First downscale scene 2x2 for perf

15x15 kernel gives good shape definition:

Hence 30x30 at frame-buffer res

https://developer.nvidia.com/gameworks

9 gameworks.nvidia.com

Issues: Blur Leakage

Blur leakage

Exists in original – less obvious

Large kernel width with bokeh – more obvious

Fix: cross bilateral using focus amount

Ignore samples with distinctly different focal values

Requires focal value – pack into alpha channel

https://developer.nvidia.com/gameworks

10 gameworks.nvidia.com

Cross Bilateral Results

https://developer.nvidia.com/gameworks

11 gameworks.nvidia.com

Highlight Exaggeration

Typical LDR problem

Need to extract more contrast from R8G8B8

Used Photoshop Lens Blur as reference

https://developer.nvidia.com/gameworks

12 gameworks.nvidia.com

Highlight Discrimination

Apparently bright images similar to dark ones

Typical LDR problem

Histograms similar

https://developer.nvidia.com/gameworks

13 gameworks.nvidia.com

Incorrect Highlights

Huge highlights wrong places

Snow - big problem

https://developer.nvidia.com/gameworks

14 gameworks.nvidia.com

Incorrect Highlights

Another example – cut scene

https://developer.nvidia.com/gameworks

15 gameworks.nvidia.com

Emissive Masking

Indicate emissive pixels in scene alpha

Apply highlight exaggeration to emissive only

Much more control

Dual-source blending required

https://developer.nvidia.com/gameworks

16 gameworks.nvidia.com

Emissive Masking – Bokeh Input

https://developer.nvidia.com/gameworks

17 gameworks.nvidia.com

Emissive Masking – Bokeh Output

https://developer.nvidia.com/gameworks

18 gameworks.nvidia.com

Bokeh Pipeline Summary

Raw Scene

Emissive Mask

Depth

Pre-

process

Pixel Shd

Kernel

2-way

blend

Bokeh blurred

Final

Image

CUDA C

convolve

X Bilateral

Highlighted + focus

(½ size, ¼ brightness)

2x2

up

2x2

down

https://developer.nvidia.com/gameworks

19 gameworks.nvidia.com

Bokeh CUDA Performance

15x15 kernel = 225 samples per pixel

Early, simple versions:

~ mad per input sample

Texture sampling of input

Cross-bilateral:

exp(k * (fi-fo)2) per input sample

Less texture bottleneck

https://developer.nvidia.com/gameworks

20 gameworks.nvidia.com

Bokeh Optimizations

Generate CUDA C code off line:

Unroll kernel loop

Skip kernel samples with zero

weight

Skip 100% in-focus output

pixels

Reduce kernel radius as focus

increases

Use linear sampling

https://developer.nvidia.com/gameworks

21 gameworks.nvidia.com

Final Bokeh Perf

Scene-specific optimizations:

Function of how much in-focus

Cost highly variable – CUDA kernel times on GT200:

Add ~2ms for D3D interop & context switches

4.1ms 2.3ms 0.2ms

8.3ms 6.2ms 0.2ms

N

o

r

m

a

l

A

i

m

https://developer.nvidia.com/gameworks

22 gameworks.nvidia.com

Just Cause 2 - Bokeh Video

https://developer.nvidia.com/gameworks

23 gameworks.nvidia.com

Just Cause 2 - CUDA water

Game already contained large areas of open water

(seas, harbors and estuaries)

https://developer.nvidia.com/gameworks
https://wiki.nvidia.com/engwiki/index.php/Image:JC2_BoatUnderway.jpg

24 gameworks.nvidia.com

CUDA Water Overview

Based on Jerry Tessendorf’s paper “Simulating

Ocean Water”
Statistic based, not physics based

Generate wave distribution in frequency domain, then perform

inverse FFT

Widely used in movie CGIs since 90s, and in games since 2000s

In movie CG: the size of height map is large
2048x2048 is typical

In games: the size of height map is small
Often 32x32 or 64x64 at most

Cost of CPU simulation is high

https://developer.nvidia.com/gameworks

25 gameworks.nvidia.com

Performance Issues

Required to generate a displacement map in real-time

Large displacement map gives better looking water

High cost on CPU FFT

Takes long time on CPU-GPU data transfer

Perform FFT with GPU computing

Multiple 512x512 transform can be performed in trivial time

1024x1024 transforms are affordable on high-end GPUs

https://developer.nvidia.com/gameworks

26 gameworks.nvidia.com

The Algorithm: Wave Composition

Assumption: the ocean

surface is composed by

enormous simple waves

Each simple wave is a

hybrid sine wave, called

Gerstner wave

A mass point on the surface

is doing vertical circular

motion

)cos(

)sin()/(0

tAz

tAk









xk

xkkxx

https://developer.nvidia.com/gameworks

27 gameworks.nvidia.com

The Algorithm: Statistic Model

Distribution of wave

length, speed and

amplitude are following a

statistic models

Phillips spectrum model:

Generated in frequency

domain at the initial time

22

1
2

4
)(Lk

h e
k

A
P



 wkk

)()(
~

2

1
)(

~
0 kkk hPH 

ω

https://developer.nvidia.com/gameworks

28 gameworks.nvidia.com

The Algorithm: Runtime

Update three spectrums for XYZ directions per frame

Perform inverse FFT on three spectrums

Surface normal and other data are generated from

displacement map

Z (height field) X (choppy field) Y (choppy field)

titi eHeHtH  )(
~

)(
~

),(
~ *

00 kkk),(
~.

),(
~

tH
k

x
itx k
k

kD ),(
~.

),(
~

tH
k

y
ity k
k

kD 

https://developer.nvidia.com/gameworks

29 gameworks.nvidia.com

The Algorithm: The Full Simulation Chart

Initialization Per-frame (CUDA) Per-frame (PS)

https://developer.nvidia.com/gameworks
https://wiki.nvidia.com/engwiki/index.php/Image:Ocean_cufft_runtime.png
https://wiki.nvidia.com/engwiki/index.php/Image:Ocean_cufft_init.png

30 gameworks.nvidia.com

Rendering

https://developer.nvidia.com/gameworks

31 gameworks.nvidia.com

World Space Rendering

We use world space rendering

The mesh is created at half resolution of the

displacement map

Use quad-tree for frustum culling and mesh LOD

https://developer.nvidia.com/gameworks

32 gameworks.nvidia.com

Tiling Artifact Removing (1)

FFT produces a periodic pattern

Repeated pattern becomes distracting at distance

But looks okay close to the camera

https://developer.nvidia.com/gameworks

33 gameworks.nvidia.com

Tiling Artifact Removing (2)

Perlin noise yields no tiling artifact

But lack of details close to camera

https://developer.nvidia.com/gameworks

34 gameworks.nvidia.com

Tiling Artifact Removing (3)

Solution: blend Perlin and FFT generated crests

+

https://developer.nvidia.com/gameworks

35 gameworks.nvidia.com

The result of blending FFT and Perlin noise

(simple rendering mode)

https://developer.nvidia.com/gameworks

36 gameworks.nvidia.com

Ocean Shading (1)

The demo only rendered for deep ocean water

Shallow water rendering is much more complicated

Shading components

Water body color: using a constant color

Fresnel term for reflection: read from a pre-computed

texture

Reflected color: using a small cubemap blend with a

constant sky color

Vertical streak: computed from a modified specular term

https://developer.nvidia.com/gameworks

37 gameworks.nvidia.com

Ocean Shading (2)

Fresnel term (left) and sun streak (right)

https://developer.nvidia.com/gameworks

38 gameworks.nvidia.com

CUDA C water – before & after

Before

After

https://developer.nvidia.com/gameworks
https://wiki.nvidia.com/engwiki/index.php/Image:JC2-sun-boat-org.png
https://wiki.nvidia.com/engwiki/index.php/Image:JC2-sun-boat-cufft.png

39 gameworks.nvidia.com

CUDA C Water – Video

https://developer.nvidia.com/gameworks

40 gameworks.nvidia.com

References

“Motivating Depth of Field using bokeh in games”

http://beautifulpixels.blogspot.com/2008/11/motivati

ng-depth-of-field-using-bokeh.html

Joint Bilateral Upsampling, Kopf et al, SIGGRAPH

2007,

http://johanneskopf.de/publications/jbu/index.html

“Simulating Ocean Water”, Tessendorf

http://tessendorf.org/papers_files/coursenotes2004.

pdf

https://developer.nvidia.com/gameworks
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://beautifulpixels.blogspot.com/2008/11/motivating-depth-of-field-using-bokeh.html
http://johanneskopf.de/publications/jbu/index.html
http://tessendorf.org/papers_files/coursenotes2004.pdf
http://tessendorf.org/papers_files/coursenotes2004.pdf

41 gameworks.nvidia.com

Metro 2033: the game

A combination of horror, survival, RPG and

shooting

Based on a novel by Dmitry Glukhovsky

https://developer.nvidia.com/gameworks

42 gameworks.nvidia.com

Technology

Developed by Oles Shishkovtsov

Lead architect of the STALKER engine

Metro engine is based on new tech

Packs a lot of innovation

Pervasive DX11 tessellation

Advanced post processing using

DirectCompute

https://developer.nvidia.com/gameworks

43 gameworks.nvidia.com

Depth of field

Common effect in games these days

Typically post-processing image from a pin-hole

camera

Wanted a more realistic, gritty look

Less filimic, so JC2-style Bokeh would not work as well

Key challenge: Need to keep sharp in-focus objects

and blurry backgrounds from bleeding into each

other

https://developer.nvidia.com/gameworks

44 gameworks.nvidia.com

Circle of Confusion (CoC)

Point within focus plane

Point beyond focus plane

Point on focus plane

Disk

Point

Disk

https://developer.nvidia.com/gameworks

45 gameworks.nvidia.com

Depth of field effect

Post-processing input color layer by using depth

layer to calculate CoC (circle of confusion)

color

CoC

DOF
filter

result

https://developer.nvidia.com/gameworks

46 gameworks.nvidia.com

Bleeding artifacts

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

47 gameworks.nvidia.com

Bleeding artifacts

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

48 gameworks.nvidia.com

Diffusion DOF in Metro

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

49 gameworks.nvidia.com

Diffusion DOF in Metro

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

50 gameworks.nvidia.com

Diffusion DOF in Metro

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

51 gameworks.nvidia.com

Diffusion-based DoF

Introduced by Pixar Animation Studio back in 2006

See Interactive DOF using Simulated Diffusion on a GPU,

Kass et al.

Basic idea: DOF and heat diffusion analogy

Pixel color = Temperature sample

CoC = Thermal conductivity

Convert CoC into conductivity, and allow colors bleed like

heat diffusion in a non-uniform media

Challenges:

Blur kernel size varies across screen

Very large kernel size at distance

https://developer.nvidia.com/gameworks

52 gameworks.nvidia.com

Benefits

No color bleeding

Traditional DOF Diffuse DOF

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

53 gameworks.nvidia.com

Benefits – detail view

Traditional DOF Diffuse DOF

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

54 gameworks.nvidia.com

Benefits

Clear separation of sharp in-focus and blurred out-

of-focus objects

From Metro 2033, © THQ and 4A Games

https://developer.nvidia.com/gameworks

55 gameworks.nvidia.com

Implementation

We cast DOF problem in terms of basic heat diffuse

equation

Using Alternate Direction Implicit (ADI) numerical

method

 ),(),(
),(

yxuyx
t

yxu







),(yxu

),(yx

Image color (temperature sample)

Circle of confusion (heat conductivity)

https://developer.nvidia.com/gameworks

56 gameworks.nvidia.com

Implementation

ADI decomposes

equation into X & Y

directions

Applies FD scheme

which leads to a

number of tri-diagonal

systems

Color

X Solver

Y Solver

Result

Radius

https://developer.nvidia.com/gameworks

58 gameworks.nvidia.com

Solving tridiagonal systems

A number of methods exist:

Cyclic reduction (CR)

Parallel cyclic reduction (PCR)

Simplified Gauss elimination (Sweep)

(see references for details)

We use a new hybrid approach

PCR + Sweep

https://developer.nvidia.com/gameworks

61 gameworks.nvidia.com

Tridiagonal solver in DX11

Tridiagonal
Fill

PCR steps

Sweep

Pixel

shader

Pixel

shader

Compute

shader

Num

systems

System

size

Height Width

Height*8 Width/8

PCR steps = 3

https://developer.nvidia.com/gameworks

62 gameworks.nvidia.com

Metro 2033 Depth of Field Video

https://developer.nvidia.com/gameworks

63 gameworks.nvidia.com

References

“Interactive depth of field using simulated diffusion

on a GPU” Michael Kass, Aaron Lefohn, John

Owens, Pixar Animation studios, Pixar technical

memo #06-01

“Tridiagonal solvers on the GPU and applications to

fluid simulation” Nikolai Sakharnykh, GTC 2009

“Fast tridiagonal solvers on the GPU” Yao Zhang,

Jon Cohen, John D. Owens, PPoPP 2010

https://developer.nvidia.com/gameworks

64 gameworks.nvidia.com

JX3 Online: Background

Developer: Kingsoft Zhuhai Studio

MMO RPG with Chinese Fantasy Setting

https://developer.nvidia.com/gameworks

65 gameworks.nvidia.com

Character Animations in JX3

Animation system in JX3

Each character: 90 ~ 120 bones, 3k ~ 5k triangles

4 render passes: depth prepass, shadow, reflection &

lighting

Performance Issues

Original engine shows slowdown when featuring large

number of onscreen characters

Both skeletal animation and skinning create large

workload on CPU & GPU

CUDA Animation

Offload skeletal animation from CPU to GPU

Single skinning pass for all rendering passes

https://developer.nvidia.com/gameworks

66 gameworks.nvidia.com

Skeletal Animation in JX3

Each type of character maintains a skeletal tree

Depth: 12 ~ 15 levels

Width: 12 nodes at widest part (finger tips)

Matrix update of skeletal tree

Original CPU code: top-down recursive updating

https://developer.nvidia.com/gameworks

67 gameworks.nvidia.com

CUDA Skeletal Animation

Parallel updating of skeletal trees

CUDA code: bottom-up traverse

Each block handles a tree, each thread handles a bone

(node in tree)

Node matrix math: M’L = ML * ML-1 * ML-2 * ML-3 * … M0

It’s a prefix sum

https://developer.nvidia.com/gameworks

68 gameworks.nvidia.com

CUDA Skeletal Animation

Reduce the overhead of branching

The topology of skeletal tree is static

The route between any node and the root is fixed

Store all node-to-root routes in a lookup table

Reduce incoherent memory access

Place all intermediate matrices in shared memory,

updating in-place

https://developer.nvidia.com/gameworks

69 gameworks.nvidia.com

CUDA Skinning

Standard skinning processing

Similar to vertex shader skinning

Performed once per frame in CUDA

Data output to a large vertex buffer

All render passes use the output of CUDA skinning

Depth prepass, shadow, reflection & lighting

CUDA skinning enables draw call aggregation

Group similar draw calls into one (not possible in VS

skinning due to per character bone matrices)

Draw calls number drops 80%

https://developer.nvidia.com/gameworks

70 gameworks.nvidia.com

CUDA Animation Performance

2x framerate boost for 200~300 onscreen characters

https://developer.nvidia.com/gameworks

71 gameworks.nvidia.com

Acknowledgements

Many thanks to Calvin Lin, Iain Cantlay, Jon Jansen,

Nikolai Sakharnykh, Callis Zhang

Questions?

cem@nvidia.com

https://developer.nvidia.com/gameworks

