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The graphics processing unit (GPU) has emerged as a competitive platform for computing mas-

sively parallel problems. Many computing applications in medical physics can be formulated as

data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The

authors review the basic principles of GPU computing as well as the main performance optimiza-

tion techniques, and survey existing applications in three areas of medical physics, namely image

reconstruction, dose calculation and treatment plan optimization, and image processing.
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Key words: graphics processing units, high-performance computing, image segmentation, dose

calculation, image processing

I. INTRODUCTION

Parallel processing has become the standard for high-per-

formance computing. Over the last thirty years, general-pur-

pose, single-core processors have enjoyed a doubling of their

performance every 18 months, a feat made possible by

superscalar pipelining, increasing instruction-level parallel-

ism and higher clock frequency. Recently, however, the pro-

gress of single-core processor performance has slowed due

to excessive power dissipation at GHz clock rates and dimin-

ishing returns in instruction-level parallelism. Hence, appli-

cation developers—in particular in the medical physics

community—can no longer count on Moore’s law to make

complex algorithms computationally feasible. Instead, they

are increasingly shifting their algorithms to parallel comput-

ing architectures for practical processing times.

With the increased sophistication of medical imaging and

treatment machines, the amount of data processed in medical

physics is exploding; processing time is now limiting the

deployment of advanced technologies. This trend has been

driven by many factors, such as the shift from 3-D to 4-D in

imaging and treatment planning, the improvement of spatial

resolution in medical imaging, the shift to cone-beam geo-

metries in x-ray CT, the increasing sophistication of MRI

pulse sequences, and the growing complexity of treatment

planning algorithms. Yet typical medical physics datasets

comprise a large number of similar elements, such as voxels

in tomographic imaging, beamlets in intensity-modulated

radiation therapy (IMRT) optimization, k-space samples in

MRI, projective measurements in x-ray CT, and coincidence

events in PET. The processing of such datasets can often be

accelerated by distributing the computation over many paral-

lel threads.

Originally designed for accelerating the production of

computer graphics, the graphics processing unit (GPU) has

emerged as a versatile platform for running massively paral-

lel computation. Graphics hardware presents clear advan-

tages for processing the type of datasets encountered in

medical physics: high memory bandwidth, high computation

throughput, support for floating-point arithmetic, the lowest

price per unit of computation, and a programming interface

accessible to the nonexpert. These features have raised tre-

mendous enthusiasm in many disciplines, such as linear

algebra, differential equations, databases, raytracing, data

mining, computational biophysics, molecular dynamics, fluid

dynamics, seismic imaging, game physics, and dynamic pro-

gramming.1–4

In medical physics, the ability to perform general-purpose

computation on the GPU was first demonstrated in 1994

when a research group at SGI implemented image recon-

struction on an Onyx workstation using the RealityEngine2.5

Despite this pioneering work, it took almost 10 yr for GPU

computing to become mainstream as a topic of research

(Fig. 1). There were several reasons for this slow start.

Throughout the 1990s, researchers were blessed with the

doubling of single-core processor performance every 18

months. As a result, a single-core processor in 2004 could

perform image reconstruction 100 times faster than in 1994,

and as fast as SGIs 1994 graphics-hardware implemen-

tation.5 However, the performance of recent single-core

processors suggests that the doubling period might now be

5 yr.6 As a result, vendors have switched to multicore archi-

tectures to keep improving the performance of their CPUs, a

shift that has given a strong incentive for researchers to con-

sider parallelizing their computations.

Around the same time, the programmable GPU was intro-

duced. Unlike previous graphics processors, which were lim-

ited to running a fixed-function pipeline with 8-bit integer

arithmetic, these new GPUs could run custom programs

(called shaders) in parallel, with floating-point precision.

The shift away from single-core processors and the increas-

ing programmability of the GPU created favorable condi-

tions for the emergence of GPU computing.

GPUs now offer a compelling alternative to computer

clusters for running large, distributed applications. With the

introduction of compute-oriented GPU interfaces, shared
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memory, and support for double-precision arithmetic, the

range of computational applications that can run on the GPU

has vastly increased. By off-loading the data-parallel part of

the computation onto GPUs, the number of physical com-

puters within a computer cluster can be greatly reduced.

Besides reducing cost, smaller computer clusters also require

less maintenance, space, power, and cooling. These are im-

portant factors to consider in medical physics given that the

computing resources are typically located on-site, inside the

hospital.

II. OVERVIEW OF GPU COMPUTING

II.A. Evolution of the GPU

Over the years, the GPU has evolved from a highly speci-

alized pixel processor to a versatile and highly program-

mable architecture that can perform a wide range of data-

parallel operations. The hardware of early 3-D acceleration

cards (such as the 3Dfx Voodoo) was devoted to processing

pixel and texture data. These cards offered no parallel proc-

essing capabilities, but freed the CPU from the computation-

ally demanding task of filling polygon with texture and

color. A few years later, the task of transforming the geome-

try was also moved from the CPU to the GPU, one of the

first steps toward the modern graphics pipeline.

Because the processing of vertices and pixels is inherently

parallel, the number of dedicated processing units increased

rapidly, allowing commodity PCs to render ever more com-

plex 3-D scenes in tens of milliseconds. Since 1997, the num-

ber of compute cores in GPU processors has doubled roughly

every 1.4 yr (Fig. 2). Over the same period, GPU cores have

become increasingly sophisticated and versatile, enriching

their instruction set with a wide variety of control-flow mech-

anisms, support for double-precision floating-point arithme-

tic, built-in mathematical functions, a shared-memory model

for interthread communications, atomic operations, and so

forth. In order to sustain the increased computation through-

put, the GPU memory bandwidth has doubled every 1.7 yr,

and recent GPUs can achieve a peak memory bandwidth of

408 GB/s (Fig. 2).

With more computing cores, the peak performance of

GPUs, measured in billion floating-point operations per sec-

ond (GFLOPS), has been steadily increasing (Fig. 3). In

addition, the performance gap between GPU and CPU has

been widening, due to a performance doubling rate of 1.5 yr

for CPUs versus 1 yr for GPUs (Fig. 3).

The faster progress of the GPUs performance can be attrib-

uted to the highly scalable nature of its architecture. For multi-

core/multi-CPU systems, the number of threads physically

FIG. 1. Number of publications relating to the use of GPUs in medical

physics, per year. Data were obtained by searching PubMed using the terms

“GPU,” “graphics processing unit,” and “graphics hardware” and excluding

irrelevant citations.

FIG. 2. Number of computing cores (5) and memory bandwidth (D) for

high-end NVIDIA GPUs as a function of year (data from vendor

specifications).

FIG. 3. Computing performance, measured in billion single-precision float-

ing-point operation per second (GFLOPS), for CPUs (D) and GPUs (5).

GPUs: (A) NVIDIA GeForce FX 5800, (B) FX 5950 Ultra, (C) 6800 Ultra,

(D) 7800 GTX, (E) Quadro FX 4500, (F) GeForce 7900 GTX, (G) 8800

GTX, (H) Tesla C1060, and (I) AMD Radeon HD 5870. CPUs: (A) Athlon

64 3200þ, (B) Pentium IV 560, (C) Pentium D 960, (D) 950, (E) Athlon 64

X2 5000þ, (F) Core 2 Duo E6700, (G) Core 2 Quad Q6600, (H) Athlon 64

FX-74, (I) Core 2 Quad QX6700, (J) Intel Core i7 965 XE, and (K) Core i7-

980X Extreme (data from vendors).
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residing in the hardware can be no greater than twice the num-

ber of physical cores (with hyperthreading). As a result,

advanced PCs can run at most 100 threads simultaneously. In

contrast, current GPU hardware can host up to 30 000 concur-

rent threads. Whereas switching between CPU threads is

costly because the operating system physically loads the

thread execution context from the RAM, switching between

GPU threads does not incur any overhead as the threads are

residing on the GPU for their entire lifetime. A further differ-

ence is that the GPU processing pipeline is for the most part

based on a feed-forward, single-instruction multiple-data

(SIMD) architecture, which removes the need for advanced

data controls. In comparison, multicore multi-CPU pipelines

require complex control logic to avoid data hazards.

II.B. The graphics pipeline

In the early days of GPU computing, the GPU could only

be programmed through a graphics rendering interface. In

these pioneering implementations, computation was refor-

mulated as a rendering task and programmed through the

graphics pipeline. While new compute-specific interfaces

have made these techniques obsolete, a basic understanding

of the graphics pipeline is still useful for writing efficient

GPU code.

Graphics applications (such as video games) use the GPU

to perform the calculations necessary to render complex 3-D

scenes in tens of milliseconds. Typically, 3-D scenes are rep-

resented by triangular meshes filled with color or textures.

Textures are 2-D color images, stored in GPU memory,

designed to increase the perceived complexity of a 3-D

scene. The graphics pipeline decomposes graphics computa-

tion into a sequence of stages that exposes both task parallel-
ism and data parallelism (Fig. 4). Task parallelism is

achieved when different tasks are performed simultaneously

at different stages of the pipeline. Data parallelism is

achieved when the same task is performed simultaneously

on different data. The computational efficiency is further

improved by implementing each stage of the graphics pipe-

line using custom rather than general-purpose hardware.

Within a graphics application, the GPU operates as a

stream processor. In the graphics pipeline, a stream of verti-

ces (representing triangular meshes) is read from the host’s

main memory and processed in parallel by vertex shaders
(Fig. 4). Typical vertex processing tasks include projecting

the geometry onto the image plane of the virtual camera,

computing the surface normal vectors and generating 2-D

texture coordinates for each vertex.

After having been processed, vertices are assembled into

triangles to undergo rasterization (Fig. 4). Rasterization,

implemented in hardware, determines which pixels are cov-

ered by a triangle and, for each of these pixels, generates a

fragment. Fragments are small data structures that contain

all the information needed to update a pixel in the frame-

buffer, including pixel coordinates, depth, color, and texture

coordinates. Fragments inherit their properties from the ver-

tices of the triangles from which they originate, wherein

properties are bilinearly interpolated within the triangle area

by dedicated GPU hardware.

The stream of fragments is processed in parallel by frag-
ment shaders (Fig. 4). In a typical graphics application, this

programmable stage of the pipeline uses the fragment data to

compute the final color and transparency of the pixel. Frag-

ment shaders can fetch textures, calculate lighting effects,

determine occlusions, and define transparency. After having

been processed, the stream of fragments is written to the fra-

mebuffer according to predefined raster operations, such as

additive blending.

All the stages of the graphics pipeline are implemented on

the GPU using dedicated hardware. In a unified shader model,

the system allocates computing cores to vertex and fragment

shading based on the relative intensity of each task. The early

GPU computing work focused on exploiting the high compu-

tational throughput of the fragment shading stage, which is

easily accessible. For instance, a popular technique for proc-

essing 2-D arrays of data consisted in rendering a rectangle

into the framebuffer with multiple-data arrays mapped as tex-

tures and custom fragment shaders enabled.

Graphics applications and video games favor throughput

over latency, because, above a certain threshold, the human

visual system is less sensitive to the frame-rate than to the

level of detail of a 3-D scene. As a result, GPU implementa-

tions of the graphics pipeline are optimized for throughput

rather than latency. Any given triangle might take hundreds

to thousands of clock cycles to be rendered, but, at any given

time, tens of thousands of vertices and fragments are in flight

in the pipeline. Most medical physics applications are

similar to video games in the sense that high throughput is

considerably more important than low latency.

In graphics mode, the GPU is interfaced through a

graphics API such as OpenGL or DirectX. The API provides

functions for defining and rendering 3-D scenes. For

instance, a 3-D triangular mesh is defined as an array of ver-

tices and rendered by streaming the vertices to the GPU.

Arrays of data can be moved to and from video memory as

textures. Custom shading programs can be written using a
FIG. 4. The graphics pipeline. The boxes shaded in light red correspond to

stages of the pipeline that can be programmed by the user.
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high-level shading language such as CG, GLSL, or HLSL, and

loaded on the GPU at run time. Early GPU computing pro-

grams written in such a framework have achieved impressive

accelerations but suffered from several drawbacks: the code

is difficult to develop and maintain because the computation

is defined in terms of graphics concepts such as vertices, tex-

ture coordinates, and fragments; performance is compro-

mised by the lack of access to all the capabilities of the GPU

(most notably shared memory and scattered writes); and

code portability is limited by the hardware-specific nature of

some graphics extensions.

II.C. GPU computing model

Compute-oriented APIs expose the massively parallel

architecture of the GPU to the developer in a C-like program-

ming paradigm. These commonly used APIs include NVI-

DIA CUDA, Microsoft DirectCompute, and OpenCL. For

cohesion, this review focuses on CUDA, currently the most

popular GPU computing API, but the concepts it presents

are readily applied to other APIs. CUDA provides a set of

extensions to the C language that allows the programmer to

access computing resources on the GPU such as video mem-

ory, shading units, and texture units directly, without having

to program the graphics pipeline.7 From a hardware perspec-

tive, a CUDA-enabled graphics card comprises SGRAM

memory and the GPU chip itself—a collection of streaming

multiprocessors (MPs) and on-chip memory.

In the CUDA paradigm, a parallel task is executed by

launching a multithreaded program called a kernel. The

computation of a kernel is distributed to many threads,

which are grouped into a grid of blocks (Fig. 5). Physically,

the members of a thread block run on the same MP for their

entire lifetime, communicate information through fast shared

memory and synchronize their execution by issuing barrier

instructions. Threads belonging to different blocks are

required to execute independently of one another, in arbi-

trary order. Within one thread block, threads are further di-

vided in groups of 32 called warps. Each warp executes in a

SIMD fashion, with the MP broadcasting the same instruc-

tion to all its cores repeatedly until the entire warp is proc-

essed. When one warp stalls, for instance, because of a

memory operation, the MP can hide this latency by quickly

switching to a ready warp.

Even though each MP runs as a SIMD device, the CUDA

programming model allows threads within a warp to follow

different branches of a kernel. Such diverging threads are

not executed in parallel but sequentially. Therefore, CUDA

developers can safely write kernels which include if state-

ments or variable-bounds for loops without taking into

account the SIMD behavior of the GPU at the warp level. As

we will see in Sec. II D, thread divergence substantially

reduces performance and should be avoided.

The organization of the GPUs memory mirrors the hierar-

chy of the threads (Fig. 5). Global memory is randomly ac-

cessible for reading and writing by all threads in the

application. Shared memory provides storage reserved for

the members of a thread block. Local memory is allocated to

threads for storing their private data. Last, private registers
are divided among all the threads residing on the MP. Regis-

ters and shared memory, located on the GPU chip, have

much lower latency than local and global memories, imple-

mented in SGRAM. However, global memory can store sev-

eral gigabytes of data, far more than shared memory or

registers. Furthermore, while shared memory and registers

only hold data temporarily, data stored in global memory

persists beyond the lifetime of the kernels.

Two other types of memories are available on the GPU,

called texture and constant memories. Both of these memo-

ries are read-only and cached for fast access. In addition, tex-

ture memory fetches are serviced by dedicated hardware

units that can perform linear filtering and address calcula-

tions. In devices of compute capability 2.0 and greater,

global memory operations are serviced by two levels of

cache, namely a per-MP L1 cache and a unified L2 cache.

Unlike previous graphics APIs, CUDA threads can write

multiple data to arbitrary memory locations. Such scattered
writes are useful for many algorithms, yet, conflicts can arise

when multiple threads attempt to write to the same memory

location simultaneously. In such a case, only one of the writes

is guaranteed to succeed. To safely write data to a common

memory location, threads must use an atomic operation; for

instance, an atomic add operation accumulates its operand

into a given memory location. The GPU processes conflicting

atomic writes in a serial manner to avoid data write hazards.

An issue important in medical physics is the reliability of

memory operations. Errors introduced while reading or writ-

ing memory can have harmful consequences for dose calcu-

lation or image reconstruction. The memory of consumer-

grade GPUs is optimized for speed because the occasional

bit flip has little consequence in a video game. Professional

and high-performance computing GPUs are designed for a

higher level of reliability that they achieve using specially

chosen hardware operated at lower clock rate. For further

protection against unavoidable cosmic radiations and other

sources of error, some of the more recent GPUs store redun-

dant error-correcting codes (ECCs) to ensure the correctness

of the memory content. In NVIDIA Tesla cards, these ECC

bits occupy 12.5% of the GPU memory and reduce the peak

memory bandwidth.

FIG. 5. GPU thread and memory hierarchy. Threads are organized as a grid

of thread blocks. Threads within a block are executed on the same MP and

have access to on-chip private registers (R) and shared memory. Additional

global and local memories (LM) are available off-chip to supplement lim-

ited on-chip resources.
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II.D. Performance optimization

Even though CUDA has greatly simplified the develop-

ment of distributed computing applications for the GPU,

achieving optimal performance requires careful allocation of

compute and storage resources.

As stated by Amdahl’s law, the highest achievable speed-

up is determined by the sequential fraction of the program.

Hence, to achieve GPU acceleration, developers must first

focus on parallelizing as much sequential code as possible

by reformulating their algorithm.

High-end GPUs boast more than one TFLOPS of theoreti-

cal peak performance (Fig. 3). However, a major concern is

that the memory bandwidth does not allow data to be read and

written as fast as it is consumed. For instance, the C1060

GPU can perform 933 GFLOPS, but due to its memory band-

width of 408 GB/s, it can only read and write 102 floating-

point values per second. Therefore, a kernel that performs less

than ten floating-point operations for each memory access is

memory-bound, a situation frequent in medical physics. As a

general design rule, computation should be formulated to

maximize the ratio of arithmetic to memory operations, a

quantity called the arithmetic intensity.

Global memory also has higher latency and lower band-

width than on-chip memory resources. Fetching data from

global memory takes hundreds of clock cycles, whereas on-

chip registers and shared memory can be accessed in a single

cycle. Efficient GPU codes use shared memory to minimize

global memory access, for example, by grouping threads

into blocks such that threads work on common data in shared

memory. If memory is only read, constant memory provides

faster access than global memory and allows constant values

to be broadcast to all the threads. Texture memory is also

useful for accessing large datasets (such as volume images

representing patient models) because it is cached and it can

be linearly interpolated in hardware.

However, for a wide range of applications, the use global

memory is unavoidable. In these situations, global memory

performance can be dramatically increased by carefully

coordinating memory accesses. Most GPUs have a very

wide memory bus, capable of fetching up to 128 bytes of

data in a single memory transaction. When multiple threads

issue load instructions simultaneously, optimal bandwidth

utilization is achieved when these accesses are serviced with

a minimal number of transactions. Such a situation occurs

when all the threads within a warp coalesce to access contig-

uous memory locations. For instance, it is common to pro-

cess arrays of vectors, such as triplets representing points in

space. In C, these data would typically be stored as an array

of triplets. However, in a CUDA kernel, array elements are

processed in parallel, whereas triplet components are proc-

essed sequentially. Therefore, optimal data access requires

that the array of triplets be stored as three contiguous scalar

arrays.

Another important performance bottleneck is memory

transfer via the PCIe bus between the computer host and the

device memory. Minimizing data transfers between GPU

and CPU is essential for high-performance computing. Por-

tions of the code that are not data-parallel should sometimes

be ported onto the GPU to avoid such transfers. Likewise,

when a data-parallel task has very low arithmetic intensity, it

may be performed more efficiently directly on the CPU. For

instance, the GPU is not efficient at adding two matrices

stored on the host because such operation requires three

GPU-CPU data transfers for each floating-point operation.

One last memory optimization to consider is avoiding scat-

tered writes. Scattered writes can create write hazards, unless

slower atomic operations are used. Some computation problems

can be reformulated in a gather fashion. In a gather approach,

threads read data from an array of addresses, while in a scatter

approach, they write data to an array of addresses. When possi-

ble, scatter operations should be replaced with equivalent gather

operations that are more efficient on the GPU.

Avoiding thread divergence is another key to achieving

high performance. The MPs can be programmed as scalar

multiprocessors, but diverging execution paths are serialized.

Efficient GPU implementations use various strategies to

avoid thread divergence. For instance, branching can be

moved up the pipeline to ensure that the members of a thread

block follow the same execution path. Sometimes, branches

can be avoided altogether and replaced with equivalent arith-

metic expressions. Loops can be performed with constant

bounds and unrolled by the compiler.

On a recent GPU, each MP is capable of hosting thousands

of threads. To achieve high compute throughput, the number

of threads residing on the MPs should be maximized to pro-

vide the warp scheduler with a large supply of ready warps.

However, thread occupancy, defined as the number of active

threads per MP as a percentage of the device full capacity, of-

ten competes with thread efficiency, defined as the overall

computational efficiency of the individual threads.

Thread occupancy is determined by the number and size

of the thread blocks, the amount of shared memory per

block, and the number of registers per thread. Shared mem-

ory and registers are scarce resources that are divided among

thread blocks and threads, respectively. GPU implementa-

tions that achieve high thread occupancy use few on-chip

resources per thread. As a result, they have poor thread effi-

ciency because they have to rely on slower global and local

memories in place of shared memory and registers. Recipro-

cally, GPU codes with high thread efficiency cannot main-

tain high thread occupancy. As a general design principle,

the amount of on-chip resources allocated to each thread

should be finely tuned to optimize the trade-off between

thread occupancy and thread efficiency.

The GPU supports slow and fast math, and single- and dou-

ble-precision computing. Fast math uses special functional

units to accelerate the evaluation of mathematical expressions

such as sine, cosine, and exponential, at the cost of a loss of ac-

curacy. When high accuracy is not required, fast math func-

tions and single-precision arithmetic are preferred.

III. GPU COMPUTING IN MEDICAL PHYSICS

GPU computing has become a useful research tool for a

wide range of medical physics applications (Fig. 1). We
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review some of the most notable implementations, illustrat-

ing how the principles described in the previous section are

applied for high-performance computing.

III.A. Image reconstruction

With progress in imaging systems and algorithms, the

computational complexity of image reconstruction has

increased dramatically. Yet, fast image reconstruction is of-

ten required in the clinic to allow the technologist to review

the images while the patient is waiting. Reconstruction speed

is even more critical in real-time imaging applications, such

as intraoperative cone-beam CT (CBCT),8 MR-guided car-

diac catherization,9 or online adaptive therapy.10 Ultrafast

image reconstruction could also allow the clinician to adjust

reconstruction parameters interactively and optimize the

noise/spatial resolution trade-off.11

In the past, real-time reconstruction speeds have been

achieved by designing custom hardware systems based on

application-specific integrated circuits (ASICs),12 field-pro-

grammable gate arrays (FPGAs),8 and digital signal process-

ors (DSPs).13 In most cases, the GPU can exceed the

performance of these designs for a fraction of their cost.

Most imaging systems being linear, image reconstruction

often consists in inverting a linear transformation, for

instance, a Radon or a Fourier transform. These transforms

can be discretized and mathematically represented by a ma-

trix–vector multiplication, where the vector is a discretiza-

tion of the sample being imaged, and the matrix describes

the linear response of the imaging system. The matrix is fre-

quently sparse and, therefore, the matrix–vector multiplica-

tion is not performed explicitly, using the matrix

multiplication formula, but implicitly, using a procedural

algorithm. The transpose of the matrix is also often used in

reconstruction, for example, in a backprojection operation.

With few exceptions, these matrix–vector and transposed

matrix–vector multiplications consume the bulk of the com-

putation in image reconstruction.

The acceleration of the filtered backprojection (FBP)

algorithm5 represented the first successful implementation of

a nongraphics compute application on dedicated graphics

hardware. This technique relied on texture-mapping hard-

ware for efficiently mapping filtered projections to image

voxels along projective lines. Over the years, the GPU pipe-

line has been enriched with new features; nevertheless, tex-

ture-mapping has remained the most efficient and popular

approach for performing backprojection on the GPU. The

backprojection operation fits the GPU pipeline formidably

well. Parallel- and cone-beam projections can be modeled

using orthographic and perspective transformations, respec-

tively. The projection values, stored in texture memory, can

be interpolated bilinearly by the hardware with no added

computation. The very first implementation of this design

proved very challenging because, on SGI workstations, arith-

metic computations and framebuffer depth were limited to 8

bit and 24 bit integers, respectively.5 Later work, which

focused on consumer-grade GPUs, had to face even greater

challenges as these cheaper devices provided only 8 bit for

the accumulation buffer.14 However, it was shown that the

multiple color channels could be combined to virtually

extend the accuracy of the hardware to 12 bit.14 This tech-

nique solved a critical problem in the backprojection pro-

cess, as it allowed the backprojection of multiple views to be

accumulated directly on the hardware, without requiring

costly transfers to the CPU.

In 2002, GPU vendors added support for floating-point

arithmetic to overcome the limitations of the integer graphics

pipeline and enable high-dynamic-range graphics. With

higher bit depth, the accuracy of GPU-based CBCT recon-

struction steadily improved, first based on 16 bit,15 and, later,

32 bit floating-point arithmetic.16,17 A similar texture-map-

ping approach was investigated for exact Katsevich recon-

struction of helical CBCT.18 With the launch of compute-

specific APIs, CBCT reconstruction was adapted to run

using Brook19 and CUDA.16,20,21 Although CUDA still uses

a texture-mapping mechanism for mapping projection values

to voxels, it lacks some of the efficient features only avail-

able in the graphics pipeline.16 CBCT reconstruction is

highly similar to graphics rendering, therefore useful compu-

tation can be inserted at nearly every stage of the graphics

pipeline.16 Yet, CUDA also provides access to features not

available in the standard graphics pipeline, such as shared

memory and scattered writes. As a result, it is unclear which

approach is truly superior, and reports have presented contra-

dictory results.6,21

In CUDA, CBCT backprojection is implemented by

assigning one thread to each voxel. Thread blocks can be

formed as subrows of the image20 or as squares to enhance

data locality.21 Projection views, stored in texture memory,

are accessed using hardware bilinear interpolation. Shared

memory, although not a suitable storage of projection data

for lack of hardware filtering, can be used to store projection

matrix coefficients.20 GPU texture-mapping was also applied

to reconstruct digital tomosynthesis22 and digitally recon-

structed radiographs.23

Iterative reconstruction is computationally challenging

and was seen early on as a critical target for GPU accelera-

tion. Whereas analytical reconstruction is fully parallel, iter-

ative reconstruction is fundamentally sequential. Hence,

algorithms that perform minimal computation within each

iteration are not efficiently implemented on the GPU for lack

of a sufficiently parallel workload.14 For instance, the alge-

braic reconstruction technique (ART) is not suitable for the

GPU because each iteration only processes a single projec-

tion line. A more suitable algorithm is simultaneous ART

(SART), which updates the image after the backprojection

of an entire projection view.14 Several other iterative algo-

rithms were also adapted to the GPU, including expectation-

maximization,15,24 ordered-subsets expectation-maximiza-

tion,24,25 the ordered-subsets convex algorithm,26 and total-

variation reconstruction.27

Iterative reconstruction for projective imaging modalities

such as PET, SPECT, and CT alternates forward- and back-

projection operations. In principle, these operations can be

performed either in a voxel-driven or line-driven manner.

Output-driven operations are gather operations, while input-
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driven operations are scatter operations (Table I). Gather and

scatter operations model the sparse system matrix in a com-

pressed-row and compressed-column fashion, respectively.

For instance, in a line-driven forward projection, each thread

accumulates all the voxels traversed by a given projection

line. Likewise, in a voxel-driven forward projection, each

thread adds the contribution of a given voxel to all the pro-

jection lines it intersects.

It is important to note that both gather and scatter formu-

lations produce the same output and have the same theoreti-

cal complexity. However, on the GPU, gather operations are

more efficient than equivalent scatter operations because

memory reads and writes are asymmetric: memory reads can

be cached and are therefore faster than memory writes; fur-

thermore, memory reads can exploit hardware-accelerated

trilinear filtering. Last, by writing data in an orderly fashion,

gather operations avoid write hazards. Scatter operations

require slower atomic operations to avoid such write

hazards.

In PET and SPECT, measurements are sometimes

acquired in list-mode format. Unlike sinogram bins, list-

mode projection lines are not ordered but are stored in a long

list, in the order individual events are acquired. List-mode is

an increasingly popular method for dealing with data spar-

sity, in particular, for time-of-flight (TOF) PET and dynamic

studies. Because projection lines are not ordered, reconstruc-

tion is limited to line-driven approaches, a limitation that

precludes the use of hardware texture-mapping. A further

complicating factor is that projection lines can have arbitrary

positions and orientations. The first implementation of list-

mode reconstruction was developed for the GPU28 using the

graphics pipeline. In the backprojection, it achieves scattered

writes by using the GPU rasterizer to select which frame-

buffer pixels are written to. An application of the technique

to TOF PET reconstruction was also demonstrated.29 A simi-

lar list-mode reconstruction technique, implemented using

CUDA, uses shared memory as a managed cache for proc-

essing image slices in parallel and avoids thread divergence

by splitting lines into homogeneous groups.30

GPU computing has also been investigated for MRI

image reconstruction. Most MRI pulse sequences are

designed so that image reconstruction can be performed with

a simple fast Fourier transform (FFT). The FFT—already

quite efficient on the CPU—can be further accelerated on

the GPU.31 An optimized GPU implementation of the FFT

called CUFFT is also provided with CUDA.

Some other MRI schemes require more complex image

reconstruction algorithms. Two particularly computationally

demanding schemes have been accelerated using the GPU,

namely non-Cartesian k-space sampling32 and sensitivity-

encoded parallel imaging.11 Both imaging methods aim at

accelerating data acquisition by reduced sampling.

Non-Cartesian reconstruction can be performed using ei-

ther an analytical method called gridding or an iterative

solver. Gridding includes four steps, namely density correc-

tion, convolution, FFT, and deapodization. The gridding

convolution—the most challenging step—can be accom-

plished either in gather or scatter fashion.32 For radial k-

space sampling, the GPU rasterizer can also be used to per-

form the gridding convolution in a scatter fashion.31 While

gather and scatter are optimal with respect to either writing

grid cells or reading k-space samples, respectively, a hybrid

approach was proposed and shown to yield superior perform-

ance.32 The compute power of the GPU can also be har-

nessed to implement more complex iterative approaches,

such as those based on a conjugate gradient solver.33

Parallel imaging techniques such as SENSE or GRAPPA

use sensitivity-encoded information from many receive coils

to dealias undersampled measurements. Each set of

unaliased pixels are computed by solving a system of linear

equations. The system matrix, formed by adding a regulari-

zation term to the sensitivity matrix, defines a system of

equations that can be solved by Cholesky factorization and

forward/backward substitution. The Cholesky factorization

can be accelerated on the GPU by setting N threads to col-

laborate, where N is the aliasing factor.11 The forward/back-

ward substitution step is harder to parallelize and must be

handled by a single thread.11 Parallel imaging and non-Car-

tesian acquisition can be combined in a single reconstruction

algorithm using a conjugate gradient solver.34 In this

approach, the linear system, which is solved using the

CUBLAS library, encapsulates the coil sensitivities and a

nonequispaced FFT.32 A CPU/GPU low-latency high-frame-

rate reconstruction pipeline was developed based on this

approach to enable MR imaging in real-time interventional

applications.9

Water–fat separation using IDEAL reconstruction is also

amenable to GPU acceleration.35 Vectorization is particu-

larly efficient because the observation matrix to be inverted

is independent of voxel coordinates.

GPU computing was also investigated for other imaging

modalities. In optical imaging, the GPU can accelerate the

FFT in optical coherence tomography36 and the FBP in opti-

cal projection tomography.37 In ultrasound imaging, the

GPU was used in place of dedicated hardware to implement

real-time Doppler imaging,38 2-D temperature imaging,39

and free-hand 3-D reconstruction.40 In breast tomosynthesis,

iterative reconstruction was made practical by GPU

acceleration.41

III.B. Dose calculation and treatment plan
optimization

Radiation therapy (RT) uses ionizing radiation to inflict

lethal damage to cancer cells while striving to spare normal

tissue. Computer dose calculations are routinely relied upon

for planning the delivery of RT. For instance, in IMRT, the

fluence maps for each beam angle are obtained by solving an

TABLE I. Scatter and gather operations in iterative reconstruction for com-

puted tomography.

Forward projection Backprojection

Line-driven Gather Scatter

Voxel-driven Scatter Gather
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optimization problem which involves such dose calculations.

Currently, clinical IMRT treatment plans are obtained in a

trial-and-error fashion: multiple feasible plans are generated

sequentially until a good trade-off between dose to the target

and sparing of the organs at risk is reached. Accelerating

dose calculation and IMRT optimization would help reduce

the clinical workload substantially.42 Fast treatment planning

is also a key component of online adaptive RT, which has

been proposed as a new paradigm for improving the quality

of radiation treatments.10 In this scheme, a custom plan is

prepared for each treatment fraction based on an online volu-

metric model of the patient and on the full history of past

dose fractions.

Dose calculation has traditionally been achieved using

three major models: pencil beam (PB), convolution-superposi-

tion (CS), and Monte-Carlo (MC), by order of accuracy and

computational complexity. MC methods are the gold standard

for accuracy but are substantially slower than analytical meth-

ods. In MC, dose is computed by simulating and aggregating

the histories of billions of ionizing particles. MC methods are

often qualified as “embarrassingly parallel” because they are

ideally suited for parallel computing architectures, such as

computer clusters. Indeed, particles histories can be calculated

independently, in parallel, provided that the random number

generators are initialized carefully. Unfortunately, implement-

ing computationally efficient MC methods on GPU hardware

is extremely challenging. Several high-energy MC codes have

been ported to the GPU, including PENELOPE43 and DPM,44

but the speed-ups achieved were modest in comparison to

those published for GPU-based image reconstruction or ana-

lytical dose calculation.

The main obstacle to efficient MC simulation on the GPU

is that SIMD architectures cannot compute diverging particle

histories in parallel. In high-energy MC, particles can be

electrons, positrons, or photons and can undergo a wide

range of physical processes, such as photoelectric absorption

or pair production. A complicating factor is that secondary

particles can be created as a result of these processes. On the

GPU, MC is implemented by assigning one thread per parti-

cle.43,44 However, this requires threads within a warp to

compute different physical processes, and, as a result, these

divergent threads are serialized by the scheduler. Hence, at

any time, each GPU MP might compute only a few particle

histories in parallel. Scoring is also a challenging task for the

GPU, because aggregating information from thousands of

particle histories into a summary data structure requires

slower atomic operations to avoid data write hazards.

Several solutions have been proposed, such as creating a

global queue of particles to be processed, placing newly cre-

ated secondary particles in such queue and processing elec-

trons and photons sequentially rather than concurrently.45

The GPUMCD package, which implements these features,

achieved a speed-up of 200 over DPM while providing good

numerical agreement.

MC methods are also standard for modeling optical pho-

ton migration in turbid media. Because these simulations are

often much simpler, high speed-ups have been achieved. For

instance, a speed-up factor of 1000 was achieved for a sim-

ple homogeneous slab geometry.46 Optical MC codes only

need to track one type of particle, namely photons. Further-

more, the same sequence of steps is applied to all particles,

which eliminates thread divergence. Computational effi-

ciency is reduced for more complex simulations, in particu-

lar when using heterogeneous 3-D media47 or multiple

layers of tissue.48 Complex tissue geometries can also be

described using triangular meshes, but these methods are

benefiting only modestly from GPU acceleration49 because

efficient GPU calculation of the intersection of a ray with a

triangular mesh remains a challenging problem and an

intense focus of research in computer graphics.50

Simpler dose calculation models rely on raytracing and

analytical kernels to represent dose deposition in matter.

One of such models, the PB model, decomposes the continu-

ous diverging radiation beam into a superposition of discrete

beamlets. The dose deposition in a voxel is obtained by sum-

ming the contributions from all the beamlets. These contri-

butions depend upon the radiological distance to the source

and off-axis effects. Computing the radiological distance is

computationally demanding because large electron density

maps have to be integrated over many beamlets, using ray-

tracing methods such as Siddon’s algorithm. While Siddon’s

algorithm can be parallelized on the GPU by assigning each

thread a line to raytrace,42 it is less efficient than other meth-

ods. Frequent branching in Siddon’s algorithm cause threads

within a warp to diverge. Furthermore, within a given line,

voxels have to be processed sequentially, which limits the

potential for parallel processing.

An alternative approach computes the radiological dis-

tance by uniformly sampling the electron density map along

the ray.51 By storing the electron density map in texture

memory, hardware trilinear interpolation is achieved and

memory transactions are automatically cached. Furthermore,

in this approach, the GPU can process voxels in parallel

within a raytrace operation, a feature that makes finely

grained parallelism possible. After precomputing the radio-

logical distance, beamlets contributions to the voxels are

evaluated in parallel, using one thread block per beamlet and

one thread per voxel traversed.51

The CS dose calculation method offers a good compro-

mise between accuracy and computational efficiency and is

now the standard method for clinical treatment planning

optimization. The method decomposes dose calculation into

two steps, energy release and energy deposition. The first

step computes the total energy released per mass (TERMA)

along the path of the primary photon beam. Secondary par-

ticles (electron, positrons, and photons) spread this radiant

energy to a larger volume of tissue, a process that is modeled

by convolving the TERMA distribution with a polyenergetic

kernel.

The CS algorithm was independently ported onto the

GPU by two research groups.52,53 Although physical deposi-

tion of dose in a medium is more intuitively formulated in a

scatter fashion (i.e., ray-driven), these implementations were

based on a gather approach (i.e., voxel-driven), more amena-

ble to GPU computing. For each voxel, they calculate the

contribution of the source to the TERMA by casting a ray

2692 G. Pratx and L. Xing: GPU computing in medical physics 2692

Medical Physics, Vol. 38, No. 5, May 2011



backward toward the source. Because a ray must be traced

back to the source for each voxel, the gather formulation has

O(n4) theoretical complexity, higher than the O(n3) com-

plexity of the scatter approach, which raytraces a fixed num-

ber of rays through the voxel grid.52,54 However, the gather

approach avoids potential data write hazards and allows for

efficient coalesced memory access, with a large degree of

cache reuse. Furthermore, it eliminates certain discretization

artifacts by sampling all voxels with an equal number of

rays.

It is interesting to note that the first attempt to port the

CS algorithm onto the aimed at keeping the original struc-

ture of the algorithm intact.55 Although this GPU version

did run about 20 times faster than the CPU version, the

GPU-optimized version of the same code was 900 times

faster than the original CS code.53 This example illustrates

the importance of considering the specific architecture of

the GPU when building GPU applications for optimal

performance.

GPU-based CS methods have been further improved to

achieve real-time performance and more accurate computed

dose distributions. Computational performance improve-

ments were achieved by maximizing thread coherence and

occupancy, while accuracy was improved through better

multifocal source modeling, kernel tilting, and physically

accurate multispectral attenuation.56 A related approach

implemented on the GPU combines MC and CS methods,

wherein photons are first simulated by MC but second par-

ticles handled by CS kernels.57

Another variation of the CS method was proposed using a

nonvoxel-based broad-beam (NVBB) framework54 and

implemented using a GPU-based CS dose calculation

engine.58 The NVBB approach represents the objective func-

tion in a continuous manner rather than using discrete vox-

els, a feature that removes the need for storing large beamlet

matrices.54 Furthermore, while the approach performs ray-

tracing in a scatter manner, write hazards and voxel sam-

pling artifacts are avoided by using diverging pyramids in

place of rays to represent photon transport from the source.54

These pyramidal rays do no overlap yet cover the entire vol-

ume uniformly. To facilitate raytracing along pyramidal

rays, computations are performed in the beam-eye view

coordinate system. As a result of these features, the NVBB

approach has O(n3) complexity but none of the problems

associated with scatter raytracing.

In addition to dose computation, treatment planning opti-

mization involves three other operations, namely objective

function calculation, gradient calculation, and fluence

update. To avoid slow GPU-CPU communications, these

operations can be moved to the GPU. An IMRT treatment

planning approach, based on an iterative gradient projection

and the PB dose calculation model, was implemented using

CUDA.59 The fluence gradient was computed in parallel by

assigning one thread per beamlet intensity. The objective

function was evaluated by performing a parallel reduction

with one thread per voxel.

Treatment plan optimization can be further accelerated

using adaptive full dose correction methods, wherein fast ap-

proximate dose calculation is performed unless the fluence

map changes substantially.54 This treatment planning system

can run in near real-time on a single GPU.

Aperture-based optimization methods, which derive MLC

segment weights and shapes directly within IMRT optimiza-

tion,60 have also been implemented using CUDA. In one

approach, the optimization problem is solved using a column

generation method, which repeatedly selects the best aperture

to be added to the MLC leaf sequence.61 After an aperture has

been added, a full optimization is ran to find the optimal inten-

sities for each MLC segment, using the method previously

outlined. Aperture selection is also executed on the GPU by

assigning one thread per MLC leaf pair and computing the

optimal position for the upper and lower leafs.61

The direct aperture optimization method was also

extended to VMAT treatment planning optimization.62 Opti-

mization of VMAT is computationally demanding because

dose distributions must be computed for many discrete beam

angles. In this GPU implementation, the gantry rotation is

discretized into 180 beam angles and the apertures generated

one by one in a sequential way, until all angles are occupied.

At each step, full fluence rate optimization is performed

using previously developed GPU-based tools.59

III.C. Image processing

Two fundamental tools in medical physics are image

registration and segmentation. Image registration—the trans-

formation of two or more images into a common frame of

reference—enables physicians and researchers to analyze the

variations between images taken at different time points or

combine information from multiple imaging modalities.

Image segmentation–the grouping of voxels with common

properties–is used routinely in RT to delineate the various

anatomical structures from CT scans. Manual organ contour-

ing is tedious and time consuming, and automated methods

can be used to streamline the clinical workflow.

Image registration and segmentation are computationally

demanding procedures. Soon after the introduction of the

first programmable GPU, computer graphics researchers

realized that GPUs were ideally suited to accelerate data-par-

allel tasks such as image deformation and partial differential

equations (PDEs) computation. For instance, the GPU can

rigidly deform 3-D images using 3-D texture-mapping with

trilinear interpolation. Nonrigid deformations can also be

implemented on the GPU using parametric or nonparametric

models.63

Nonparametric methods represent the deformation by a

dense displacement field, which is optimized to minimize

the discrepancy between reference and target image, while

favoring smooth displacement fields. Various metrics have

been proposed to measure the discrepancy between two

images, such as an energy function64 or an optimal mass

transport criterion.65 On the GPU, the optimal displacement

field can be computed using a gradient solver.64,65 In these

approaches, the gradient of the objective is computed effi-

ciently on the GPU because the pattern of memory accesses

exhibits high locality.
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In parametric models, the displacement field between a ref-

erence and a target image is defined by a smooth function of

the spatial coordinate, such as a Bezier function,66 a thin-plate

spline,67 or a B-spline.68,69 B-spline image registration, a

method popular for its flexibility and robustness, computes a

fine displacement field by interpolating a coarse grid of uni-

formly spaced control points using piecewise continuous B-

splines basis functions. However, B-spline registration is com-

putationally intensive, mostly because of two operations: the

interpolation from coarse to fine and the computation of the

objective function gradient.68 Key acceleration strategies for

GPU-based B-spline registration include (1) aligning the fine

voxel grid with the coarse control-point grid such that the

value of B-spline basis functions only depends on the voxel

offset within a tile and (2) optimizing data-parallel computa-

tion to fit the SIMD model of the GPU.68

A popular algorithm in image registration is the demons

algorithm. In this algorithm, the voxels in the reference

image (the “demons”) apply local forces that displace the

voxels in the target image. To mitigate the underdetermined

nature of the registration problem, the displacement field is

smoothed at each iteration. Multiple research groups have

implemented the demons algorithm on the GPU using

Brook19 and CUDA.70–72 Each of the five steps of the algo-

rithm (namely spatial gradient, displacement, smoothing,

image deformation, and stopping criterion) are implemented

by as many kernels. For most kernels, the vectorization is

trivial: image voxels and motion field components are proc-

essed independently, in parallel; furthermore, global memory

bandwidth is optimized because memory operations are

coalesced.

Image registration can also be based on a finite-element

model (FEM). Such approach allows the incorporation of a

biomechanical model of tissue deformation within image

registration.73 In one such approach, a sparse registration is

first obtained by performing block matching on the GPU,74

wherein thread blocks process different features in parallel

and threads within a block compute the matching metric for

various offsets. Next, the dense deformation field is com-

puted by running an incremental finite-element solver on

multicore CPUs.74

Coregistration can also be achieved between images from

different imaging modalities, for instance, by maximizing

their mutual information. However, evaluating the mutual

information entails computing joint histograms of image

intensities, which is nontrivial on the GPU.75 The naive

implementation, which consists in distributing the loop over

the voxels to many threads, is not efficient because it induces

data write hazards that are only avoided at the cost of com-

putationally expensive atomic operations. However, the his-

togram procedure can be equivalently formulated as a “sort

and count” algorithm to remove all memory conflicts.75

Automated segmentation has also attracted the attention

of the computer graphics community. Level-set segmenta-

tion, one of the most popular approaches, defines the seg-

mentation surface implicitly as the isocontour (isosurface) of

a 2-D (3-D) function. The function, initialized with a user-

defined seed, is iteratively updated according to a system of

PDEs, which are highly amenable to GPU implementation.

Performing the segmentation on the GPU has an additional

advantage: the user can adjust the segmentation parameters

interactively while visualizing GPU-accelerated volume ren-

derings of the segmented volume.

The first implementation on the GPU of an image segmen-

tation algorithm was achieved by formulating level-set seg-

mentation as a sequence of blending operations.76

Programmable shaders, introduced later, provided greater

flexibility and enabled segmenting 3-D images using curva-

ture regularization to favor smooth isosurfaces.77–79 A key

optimization is to avoid wasting computation on voxels that

have no chance of entering the segmentation during the cur-

rent iteration. One approach used a dynamic compressed

image representation to limit the processing to active tiles.77,79

Alternatively, it is possible to use a computation mask formed

by dilating the segmentation.78 Level-set segmentation is

readily implemented in CUDA.80 More complex segmenta-

tion schemes can also be implemented, for instance, robust

statistical segmentation using adaptive region growing.81

III.D. Other applications

GPU computing has been applied to other computational

problems worth mentioning briefly. Many research groups

have been interested in using the GPU for visualizing medical

datasets in real-time, exploiting the inherent graphics abilities

of the GPU. Various codes have been written to render a vari-

ety of datasets, including digitally reconstructed radio-

graphs,82 cardiac CT scans,83 coregistered multimodal cardiac

studies,84 CT-based virtual colonoscopy,85 and sinus virtual

endoscopy.86 GPU computing techniques have also been

developed to aid surgical planning, for instance, through illus-

trative visualization87 or biomechanical simulation.88

IV. DISCUSSION

Most of the computing applications reviewed in this sur-

vey can be formulated as matrix–vector multiplications.

Typically, the vector is a 2-D or 3-D image that represents a

medical imaging scan or a dose distribution, and the matrix

is almost always sparse. Most GPU implementations also

rely on common optimization techniques for achieving high

performance. Efficient GPU implementations reformulate

computation to enhance parallelism and minimize CPU-

GPU communications. They also typically store medical

imaging datasets using 2-D or 3-D textures to exploit 2-D/3-

D cache locality and built-in linear interpolation. When pos-

sible, they use shared memory to minimize costly data trans-

fers to and from global memory or they coalesce global

memory transactions. They perform arithmetic operations

using GPU-intrinsic functions and native support for floating

point. Last, they optimize the trade-off between thread occu-

pancy and thread efficiency by adjusting block size and on-

chip resource allocation.

Despite their unrivalled performance GPUs have several

limitations when compared to CPUs. First, developing GPU

code takes substantially more time because many more pa-

rameters must be considered. Large-scale software projects
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which mix CPU and GPU codes are also harder to debug and

maintain. Programming the GPU requires learning new pro-

gramming paradigms that are less intuitive than single-

threaded programming. For instance, the programmer must

consider the SIMD nature of the MPs to achieve high per-

formance when using loops and branches.

Another issue is that currently published GPU implemen-

tations tend to overestimate the speed-up they achieve by

comparing optimized GPU implementations against unopti-

mized, single-threaded CPU implementations. While some

algorithms are very efficient on the GPU, other will only

achieve modest accelerations and would not perform much

faster than an optimized multithreaded CPU implementation.

A complicating issue is that in large software packages, sub-

stantial portions of code are sequential and cannot be accel-

erated by GPUs, which limits the overall acceleration that

GPUs can achieve. Last, precise computing using 64 bit

floating-point arithmetic and slow math is substantially

slower on the GPU than 32 bit fast math.

A further concern is that many of the tools that have

become de facto standards for programming the GPU, such

as CUDA, are proprietary. Compute APIs compatible with

multiple GPU vendors exist but have not so far encountered

much success in academia. Furthermore, if the past is any

guide, GPU APIs have been changing rapidly in the last ten

years, whereas most medical software evolve at a much

slower pace.

As most hardware architectures, the GPU is constantly

evolving to address the needs of its users. Starting from a

small number of expert GPU hackers, the usage of the GPU

has expanded to the masses of developers in industry and

academia. To fit the needs of a much broader user base, the

GPU programming interfaces are becoming increasingly

abstract and automated. For instance, CUDA devices of

compute capability 2.0 include a per-MP L1 cache and a uni-

fied L2 cache that services all global memory transactions.

With such cache, it becomes less important to implement an

efficient memory management strategy. However, these fea-

tures, designed to make the programming interface more

general-purpose, use transistor resources that could have oth-

erwise been allocated to ALUs; hence, such “improvements”

will reduce the speed-ups achieved by expert GPU

programmers.

The introduction of GPUs in medical physics reignited in-
terest in scientific computing, a topic that was previously

quietly ignored beyond a small circle of researchers. The

number of publications relating to the use of GPUs in medi-

cal physics (Fig. 1) is a measure of the tremendous enthusi-

asm that has captured the medical physics research

community. While many developers were driven to the GPU

because they were no longer getting a free ride from Moore’s

law, other simply found the GPU to be a fascinating device

which, in the early days, presented a new source of compute

power that could be tapped by ingeniously programming the
graphics pipeline. Nowadays, the GPU is one of the standard

tools in high-performance computing, and is being adopted

throughout industry and academia.
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40P. Coupé, P. Hellier, N. Azzabou, and C. Barillot, “3D freehand

ultrasound reconstruction based on probe trajectory,” Lecture Notes

in Computer Science (Springer, Berlin, Germany, 2005), Vol. 3749, pp.

597–604.
41I. Goddard, T. Wu, S. Thieret, A. Berman, and H. Bartsch, “Implementing

an iterative reconstruction algorithm for digital breast tomosynthesis on

graphics processing hardware,” Proc SPIE 6142(1), 61424V (2006).
42M. de Greef, J. Crezee, J. C. van Eijk, R. Pool, and A. Bel, “Accelerated

ray tracing for radiotherapy dose calculations on a GPU,” Med. Phys.

36(9), 4095–4102 (2009).

43A. Badal and A. Badano, “Accelerating Monte Carlo simulations of pho-

ton transport in a voxelized geometry using a massively parallel graphics

processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
44X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, and S. B. Jiang,

“Development of a GPU-based Monte Carlo dose calculation code for

coupled electron-photon transport,” Phys. Med. Biol. 55(11), 3077–3086

(2010).
45S. Hissoiny, B. Ozell, H. Bouchard, and P. Despres, “GPUMCD: A new

GPU-oriented Monte Carlo dose calculation platform,” Med. Phys. 38(2),

754–764 (2011).
46E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing

with graphics processing units for high-speed Monte Carlo simulation of

photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
47Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in

3D turbid media accelerated by graphics processing units,” Opt. Express

17(22), 20178–20190 (2009).
48W. Lo, T. Han, J. Rose, and L. Lilge, “GPU-accelerated Monte Carlo sim-

ulation for photodynamic therapy treatment planning,” Proc. SPIE 7373,

737313 (2009).
49H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo

optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
50S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,

D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “Optix:

A general purpose ray tracing engine,” ACM Trans. Graphics 29(4), 1–13

(2010).
51X. Gu, D. Choi, C. Men, H. Pan, A. Majumdar, and S. B. Jiang, “GPU-

based ultra-fast dose calculation using a finite size pencil beam model,”

Phys. Med. Biol. 54(20), 6287–6297 (2009).
52R. Jacques, R. Taylor, J. Wong, and T. McNutt, “Towards real-time radia-

tion therapy: GPU accelerated superposition/convolution,” Comput. Meth-

ods Programs Biomed. 98(3), 285–292 (2010).
53S. Hissoiny, B. Ozell, and P. Despres, “A convolution-superposition dose

calculation engine for GPUs,” Med. Phys. 37(3), 1029–1037 (2010).
54W. Lu, “A non-voxel-based broad-beam (NVBB) framework for IMRT

treatment planning,” Phys. Med. Biol. 55(23), 7175–7210 (2010).
55S. Hissoiny, B. Ozell, and P. Despres, “Fast convolution-superposition

dose calculation on graphics hardware,” Med. Phys. 36(6), 1998–2005

(2009).
56R. Jacques, J. Wong, R. Taylor, and T. McNutt, “Real-time dose computa-

tion: GPU-accelerated source modeling and superposition/convolution,”

Med. Phys. 38(1), 294–305 (2011).
57B. Zhou, C. X. Yu, D. Z. Chen, and X. S. Hu, “GPU-accelerated Monte

Carlo convolution/superposition implementation for dose calculation,”

Med. Phys. 37(11), 5593–5603 (2010).
58Q. Chen, M. Chen, and W. Lu, “Ultrafast convolution/superposition using

tabulated and exponential cumulative-cumulative-kernels on GPU,” in

Proceedings of the 16th International Conference on the Use of Com-
puters in Radio Therapy, edited by J.-J. Sonke (2010).

59C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B.

Jiang, “GPU-based ultrafast IMRT plan optimization,” Phys. Med. Biol.

54(21), 6565–6573 (2009).
60C. Cotrutz and L. Xing, “Segment-based dose optimization using a genetic

algorithm,” Phys. Med. Biol. 48(18), 2987–2998 (2003).
61C. Men, X. Jia, and S. Jiang, “GPU-based ultra-fast direct aperture optimi-

zation for online adaptive radiation therapy,” Phys. Med. Biol. 55, 4309–

4319 (2010).
62C. Men, H. E. Romeijn, X. Jia, and S. B. Jiang, “Ultrafast treatment plan

optimization for volumetric modulated arc therapy (VMAT),” Med. Phys.

37(11), 5787–5791 (2010).
63R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of medical

image registration on multicore and the GPU,” IEEE Signal Process. Mag.

27(2), 50–60 (2010).
64R. Strzodka, M. Droske, and M. Rumpf, “Image registration by a regular-

ized gradient flow. A streaming implementation in DX9 graphics

hardware,” Computing 73, 373–389 (2004).
65T. ur Rehman, E. Haber, G. Pryor, J. Melonakos, and A. Tannenbaum,

“3D nonrigid registration via optimal mass transport on the GPU,” Med.

Image Anal. 13(6), 931–940 (2009).
66G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, and G. Greiner, “Non-rigid

registration with use of hardware-based 3D Bezier functions,” Lecture
Notes in Computer Science (Springer, Berlin, Germany, 2002), Vol. 2489,

pp. 549–556.

2696 G. Pratx and L. Xing: GPU computing in medical physics 2696

Medical Physics, Vol. 38, No. 5, May 2011

http://dx.doi.org/10.1016/j.cmpb.2009.08.006
http://dx.doi.org/10.1016/j.cmpb.2009.08.006
http://dx.doi.org/10.1016/j.parco.2010.01.004
http://dx.doi.org/10.1118/1.2896077
http://dx.doi.org/10.1118/1.2779945
http://dx.doi.org/10.1016/j.cmpb.2009.09.003
http://dx.doi.org/10.1088/0031-9155/51/4/008
http://dx.doi.org/10.1088/0031-9155/51/4/008
http://dx.doi.org/10.1118/1.3371691
http://dx.doi.org/10.1109/TMI.2008.2006518
http://dx.doi.org/10.1109/TMI.2008.2006518
http://dx.doi.org/10.1109/TNS.2010.2081376
http://dx.doi.org/10.1117/12.652223
http://dx.doi.org/10.1109/TMI.2007.909834
http://dx.doi.org/10.1016/j.jpdc.2008.05.013
http://dx.doi.org/10.1016/j.jpdc.2008.05.013
http://dx.doi.org/10.1109/TMI.2009.2027118
http://dx.doi.org/10.1002/jmri.22051
http://dx.doi.org/10.1002/jmri.22051
http://dx.doi.org/10.1117/1.3275463.1
http://dx.doi.org/10.1117/1.3275463.1
http://dx.doi.org/10.1364/OE.17.022320
http://dx.doi.org/10.1109/TUFFC.2009.1261
http://dx.doi.org/10.1109/TUFFC.2009.1261
http://dx.doi.org/10.1117/12.652605
http://dx.doi.org/10.1118/1.3190156
http://dx.doi.org/10.1118/1.3231824
http://dx.doi.org/10.1088/0031-9155/55/11/006
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1117/1.3041496
http://dx.doi.org/10.1364/OE.17.020178
http://dx.doi.org/10.1117/12.831944
http://dx.doi.org/10.1088/0031-9155/55/4/003
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.1088/0031-9155/54/20/017
http://dx.doi.org/10.1016/j.cmpb.2009.07.004
http://dx.doi.org/10.1016/j.cmpb.2009.07.004
http://dx.doi.org/10.1118/1.3301618
http://dx.doi.org/10.1088/0031-9155/55/23/002
http://dx.doi.org/10.1118/1.3120286
http://dx.doi.org/10.1118/1.3483785
http://dx.doi.org/10.1118/1.3490083
http://dx.doi.org/10.1088/0031-9155/54/21/008
http://dx.doi.org/10.1088/0031-9155/48/18/303
http://dx.doi.org/10.1088/0031-9155/55/15/008
http://dx.doi.org/10.1118/1.3491675
http://dx.doi.org/10.1109/MSP.2009.935387
http://dx.doi.org/10.1007/s00607-004-0087-x
http://dx.doi.org/10.1016/j.media.2008.10.008
http://dx.doi.org/10.1016/j.media.2008.10.008


67D. Levin, D. Dey, and P. Slomka, “Acceleration of 3D, nonlinear warping

using standard video graphics hardware: Implementation and initial vali-

dation,” Comput. Med. Imaging Graph. 28(8), 471–483 (2004).
68J. A. Shackleford, N. Kandasamy, and G. C. Sharp, “On developing B-

spline registration algorithms for multi-core processors,” Phys. Med. Biol.

55(21), 6329–6351 (2010).
69M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J.

Hawkes, N. C. Fox, and S. Ourselin, “Fast free-form deformation using

graphics processing units,” Comput. Methods Programs Biomed. 98(3),

278–284 (2010).
70S. S. Samant, J. Xia, P. Muyan-Ozcelik, and J. D. Owens, “High perform-

ance computing for deformable image registration: Towards a new para-

digm in adaptive radiotherapy,” Med. Phys. 35(8), 3546–3553 (2008).
71X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A.

Majumdar, T. Guerrero, and S. B. Jiang, “Implementation and evaluation

of various demons deformable image registration algorithms on a GPU,”

Phys. Med. Biol. 55(1), 207–219 (2010).
72P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deforma-

ble registration on the GPU: A CUDA implementation of Demons,” in

Proceedings of the International Conference on Computational Sciences
and Its Applications (IEEE Computer Society Washington, DC, USA,

2008), pp. 223–233.
73G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element

computations on GPU—Application to neurosurgical simulation,” Com-

put. Methods Appl. Mech. Eng. 199(49–52), 3305–3314 (2010).
74Y. Liu, A. Fedorov, R. Kikinis, and N. Chrisochoides, “Real-time non-

rigid registration of medical images on a cooperative parallel

architecture,” in Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine (IEEE Computer Society Washington,

DC, USA, 2009), pp. 401–404.
75R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “Parallel computation

of mutual information on the GPU with application to real-time registra-

tion of 3D medical images,” Comput. Methods Programs Biomed. 99(2),

133–146 (2010).
76M. Rumpf and R. Strzodka, “Level set segmentation in graphics

hardware,” in Proceedings of IEEE International Conference on Image
Processing (IEEE Computer Society Washington, DC, USA, 2001), Vol.

3, pp. 1103–1106.
77A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker, “Interactive

deformation and visualization of level set surfaces using graphics

hardware,” in Proceedings of the IEEE Visualization (IEEE Computer So-

ciety Washington, DC, USA, 2003), p. 11.
78A. Sherbondy, M. Houston, and S. Napel, “Fast volume segmentation with

simultaneous visualization using programmable graphics hardware,” in

Proceedings of the IEEE Visualization (IEEE Computer Society Washing-

ton, DC, USA, 2003), pp. 171–176.
79J. E. Cates, A. E. Lefohn, and R. T. Whitaker, “GIST: An interactive,

GPU-based level set segmentation tool for 3D medical images,” Med.

Image Anal. 8(3), 217–231 (2004).
80W.-K. Jeong, J. Beyer, M. Hadwiger, A. Vazquez, H. Pfister, and R. Whi-

taker, “Scalable and interactive segmentation and visualization of neural

processes in EM datasets,” IEEE Trans. Vis. Comput. Graph. 15(6), 1505–

1514 (2009).
81A. Narayanaswamy, S. Dwarakapuram, C. Bjornsson, B. Cutler, W. Shain,

and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae

from fluorescence confocal microscope images and parallel GPU

implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
82J. Spoerk, H. Bergmann, F. Wanschitz, S. Dong, and W. Birkfellner, “Fast

DRR splat rendering using common consumer graphics hardware,” Med.

Phys. 34(11), 4302–4308 (2007).
83Q. Zhang, R. Eagleson, and T. M. Peters, “Dynamic real-time 4D cardiac

MDCT image display using GPU-accelerated volume rendering,” Comput.

Med. Imaging Graph. 33(6), 461–476 (2009).
84D. Levin, U. Aladl, G. Germano, and P. Slomka, “Techniques for

efficient, real-time, 3D visualization of multi-modality cardiac data using

consumer graphics hardware,” Comput. Med. Imaging Graph. 29(6), 463–

475 (2005).
85T.-H. Lee, J. Lee, H. Lee, H. Kye, Y. G. Shin, and S. H. Kim, “Fast per-

spective volume ray casting method using GPU-based acceleration techni-

ques for translucency rendering in 3D endoluminal CT colonography,”

Comput. Biol. Med. 39(8), 657–666 (2009).
86A. Kruger, C. Kubisch, G. Strauss, and B. Preim, “Sinus endoscopy—

Application of advanced GPU volume rendering for virtual endoscopy,”

IEEE Trans. Vis. Comput. Graph. 14(6), 1491–1498 (2008).
87C. Kubisch, C. Tietjen, and B. Preim, “GPU-based smart visibility techni-

ques for tumor surgery planning,” Int. J. Comput. Assist. Radiol. Surg.

5(6), 667–678 (2010).
88Z. Taylor, M. Cheng, and S. Ourselin, “High-speed nonlinear finite ele-

ment analysis for surgical simulation using graphics processing units,”

IEEE Trans. Med. Imaging 27(5), 650–663 (2008).

2697 G. Pratx and L. Xing: GPU computing in medical physics 2697

Medical Physics, Vol. 38, No. 5, May 2011

http://dx.doi.org/10.1016/j.compmedimag.2004.07.005
http://dx.doi.org/10.1088/0031-9155/55/21/001
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://dx.doi.org/10.1118/1.2948318
http://dx.doi.org/10.1088/0031-9155/55/1/012
http://dx.doi.org/10.1016/j.cma.2010.06.037
http://dx.doi.org/10.1016/j.cma.2010.06.037
http://dx.doi.org/10.1016/j.cmpb.2009.11.004
http://dx.doi.org/10.1016/j.media.2004.06.022
http://dx.doi.org/10.1016/j.media.2004.06.022
http://dx.doi.org/10.1109/TVCG.2009.178
http://dx.doi.org/10.1109/TMI.2009.2022086
http://dx.doi.org/10.1118/1.2789500
http://dx.doi.org/10.1118/1.2789500
http://dx.doi.org/10.1016/j.compmedimag.2009.04.002
http://dx.doi.org/10.1016/j.compmedimag.2009.04.002
http://dx.doi.org/10.1016/j.compmedimag.2005.02.007
http://dx.doi.org/10.1016/j.compbiomed.2009.04.007
http://dx.doi.org/10.1109/TVCG.2008.161
http://dx.doi.org/10.1007/s11548-010-0420-0
http://dx.doi.org/10.1109/TMI.2007.913112

	s1
	s2
	s3
	F1
	F2
	F3
	s3A
	F4
	s3B
	F5
	s4
	s5
	s5A
	s5B
	T1
	s5C
	s5D
	s6
	cor1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66
	B67
	B68
	B69
	B70
	B71
	B72
	B73
	B74
	B75
	B76
	B77
	B78
	B79
	B80
	B81
	B82
	B83
	B84
	B85
	B86
	B87
	B88

