
GPU Virtualization on VMware’s Hosted I/O Architecture

Micah Dowty
VMware, Inc.

3401 Hillview Ave, Palo Alto, CA 94304
micah@vmware.com

Jeremy Sugerman
VMware, Inc.

3401 Hillview Ave, Palo Alto, CA 94304
yoel@vmware.com

ABSTRACT
Modern graphics co-processors (GPUs) can produce high fi-
delity images several orders of magnitude faster than general
purpose CPUs, and this performance expectation is rapidly
becoming ubiquitous in personal computers. Despite this,
GPU virtualization is a nascent field of research. This paper
introduces a taxonomy of strategies for GPU virtualization
and describes in detail the specific GPU virtualization archi-
tecture developed for VMware’s hosted products (VMware
Workstation and VMware Fusion).

We analyze the performance of our GPU virtualization with
a combination of applications and microbenchmarks. We
also compare against software rendering, the GPU virtual-
ization in Parallels Desktop 3.0, and the native GPU. We
find that taking advantage of hardware acceleration signif-
icantly closes the gap between pure emulation and native,
but that different implementations and host graphics stacks
show distinct variation. The microbenchmarks show that
our architecture amplifies the overheads in the traditional
graphics API bottlenecks: draw calls, downloading buffers,
and batch sizes.

Our virtual GPU architecture runs modern graphics-
intensive games and applications at interactive frame rates
while preserving virtual machine portability. The applica-
tions we tested achieve from 86% to 12% of native rates and
43 to 18 frames per second with VMware Fusion 2.0.

Categories and Subject Descriptors
I.3.4 [Graphics Utilities]: Virtual device interfaces

General Terms
Design, Performance

Keywords
I/O Virtualization, Virtual Device, GPU

1. INTRODUCTION
Over the past decade, virtual machines (VMs) have be-
come increasingly popular as a technology for multiplexing
both desktop and server commodity x86 computers. Over
that time, several critical challenges in CPU virtualization
have been overcome, and there are now both software and
hardware techniques for virtualizing CPUs with very low
overheads [2]. I/O virtualization, however, is still very
much an open problem and a wide variety of strategies are
used. Graphics co-processors (GPUs) in particular present a
challenging mixture of broad complexity, high performance,
rapid change, and limited documentation.

Modern high-end GPUs have more transistors, draw more
power, and offer at least an order of magnitude more com-
putational performance than CPUs. At the same time, GPU
acceleration has extended beyond entertainment (e.g., games
and video) into the basic windowing systems of recent oper-
ating systems and is starting to be applied to non-graphical
high-performance applications including protein folding, fi-
nancial modeling, and medical image processing. The rise
in applications that exploit, or even assume, GPU accelera-
tion makes it increasingly important to expose the physical
graphics hardware in virtualized environments. Addition-
ally, virtual desktop infrastructure (VDI) initiatives have led
many enterprises to try to simplify their desktop manage-
ment by delivering VMs to their users. Graphics virtualiza-
tion is extremely important to a user whose primary desktop
runs inside a VM.

GPUs pose a unique challenge in the field of virtualiza-
tion. Machine virtualization multiplexes physical hardware
by presenting each VM with a virtual device and combin-
ing their respective operations in the hypervisor platform
in a way that utilizes native hardware while preserving
the illusion that each guest has a complete stand-alone de-
vice. Graphics processors are extremely complicated devices.
In addition, unlike CPUs, chipsets, and popular storage
and network controllers, GPU designers are highly secretive
about the specifications for their hardware. Finally, GPU ar-
chitectures change dramatically across generations and their
generational cycle is short compared to CPUs and other de-
vices. Thus, it is nearly intractable to provide a virtual
device corresponding to a real modern GPU. Even starting
with a complete implementation, updating it for each new
GPU generation would be prohibitively laborious. Thus,
rather than modeling a complete modern GPU, VMware’s



primary approach paravirtualizes: it delivers an idealized
software-only GPU and our own custom graphics driver for
interfacing with the guest operating system.

The main technical contributions of this paper are (1) a tax-
onomy of GPU virtualization strategies—both emulated and
passthrough-based, (2) an overview of the virtual graphics
stack in VMware’s hosted architecture, and (3) an evalu-
ation and comparison of VMware Fusion’s 3D acceleration
with other approaches. We find that a hosted model [18] is
a good fit for handling complicated, rapidly changing GPUs
while the largely asynchronous graphics programming model
is still able to efficiently utilize GPU hardware acceleration.

The rest of this paper is organized as follows. Section 2 pro-
vides background and some terminology. Section 3 describes
a taxonomy of strategies for exposing GPU acceleration to
VMs. Section 4 describes the device emulation and rendering
thread of the graphics virtualization in VMware products.
Section 5 evaluates the 3D acceleration in VMware Fusion.
Section 6 summarizes our findings and describes potential
future work.

2. BACKGROUND
While CPU virtualization has a rich research and commer-
cial history, graphics hardware virtualization is a relatively
new area. VMware’s virtual hardware has always included a
display adapter, but it initially included only basic 2D sup-
port [21]. Experimental 3D support did not appear until
VMware Workstation 5.0 (April 2005). Both Blink [7] and
VMGL [10] used a user-level Chromium-like approach [8]
to accelerate fixed function OpenGL in Linux and other
UNIX-like guests. Parallels Desktop 3.0 [14] accelerates
some OpenGL and Direct3D guest applications with a com-
bination of Wine and proprietary code [22, 15], but loses its
interposition properties while those applications are running.
Finally, at the most recent Intel Developer Forum, Parallels
presented a demo that dedicates an entire native GPU to
a single virtual machine using Intel’s VT-d [9, 1]. Parallels
has only recently started shipping this solution as part of
Parallels Workstation 4.0 Extreme. We have not evaluated
its behavior.

The most immediate application for GPU virtualization is
desktop virtualization. While server workloads still form the
core use case for virtualization, desktop virtualization is now
the strongest growth market [12]. Desktop users run a di-
verse array of applications, including games, video, CAD,
and visualization software. Windows Vista, Mac OS X, and
recent Linux distributions all include GPU-accelerated win-
dowing systems. Furthermore, an increasing number of ubiq-
uitous applications are adopting GPU acceleration. Adobe
Flash Player 10, the latest version of a product which cur-
rently reaches 99.0% of Internet viewers [6], includes support
for GPU acceleration. There is a user expectation that vir-
tualized applications will “just work”, and this increasingly
includes having access to their graphics card.

2.1 GPU Hardware
This section will briefly introduce GPU hardware. A full
discussion of GPU architecture and programming is outside

the scope of this paper.

Graphics hardware has experienced a continual evolution
from mere CRT controllers to powerful programmable
stream processors. Early graphics accelerators could draw
rectangles or bitmaps. Later graphics accelerators could
rasterize triangles and transform and light them in hard-
ware. With current PC graphics hardware, formerly fixed-
function transformation and shading has become gener-
ally programmable. Applications use high-level Application
Programming Interfaces (APIs) to configure the graphics
pipeline, and provide shader programs which perform ap-
plication specific per-vertex and per-pixel processing on the
GPU [11, 5].

Future GPUs are expected to continue providing increased
programmability. Compute APIs like OpenCL and CUDA
already facilitate the use of GPUs for non-graphical compu-
tation. Intel recently announced its Larrabee [17] architec-
ture, a potentially disruptive technology which follows this
hardware trend to its extreme by implementing a GPU using
an array of specialized x86 CPU cores.

With the recent exception of many AMD GPUs, for which
open documentation is now available [3], GPU hardware is
proprietary. NVIDIA’s hardware documentation, for exam-
ple, is a closely guarded trade secret. Nearly all graph-
ics applications interact with the GPU via a standardized
API such as Microsoft’s DirectX or the vendor-independent
OpenGL standard.

3. GPU VIRTUALIZATION TAXONOMY
This section explores the GPU virtualization approaches we
have considered at VMware. We use four primary criteria
for judging them: performance, fidelity, multiplexing, and
interposition.

Performance and fidelity emphasize minimizing the cost of
virtualization. We use performance to mean the speed of op-
eration, and fidelity as the breadth and quality of the avail-
able GPU features. Higher performance improves a system’s
ability to run interactively. Higher fidelity may increase com-
patibility with and visual quality of workloads.

Multiplexing and interposition emphasize the added value of
virtualization. Multiplexing is the ability for multiple virtual
machines to share the same physical GPU. To be practical,
multiplexing requires some form of secure isolation between
VMs. Interposition allows virtualization software to mediate
access between a virtual machine and the physical hardware.
Some degree of interposition is required for basic virtualiza-
tion features such as execution checkpointing and suspend-
to-disk. Higher degrees of interposition can allow for more
advanced features: Live migration, fault-tolerant execution,
disk image portability, and many other features are enabled
by insulating the guest from physical hardware dependen-
cies.

We observe that different use cases weight the criteria dif-
ferently. For example, a VDI deployment values high VM-
to-GPU consolidation ratios (e.g., multiplexing) while a con-



sumer running a VM to access a game or CAD application
unavailable on his host values performance and likely fidelity.
A tech support person maintaining a library of different con-
figurations and an IT administrator running server VMs are
both likely to value portability and secure isolation (inter-
position).

Since these criteria are often in opposition (e.g., performance
at the expense of interposition), we describe several possible
designs. Rather than give an exhaustive list, we describe
points in the design space which highlight interesting trade-
offs and capabilities. Table 1 summarizes these parameters.
At a high level, we group GPU virtualization techniques into
two categories: front-end (application facing) and back-end
(hardware facing).

3.1 Front-end Virtualization
Front-end virtualization introduces a virtualization bound-
ary at a relatively high level in the stack, and runs the graph-
ics driver in the host/hypervisor. This approach does not
rely on any GPU vendor- or model-specific details. Access
to the GPU is entirely mediated through the vendor pro-
vided APIs and drivers on the host while the guest only
interacts with software. Current GPUs allow applications
many independent “contexts” so multiplexing is easy. Inter-
position is not a given—unabstracted details of the GPU’s
capabilities may be exposed to the virtual machine for fi-
delity’s sake—but it is straightforward to achieve if desired.
However, there is a performance risk if too much abstraction
occurs in pursuit of interposition.

Front-end techniques exist on a continuum between two
extremes: API remoting, in which graphics API calls are
blindly forwarded from the guest to the external graphics
stack via remote procedure call, and device emulation, in
which a virtual GPU is emulated and the emulation synthe-
sizes host graphics operations in response to actions by the
guest device drivers. These extremes have serious disadvan-
tages that can be overcome by intermediate solutions. Pure
API remoting is simple to implement, but completely sacri-
fices interposition and involves wrapping and forwarding an
extremely broad collection of entry points. Pure emulation
of a modern GPU delivers excellent interposition and imple-
ments a narrower interface, but a highly complicated and
under-documented one.

Our hosted GPU acceleration employs front-end virtualiza-
tion and is described in Section 4. Parallels Desktop 3.0,
Blink, and VMGL are other examples of front-end virtual-
ization. Parallels appears to be closest to pure API remoting,
as virtual machine execution state cannot be saved to disk
while OpenGL or Direct3D applications are running. VMGL
uses Chromium to augment its remoting with OpenGL state
tracking and Blink implements something similar. This
allows them suspend-to-disk functionality and reduces the
amount of data which needs to be copied across the virtual-
ization boundary.

3.2 Back-end Virtualization
Back-end techniques run the graphics driver stack inside the
virtual machine with the virtualization boundary between

Figure 1: A visual representation of our GPU virtu-
alization taxonomy

the stack and physical GPU hardware. These techniques
have the potential for high performance and fidelity, but
multiplexing and especially interposition can be serious chal-
lenges. Since a VM interacts directly with proprietary hard-
ware resources, its execution state is bound to the specific
GPU vendor and possibly the exact GPU model in use. How-
ever, exposure to the native GPU is excellent for fidelity: a
guest can likely exploit the full range of hardware abilities.

The most obvious back-end virtualization technique is fixed

pass-through: the permanent association of a virtual machine
with full exclusive access to a physical GPU. Recent chipset
hardware features, such as Intel’s VT-d, make fixed pass-
through practical without requiring any special knowledge
of a GPU’s programming interfaces. However, fixed pass-
through is not a general solution. It completely forgoes any
multiplexing or interposition, and packing machines with one
GPU per virtual machine (plus one for the host) is not fea-
sible.

One extension of fixed pass-through is mediated pass-

through. As mentioned, GPUs already support multiple
independent contexts and mediated pass-through proposes
dedicating just a context, or set of contexts, to a virtual
machine rather than an entire GPU. In this approach, high-
bandwidth operations (command buffer submission, vertex
and texture DMA) would be performed using memory or
MMIO resources which are mapped directly to the phys-
ical GPU. Low-bandwidth operations (resource allocation,
legacy features) may be implemented using fully virtualized
resources. This architecture is illustrated by Figure 2.

This allows multiplexing, but incurs additional costs: the
GPU hardware must implement multiple isolated contexts
in a way that they can be mapped to different virtual ma-
chines efficiently and securely. The host/hypervisor must
have enough of a hardware driver to allocate and manage
GPU resources such as memory and contexts. Also, the log-
ical GPUs which appear in each VM may or may not have
the same hardware interface which would be exposed by an
equivalent physical GPU. This means that mediated pass-
through may require changes to the guest device drivers.

Mediated pass-through is capable of supporting basic inter-
position features such as saving execution state to disk, but



Technique Performance Fidelity Multiplexing Interposition

Software Rendering very low high yes perfect

Front-end medium medium yes good

Fixed pass-through high high no none

Mediated pass-through high high yes some

Table 1: Design space trade-offs for each virtualized graphics technique

Figure 2: Mediated pass-through architecture

more advanced interposition features such as virtual ma-
chine migration present significant challenges, especially if
one wants compatibility across different models or families
of physical GPU. Features like live migration or determin-
istic execution replay are particularly difficult. A number
of tactics using paravirtualization or standardization of a
subset of hardware interfaces can potentially unlock these
additional interposition features. Analogous techniques for
networking hardware were presented at VMworld 2008 [23].

There may also be long-term security and reliability concerns
in a mediated pass-through solution. GPUs often contain
hardware errata which must be worked around by drivers.
If a virtualizable GPU contained a hardware flaw which al-
lowed one context to access the memory of another context,
or which allowed one context to hang the GPU, there might
be no efficient and secure way to work around this errata in
software. This same concern exists for hardware virtualiza-
tion of other devices, including CPUs, however the high com-
plexity and low architectural transparency of GPUs could
make errata a more significant threat.

3.3 Hybrid Implementations
By combining front-end virtualization and back-end virtu-
alization, it is possible to use front-end virtualization in en-
vironments without a native graphics stack, such as a bare
metal hypervisor or a security-enhanced operating system.
Pass-through becomes a mechanism for securely deploying
an off-the-shelf graphics driver in this environment. Front-
end virtualization is then used to multiplex the GPU(s)
among several virtual machines while maintaining high de-
grees of VM portability and isolation.

We call this the Driver VM approach. The bulk of the GPU
driver stack runs in an isolated low-privilege VM. The phys-
ical GPU is securely exposed to the driver VM using fixed
pass-through, implemented with the use of I/O virtualiza-
tion support in the chipset. This requires no special knowl-
edge of the GPU’s programming model, and it can be com-
patible with unmodified GPU drivers. To multiplex the GPU
and expose it to other VMs, any form of front-end virtualiza-
tion may be used. This approach was recently described by
HP Laboratories as part of a secure desktop virtualization
architecture for Xen [4].

4. VMWARE’S VIRTUAL GPU
All of VMware’s products include a virtual display adapter
that supports VGA and basic high resolution 2D graph-
ics modes. On VMware’s hosted products, this adapter
also provides accelerated GPU virtualization using a front-
end virtualization strategy. To satisfy our design goals, we
chose a flavor of front-end virtualization which provides good
portability and performance, and which integrates well with
existing operating system driver models. Our approach is
most similar to the device emulation approach above, but
it includes characteristics similar to those of API remoting.
The in-guest driver and emulated device communicate asyn-
chronously with VMware’s Mouse-Keyboard-Screen (MKS)
abstraction. The MKS runs as a separate thread and owns
all of our access to the host GPU (and windowing system in
general).

4.1 SVGA Device Emulation
Our virtual GPU takes the form of an emulated PCI de-
vice, the VMware SVGA II card. No physical instances of
this card exist, but our virtual implementation acts like a
physical graphics card in most respects. The architecture of
our PCI device is outlined by Figure 3. Inside the VM, it
interfaces with a device driver we supply for common guest
operating systems. Currently only the Windows XP driver
has 3D acceleration support. Outside the VM, a user-level
device emulation process is responsible for handling accesses
to the PCI configuration and I/O space of the SVGA device.
The virtual hardware protocol is publicly documented [20].

Our virtual graphics device provides three fundamental
kinds of virtual hardware resources: registers, Guest Mem-
ory Regions (GMRs), and a FIFO command queue.

PCI BAR0 controls access to a set of I/O registers for in-
frequent operations that must be emulated synchronously.
Other registers may be located in the faster FIFO Mem-

ory region, which is backed by plain system memory on the
host. I/O space registers are used for mode switching, GMR



Figure 3: VMware SVGA II device architecture

setup, IRQ acknowledgement, versioning, and for legacy pur-
poses. FIFO registers include large data structures, such as
the host’s 3D rendering capabilities, and fast-moving values
such as the mouse cursor location—this is effectively a shared
memory region between the guest driver and the MKS.

GMRs are an abstraction for guest owned memory which
the virtual GPU is allowed to read or write. GMRs can
be defined by the guest’s video driver using arbitrary dis-
contiguous regions of guest system memory. Additionally,
there always exists one default GMR: the device’s “virtual
VRAM.” This VRAM is actually host system memory, up
to 128 MB, mapped into PCI memory space via BAR1. The
beginning of this region is reserved as a 2D framebuffer.

In our virtual GPU, physical VRAM is not directly visible to
the guest. This is important for portability, and it is one of
the primary trade-offs made by our front-end virtualization
model. To access physical VRAM surfaces like textures, ver-
tex buffers, and render targets, the guest driver schedules an
asynchronous DMA operation which transfers data between
a surface and a GMR. In every surface transfer, this DMA
mechanism adds at least one copy beyond the normal over-
head that would be experienced in a non-virtualized environ-
ment or with back-end virtualization. Often only this single
copy is necessary, because the MKS can provide the host’s
OpenGL or Direct3D implementation with direct pointers
into mapped GMR memory.1

This virtual DMA model has the potential to far outperform
a pure API remoting approach like VMGL or Chromium, not
only because so few copies are necessary, but because the
guest driver may cache lockable Direct3D buffers directly in
GMR memory. Unlike a high-level socket or pipe abstrac-
tion, this low-level shared memory system allows the vir-

1Even this single copy may be avoidable if the virtual device
implementation collaborates closely with the physical GPU
driver in order to convert virtual DMA operations directly
into physical DMA operations that operate on the virtual
machine’s memory.

tual machine’s 3D driver stack to implement different GMR
memory usage models for different kinds of surfaces. Some
surfaces may use the shared memory like a ring buffer for
updated regions, some surfaces may store a single cached
copy of their data in GMR memory, and some surfaces need
not be resident in GMR memory at all.

Like a physical graphics accelerator, the SVGA device pro-
cesses commands asynchronously via a lockless FIFO queue.
This queue, several megabytes in size, occupies the bulk of
the FIFO Memory region referenced by BAR2. During un-
accelerated 2D rendering, FIFO commands are used to mark
changed regions in the framebuffer, informing the MKS to
copy from the guest framebuffer to the physical display. Dur-
ing 3D rendering, the FIFO acts as transport layer for our
architecture-independent SVGA3D rendering protocol. FIFO
commands also initiate all DMA operations, perform hard-
ware accelerated blits, and control accelerated video and
mouse cursor overlays.

We deliver host to guest notifications via a virtual interrupt.
Our virtual GPU has multiple interrupt sources which may
be programmed via FIFO registers. To measure the host’s
command execution progress, the guest may insert FIFO
fence commands, each with a unique 32-bit ID. Upon exe-
cuting a fence, the host stores its value in a FIFO register
and optionally delivers an interrupt. This mechanism allows
the guest to very efficiently check whether a specific com-
mand has completed yet, and to optionally wait for it by
sleeping until a fence goal interrupt is received. A fast way
to check command execution progress is critical for efficiently
managing DMA memory in the guest driver.

The SVGA3D protocol is a simplified and idealized adaptation
of the Direct3D API. It has a minimal number of distinct
commands. Drawing operations are expressed using a sin-
gle flexible vertex/index array notation. All host VRAM
resources, including 2D textures, 3D textures, cube environ-
ment maps, render targets, and vertex/index buffers are rep-
resented using a homogeneous surface abstraction. Shaders
are written in a variant of Direct3D’s bytecode format, and
most fixed-function render states are based on Direct3D ren-
der state.

This protocol acts as a common interchange format for GPU
commands and state. The guest contains API implemen-
tations which produce SVGA3D commands rather than com-
mands for a specific GPU. This provides an opportunity to
actively trade capability for portability. The host can con-
trol which of the physical GPU’s features are exposed to the
guest. As a result, VMs using SVGA3D are widely portable
between different physical GPUs. It is possible to suspend
a live application to disk, move it to a different host with a
different GPU or MKS backend, and resume it. Even if the
destination GPU exposes fewer capabilities via SVGA3D, in
some cases our architecture can use its layer of interposition
as an opportunity to emulate missing features in software.
This portability assurance is critical for preventing GPU vir-
tualization from compromising the core value propositions of
machine virtualization.



Figure 4: The virtual graphics stack. The
MKS/HostOps Dispatch and rendering occur asyn-
chronously in their own thread.

4.2 Rendering
This FIFO design is inherently asynchronous. All host-side
rendering happens in the MKS thread, while the guest’s vir-
tual CPUs execute concurrently. As illustrated in Figure 4,
access to the physical GPU is mediated first through the
GPU vendor’s driver running in the host OS, and secondly
via the Host Operations (HostOps) backends in the MKS.
The MKS has multiple HostOps backend implementations
including GDI and X11 backends to support basic 2D graph-
ics on all Windows and Linux hosts, a VNC server for re-
mote display, and 3D accelerated backends written for both
Direct3D and OpenGL. In theory we need only an OpenGL
backend to support Windows, Linux, and Mac OS hosts;
however we have found Direct3D drivers to be of generally
better quality, so we use them when possible. Additional
backends could be written to access GPU hardware directly.

The guest video driver writes commands into FIFO memory,
and the MKS processes them continuously on a dedicated
rendering thread. This design choice is critical for perfor-
mance, however it introduces several new challenges in syn-
chronization. In part, this is a classic producer-consumer
problem. The FIFO requires no host-guest synchronization
as long as it is never empty nor full, but the host must sleep
any time the FIFO is empty, and the guest must sleep when
it is full. The guest may also need to sleep for other rea-
sons. The guest video driver must implement some form of
flow control, so that video latency is not unbounded if the
guest submits FIFO commands faster than the host com-
pletes them. The driver may also need to wait for DMA
completion, either to recycle DMA memory or to read back
results from the GPU. To implement this synchronization
efficiently, the FIFO requires both guest to host and host to
guest notifications.

The MKS may periodically poll the command FIFO when
a console is attached, in order to provide a “virtual vertical
refresh rate” of 25 to 100 Hz for unaccelerated 2D graphics.
During synchronization-intensive 3D rendering, we need a

lower latency guest to host notification. The guest can write
to the doorbell, a register in I/O space, to explicitly ask the
host to poll the command FIFO immediately.

5. EVALUATION
We conducted two categories of tests: application bench-
marks, and microbenchmarks. All tests were conducted on
the same physical machine: a 2nd generation Apple Mac Pro,
with a total of eight 2.8 GHz Intel Xeon cores and an ATI
Radeon HD2600 graphics card. All VMs used a single virtual
CPU. With one exception, we found that the non-virtualized
tests were unaffected by the number of CPU cores enabled.

5.1 Application Benchmarks

Application Resolution FPS

RTHDRIBL 1280 × 1024 22

RTHDRIBL 640× 480 27.5

Half Life 2: Episode 2 1600 × 1200 22.2

Half Life 2: Episode 2 1024 × 768 32.2

Civilization 4 1600 × 1200 18

Max Payne 2 1600 × 1200 42

Table 2: Absolute frame rates with VMware Fusion
2.0. All applications run at interactive speeds (18–42
FPS).

The purpose of graphics acceleration hardware is to provide
higher performance than would be possible using software
alone. Therefore, in this section we will measure both the
performance impact of virtualized graphics relative to non-
virtualized GPU hardware, and the amount of performance
improvement relative to TransGaming’s SwiftShader [19]
software renderer, running in a VMware Fusion virtual ma-
chine.

In addition to VMware Fusion 2.0, which uses the archi-
tecture described above, we measured Parallels Desktop 3.0
where possible (three of our configurations do not run). To
distinguish the effects that can be caused by API translation
and by the host graphics stacks, we also ran our applications
on VMware Workstation 6.5. These used our Direct3D ren-
dering backend on the same hardware, but running Windows
XP using Boot Camp.

It is quite challenging to measure the performance of graph-
ics virtualization implementations accurately and fairly. The
system under test has many variables, and they are often
difficult or impossible to isolate. The virtualized operating
system, host operating system, CPU virtualization overhead,
GPU hardware, GPU drivers, and application under test
may each have a profound effect on the overall system per-
formance. Any one of these components may have opaque
fast and slow paths—small differences in the application un-
der test may cause wide gaps in performance, due to subtle
and often hidden details of each component’s implementa-
tion. For example, each physical GPU driver may have dif-
ferent undocumented criteria for transferring vertex data at
maximum speed.



Figure 5: Relative performance of software rendering (SwiftShader) and three hardware accelerated virtual-
ization techniques. The log scale highlights the huge gap between software and hardware acceleration versus
the gap between virtualized and native hardware.

Additionally, the matrix of possible tests is limited by incom-
patible graphics APIs. Most applications and benchmarks
are written for a single API, either OpenGL or Direct3D.
Each available GPU virtualization implementation has a dif-
ferent level of API support. Parallels Desktop supports both
OpenGL and Direct3D, VMware Fusion supports only Di-
rect3D applications. VMGL and Chromium were not tested,
as they only support OpenGL.

Figure 5 summarizes the application benchmark results. All
three virtualization products performed substantially better
than the fastest available software renderer, which obtained
less than 3% of native performance in all tests. Applications
which are mostly GPU limited, RTHDRIBL2 [16] and Half Life

2: Episode 2, ran at closer to native speeds. Max Payne
exhibits low performance relative to native, but that reflects
the low ratio of GPU load to API calls. As an older game, it
stresses the GPU less per drawing call, so the virtualization
overhead occupies a higher proportion of the total execution
time. In absolute terms, though, Max Payne has the highest
frame rate of the applications we tested.

Table 2 reports the actual frame rates exhibited with these
applications under VMware Fusion. While our virtualized
3D acceleration still lags native performance, we make two
observations: it still achieves interactive frame rates, and
it closes most of the gap between software rendering and
native performance. For example, at 1600 × 1200, VMware
Fusion renders Half-Life 2 at 22 frames per second, which is
23.35x faster than software rendering and only 2.4x slower
than native.

5.2 Microbenchmarks
To better understand the nature of front-end virtualization’s
performance impact, we performed a suite of microbench-

2A Real-time High Dynamic Range Image-Based Lighting
demo. This program uses complex shaders, floating point
render targets, and several rendering passes.

marks based on triangle rendering speed under various con-
ditions. For all microbenchmarks, we rendered unlit un-
textured triangles using Vertex Shader 1.1 and the fixed-
function pixel pipeline. This minimizes our dependency on
shader translation and GPU driver implementation. The mi-
crobenchmark source code and results are available at [13].

Each test renders a fixed number of frames, each containing
a variable number of draw calls with a variable length vertex
buffer. For robustness against jitter or drift caused by timer
virtualization, all tests measured elapsed time via a TCP/IP
server running on an idle physical machine. Parameters for
each test were chosen to optimize frame duration, so as to
minimize the effects of noise from time quantization, network
latency, and vertical sync latency.

Figures 6 through 9 show the results from our tests. All
graphs show elapsed time on the Y axis, so lower is better.

The static vertex test, Figure 6, tests performance scalability
when rendering vertex buffers which do not change contents.
In Direct3D terms, this tests the managed buffer pool. Very
little data must be exchanged between host and guest in
this test, so an ideal front-end virtualization implementation
would do quite well.

VMware Workstation manages to get just over 80% of the
host’s performance in this test. In contrast, Parallels Desk-
top and VMware Fusion each get around 30%. In our expe-
rience, the wide gap between the OpenGL test results (both
Parallels Desktop and VMware Fusion) as compared with
the Direct3D results (VMware Workstation and host) are
best explained by inefficiency in the Vertex Buffer Object
implementation within Mac OS’s OpenGL stack. The dif-
ference in slope between Parallels Desktop and VMware Fu-
sion could be explained by the two products producing GPU
configurations (shaders, states, memory layouts) which have
different performance characteristics.



The dynamic vertex test, Figure 7, switches from the man-
aged buffer pool back to the default Direct3D buffer pool,
and uploads new vertex data prior to each of the 100 draws
per frame. It tests the driver stack’s ability to stream data
to the GPU, and manage the re-use of buffer memory. Of the
tests presented, this one is the most sensitive to differences in
the resource management architecture and implementation
of a virtual GPU.

The next test, Figure 8, is intended to test virtualiza-
tion overhead while performing a GPU-intensive operation.
While triangles in previous tests had zero pixel coverage,
this tests renders triangles covering half the viewport. Ide-
ally, this test would show nearly identical results for any
front-end virtualization implementation. The actual results
are relatively close, but on VMware’s platform there is a
substantial amount of noise in the results. This appears
to be due to the irregular completion of asynchronous com-
mands when the physical GPU is under heavy load. Also
worth noting is the fact that VMware Fusion, on average,
performed better than the host machine. It’s possible that
this test is exercising a particular drawing state which is
more optimized in ATI’s Mac OS OpenGL driver than in
their Windows Direct3D driver.

The final test, Figure 9, measures the overhead added to
every separate draw. This was the only test where we saw
variation in host performance based on the number of en-
abled CPU cores. This microbenchmark illustrates why the
number of draw calls per frame is, in our experience, a rela-
tively good predictor of overall application performance with
front-end GPU virtualization.

VMware Workstation scored with performance very close to
native, since its Direct3D backend performs fairly little work
on each drawing operation. VMware Fusion’s translation
from SVGA3D state to OpenGL state requires more time on
each drawing operation, so this explains some of the per-
formance gap. Parallels must perform a similar amount of
work on each draw call, due to the Wine-based Direct3D to
OpenGL API translation that it performs in the guest. It is
also likely that some portion of the performance gap is due
to the difference between ATI’s Mac OS OpenGL driver and
their Windows Direct3D driver.

6. CONCLUSION
In VMware’s hosted architecture, we have implemented
front-end GPU virtualization using a virtual device model
with a high level rendering protocol. We have shown it to
run modern graphics-intensive games and applications at in-
teractive frame rates while preserving virtual machine inter-
position.

There is much future work in developing reliable benchmarks
which specifically stress the performance weaknesses of a vir-
tualization layer. Our tests show API overheads of about 2
to 120 times that of a native GPU. As a result, the per-
formance of a virtualized GPU can be highly dependent on
subtle implementation details of the application under test.

Back-end virtualization holds much promise for perfor-

mance, breadth of GPU feature support, and ease of driver
maintenance. The current fixed pass-through implementa-
tions suffer from significant limitations, but mediated pass-

through architectures can provide GPU multiplexing which
preserves performance, fidelity, and some degree of interpo-
sition.

Front-end virtualization currently shows a substantial degra-
dation in performance and GPU feature set relative to native
hardware. Nevertheless, it is already enabling virtualized
applications to run interactively that could never have been
virtualized before, and is a foundation for virtualization of
tomorrow’s GPU-intensive software. Even as back-end vir-
tualization gains popularity, front-end virtualization can fill
an important role for VMs which must be portable among
diverse GPUs.

7. ACKNOWLEDGMENTS
Many people have contributed to the VMware SVGA and 3D
code over the years. We would specifically like to thank Tony
Cannon and Ramesh Dharan for their work on the founda-
tions of our display emulation. Matt Ginzton has provided
invaluable help in diverse areas of our graphics architecture
over the years. Aaditya Chandrasekhar pioneered our shader
translation architecture and continues to advance our Di-
rect3D virtualization. Shelley Gong, Alex Corscadden, Mark
Sheldon, and Stephen Johnson all actively contribute to our
3D emulation.

We would also like to thank Muli Ben-Yehuda, Alan Cox,
and Scott Rixner for organizing the first USENIX Workshop
on I/O Virtualization (WIOV 2008) where this paper was
originally published.

8. REFERENCES
[1] D. Abramson, J. Jackson, S. Muthrasanallur,

G. Neiger, G. Regnier, R. Sankaran, I. Schoinas,
R. Uhlig, B. Vembu, and J. Wiegert. Intel
virtualization technology for directed I/O. Intel

Technology Journal, 10, August 2006.

[2] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization.
Operating Systems Review, 40(5):2–13, Dec. 2006.

[3] AMD developer guides and manuals.
http://developer.amd.com/documentation/guides/

Pages/default.aspx.

[4] C. I. Dalton, D. Plaquin, W. Weidner, D. Kuhlmann,
B. Balacheff, and R. Brown. Trusted virtual platforms:
a key enabler for converged client devices. SIGOPS

Operating Systems Review, 43(1):36–43, 2009.

[5] K. Fatahalian and M. Houston. A closer look at GPUs.
Communications of the ACM, 51(10):50–57, 2008.

[6] Flash player penetration. http://www.adobe.com/
products/player_census/flashplayer/.

[7] J. G. Hansen. Blink: Advanced display multiplexing
for virtualized applications. In Proceedings of

NOSSDAV 2007, June 2007.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. Klosowski. Chromium:
A stream-processing framework for interactive
rendering on clusters. In SIGGRAPH 2002 Conference



Figure 6: Static vertex rendering performance Figure 7: Dynamic vertex rendering performance

Figure 8: Filled triangle rendering performance Figure 9: Draw call overhead

Proceedings, Annual Conference Series, pages 693–702.
ACM Press/ACM SIGGRAPH, 2002.

[9] IDF SF08: Parallels and Intel virtualization for
directed I/O.
http://www.youtube.com/watch?v=EiqMR5Wx_r4.

[10] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. VMM-independent graphics acceleration.
In Proceedings of the 3rd International Conference on

Virtual Execution Environments, VEE 2007, pages
33–43. ACM, June 2007.

[11] A. Lefohn, M. Houston, C. Boyd, K. Fatahalian,
T. Forsyth, D. Luebke, and J. Owens. Beyond
programmable shading. In SIGGRAPH ’08: ACM

SIGGRAPH 2008 classes.
http://s08.idav.ucdavis.edu/.

[12] A. Mann. Virtualization and Management: Trends,

Forecasts, and Recommendations. Enterprise

Management Associates, 2008.

[13] Microbenchmark source code and results.
http://vmware-svga.sourceforge.net/wiov/.

[14] Parallels Desktop.
http://www.parallels.com/en/desktop/.

[15] Parallels on the Wine project wiki.
http://wiki.winehq.org/Parallels.

[16] Real-time high dynamic range image-based lighting
demo. http://www.daionet.gr.jp/~masa/rthdribl/.

[17] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86
architecture for visual computing. ACM Transactions

on Graphics, 27(3), 2008.

[18] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing I/O devices on VMware workstation’s



hosted virtual machine monitor. In Proceedings of the

USENIX Annual Technical Conference, General Track,
pages 1–14. USENIX, 2001.

[19] SwiftShader. http:
//www.transgaming.com/products/swiftshader/.

[20] VMware SVGA device developer kit.
http://vmware-svga.sourceforge.net/.

[21] VMware SVGA device interface and programming
model. In X.org source repository, xf86-video-vmware
driver README.

[22] Wine project web site. http://winehq.org/.

[23] H. Xu, S. Varley, and P. Thakkar. TA2644:
Networking I/O virtualization. In VMworld 2008.


