GPUs Immediately Relating Lattice QCD to Collider Experiments

Outline

- Quantum ChromoDynamics
- Fluctuations from Heavy-Ion experiments and lattice QCD
- Lattice QCD on GPUs and on the Bielefeld GPU cluster
- Optimizations
 - includes first experiences with Kepler architecture
- Relating Lattice Data to Collider Experiments
- Outlook

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Outline

- Quantum ChromoDynamics
- Fluctuations from Heavy-Ion experiments ar
- Lattice QCD on GPUs and on the Bielefeld
- Optimizations
 - includes first experiences with Kepler architecture
- Relating Lattice Data to Collider Experiments
- Outlook

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

- \rightarrow Lattice-QCD talks by: Frank Winter (Wed, 10:00) Balint Joo (Wed,10:30) Hyung-Jin Kim (Thu, 16:30)
- \rightarrow Lattice-QCD posters: Hyung-Jin Kim Richard Forster Alexei Strelchenko

Strong force

- acts on quarks
 force carriers: gluons
- (c.f. electrodynamics: photons)
- •range: 10⁻¹⁵ m
- strength: 10^{38} times stronger than gravity 10^2 times stronger than electromagnetism
- residual interaction: nuclear force (i.e. force between nuclei in atom nucleus)
- described by Quantum ChromoDynamics (QCD)

Phase transitions

• water at different temperatures

- •ice (solid)
- water (liquid)
- •vapor (gas)
- phase transitions occur in different ways: 1st order, 2nd order, 'crossover'
- a 'order parameter' describes the change between different states
- boiling point of water depends on pressure \rightarrow phase diagram

Phase transitions

• water at different temperatures

- •ice (solid)
- water (liquid)
- •vapor (gas)
- phase transitions occur in different ways: 1st order, 2nd order
- a 'order parameter' describes the change between different
- boiling point of water depends on pressure \rightarrow phase diagram

Phases of Quantum ChromDynamics

hadron gas

dense hadronic matter

quark gluon plasma

cold nuclear matter Quarks and gluons are confined inside hadrons

phase transition or crossover at Tc

- quarks and gluons are the degrees of freedom (asymptotically) free
- extreme conditions (temperatures, densities) are necessary to investigate properties of QCD
- important for understanding the evolution of the universe after the Big Bang

Phases of Quantum ChromDynamics

- to investigate properties of QCD
- after the Big Bang

Accelerators ... the real ones

LHC @ CERN

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

RHIC @ Brookhaven National Lab

Accelerators ... the real ones

LHC @ CERN

RHIC @ Brookhaven National Lab

Heavy Ion Experiments

- phase transition occurs in heavy-ion collisions
- What thermometer can we use at 10^{12} K ?
- detectors measure created particles
- to interpret the data theoretical input is required
- ab-initio approach: Lattice QCD

Heavy Ion Experiments

- detectors measure created particles
- to interpret the data theoretical input is required

Heavy Ion Experiments

- phase transition occurs in heavy-ion collisions
- What thermometer can we use at $10^{12} \,\mathrm{K}$?
- detectors measure created particles
- to interpret the data theoretical input is required
- ab-initio approach: Lattice QCD

GPUs used for triggering and data processing → Valerie Halyo (Wed, 16.30) S3263 Alessandro Lonardo (Wed, 15.30) S3286 F. Pantaleo & V. Innocente (Wed, 16.00) S3278

Lattice QCD Formulating Lattice QCD

- QCD partition function
- 4 dimensional grid (=Lattice)
- quarks live on lattice sites
 - •6 or 12 complex numbers
- gluons live on the links
 - SU(3) matrices
 - 18 complex numbers
- typical sizes: 24 x 24 x 24 x 6 to 256 x 256 x 256 x 256

Fluctuations and the QCD phase diagram

- different QCD phases characterized by
 - chiral symmetry
 - confinement aspects

Figure from C. Schmidt

Fluctuations and the QCD phase diagram

- different QCD phases characterized by
 - chiral symmetry
 - confinement aspects
- possible critical end-point
 - 2nd order phase transition
 - divergent correlation length
 - divergent susceptibility

Figure from C. Schmidt

Fluctuations from Lattice QCD

• expansion of the pressure in

$$\frac{p}{T^4} = \sum_{i,j,k}^{\infty} \frac{1}{i!j!k!} \chi_{ij}^E$$

•B,Q,S conserved charges (baryon number, electric charge, strangeness)

$\sum_{ijk}^{BQS} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$

Fluctuations from Lattice QCD

• expansion of the pressure in

$$\frac{p}{T^4} = \sum_{i,j,k}^{\infty} \frac{1}{i!j!k!} \chi_{ij}^E$$

- B,Q,S conserved charges (baryon number, electric charge, strangeness)
- generalized susceptibilities

$$\chi_{ijk}^{BQS} = \frac{1}{VT} \left. \frac{\partial^i}{\partial(\mu_B/T)} \frac{\partial^j}{\partial(\mu_Q/T)} \frac{\partial^j}{\partial(\mu_S/T)} \frac{\partial^k}{\partial(\mu_S/T)} \mathcal{Z}(T,\mu) \right|_{\mu=0}$$

$\left(\frac{BQS}{ijk}\left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k\right)$

Fluctuations from Lattice QCD

• expansion of the pressure in

$$\frac{p}{T^4} = \sum_{i,j,k}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

•B,Q,S conserved charges (baryon number, electric charge, strangeness)

generalized susceptibilities

$$\chi_{ijk}^{BQS} = \frac{1}{VT} \left. \frac{\partial^i}{\partial(\mu_B/T)} \frac{\partial^j}{\partial(\mu_Q/T)} \frac{\partial^k}{\partial(\mu_S/T)} \mathcal{Z}(T,\mu) \right|_{\mu=0}$$

• related to cumulants of net charge fluctuations, e.g.

$$VT^{3}\chi_{2}^{B} = \langle (\delta N_{B})^{2} \rangle = \langle N_{B}^{2} - 2N_{B} \langle N_{B} \rangle + \langle N_{B} \rangle^{2} \rangle$$

Calculation of susceptibilities from Lattice QCD

• μ -dependence is contained in the fermion determinant

$$\mathcal{Z} = \int \mathcal{D}U(\det M(\mu))^{N_{\rm f}/4} \exp(-S_g),$$

• calculation of susceptibilities requires μ -derivatives of fermion determinant

$$\frac{\partial^2 \ln \mathcal{Z}}{\partial \mu^2} = \left\langle \frac{n_f}{4} \frac{\partial^2 (\ln \det M)}{\partial \mu^2} \right\rangle + \left\langle \left(\frac{n_f}{4} \frac{\partial (\ln \det M)}{\partial \mu} \right)^2 \right\rangle$$

Calculation of susceptibilities from Lattice QCD

• μ -dependence is contained in the fermion determinant

$$\mathcal{Z} = \int \mathcal{D}U(\det$$

• calculation of susceptibilities requires μ -derivatives of fermion determinant

$$\frac{\partial^2 \ln \mathcal{Z}}{\partial \mu^2} = \left\langle \frac{n_f}{4} \frac{\partial^2 (\ln \det M)}{\partial \mu^2} \right\rangle + \left\langle \left(\frac{n_f}{4} \frac{\partial (\ln \det M)}{\partial \mu} \right)^2 \right\rangle$$

- formulate all operator in terms of traces over space-time, color (and spin)
 - full inversion of fermion matrix is impossible: evaluate using noisy estimators
 - ensemble average \rightarrow large number of configurations

- $et M(\mu))^{N_{\rm f}/4} \exp(-S_q),$

Noisy estimators

traces required for derivatives

$$\frac{\partial(\ln \det M)}{\partial \mu} = \operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}\right)$$
$$\frac{\partial^2(\ln \det M)}{\partial \mu^2} = \operatorname{Tr}\left(M^{-1}\frac{\partial^2 M}{\partial \mu^2}\right) - \operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}\right)$$

• noisy estimators \rightarrow large number of random vectors η (~1500 / configuration)

$$\operatorname{Tr}\left(\frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\dots M^{-1}\right) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N \eta_k^{\dagger} \frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\dots M^{-1}\eta_k$$

• up to **10000** configurations for each temperature

• dominant operation: fermion matrix inversion (~ 99%)

Configuration generatic

1. Generate an ensemble of gluon field configurations, $\{U_{\mu}(x)\}$

- sequential process
- use RHMC algorithm to evaluate the system in *simulation time*

Ron Babich (Boston University) – SIAM CSE11 – March 1, 2011

Friday, 11 March 2011

Steps in a lattice QCD calculation

 $D_{ij}^{\alpha\beta}(x,x';U)\psi_j^\beta(x) = \eta_i^\alpha(x')$ or "Ax=b"

Ron Babich (Boston University) – SIAM CSE11 – March 1, 2011

Universität Bielefeld

6

6

Configuration generatic

Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field configurations, $\{U_{\mu}(x)\}$

Universität Bielefeld

6

History of QCD Machines in BI: the APE generation

- APE = Array Processor Experiment, started mid eigthties
- SIMD architecture with lot of FPUs, VLIW
- special purpose machine build for lattice QCD
 - optimized $a \times b + c$ operation for use in complex matrix-vector multiplication
 - large register files up to 512 64bit-registers
 - 3D network low latency: fast memory access to nearest neighbor (~ 3-4 local)
- low power consumption (latest version: ~ 1.5 GFlops @ 7 Watt)
- object-oriented programming language TAO (syntax similar to Fortran)
- controlled by host PC

History of QCD Machines in BI: the APE generation

- APE = Array Processor Experiment, started mid eigthties
- SIMD architecture with lot of FPUs, VLIW
- special purpose machine build for lattice QCD
 - optimized $a \times b + c$ operation for use in complex matrix-vector multiplication
 - large register files up to 512 64bit-registers
 - 3D network low latency: fast memory access to nearest neighbor (~ 3-4 local)
- low power consumption (latest version: ~ 1.5 GFlops @ 7 Watt)
- object-oriented programming language TAO (syntax similar to Fortran)
- controlled by host PC

Talk on APEnet → Massimo Bernaschi (Tue, 16.00) S3089

Future of QCD machines in BI: the GPU era

- lattice simulations are massively parallel
- require a lot of floating point operations
- used as accelerators since 2006: 'QCD as a video game' (Erigi et al), coded in OpenGL
- GPUs become standard 'tool' of Lattice QCD
- widely used by various groups
- libraries available (e.g. QUDA)

The Bielefeld GPU cluster

- hybrid GPU / CPU cluster
- •152 compute nodes in 14x19" racks
 - 48 nodes with 4 GTX 580
 - 104 nodes with 2 Tesla M2075
 - 304 CPUs (1216 cores) with 7296 GB memory
- •7 storage nodes / 2 head nodes
- •1.1 million € founded with federal and state government funds
- dedicated exclusively to Lattice QCD

Standard staggered Fermion Matrix (Dsla Appping the Wilson-Clov

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80%)

$$w_x = D_{x,x'}v_{x'} = \sum_{\mu=0}^3 \left\{ U_{x,\mu}v_{x+\hat{\mu}} - \frac{1}{2} \right\} = 0$$

- Each thread must
 - Load the neighboring spinor (24 numb
 - Load the color matrix connecting the s
 - Load the clover matrix (72 numbers)
 - Save the result (24 numbers)
- Arithmetic intensity

Standard staggered Fermion Matrix (Dsla Apping the Wilson-Clov

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80%)

$$w_x = D_{x,x'}v_{x'} = \sum_{\mu=0}^3 \left\{ U_{x,\mu}v_{x+\hat{\mu}} - \frac{1}{2} \right\}$$

memory: 8 SU(3) matrices input, 8 color vectors input, 1 color vector output

•8 x (72 + 24) + 24 bytes = 792 bytes (1584 for double precision)

• Each thread must double precision)

- Load the neighboring spinor (24 numb
- Load the color matrix connecting the s
- Load the clover matrix (72 numbers)
- Save the result (24 numbers)
- Arithmetic intensity

Standard staggered Fermion Matrix (Dsla Appping the Wilson-Clov

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80%)

$$w_x = D_{x,x'}v_{x'} = \sum_{\mu=0}^3 \left\{ U_{x,\mu}v_{x+\hat{\mu}} - \frac{1}{2} \right\}$$

• memory: 8 SU(3) matrices input, 8 color vectors input, 1 color vector output

•8 x (72 + 24) + 24 bytes = 792 bytes (1584 for double precision)

• Flops: (CM = complex mult, CA = complex add)

• 4 x (2 x 3 x (3 CM + 2 CA) + 3 CA) + 3 x 3 CA = 570 flops

• flops / byte ratios: 0.72

• Each thread must

- Load the neighboring spinor (24 numb)
- Load the color matrix connecting the s

- Load the clover matrix (72 numbers)
- Save the result (24 numbers)
- Arithmetic intensity

Bandwidth bound

- memory bandwidth is crucial
- GTX cards are always faster
 - even for double precision calculations
- linear algebra has an even worse flop / byte ratio
 - vector addition c = a + b
 - 48 bytes in, 24 bytes out, 6 flops \rightarrow 0.08 flops/byte
- flops are free but registers are limited
- Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10% peak)

Bandwidth bound

- memory bandwidth is crucial
- GTX cards are always faster
 - even for double precision calculations
- linear algebra has an even worse flop / byte ratio
 - vector addition c = a + b
 - 48 bytes in, 24 bytes out, 6 flops \rightarrow 0.08 flops/byte
- flops are free but registers are limited
- Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10% peak)

Card	GFlops (32 bit)	GFlops (32 bit)	GBytes/s	Flops / byte	Flops/ byte
GTX 580	1581	198	192	8.2	1.03
Tesla M2075	1030	515	144	7.2	3.6

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA) instead of AoS
- one can reconstruct a SU(3) matrix also from 8 or 12 floats
 - improved actions result in matrices that are no longer SU(3): must load 18 floats

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA) instead of AoS
- one can reconstruct a SU(3) matrix also from 8 or 12 floats
 - improved actions result in matrices that are no longer SU(3): must load 18 floats
- exploit texture access: near 100% bandwidth
- ECC hurts (naive 12.5%, real world \sim 20-30%)
- do more work with less bytes:
 - → mixed precision inverters (QUDA libray, Clark et al, CPC.181:1517,2010)
 - → multiple right hand sides

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA)
- one can reconstruct a SU(3) matrix also from 8 or 12 flc
 - improved actions result in matrices that are no longer must load 18 floats
- exploit texture access: near 100% bandwidth
- ECC hurts (naive 12.5%, real world ~ 20-30 %)
- do more work with less bytes:
 - → mixed precision inverters (QUDA libray, Clark et al, CPC.181:1517
 - → multiple right hand sides

Solvers for multiple right hand sides

- consider single precision for improved (HISQ) action
- need inversions for many (1500) 'source'-vectors for a fixed gauge field (matrix)
- Bytes for n vectors $16 \cdot (72 + n \cdot 24)$ bytes $+ n \cdot 24$ bytes = 1152 bytes + 408 by thes numbers)
- Flops for n vectors $1146 \operatorname{flops} \cdot n$

Friday, 11 March 201

byte • 1.24 naive arithmetic intensity

Solvers for multiple right hand sides

- consider single precision for improved (HISQ) action
- need inversions for many (1500) 'source'-vectors for a fixed gauge field (matrix)
- Bytes for n vectors $16 \cdot (72 + n \cdot 24)$ bytes $+ n \cdot 24$ bytes = 1152 bytes + 408 bytes numbers)
- Flops for n vectors $1146 \operatorname{flops} \cdot n$
- Issue: register usage and spilling
 - spilling for more than 3 r.h.s. with Fermi architecture
 - already for more than 1 r.h.s. in double precision

naive arithmete interested the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

 Arithr 	netic intensitv				
# r.h.s _{● 30}	596 floating poir	it operations pe	_{r site} З	4	5
flops/• 29		te (single precis		1.65	1.8

Friday, 11 March 201

#	registers	stack frame	spill stores	spill loads	SM 3.5 reg
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

card	M2075	GTX 580	K20	GTX Tita
Bandwidth [GB/s]	150	192	208	288

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

card	M2075	GTX 580	K20	GTX Tita
Bandwidth [GB/s]	150	192	208	288

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

card	M2075	GTX 580	K20	GTX Tita
Bandwidth [GB/s]	150	192	208	288

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

card	M2075	GTX 580	K20	GTX Tita
Bandwidth [GB/s]	150	192	208	288

#	registers	stack frame	spill stores	spill loads	SM 3.5 re
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

card	M2075	GTX 580	K20	GTX Tita
Bandwidth [GB/s]	150	192	208	288

#	registers	stack frame	spill stores	spill loads	SM 3.5 re
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15% lower

- matrix operation (Dslash) for multiple r.h.s.
- linear algebra operations cannot
 - •float * vector + vector
 - norms
- linear algebra scales linear #r.h.s.

- matrix operation (Dslash) for multiple r.h.s.
- linear algebra operations cannot
 - float * vector + vector
 - norms
- linear algebra scales linear #r.h.s.

2

3

- matrix operation (Dslash) for multiple r.h.s.
- linear algebra operations cannot
 - •float * vector + vector
 - norms
- linear algebra scales linear #r.h.s.
- for three r.h.s up to 25% of the runtime

2

3

- matrix operation (Dslash) for multiple r.h.s.
- linear algebra operations cannot
 - Ioat * vector + vector
 - norms
- linear algebra scales linear #r.h.s.
- for three r.h.s up to 25% of the runtime
- more crucial for 'cheaper' matrix operations

Linear algebra: reducing PCI latencies

•Kernel calculates for each component i of each r.h.s. x: $\alpha_i^{(x)} = |r_i^{(x)}|$

• need to do reduction (\rightarrow see CUDA samples, M. Harris) for each r.h.s.

$$\alpha_j^{\prime(x)} = \sum_{\text{some } i} \alpha_i^{(x)}$$

copy data to host (one device to host copy for each r.h.s)

Linear algel

complex void	void	1	void		void CG2Su	void CG2Su	void CG2Su	Doe
complex								Doe
					void CG2Su	void CG2Su	void CG2Su	
void	void	I	void			1	1	
omplex void	void	11	void	11	void CG2Su	void CG2Su	void CG2Su	Doe

$$\alpha_i^{(x)} = |r_i^{(x)}|$$

for each r.h.s.

Linear algebra: reducing PCI latencies

•Kernel calculates for each component i of each r.h.s. x: $\alpha_i^{(x)} = |r_i^{(x)}|$

• need to do reduction (\rightarrow see CUDA samples, M. Harris) for each r.h.s.

$$\alpha_j^{\prime(x)} = \sum_{\text{some } i} \alpha_i^{(x)}$$

• copy data to host (one device to host copy for each r.h.s)

• combine device to host copies to one for all r.h.s.

$$\alpha' = \left(\alpha_j'^{(x=0)}, \dots, \alpha_j'^{(x=N)}\right)$$

last reduction step can be done on CPU or GPU

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

$$r^{(x)} = |r_i^{(x)}|$$

each r.h.s.

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

	1			_
				_
oid CG2Sum void CG2Sum				Doemult
				_
				Doemuli
				_
				_
oid CG2Sum void CG2Sum				
		5	the survey of th	
				_
				_

$^{x)} = |r_i^{(x)}|$

each r.h.s.

Linear algebra: improve reduction

standard way of doing reduction

calculate floating point numbers that shall be reduced + reduction

• but data are already created on GPU

Linear algebra: improve reduction

- - does not affect runtime
 - faster reduction (4x)
 - •tune parameter rc (enough threads)

standard way of doing reduction

calculate floating point numbers that shall be reduced + reduction

but data are already created on GPU

pre-reduction during 'creation'

```
template<int rc>
__global__ void Kernel( vector p, vector loc_s, double *alpha, float mass )
 const int x = rc*blockDim.x * blockIdx.x + threadIdx.x;
  double a = 0.;
#pragma unroll
 for(int r=rc-1; r>=0; r--){
      const int xr=x+r*blockDim.x;
     if( xr < c_latticeSize.sizeh() ){
          pi = p[xr];;
               = mass2*pi - s[i];
          a += (double) dot_prodf(pi,temp);
          s[xr]=temp;
          if (r==0)
            alpha[blockDim.x * blockIdx.x + threadIdx.x]=a;
```


Linear algebra: improve reduction

- - does not affect runtime
 - faster reduction (4x)
 - •tune parameter rc (enough threads)

standard way of doing reduction

calculate floating point numbers that shall be reduced + reduction

but data are already created on GPU

pre-reduction during 'creation'

```
template<int rc>
__global__ void Kernel( vector p, vector loc_s, double *alpha, float mass )
  const int x = rc*blockDim.x * blockIdx.x + threadIdx.x;
  double a = 0.;
#pragma unroll
  for(int r=rc-1; r>=0; r--){
      const int xr=x+r*blockDim.x;
     if( xr < c_latticeSize.sizeh() ){
          pi = p[xr];;
               = mass2*pi - s[i];
          a += (double) dot_prodf(pi,temp);
          s[xr]=temp;
          if (r==0)
            alpha[blockDim.x * blockIdx.x + threadIdx.x]=a;
```


Configuration generation on GPUs

- we use a full hybrid-monte Carlo simulation on GPU (HISQ action)
- no PCI bus bottleneck
- current runs with lattice size $32^3 \times 8$ in single precision
- ECC reduces memory bandwidth: costs roughly 30% performance
- lattices up to 48³ x 12 fit on one Tesla cards with 6GB (double precision)
 - •runtime is an issue at least use several GPUs in one node
- larger lattices (64³ x 16) \rightarrow use compute time on capacity computing machines (BlueGene)
- we aim at getting the best scientific output out of limited resources (#GPUs, available supercomputer time)

Registers pressure

- improved fermion action use smeared links
 - require sum over products of up to 7 SU(3) matrices
 - SU(3) Matrix: 18 / 36 registers

Fermion force in MD → take derivatives of smeared links with respect to 'original' links

Registers pressure

- improved fermion action use smeared links
 - require sum over products of up to 7 SU(3) matrices
 - SU(3) Matrix: 18 / 36 registers
- Fermi architecture: 63 registers / thread
- optimize SU(3) *= SU(3) operation for register usage
- spilling causes significant performance drop for bandwidth bound kernels
 - •however: spilling is often better than shared memory \rightarrow 48kB L1 cache
- precomputed products help but must be stored somewhere

Fermion force in MD \rightarrow take derivatives of smeared links with respect to 'original' links

- •e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')
- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels

v201207: minor changes for memory access

v201211: reorganized split up Kernel

v201303: reconstruction of matrices from 14 floats

- •e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')
- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels

v201207: minor changes for memory access

v201211: reorganized split up Kernel

v201303: reconstruction of matrices from 14 floats

- •e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')
- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels

v201207: minor changes for memory access

v201211: reorganized split up Kernel

v201303: reconstruction of matrices from 14 floats

- •e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')
- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels

v201207: minor changes for memory access

v201211: reorganized split up Kernel

v201303: reconstruction of matrices from 14 floats

•e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')

•e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices (x 24 for 'rotations')

Status of lattice data

• highly-improved staggered quarks, close to physical pion mass $(m_l/m_s = 1/20)$

Freeze-out curve from heavy-ion collision

initial conditions

Pinning down the freeze-out parameters

- need two experimental ratios to determine (T^f, μ_B^f)
- baryon number fluctuations are not directly accessible in experiments
- we consider ratios of electric charge fluctuations

$$\frac{M_Q(\sqrt{s})}{\sigma_Q^2(\sqrt{s})} = \frac{\langle N_Q \rangle}{\langle (\delta N_Q)^2 \rangle} = \frac{\chi_1^Q(T,\mu_B)}{\chi_2^Q(T,\mu_B)} = R_{12}^{Q,1}\hat{\mu}_B + R_{12}^{Q,3}\hat{\mu}_B^3 + \dots = R_{12}^Q(T,\mu_B)$$

$$\text{LO linear in } \mu_B \text{fixes } \mu_B^f$$

$$\frac{S_Q(\sqrt{s})\sigma_Q^3(\sqrt{s})}{M_Q(\sqrt{s})} = \frac{\langle (\delta N_Q)^3 \rangle}{\langle N_Q \rangle} = \frac{\chi_3^Q(T,\mu_B)}{\chi_1^Q(T,\mu_B)} = R_{31}^{Q,0} + R_{31}^{Q,2}\hat{\mu}_B^2 + \dots = R_{31}^Q(T,\mu_B)$$

$$\text{LO independent of } \mu_B \text{fixes } T^f$$

M: mean σ : variance S: skewness

Determination of freeze-out temperature

 $R^Q_{31}(T,\mu_B) = R^{Q,0}_{31} + R^{Q,2}_{31}\hat{\mu}^2_B$

- small cutoff effects
 - small NLO corrections (<10%) for $\mu/T < 1.3$

Determination of freeze-out temperature

 $R^Q_{31}(T,\mu_B) = R^{Q,0}_{31} + R^{Q,2}_{31}\hat{\mu}^2_B$

- small cutoff effects
 - small NLO corrections (<10%) for $\mu/T < 1.3$

$S_Q \sigma_Q^3/M_Q$	$T^{f}[MeV]$
$\gtrsim {f 2}$	$\lesssim {f 155}$
~ 1.5	~ 160
$\lesssim {f 1}$	$\gtrsim {f 165}$

Determination of freeze-out chemical potential

$R_{12}^Q(T,\mu_B) = R_{12}^{Q,1}\hat{\mu}_B + R_{12}^{Q,3}\hat{\mu}_B^3$

BNL-BI, PRL 109 (2012) 192302

NLO Continuum estimate

- small cutoff effects at NLO
- small NLO corrections (<10%) for $\mu/T < 1.3$

Determination of freeze-out chemical potential

$$R^Q_{12}(T,\mu_B) = R^{Q,1}_{12} \hat{\mu}_B + R^{Q,3}_{12}$$

Bands: LO Continuum extrapolation NLO Continuum estimate $\hat{\mu}_B^3$

- small cutoff effects at NLO
- small NLO corrections (<10%) for $\mu/T < 1.3$

M_Q/σ_Q^2	μ^f_B/T^f
0.01-0.02	0.1-0.2
0.03-0.04	0.3-0.4
0.05-0.08	0.5-0.7
(for $T^f \sim 160~MeV$)	

Summary

- GPUs enable breakthroughs in Lattice QCD
- Experiences with Lattice QCD on the Bielefeld GPU cluster
- Tuning single GPU performance for staggered fermion
- Lattice QCD is bandwidth bound

Summary

- GPUs enable breakthroughs in Lattice QCD
- Experiences with Lattice QCD on the Bielefeld GPU cluster
- Tuning single GPU performance for staggered fermion
- Lattice QCD is bandwidth bound

- multi-GPU for larger systems
- Kepler provides a major speedup for double precision (thanks to registers)

• GTX Titan should allow for > 500 GFlops in single precision (>250 GFlops double)

running production on CPUs and do 'live-measurements' on the GPU for Titan

Accelerating Lattice QCD simulations with brain power

• Bielefeld Group

Edwin Laermann Frithjof Karsch Olaf Kaczmarek Markus Klappenbach **Mathias Wagner** Christian Schmidt Dominik Smith Hiroshi Ono Sayantan Sharma Marcel Müller Thomas Luthe Lukas Wresch

• collaborators Wolfgang Söldner (Regensburg) Piotr Bialas (Krakow)

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

 Brookhaven Group Peter Petreczky Swagato Mukherjee Alexei Bazavov Heng-Tong Ding Prasad Hegde Yu Maezawa

- supporters Mike Clark (Nvidia)
- Matthias Bach (FIAS)

Contact: mwagner@physik.uni-bielefeld.de

