GPUs Immediately Relating Lattice QCD to Collider Experiments

Outline

- Quantum ChromoDynamics
- Fluctuations from Heavy-lon experiments and lattice QCD
- Lattice QCD on GPUs and on the Bielefeld GPU cluster
- Optimizations
- includes first experiences with Kepler architecture
- Relating Lattice Data to Collider Experiments
- Outlook

Outline

Strong force

Phase transitions

- water at different temperatures
- ice (solid)
- water (liquid)
- vapor (gas)

- phase transitions occur in different ways: 1st order, 2nd order, 'crossover'
-a 'order parameter' describes the change between different states
\bullet boiling point of water depends on pressure \rightarrow phase diagram

Phase transitions

- water at different temperatures
- ice (solid)
- water (liquid)
- vapor (gas)
- phase transitions occur in different ways: 1st order, 2nd orde
-a 'order parameter' describes the change between different

\bullet boiling point of water depends on pressure \rightarrow phase diagram

Phases of Quantum ChromDynamics

- extreme conditions (temperatures, densities) are necessary to investigate properties of QCD
- important for understanding the evolution of the universe after the Big Bang

Phases of Quantum ChromDynamics

Accelerators ... the real ones

LHC @ CERN

RHIC @ Brookhaven National Lab

Accelerators ... the real ones

LHC @ CERN

RHIC @ Brookhaven National Lab

Heavy Ion Experiments

Heavy Ion Experiments

Heavy Ion Collision
 QGP
 Expansion+Cooling Hadronization

- phase transition occurs in heavy-ion collisions
- What thermometer can we use at $10^{12} \mathrm{~K}$?
- detectors measure created particles
- to interpret the data theoretical input is required
- ab-initio approach: Lattice QCD

Heavy Ion Experiments

- phase transition occurs in heavy-ion collisions
- What thermometer can we use at $10^{12} \mathrm{~K}$?
- detectors measure created particles
- to interpret the data theoretical input is required
- ab-initio approach: Lattice QCD

Lattice QCD

- QCD partition function

$$
Z_{\mathrm{QCD}}(T, \mu)=\int D A D \bar{\Psi} D \Psi e^{-S_{E}(T, \mu)}
$$

- 4 dimensional grid (=Lattice)
- quarks live on lattice sites
-6 or 12 complex numbers
- gluons live on the links
- SU(3) matrices
- 18 complex numbers

-typical sizes: $24 \times 24 \times 24 \times 6$ to $256 \times 256 \times 256 \times 256$

Fluctuations and the QCD phase diagram

- different QCD phases characterized by
- chiral symmetry
- confinement aspects

Fluctuations and the QCD phase diagram

- different QCD phases characterized by
- chiral symmetry
- confinement aspects
- possible critical end-point
- 2nd order phase transition
- divergent correlation length
- divergent susceptibility

Fluctuations from Lattice QCD

- expansion of the pressure in

$$
\frac{p}{T^{4}}=\sum_{i, j, k}^{\infty} \frac{1}{i!j!k!} \chi_{i j k}^{B Q S}\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

-B,Q,S conserved charges (baryon number, electric charge, strangeness)

Fluctuations from Lattice QCD

- expansion of the pressure in

$$
\frac{p}{T^{4}}=\sum_{i, j, k}^{\infty} \frac{1}{i!j!k!} \chi_{i j k}^{B Q S}\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

-B,Q,S conserved charges (baryon number, electric charge, strangeness)

- generalized susceptibilities

$$
\chi_{i j k}^{B Q S}=\left.\frac{1}{V T} \frac{\partial^{i}}{\partial\left(\mu_{B} / T\right)} \frac{\partial^{j}}{\partial\left(\mu_{Q} / T\right)} \frac{\partial^{k}}{\partial\left(\mu_{S} / T\right)} \mathcal{Z}(T, \mu)\right|_{\mu=0}
$$

Fluctuations from Lattice QCD

- expansion of the pressure in

$$
\frac{p}{T^{4}}=\sum_{i, j, k}^{\infty} \frac{1}{i!j!k!} \chi_{i j k}^{B Q S}\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

-B,Q,S conserved charges (baryon number, electric charge, strangeness)

- generalized susceptibilities

$$
\chi_{i j k}^{B Q S}=\left.\frac{1}{V T} \frac{\partial^{i}}{\partial\left(\mu_{B} / T\right)} \frac{\partial^{j}}{\partial\left(\mu_{Q} / T\right)} \frac{\partial^{k}}{\partial\left(\mu_{S} / T\right)} \mathcal{Z}(T, \mu)\right|_{\mu=0}
$$

- related to cumulants of net charge fluctuations, e.g.

$$
V T^{3} \chi_{2}^{B}=\left\langle\left(\delta N_{B}\right)^{2}\right\rangle=\left\langle N_{B}^{2}-2 N_{B}\left\langle N_{B}\right\rangle+\left\langle N_{B}\right\rangle^{2}\right\rangle
$$

Calculation of susceptibilities from Lattice QCD

$\bullet \mu$-dependence is contained in the fermion determinant

$$
\mathcal{Z}=\int \mathcal{D} U(\operatorname{det} M(\mu))^{N_{\mathrm{f}} / 4} \exp \left(-S_{g}\right)
$$

- calculation of susceptibilities requires μ-derivatives of fermion determinant

$$
\frac{\partial^{2} \ln \mathcal{Z}}{\partial \mu^{2}}=\left\langle\frac{n_{f}}{4} \frac{\partial^{2}(\ln \operatorname{det} M)}{\partial \mu^{2}}\right\rangle+\left\langle\left(\frac{n_{f}}{4} \frac{\partial(\ln \operatorname{det} M)}{\partial \mu}\right)^{2}\right\rangle
$$

Calculation of susceptibilities from Lattice QCD

$-\mu$-dependence is contained in the fermion determinant

$$
\mathcal{Z}=\int \mathcal{D} U(\operatorname{det} M(\mu))^{N_{\mathrm{f}} / 4} \exp \left(-S_{g}\right)
$$

- calculation of susceptibilities requires μ-derivatives of fermion determinant

$$
\frac{\partial^{2} \ln \mathcal{Z}}{\partial \mu^{2}}=\left\langle\frac{n_{f}}{4} \frac{\partial^{2}(\ln \operatorname{det} M)}{\partial \mu^{2}}\right\rangle+\left\langle\left(\frac{n_{f}}{4} \frac{\partial(\ln \operatorname{det} M)}{\partial \mu}\right)^{2}\right\rangle
$$

- formulate all operator in terms of traces over space-time, color (and spin)
- full inversion of fermion matrix is impossible: evaluate using noisy estimators
\bullet ensemble average \rightarrow large number of configurations

Noisy estimators

- traces required for derivatives

$$
\begin{aligned}
\frac{\partial(\ln \operatorname{det} M)}{\partial \mu} & =\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{2}(\ln \operatorname{det} M)}{\partial \mu^{2}} & =\operatorname{Tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)-\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right)
\end{aligned}
$$

- noisy estimators \rightarrow large numb்er of random vectors η (~1500 / configuration)

$$
\operatorname{Tr}\left(\frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \ldots M^{-1}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \eta_{k}^{\dagger} \frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \ldots M^{-1} \eta_{k}
$$

- up to 10000 configurations for each temperature
- dominant operation: fermion matrix inversion (~ 99\%)

Configuration generation

- sequential process
- use RHMC algorithm to evaluate
 the system in simulation time

$$
\dot{P}=-\frac{\partial H}{\partial Q}=-\frac{\partial S}{\partial Q}=-\left(\frac{\partial S_{g}}{\partial Q}+\frac{\partial S_{f}}{\partial Q}\right) \quad \dot{Q}=\frac{\partial H}{\partial P}=P
$$

Configuration generation

- sequential process
- use RHMC algorithm to evaluate

the system in simulation time

$$
\dot{P}=-\frac{\partial H}{\partial Q}=-\frac{\partial S}{\partial Q}=-\left(\frac{\partial S_{g}}{\partial Q}+\frac{\partial S_{f}}{\partial Q}\right) \quad \dot{Q}=\frac{\partial H}{\partial P}=P
$$

- two dominant parts of the calculation (90% of the runtime)
- fermion force
~50\% for improved actions (HISQ)
- fermion matrix inversion ~90\% for standard action

History of QCD Machines in Bl: the APE generation

- APE = Array Processor Experiment, started mid eigthties
- SIMD architecture with lot of FPUs, VLIW
- special purpose machine build for lattice QCD
- optimized $a \times b+c$ operation for use in complex matrix-vector multiplication
- large register files - up to 512 64bit-registers
-3D network low latency: fast memory access to nearest neighbor (~3-4 local)
- low power consumption (latest version: ~ 1.5 GFlops @ 7 Watt)
- object-oriented programming language TAO (syntax similar to Fortran)

- controlled by host PC

History of QCD Machines in Bl: the APE generation

- $\mathrm{APE}=$ Array Processor Experiment, started mid eigthties
- SIMD architecture with lot of FPUs, VLIW
- special purpose machine build for lattice QCD
- optimized $a \times b+c$ operation for use in complex matrix-vector multiplication
- large register files - up to 512 64bit-registers
-3D network low latency: fast memory access to nearest neighbor (~3-4 local)
- low power consumption (latest version: ~ 1.5 GFlops @ 7 Watt)
- object-oriented programming language TAO (syntax similar to Fortran)
Talk on APEnet
\rightarrow Massimo Bernaschi (Tue, 16.00) S3089
- controlled by host PC

Future of QCD machines in BI: the GPU era

- lattice simulations are massively parallel

Slide from Balint Joo, Plenary talk at Lattice 2011 conference

- require a lot of floating point operations
- used as accelerators since 2006: ‘QCD as a video game’ (Erigi et al), coded in OpenGL
- GPUs become standard 'tool' of Lattice QCD
- widely used by various groups
- libraries available (e.g. QUDA)

GPUs at Lattice' ${ }^{11}$

- Algorithms \& Machines
- M. Clark, S. Gottlieb, K. Petrov, C Pinke, D. Rossetti, F. Winter
- Yong-Chull Jang (poster)
- Applications beyond QCD:
- D. Nógrádi, J. Kuti, K. Ogawa, C. Schroeder
R. Brower, C. Rebbi
- Hadron Spectroscopy, Hadron Structure
- D. Richards, C. Thomas, S. Wallace, M. Lujan
- Vacuum Structure and Confinement - P. Bicudo
- Nonzero Temperature \& Density
- G. Cossu
- More 'results' presentations than Alg. \& Mach.

Jefferson Lab
Thomas Jefferson National Accelerator Facility
Thursday, July 14, 2011

Dudek et. al. Phys.Rev.D83:111502,2011 Parallel talk by C. Thomas (Monday)

Presentations in 'blue' are on Thursday/Friday
resentations in 'black have already happened

The Bielefeld GPU cluster

- hybrid GPU / CPU cluster
- 152 compute nodes in 14×19 " racks
- 48 nodes with 4 GTX 580
- 104 nodes with 2 Tesla M2075
- 304 CPUs (1216 cores) with 7296 GB memory
- 7 storage nodes / 2 head nodes
-1.1 million € founded with federal and state government funds
- dedicated exclusively to Lattice QCD

Standard staggered Fermion Matrix (Dslash)

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80\%)

$$
w_{x}=D_{x, x^{\prime}} v_{x^{\prime}}=\sum_{\mu=0}^{3}\left\{U_{x, \mu} v_{x+\hat{\mu}}-U_{x-\hat{\mu}, \mu}^{\dagger} v_{x-\hat{\mu}}\right\}
$$

Standard staggered Fermion Matrix (Dslash)

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80\%)

$$
w_{x}=D_{x, x^{\prime}} v_{x^{\prime}}=\sum_{\mu=0}^{3}\left\{U_{x, \mu} v_{x+\hat{\mu}}-U_{x-\hat{\mu}, \mu}^{\dagger} v_{x-\hat{\mu}}\right\}
$$

- memory: $8 \mathrm{SU}(3)$ matrices input, 8 color vectors input, 1 color vector output

$\bullet 8 \times(72+24)+24$ bytes $=792$ bytes (1584 for double precision)

Standard staggered Fermion Matrix (Dslash)

- Krylov space inversion of fermion matrix dominates runtime
- within inversion application of sparse Matrix dominates (>80\%)

$$
w_{x}=D_{x, x^{\prime}} v_{x^{\prime}}=\sum_{\mu=0}^{3}\left\{U_{x, \mu} v_{x+\hat{\mu}}-U_{x-\hat{\mu}, \mu}^{\dagger} v_{x-\hat{\mu}}\right\}
$$

- memory: $8 \mathrm{SU}(3)$ matrices input, 8 color vectors input, 1 color vector output

$\bullet 8 \times(72+24)+24$ bytes $=792$ bytes (1584 for double precision $)$
-Flops: (CM = complex mult, CA = complex add)
- $4 \times(2 \times 3 \times(3 \mathrm{CM}+2 \mathrm{CA})+3 \mathrm{CA})+3 \times 3 \mathrm{CA}=570$ flops
- flops / byte ratios: 0.72

Bandwidth bound

- memory bandwidth is crucial
- GTX cards are always faster
- even for double precision calculations
- linear algebra has an even worse flop / byte ratio
- vector addition c = a + b
- 48 bytes in, 24 bytes out, 6 flops $\rightarrow 0.08$ flops/byte
- flops are free - but registers are limited
-Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10\% peak)

Bandwidth bound

- memory bandwidth is crucial
- GTX cards are always faster

Card	GFlops (32 bit)	GFlops (32 bit)	GBytes/s	Flops / byte	Flops/ byte
GTX 580	1581	198	192	8.2	1.03
Tesla M2075	1030	515	144	7.2	3.6

- even for double precision calculations
- linear algebra has an even worse flop / byte ratio
- vector addition $\mathrm{c}=\mathrm{a}+\mathrm{b}$
- 48 bytes in, 24 bytes out, 6 flops $\rightarrow 0.08$ flops/byte
- flops are free - but registers are limited
-Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10\% peak)

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA) instead of AoS
- one can reconstruct a $\operatorname{SU}(3)$ matrix also from 8 or 12 floats
- improved actions result in matrices that are no longer SU(3):
must load 18 floats

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA) instead of AoS
- one can reconstruct a SU(3) matrix also from 8 or 12 floats
-improved actions result in matrices that are no longer SU(3):
must load 18 floats
- exploit texture access: near 100\% bandwidth
- ECC hurts (naive 12.5\%, real world ~ 20-30 \%)
- do more work with less bytes:
\rightarrow mixed precision inverters (QUDA libray, Clark et al, CPC. 181:1517,2010)
\rightarrow multiple right hand sides

Optimizing memory access

- use coalesced memory layout: structure of arrays (SoA)
- one can reconstruct a SU(3) matrix also from 8 or 12 flc
-improved actions result in matrices that are no longe must load 18 floats
- exploit texture access: near 100\% bandwidth
- ECC hurts (naive 12.5\%, real world ~ 20-30 \%)
- do more work with less bytes:

\rightarrow mixed precision inverters (QUDA libray, Clark et al, CPC. 181:1517
\rightarrow multiple right hand sides

Solvers for multiple right hand sides

- consider single precision for improved (HISQ) action

- need inversions for many (1500) 'source'-vectors for a fixed gauge field (matrix)
- Bytes for n vectors $16 \cdot(72+n \cdot 24)$ bytes $+n \cdot 24$ bytes $=1152$ bytes +408 bytes $\cdot n$.
- Flops for n vectors 1146 flops • n

\# r.h.s.	1	2	3	4	5
flops/ byte	0.73	1.16	1.45	1.65	1.8

Solvers for multiple right hand sides

- consider single precision for improved (HISQ) action
- need inversions for many (1500) 'source'-vectors for a fixed

gauge field (matrix)
- Bytes for n vectors $16 \cdot(72+n \cdot 24)$ bytes $+n \cdot 24$ bytes $=1152$ bytes +408 bytes $\cdot n$.
- Flops for n vectors 1146 flops • n

\# r.h.s.	1	2	3	4	5
flops/ byte	0.73	1.16	1.45	1.65	1.8

- Issue: register usage and spilling
- spilling for more than 3 r.h.s. with Fermi architecture
- already for more than 1 r.h.s. in double precision

$\#$	registers	stack frame	spill stores	spill loads	SM 3.5 reg
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

$\#$	registers	stack frame	spill stores	spill loads	SM 3.5 reg
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

$\#$	registers	stack frame	spill stores	spill loads	SM 3.5 reg
1	38	0	0	0	40
2	58	0	0	0	60
3	63	0	0	0	65
4	63	40	76	88	72
5	63	72	212	216	77

single precision

0	2	3	4	5

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

single precision

0 | 0 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

0	2	3	4

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

single precision

0	2	3	4	5

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Dslash-performance

- estimate performance from flop/byte ratio and available memory bandwidth
- full inversion should be roughly 10-15\% lower

single precision

0	2	3	4

card	M2075	GTX 580	K20	GTX Titan
Bandwidth $[\mathrm{GB} / \mathrm{s}]$	150	192	208	288

Linear algebra becomes relevant

- matrix operation (Dslash) for multiple r.h.s.

Initialization

- linear algebra operations cannot

Fermion Matrix

- float * vector + vector
- norms
- linear algebra scales linear \#r.h.s.
Fermion Matrix
$\alpha=\sum_{i}|\vec{p} A \vec{p}|_{i}$
$\vec{r}=\vec{r}-\omega \vec{p}$
$\vec{x}=\vec{x}+\omega \vec{p}$
$\lambda_{i}=\left|r_{i}\right|$
$\lambda=\sum_{i} \lambda_{i}$
$\vec{p}=\vec{r}+\gamma \vec{p}$

Linear algebra becomes relevant

Linear algebra becomes relevant

Linear algebra becomes relevant

Linear algebra: reducing PCI latencies

Linear algel

Linear algebra: reducing PCI latencies

- Kernel calculates for each component i of each r.h.s. $\mathrm{X}: \alpha_{i}^{(x)}=\left|r_{i}^{(x)}\right|$
- need to do reduction (\rightarrow see CUDA samples, M. Harris) for each r.h.s.

$$
\alpha_{j}^{\prime(x)}=\sum_{\text {some } i} \alpha_{i}^{(x)}
$$

- copy data to host (one device to host copy for each r.h.s)
- combine device to host copies to one for all r.h.s.

$$
\alpha^{\prime}=\left(\alpha_{j}^{\prime(x=0)}, \ldots, \alpha_{j}^{\prime(x=N)}\right)
$$

- last reduction step can be done on CPU or GPU

Linear algebra: improve reduction

Linear algebra: improve reduction

Linear algebra: improve reduction

Configuration generation on GPUs

- we use a full hybrid-monte Carlo simulation on GPU (HISQ action)
- no PCI bus bottleneck
- current runs with lattice size $32^{3} \times 8$ in single precision
- ECC reduces memory bandwidth: costs roughly 30\% performance
- lattices up to $48^{3} \times 12$ fit on one Tesla cards with 6GB (double precision)
- runtime is an issue - at least use several GPUs in one node
- larger lattices $\left(64^{3} \times 16\right) \rightarrow$ use compute time on capacity computing machines (BlueGene)
- we aim at getting the best scientific output out of limited resources (\#GPUs, available supercomputer time)

Registers pressure

- improved fermion action use smeared links
- require sum over products of up to $7 \mathrm{SU}(3)$ matrices
- SU(3) Matrix: 18 / 36 registers

Fermion force in MD
\rightarrow take derivatives of smeared
links with respect to 'original' links

Registers pressure

-improved fermion action use smeared links

- require sum over products of up to $7 \mathrm{SU}(3)$ matrices
-SU(3) Matrix: 18 / 36 registers
- Fermi architecture: 63 registers / thread

- optimize SU(3) *= SU(3) operation for register usage
- spilling causes significant performance drop for bandwidth bound kernels
- however: spilling is often better than shared memory $\rightarrow 48 \mathrm{kB}$ L1 cache

Fermion force in MD
\rightarrow take derivatives of smeared
links with respect to 'original' links

- precomputed products help but must be stored somewhere

Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matrices ($\times 24$ for 'rotations')

- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels
v201207: minor changes for memory access
v201211: reorganized split up Kernel
v201303: reconstruction of matrices from 14 floats

Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matrices ($\times 24$ for 'rotations')

- limited GPU memory: store precomputed products ?

```
v201203: initial version
v201204: optimized matrix mult, split into servel
Kernels
v201207: minor changes for memory access
v201211: reorganized split up Kernel
v201303: reconstruction of matrices from }14\mathrm{ floats
```


Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matrices ($\times 24$ for 'rotations')

- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels
v201207: minor changes for memory access
v201211: reorganized split up Kernel
v201303: reconstruction of matrices from 14 floats

Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matrices ($\times 24$ for 'rotations')

- limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel Kernels
v201207: minor changes for memory access
v201211: reorganized split up Kernel
v201303: reconstruction of matrices from 14 floats

Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices ($\times 24$ for 'rotations')

Optimizing register usage / reduce spilling

-e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matrices ($\times 24$ for 'rotations')

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Optimizing register usage / reduce spilling

- e.g. force for the 7 link term consists of 56 products of $7 \mathrm{SU}(3)$ matric

Status of lattice data

- highly-improved staggered quarks, close to physical pion mass ($m_{l} / m_{s}=1 / 20$)

Freeze-out curve from heavy-ion collision

Pinning down the freeze-out parameters

- need two experimental ratios to determine $\left(T^{f}, \mu_{B}^{f}\right)$
- baryon number fluctuations are not directly accessible in experiments
- we consider ratios of electric charge fluctuations

$$
\begin{array}{r}
\frac{M_{Q}(\sqrt{s})}{\sigma_{Q}^{2}(\sqrt{s})}=\frac{\left\langle N_{Q}\right\rangle}{\left\langle\left(\delta N_{Q}\right)^{2}\right\rangle}=\frac{\chi_{1}^{Q}\left(T, \mu_{B}\right)}{\chi_{2}^{Q}\left(T, \mu_{B}\right)}=R_{12}^{Q, 1} \hat{\mu}_{B}+R_{12}^{Q, 3} \hat{\mu}_{B}^{3}+\cdots=R_{12}^{Q}\left(T, \mu_{B}\right) \\
\text { LO linear in } \mu_{B} \text { fixes } \mu_{B}^{f} \\
\frac{S_{Q}(\sqrt{s}) \sigma_{Q}^{3}(\sqrt{s})}{M_{Q}(\sqrt{s})}=\frac{\left\langle\left(\delta N_{Q}\right)^{3}\right\rangle}{\left\langle N_{Q}\right\rangle}=\frac{\chi_{3}^{Q}\left(T, \mu_{B}\right)}{\chi_{1}^{Q}\left(T, \mu_{B}\right)}=R_{31}^{Q, 0}+R_{31}^{Q, 2} \hat{\mu}_{B}^{2}+\cdots=R_{31}^{Q}\left(T, \mu_{B}\right) \\
\text { LO independent of } \mu_{B} \text { fixes } T^{f}
\end{array}
$$

```
M: mean
    \sigma: variance
    S: skewness
```


Determination of freeze-out temperature

$$
R_{31}^{Q}\left(T, \mu_{B}\right)=R_{31}^{Q, 0}+R_{31}^{Q, 2} \hat{\mu}_{B}^{2} \quad \bullet \text { small cutoff effects }
$$

- small NLO corrections (<10\%) for $\mu / T<1.3$

Determination of freeze-out temperature

$$
R_{31}^{Q}\left(T, \mu_{B}\right)=R_{31}^{Q, 0}+R_{31}^{Q, 2} \hat{\mu}_{B}^{2} \quad \bullet \text { small cutoff effects }
$$

- small NLO corrections (<10\%) for $\mu / T<1.3$

$S_{Q} \sigma_{Q}^{3} / M_{Q}$	$T^{f}[M e V]$
$\gtrsim 2$	$\lesssim 155$
~ 1.5	~ 160
$\lesssim 1$	$\gtrsim 165$

Determination of freeze-out chemical potential

$$
R_{12}^{Q}\left(T, \mu_{B}\right)=R_{12}^{Q, 1} \hat{\mu}_{B}+R_{12}^{Q, 3} \hat{\mu}_{B}^{3}
$$

BNL-BI, PRL 109 (2012) 192302

Bands: LO Continuum extrapolation NLO Continuum estimate

- small cutoff effects at NLO
- small NLO corrections (<10\%) for $\mu / T<1.3$

Determination of freeze-out chemical potential

$$
R_{12}^{Q}\left(T, \mu_{B}\right)=R_{12}^{Q, 1} \hat{\mu}_{B}+R_{12}^{Q, 3} \hat{\mu}_{B}^{3}
$$

BNL-BI, PRL 109 (2012) 192302

- small cutoff effects at NLO
- small NLO corrections (<10\%) for $\mu / T<1.3$

M_{Q} / σ_{Q}^{2}	μ_{B}^{f} / T^{f}
$0.01-0.02$	$0.1-0.2$
$0.03-0.04$	$0.3-0.4$
$0.05-0.08$	$0.5-0.7$
$\left(\right.$ for $\left.T^{f} \sim \mathbf{1 6 0} \mathbf{M e V}\right)$	

Summary

- GPUs enable breakthroughs in Lattice QCD
- Experiences with Lattice QCD on the Bielefeld GPU cluster
- Tuning single GPU performance for staggered fermion
- Lattice QCD is bandwidth bound

Summary

- GPUs enable breakthroughs in Lattice QCD
- Experiences with Lattice QCD on the Bielefeld GPU cluster
- Tuning single GPU performance for staggered fermion
- Lattice QCD is bandwidth bound

- multi-GPU for larger systems
- Kepler provides a major speedup for double precision (thanks to registers)
- GTX Titan should allow for > 500 GFlops in single precision (>250 GFlops double)
- running production on CPUs and do 'live-measurements' on the GPU for Titan

Accelerating Lattice QCD simulations with brain power

- Bielefeld Group

Edwin Laermann
Frithjof Karsch
Olaf Kaczmarek
Markus Klappenbach
Mathias Wagner
Christian Schmidt
Dominik Smith
Hiroshi Ono
Sayantan Sharma
Marcel Müller
Thomas Luthe
Lukas Wresch

- collaborators

Wolfgang Söldner (Regensburg)
Piotr Bialas (Krakow)

- Brookhaven Group Peter Petreczky Swagato Mukherjee Alexei Bazavov Heng-Tong Ding Prasad Hegde Yu Maezawa
- supporters Mike Clark (Nvidia)

Matthias Bach (FIAS)

