
GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

GPUs Immediately Relating Lattice QCD to Collider 
Experiments



GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Outline
•Quantum ChromoDynamics

•Fluctuations from Heavy-Ion experiments and lattice QCD

•Lattice QCD on GPUs and on the Bielefeld GPU cluster

•Optimizations

• includes first experiences with Kepler architecture

•Relating Lattice Data to Collider Experiments

•Outlook



GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Outline
•Quantum ChromoDynamics

•Fluctuations from Heavy-Ion experiments and lattice QCD

•Lattice QCD on GPUs and on the Bielefeld GPU cluster

•Optimizations

• includes first experiences with Kepler architecture

•Relating Lattice Data to Collider Experiments

•Outlook

→ Lattice-QCD talks by:
  Frank Winter ( Wed, 10:00 )
  Balint Joo ( Wed,10:30 )
  Hyung-Jin Kim ( Thu,16:30 )

→ Lattice-QCD posters:
  Hyung-Jin Kim
  Richard Forster
  Alexei Strelchenko 



GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Strong force
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seen before. Most of them did not fi t into the models physicists had at that time, that matter 
consisted of atoms with neutrons and protons in the nucleus and electrons round it. Deeper 
investigations into the innermost regions of matter revealed that protons and neutrons each 
concealed a trio of quarks. The particles that had already been discovered also were shown to 
consist of quarks. 

Now, almost all the pieces of the puzzle have fallen into place; a Standard Model for the 
indivisible parts of matter comprises three families of particles (see diagram). These fami-
lies resemble each other, but only the particles in the fi rst and lightest family are suffi ciently 
stable to build up the cosmos. The particles in the two heavier families live under very unsta-
ble conditions and disintegrate immediately into lighter kinds of particles. 

Everything is controlled by forces. The Standard Model, at least for the time being, includes 
three of nature’s four fundamental forces along with their messengers, particles that convey the 
interaction between the elementary particles (see diagram). The messenger of the electromagne-
tic force is the photon with zero mass; the weak force that accounts for radioactive disintegration 
and causes the sun and the stars to shine is carried by the heavy W and Z boson particles; while 
the strong force is carried by gluon particles, which see to it that the atom nuclei hold together. 
Gravity, the fourth force, which makes sure we keep our feet on the ground, has not yet been 
incorporated into the model and poses a colossal challenge for physicists today.

The mirror is shattered 

The Standard Model is a synthesis of all the insights into the innermost parts of matter that 
physics has gathered during the last century. It stands fi rmly on a theoretical base consisting 

Molecule Atom nucleus Proton/neutronAtom Quark

Into the matter. Electrons and quarks are the smallest building blocks of all matter.

The Standard Model today. It unifi es all the fundamental building blocks of matter and three of the four fundamental forces. 
While all known matter is built with particles from the fi rst family, the other particles exists but only for extremely short time 
periods. To complete the Model a new particle is needed – the Higgs particle – that the physics community hopes to fi nd in the 
new built accelerator LHC at CERN in Geneva.
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Higgs?

•acts on quarks

•force carriers: gluons
(c.f. electrodynamics: photons)

•range:

•strength:        times stronger than gravity
                      times stronger than electromagnetism

•residual interaction: nuclear force (i.e. force between 
nuclei in atom nucleus)

•described by Quantum ChromoDynamics (QCD)
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Phase transitions

•water at different temperatures

•ice (solid)

•water (liquid)

•vapor (gas)

•phase transitions occur in different ways: 1st order, 2nd order, ‘crossover’

•a ‘order parameter’ describes the change between different states

•boiling point of water depends on pressure → phase diagram
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The Phase Diagram of Strongly Interacting Matter

P. Braun-Munzinger1, 2 and J. Wambach1, 2

1GSI Helmholtzzentrum für Schwerionenforschung mbH, Planckstr, 1, D64291 Darmstadt, Germany
2Technical University Darmstadt, Schlossgartenstr. 9, D64287 Darmstadt, Germany

A fundamental question of physics is what ultimately happens to matter as it is heated or com-
pressed. In the realm of very high temperature and density the fundamental degrees of freedom of
the strong interaction, quarks and gluons, come into play and a transition from matter consisting
of confined baryons and mesons to a state with ’liberated’ quarks and gluons is expected. The
study of the possible phases of strongly interacting matter is at the focus of many research activi-
ties worldwide. In this article we discuss physical aspects of the phase diagram, its relation to the
evolution of the early universe as well as the inner core of neutron stars. We also summarize recent
progress in the experimental study of hadronic or quark-gluon matter under extreme conditions
with ultrarelativistic nucleus-nucleus collisions.

PACS numbers: 21.60.Cs,24.60.Lz,21.10.Hw,24.60.Ky
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I. INTRODUCTION

Matter that surrounds us comes in a variety of phases
which can be transformed into each other by a change of
external conditions such as temperature, pressure, com-
position etc. Transitions from one phase to another are
often accompanied by drastic changes in the physical
properties of a material, such as its elastic properties,
light transmission, or electrical conductivity. A good ex-
ample is water whose phases are (partly) accessible to
everyday experience. Changes in external pressure and
temperature result in a rich phase diagram which, be-
sides the familiar liquid and gaseous phases, features a
variety of solid (ice) phases in which the H20 molecules
arrange themselves in spatial lattices of certain symme-
tries (Fig. 1).

Twelve of such crystalline (ice) phases are known at
present. In addition, three amorphous (glass) phases

FIG. 1 The phase diagram of H20 (Chaplin, 2007). Be-
sides the liquid and gaseous phases a variety of crystalline
and amorphous phases occur. Of special importance in the
context of strongly interacting matter is the critical endpoint
between the vapor and liquid phase.

have been identified. Famous points in the phase dia-
gram are the triple point where the solid, liquid, and gas
phases coexist and the critical endpoint at which there is
no distinction between the liquid and gas phase. This is
the endpoint of a line of first-order liquid-gas transitions;
at this point the transition is of second order.

Under sufficient heating water and, for that matter any
other substance, goes over into a new state, a ’plasma’,
consisting of ions and free electrons. This transition
is mediated by molecular or atomic collisions. It is
continuous 1 and hence not a phase transition in the
strict thermodynamic sense. On the other hand, the

1 Under certain conditions there may also be a true plasma phase
transition, for recent evidence see (Fortov et al., 2007).
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Phases of Quantum ChromDynamics

•extreme conditions (temperatures, densities) are necessary 
to investigate properties of QCD

•important for understanding the evolution of the universe 
after the Big Bang

hadron gas                      dense hadronic matter             quark gluon plasma

      

 cold         hot

cold nuclear matter     phase transition or       quarks and gluons are
Quarks and gluons are           crossover at Tc        the degrees of freedom
confined inside hadrons          (asymptotically) free
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Heavy Ion Experiments 

•phase transition occurs in heavy-ion collisions

•What thermometer can we use at            ?

•detectors measure created particles

•to interpret the data theoretical input is required

•ab-initio approach: Lattice QCD

Heavy Ion Collision                      QGP             Expansion+Cooling        Hadronization  

1012 K
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Heavy Ion Experiments 

•phase transition occurs in heavy-ion collisions

•What thermometer can we use at            ?

•detectors measure created particles

•to interpret the data theoretical input is required

•ab-initio approach: Lattice QCD

Heavy Ion Collision                      QGP             Expansion+Cooling        Hadronization  GPUs used for triggering and data processing
→ Valerie Halyo (Wed, 16.30) S3263
    Alessandro Lonardo (Wed, 15.30) S3286

 F. Pantaleo & V. Innocente (Wed, 16.00) S3278

1012 K
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Lattice QCD 

•QCD partition function

•4 dimensional grid (=Lattice)

•quarks live on lattice sites

•6 or 12 complex numbers

•gluons live on the links

•SU(3) matrices

•18 complex numbers

•typical sizes: 24 x 24 x 24 x 6 to 256 x 256 x 256 x 256

Formulating Lattice QCD

• Quark fields live on the lattice sites

• “spinors”

• 12 complex numbers

• Gluon fields live on the links

• SU(3) “Color matrices”

• 18 complex numbers

Friday, 11 March 2011

ZQCD (T, µ) =

Z
DAD�̄D�e�SE(T,µ)

includes integral over space and time
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Fluctuations and the QCD phase diagram

•different QCD phases characterized by

•chiral symmetry

•confinement aspects

Figure from C. Schmidt
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Fluctuations and the QCD phase diagram

•different QCD phases characterized by

•chiral symmetry

•confinement aspects

•possible critical end-point

•2nd order phase transition

•divergent correlation length

•divergent susceptibility

Figure from C. Schmidt
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Fluctuations from Lattice QCD
•expansion of the pressure in 

•B,Q,S conserved charges (baryon number, electric charge, strangeness)

p

T 4
=

1X
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ijk
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Fluctuations from Lattice QCD
•expansion of the pressure in 

•B,Q,S conserved charges (baryon number, electric charge, strangeness)

•generalized susceptibilities

p
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Fluctuations from Lattice QCD
•expansion of the pressure in 

•B,Q,S conserved charges (baryon number, electric charge, strangeness)

•generalized susceptibilities

•related to cumulants of net charge fluctuations, e.g.

p

T 4
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Calculation of susceptibilities from Lattice QCD

•µ-dependence is contained in the fermion determinant

•calculation of susceptibilities requires µ-derivatives of fermion determinant

Z =

Z
DU(detM(µ))Nf/4

exp(�Sg),

@2 lnZ
@µ2

=

⌧
nf

4

@2(ln detM)

@µ2
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Calculation of susceptibilities from Lattice QCD

•µ-dependence is contained in the fermion determinant

•calculation of susceptibilities requires µ-derivatives of fermion determinant

•formulate all operator in terms of traces over space-time, color (and spin)

•full inversion of fermion matrix is impossible: evaluate using noisy estimators 

•ensemble average → large number of configurations

Z =

Z
DU(detM(µ))Nf/4

exp(�Sg),
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Noisy estimators

•traces required for derivatives

•noisy estimators → large number of random vectors η (~1500 / configuration)

•up to 10000 configurations for each temperature

•dominant operation: fermion matrix inversion (~ 99%)
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Configuration generation

•sequential process

•use RHMC algorithm to evaluate 
the system in simulation time

Steps in a Lattice QCD calculation

1.   Generate an ensemble of gluon field configurations, 

2. Compute quark propagators in these fixed backgrounds by solving the Dirac 
equation for various right-hand sides
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Configuration generation

•sequential process

•use RHMC algorithm to evaluate 
the system in simulation time

•two dominant parts of the calculation (90% of the runtime)

•fermion force
~50% for improved actions (HISQ)

•fermion matrix inversion
~90% for standard action 

Steps in a Lattice QCD calculation

1.   Generate an ensemble of gluon field configurations, 

2. Compute quark propagators in these fixed backgrounds by solving the Dirac 
equation for various right-hand sides
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Dynamical Simulations with Highly Improved Staggered Quarks R. M. Woloshyn

Figure 1: Paths used in the ASQTAD and HISQ actions. Path coefficients for ASQTAD can be found
in Ref. [4]. The HISQ effective links are constructed by first applying a Fat7 fattening to the base
links (U →UF with coefficients 1-link:1/8, 3-staple:1/16, 5-staple:1/64, 7-staple:1/384), then a SU(3)-
projection (UF → UR), and finally an “ASQ” smearing (UR → Uef f with coefficients 1-link:1+ ε/8, 3-
staple:1/16, 5-staple:1/64, 7-staple:1/384, Lepage:−1/8, Naik:−(1+ ε)/24, where the parameter ε is in-
troduced to remove (am)4 errors [9]).

The pseudo-fermion field Φ is defined on even lattice sites only to avoid a doubling of flavors from
using M†M instead of M in the action. This procedure is valid since M†M has no matrix element
connecting even and odd lattice sites.

A key component in dynamical simulations using molecular dynamics evolution is the com-
putation of fermion force — derivative of the fermion action with respect to the base links

fx,µ =
∂Sf
∂Ux,µ

=
∂

∂Ux,µ

〈

Φ
∣

∣

∣

[

M†[U ]M[U ]
]−nf /4

∣

∣

∣
Φ
〉

. (2.3)

The derivative can be computed straightforwardly if nf is a multiple of 4; for other numbers of
fermion flavors the 4th-root of M†M can be approximated by a rational expansion (the RHMC
algorithm [17, 18, 19])

[M†M]−nf /4 ≈ α0+∑
l

αl
M†M+βl

, (2.4)

where αl and βl are constants. The derivative becomes

∂Sf
∂Ux,µ

= −∑
l
αl
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∂
∂Ux,µ

(

M†[U ]M[U ]
)

∣

∣
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〉
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∣
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∣
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∣

∣
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〉)

, (2.5)

with |Xl〉 = [M†M+βl]−1|Φ〉 and |Y l〉 = D|Xl〉. Note that Xl and Y l are defined on even and odd
sites respectively. Taking the derivatives of D, D† with respect to Uef f , Uef f† and writing out the
matrix indices we have

[

fx,µ
]

ab =
∂Sf

∂
[

Ux,µ
]

ab
=∑

y,ν
(−1)yηy,ν
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∂ [Uef f
y,ν ]mn

∂ [Ux,µ ]ab
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+
∂ [Uef f†
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)

, (2.6)

where f (0)y,ν is the vector outer product of the field variables at y and y+ν

[

f (0)y,ν

]

mn
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∑
l
αl[Y ly+ν ]n[X

l∗
y ]m for even y

∑
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y+ν ]n[Y
l∗
y ]m for odd y

, (2.7)
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History of QCD Machines in BI: the APE generation

• APE = Array Processor Experiment, started mid eigthties

• SIMD architecture with lot of FPUs, VLIW

• special purpose machine build for lattice QCD

• optimized a x b + c operation for use in complex matrix-vector multiplication

• large register files - up to 512 64bit-registers

• 3D network low latency: fast memory access to nearest neighbor (~ 3-4 local)

• low power consumption (latest version: ~ 1.5 GFlops @ 7 Watt)

• object-oriented programming language TAO (syntax similar to Fortran)

• controlled by host PC

2 CHEP03, La Jolla, California, March 24th-28th, 2003

Figure 1: One of the original 1988 APE boards.

which are specifically optimized for their applications.
In this paper we describe the Array Processor Exper-
iment (APE) project, which was started in the mid
eighties by the Istituto Nazionale di Fisica Nucleare
(INFN) and is now carried out within the framework
of a European collaboration with DESY and the Uni-
versity of Paris Sud.

The structure of this paper is as follows: in the next
section we briefly cover the older members of the APE
family. We then describe in some detail APEmille, the
APE generation currently used in physics production
simulations. Subsequently, we discuss the architecture
of apeNEXT, the new generation of APE systems.
This is the most important part of our paper, fol-
lowed by a short discussion of the apeNEXT software
environment. The paper ends with some concluding
remarks.

2. THE FAMILY OF APE MACHINE

The evolution over more than one decade of APE
systems is briefly recollected in Table I.

The first generation of APE computers dates to the
mid eighties. In Fig. 1, a picture of the original APE
processor, made out of off-the-shelf electronic compo-
nents is shown as a historical remark. APE100, the
second generation of APE supercomputers, had been
the leading workhorse of the European lattice com-
munity since the middle of the 1990s. Several parts of
the APE100 machine are shown in Fig. 2.

Commissioning of APEmille, the third generation
of APE systems, started in the year 2000. These ma-
chines make a further 2 TFlops of computing power
available to the LGT community. A description of the
APEmille architecture is given in a later section.

In order to keep up with future and growing re-
quirements, the development of a new generation of

Figure 2: A APE100 board and a 6.4 GFlops APE100
crate operating at Parma University.

a multi-TFlops computer for LGT, apeNEXT, is in
progress. The main goal [9] is the development and
commissioning of a supercomputer with a peak per-
formance of more than 5 TFlops and a sustained ef-
ficiency of O(50%) for key lattice gauge theory ker-
nels. Aiming for both large scale simulations with dy-
namical fermions and quenched calculations on very
large lattices the architecture should allow for large
on-line data storage (of the order of 1 TByte) as
well as input/output channels which sustain at least
O(0.5) MByte per second per GFlops. Finally, the
programming environment should allow smooth mi-
gration from older APE systems, i.e. support the TAO
language, and introduce for the first time a C language
compiler.

3. APEmille SYSTEMS

APEmille is a massively parallel computer opti-
mized for simulating QCD. The architecture is sin-
gle instruction multiple data (SIMD) and all nodes
run strictly synchronously at a moderate clock fre-
quency of 66 MHz. The communication network has a
three-dimensional topology and offers a bandwidth of
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History of QCD Machines in BI: the APE generation

• APE = Array Processor Experiment, started mid eigthties
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• controlled by host PC

2 CHEP03, La Jolla, California, March 24th-28th, 2003

Figure 1: One of the original 1988 APE boards.
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available to the LGT community. A description of the
APEmille architecture is given in a later section.
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a multi-TFlops computer for LGT, apeNEXT, is in
progress. The main goal [9] is the development and
commissioning of a supercomputer with a peak per-
formance of more than 5 TFlops and a sustained ef-
ficiency of O(50%) for key lattice gauge theory ker-
nels. Aiming for both large scale simulations with dy-
namical fermions and quenched calculations on very
large lattices the architecture should allow for large
on-line data storage (of the order of 1 TByte) as
well as input/output channels which sustain at least
O(0.5) MByte per second per GFlops. Finally, the
programming environment should allow smooth mi-
gration from older APE systems, i.e. support the TAO
language, and introduce for the first time a C language
compiler.

3. APEmille SYSTEMS

APEmille is a massively parallel computer opti-
mized for simulating QCD. The architecture is sin-
gle instruction multiple data (SIMD) and all nodes
run strictly synchronously at a moderate clock fre-
quency of 66 MHz. The communication network has a
three-dimensional topology and offers a bandwidth of
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Future of QCD machines in BI: the GPU era

•lattice simulations are massively parallel

•require a lot of floating point operations

•used as accelerators since 2006: ‘QCD as a video game’
(Erigi et al), coded in OpenGL

•GPUs become standard ‘tool’ of Lattice QCD

•widely used by various groups

•libraries available (e.g. QUDA)

GPUs at Lattice’11
• Algorithms & Machines

– M. Clark, S. Gottlieb, K. Petrov, C. 
Pinke, D. Rossetti, F. Winter

– Yong-Chull Jang (poster)
• Applications beyond QCD:

– D. Nógrádi, J. Kuti, K. Ogawa, C. 
Schroeder

– R. Brower, C. Rebbi
• Hadron Spectroscopy, Hadron Structure

– D. Richards,  C. Thomas, S. Wallace, 
M. Lujan

• Vacuum Structure and Confinement
– P. Bicudo

• Nonzero Temperature & Density
– G. Cossu

• More ‘results’ presentations than Alg. & 
Mach. 

Presentations in ‘blue’ 
are on Thursday/Friday

Presentations in ‘black’
have already happened

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

Dudek et. al. Phys.Rev.D83:111502,2011
Parallel talk by C. Thomas (Monday) 

Thursday, July 14, 2011

Slide from Balint Joo, Plenary talk at Lattice 2011 conference
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The Bielefeld GPU cluster

•hybrid GPU / CPU cluster

•152 compute nodes in 14x19” racks

• 48 nodes with 4 GTX 580 

•104 nodes with 2 Tesla M2075

• 304 CPUs (1216 cores) with 7296 GB memory

•7 storage nodes / 2 head nodes

•1.1 million € founded with federal and state government funds 

•dedicated exclusively to Lattice QCD
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Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Standard staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix dominates (>80%)
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Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix dominates (>80%)

•memory: 8 SU(3) matrices input, 8 color vectors input, 1 color vector output

•8 x ( 72 + 24) + 24 bytes = 792 bytes ( 1584 for double precision)
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Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Standard staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix dominates (>80%)

•memory: 8 SU(3) matrices input, 8 color vectors input, 1 color vector output

•8 x ( 72 + 24) + 24 bytes = 792 bytes ( 1584 for double precision)

•Flops: (CM = complex mult, CA = complex add)

•4 x ( 2 x 3 x (3 CM + 2 CA) + 3 CA) + 3 x 3 CA = 570 flops

•flops / byte ratios: 0.72 

w
x

= D
x,x

0v
x

0 =
3

X

µ=0

n

U
x,µ

v
x+µ̂

� U †
x�µ̂,µ

v
x�µ̂

o



GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Bandwidth bound

•memory bandwidth is crucial

•GTX cards are always faster 

•even for double precision calculations

•linear algebra has an even worse flop / byte ratio 

•vector addition c = a + b

• 48 bytes in, 24 bytes out, 6 flops →0.08 flops/byte

•flops are free - but registers are limited

•Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10% peak)
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Bandwidth bound

•memory bandwidth is crucial

•GTX cards are always faster 

•even for double precision calculations

•linear algebra has an even worse flop / byte ratio 

•vector addition c = a + b

• 48 bytes in, 24 bytes out, 6 flops →0.08 flops/byte

•flops are free - but registers are limited

•Dslash efficiency Tesla M2075: 0.72 flop/byte * 144 Gbytes/s = 103 Gflops (10% peak)

Card GFlops (32 bit) GFlops (32 bit) GBytes/s Flops / byte Flops/ byte

GTX 580 1581 198 192 8.2 1.03

Tesla M2075 1030 515 144 7.2 3.6
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Optimizing memory access

•use coalesced memory layout: structure of arrays (SoA) instead of AoS

•one can reconstruct a SU(3) matrix also from 8 or 12 floats

•improved actions result in matrices that are no longer SU(3):
must load 18 floats
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Optimizing memory access

•use coalesced memory layout: structure of arrays (SoA) instead of AoS

•one can reconstruct a SU(3) matrix also from 8 or 12 floats

•improved actions result in matrices that are no longer SU(3):
must load 18 floats

•exploit texture access: near 100% bandwidth

•ECC hurts (naive 12.5%, real world ~ 20-30 %)

•do more work with less bytes:
→ mixed precision inverters (QUDA libray, Clark et al, CPC.181:1517,2010)

→ multiple right hand sides 
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•ECC hurts (naive 12.5%, real world ~ 20-30 %)

•do more work with less bytes:
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Solvers for multiple right hand sides

•consider single precision for improved (HISQ) action

•need inversions for many (1500) ‘source’-vectors for a fixed 
gauge field (matrix)

•Bytes for n vectors

•Flops for n vectors

16 · (72 + n · 24) bytes + n · 24 bytes = 1152 bytes + 408 bytes · n .

1146 flops · n
# r.h.s. 1 2 3 4 5
flops/
byte 0.73 1.16 1.45 1.65 1.8

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known
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Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.
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arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known
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off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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•float * vector + vector

•norms 

•linear algebra scales linear #r.h.s.
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Linear algebra becomes relevant 

•matrix operation (Dslash) for multiple r.h.s.

•linear algebra operations cannot

•float * vector + vector

•norms 

•linear algebra scales linear #r.h.s.

•for three r.h.s up to 25% of the runtime
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Linear algebra: reducing PCI latencies

•Kernel calculates for each component i of each r.h.s. x:

•need to do reduction (→ see CUDA samples, M. Harris) for each r.h.s.

•copy data to host (one device to host copy for each r.h.s)
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•need to do reduction (→ see CUDA samples, M. Harris) for each r.h.s.

•copy data to host (one device to host copy for each r.h.s)

•combine device to host copies to one for all r.h.s.

•last reduction step can be done on CPU or GPU
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Linear algebra: improve reduction

•standard way of doing reduction

•calculate floating point numbers that shall be reduced + reduction

•but data are already created on GPU
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Linear algebra: improve reduction

•standard way of doing reduction

•calculate floating point numbers that shall be reduced + reduction

•but data are already created on GPU

•pre-reduction during ‘creation’

•does not affect runtime

•faster reduction (4x)

•tune parameter rc
(enough threads)
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Linear algebra: improve reduction

•standard way of doing reduction

•calculate floating point numbers that shall be reduced + reduction

•but data are already created on GPU

•pre-reduction during ‘creation’

•does not affect runtime

•faster reduction (4x)
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Configuration generation on GPUs

•we use a full hybrid-monte Carlo simulation on GPU (HISQ action)

•no PCI bus bottleneck

•current runs with lattice size 323 x 8 in single precision

•ECC reduces memory bandwidth: costs roughly 30% performance

•lattices up to 483 x 12 fit on one Tesla cards with 6GB (double precision)

•runtime is an issue - at least use several GPUs in one node

•larger lattices (643 x 16) → use compute time on capacity computing machines (BlueGene)

•we aim at getting the best scientific output out of limited resources (#GPUs, available supercomputer time)
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Registers pressure

•improved fermion action use smeared links

•require sum over products of up to 7 SU(3) matrices

•SU(3) Matrix: 18 / 36 registers

Dynamical Simulations with Highly Improved Staggered Quarks R. M. Woloshyn

Figure 1: Paths used in the ASQTAD and HISQ actions. Path coefficients for ASQTAD can be found
in Ref. [4]. The HISQ effective links are constructed by first applying a Fat7 fattening to the base
links (U →UF with coefficients 1-link:1/8, 3-staple:1/16, 5-staple:1/64, 7-staple:1/384), then a SU(3)-
projection (UF → UR), and finally an “ASQ” smearing (UR → Uef f with coefficients 1-link:1+ ε/8, 3-
staple:1/16, 5-staple:1/64, 7-staple:1/384, Lepage:−1/8, Naik:−(1+ ε)/24, where the parameter ε is in-
troduced to remove (am)4 errors [9]).

The pseudo-fermion field Φ is defined on even lattice sites only to avoid a doubling of flavors from
using M†M instead of M in the action. This procedure is valid since M†M has no matrix element
connecting even and odd lattice sites.

A key component in dynamical simulations using molecular dynamics evolution is the com-
putation of fermion force — derivative of the fermion action with respect to the base links
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∂Sf
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Φ
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The derivative can be computed straightforwardly if nf is a multiple of 4; for other numbers of
fermion flavors the 4th-root of M†M can be approximated by a rational expansion (the RHMC
algorithm [17, 18, 19])

[M†M]−nf /4 ≈ α0+∑
l

αl
M†M+βl

, (2.4)

where αl and βl are constants. The derivative becomes
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with |Xl〉 = [M†M+βl]−1|Φ〉 and |Y l〉 = D|Xl〉. Note that Xl and Y l are defined on even and odd
sites respectively. Taking the derivatives of D, D† with respect to Uef f , Uef f† and writing out the
matrix indices we have
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where f (0)y,ν is the vector outer product of the field variables at y and y+ν
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3

Fermion force in MD
→ take derivatives of smeared 
links with respect to ‘original’ links
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Registers pressure

•improved fermion action use smeared links

•require sum over products of up to 7 SU(3) matrices

•SU(3) Matrix: 18 / 36 registers

•Fermi architecture: 63 registers  / thread

•optimize SU(3) *= SU(3) operation for register usage

•spilling causes significant performance drop for bandwidth bound kernels

•however: spilling is often better than shared memory → 48kB L1 cache

•precomputed products help but must be stored somewhere

Dynamical Simulations with Highly Improved Staggered Quarks R. M. Woloshyn
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Optimizing register usage / reduce spilling

•e.g. force for the 7 link term consists of 56 products of 7 SU(3) matrices ( x 24 for ‘rotations’ )

•limited GPU memory: store precomputed products ?

v201203: initial version

v201204: optimized matrix mult, split into servel 
Kernels

v201207: minor changes for memory access

v201211: reorganized split up Kernel

v201303: reconstruction of matrices from 14 floats
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Status of lattice data
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•highly-improved staggered quarks, close to physical pion mass (                       )ml/ms = 1/20
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Freeze-out curve from heavy-ion collision
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Fig. 10. The χ2 distribution and hadron yield ratios with best fit at
√

sNN=130 GeV. Here, the
Ω yield includes both Ω and Ω̄.

MeV, µb = 38 ± 11 MeV, χ2/Ndf=4.1/11.

Although the fit is good for all cases (and even if the minimal χ2 is obtained for case i), we
consider the intermediate case iii) as the most likely situation, as it could be an implicit
result of the reconstruction in the experiment. The outcome of the fit is shown in Fig. 10.
The very good fit is also apparent in the comparison of the hadron ratios: essentially all
the experimental ratios are well reproduced by the model, including those involving φ and
K∗ resonances.

At
√

sNN=200 GeV only a limited set of yields of identified hadrons is available to date.
The yields of π±, K±, p, and p̄ are published by PHENIX [76], STAR [77], and BRAHMS
[78] and the values agree within the quoted systematic errors. In addition, available are
the yields of φ [79,80], K(892)∗ [81], d and d̄ [82]. We use the hadron ratios with the
corresponding errors whenever provided by the experiments [76,79,80,81] or otherwise
calculate the ratios using the published yields quoted above. Further ratios are available
as preliminary data on strange hyperon ratios [83], ∆++/p [84], p̄/π−, Λ̄/π−, Ξ/π−, Ω/π−,
and Λ∗/Λ[85]. Unless specified, our fits do not include the ratios involving resonances
(∆++/p, K(892)∗, and Λ∗).

We consider the following cases for the fits:
i) a combined fit of all available data, with the exception of strongly decaying resonances:
T = 155 ± 2 MeV, µb = 26 ± 5 MeV, χ2/Ndf = 34.1/23 (with δ2 minimization: T=164
MeV, µb=24 MeV, δ2=0.40). If we include in the fit the three ratios involving resonances
(K∗/K−, Λ∗/Λ, and ∆++/p), the results are the same within the errors, T = 155 ± 2
MeV, µb = 25 ± 5 MeV, but with a worse χ2/Ndf = 41.8/26 (T=162 MeV, µb=22 MeV,
δ2=0.82).
ii) as i), but excluding from the fit the ratios p̄/π− and φ/K− from PHENIX. The result-
ing parameters are: T = 160.5± 2 MeV, µb = 20± 4 MeV, with χ2/Ndf=16.0/21 (T=166
MeV, µb=26 MeV, δ2=0.19). Including the resonances the outcome of the fit is identical,
T = 160 ± 2 MeV, µb = 20 ± 4 MeV, with a reasonable χ2/Ndf = 25.2/24 (T=164 MeV,
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Freeze-out curve from heavy-ion collision
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√

sNN=130 GeV. Here, the
Ω yield includes both Ω and Ω̄.

MeV, µb = 38 ± 11 MeV, χ2/Ndf=4.1/11.

Although the fit is good for all cases (and even if the minimal χ2 is obtained for case i), we
consider the intermediate case iii) as the most likely situation, as it could be an implicit
result of the reconstruction in the experiment. The outcome of the fit is shown in Fig. 10.
The very good fit is also apparent in the comparison of the hadron ratios: essentially all
the experimental ratios are well reproduced by the model, including those involving φ and
K∗ resonances.

At
√

sNN=200 GeV only a limited set of yields of identified hadrons is available to date.
The yields of π±, K±, p, and p̄ are published by PHENIX [76], STAR [77], and BRAHMS
[78] and the values agree within the quoted systematic errors. In addition, available are
the yields of φ [79,80], K(892)∗ [81], d and d̄ [82]. We use the hadron ratios with the
corresponding errors whenever provided by the experiments [76,79,80,81] or otherwise
calculate the ratios using the published yields quoted above. Further ratios are available
as preliminary data on strange hyperon ratios [83], ∆++/p [84], p̄/π−, Λ̄/π−, Ξ/π−, Ω/π−,
and Λ∗/Λ[85]. Unless specified, our fits do not include the ratios involving resonances
(∆++/p, K(892)∗, and Λ∗).

We consider the following cases for the fits:
i) a combined fit of all available data, with the exception of strongly decaying resonances:
T = 155 ± 2 MeV, µb = 26 ± 5 MeV, χ2/Ndf = 34.1/23 (with δ2 minimization: T=164
MeV, µb=24 MeV, δ2=0.40). If we include in the fit the three ratios involving resonances
(K∗/K−, Λ∗/Λ, and ∆++/p), the results are the same within the errors, T = 155 ± 2
MeV, µb = 25 ± 5 MeV, but with a worse χ2/Ndf = 41.8/26 (T=162 MeV, µb=22 MeV,
δ2=0.82).
ii) as i), but excluding from the fit the ratios p̄/π− and φ/K− from PHENIX. The result-
ing parameters are: T = 160.5± 2 MeV, µb = 20± 4 MeV, with χ2/Ndf=16.0/21 (T=166
MeV, µb=26 MeV, δ2=0.19). Including the resonances the outcome of the fit is identical,
T = 160 ± 2 MeV, µb = 20 ± 4 MeV, with a reasonable χ2/Ndf = 25.2/24 (T=164 MeV,
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Freeze-out curve from heavy-ion collision
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� structure consistent with O(4) critical behavior at µB = 0, m = 0

2) Status of the lattice data

Christian 
Schmidt
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Pinning down the freeze-out parameters

•need two experimental ratios to determine 

•baryon number fluctuations are not directly accessible in experiments

•we consider ratios of electric charge fluctuations
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Determination of freeze-out temperature

•small cutoff effects

•small NLO corrections (<10%)  
for μ/T < 1.3
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Determination of freeze-out temperature

•small cutoff effects

•small NLO corrections (<10%)  
for μ/T < 1.3

µB/T=1
µB/T=0
No=6
No=8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

140 150 160 170 180 190 200 210 220 230 240

T [MeV]

R31
Q

HRG

free

RQ
31(T, µB) = RQ,0

31 + RQ,2
31 µ̂2

B

T f [MeV ]SQ�3
Q/MQ

& 2

⇠ 1.5

. 1

. 155

⇠ 160

& 165

Bands: Continuum estimate 

BNL-BI, PRL 109 (2012) 192302



GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Determination of freeze-out chemical potential

•small cutoff effects at NLO

•small NLO corrections (<10%)  
for μ/T < 1.3

Bands: LO Continuum extrapolation
 NLO Continuum estimate 
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Determination of freeze-out chemical potential

•small cutoff effects at NLO

•small NLO corrections (<10%)  
for μ/T < 1.3
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Summary

•GPUs enable breakthroughs in Lattice QCD

•Experiences with Lattice QCD on the Bielefeld GPU cluster

•Tuning single GPU performance for staggered fermion

•Lattice QCD is bandwidth bound
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Summary

•GPUs enable breakthroughs in Lattice QCD

•Experiences with Lattice QCD on the Bielefeld GPU cluster

•Tuning single GPU performance for staggered fermion

•Lattice QCD is bandwidth bound

•multi-GPU for larger systems

•Kepler provides a major speedup for double precision (thanks to registers)

•GTX Titan should allow for > 500 GFlops in single precision (>250 GFlops double)

•running production on CPUs and do ‘live-measurements’ on the GPU for Titan   
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