RONDEBOSCH BOYS' HIGH SCHOOL

Grade 11

<u>MATHEMATICS</u> <u>PAPER ONE</u>

Friday 30th May 2014

Set by P. Ghignone

Moderated by T. Edwards

Two Hours

100 Marks

INSTRUCTIONS

- 1. Calculators can be used, unless otherwise stated, with answers corrected to two decimal places.
- 2. All necessary working MUST be shown.
- 3. When necessary, leave answers with positive exponents.
- 4. Graphs drawn in this paper are **NOT** necessarily drawn to scale.
- 5. Number your answers as the questions are numbered.
- 6. Untidy work will be penalised.
- 7. Only **blue and black pens** may be used.
- 8. Sketches may be done in pencil.
- 9. This exam contains EIGHT questions.

1.1 Solve for x:

$$1.1.1 \quad x(x-4) = 0 \tag{2}$$

$$1.1.2 \quad x^2 + 6x - 16 = 0 \tag{3}$$

$$1.1.3 \quad 5x^2 - 2x - 8 = 0 \tag{4}$$

1.2 Solve for x and y (if x and $y \in \mathbb{R}$):

$$(3x+2)(y^2+9) = 0 (3)$$

1.3 The roots of a quadratic equation of form $x^2 + bx + c = 0$ are $1 - \sqrt{2}$ and $1 + \sqrt{2}$. Determine the values of b and c. (3)

Question 2

- 2.1 For which values of r will $4x^2 + 3x + r = 0$ have real roots? (3)
- 2.2 A race requires an athlete to run 10km and cycle 50km. James runs at a speed of $x \, km/h$ and cycles at a speed $31 \, km/h$ faster. He takes $\frac{10}{x}$ hours for the 10km run.
- 2.2.1 Express the time taken for his cycle in terms of x. (1)
- 2.2.2 Calculate the speed, correct to 2 decimal places, at which James must run in order to finish the race (run and cycle) in 2 *hours*.

(7)

[11]

3.1 Simplify:

$$3.1.1 (x+y)^{-1} (1)$$

$$3.1.2 \ \frac{3x^4y^5}{12x^7y^0} \tag{3}$$

3.1.3
$$\frac{\sqrt{a}.\sqrt[4]{b^3}}{(a^2b^3)^{\frac{1}{4}}}$$
 (4)

3.2 Solve for x:

$$3.2.1 \quad 5.5^x = 625 \tag{3}$$

3.2.2
$$x\sqrt{x} = 8$$
 (without the use of a calculator) (4)

$$3.2.3 \quad 3^{x+2} + 3^{x-1} = 84 \tag{4}$$

3.3 Solve for
$$x: \sqrt{x+6} = x$$
 (5)

[24]

4.1 Consider the pattern:

JACKETSJACKETSJAC...

Which letter is the 2235th letter? (2)

4.2 The first three terms of a linear (arithmetic) sequence are (1-5x); (-3x) and (x-8). Determine the value of x. (3)

[5]

Question 5

The nth term of a sequence is given by $Tn = -2(n-3)^2 + 15$.

- 5.1 Write down the first three terms of the sequence. (3)
- 5.2 Which term of the sequence will have the greatest value? (1)
- 5.3 What is the second difference of this sequence? (2)
- 5.4 Determine ALL values of n for which the terms of this sequence will be greater than -83. (6)

[12]

The graphs of g(x) and h(x) = -2x + 2 are drawn below. Graph h(x) cuts the x -axis at x = 1 and cuts the graph g(x) at (4; -6) and (-4; 10). Graph g(x) has x -intercepts at x = 6 and A, and a turning point at (2; -8).

- 6.1 Determine the co-ordinates of A. (2)
- 6.2 Write down the range of graph g. (2)
- 6.3 Determine the average gradient of graph g between x = -4 and x = 4. (2)
- 6.4 What will the equation of *h* become if the graph is moved 1 unit left and 2 units down? (2)
- 6.5 Find the equation of g(x). (4)
- 6.6 For which values of x is $\frac{g(x)}{h(x)} \ge 0$? (3)

[15]

Given: $k(x) = \frac{6}{x+2} + 4$ and g(x) = x + 1.

- 7.1 Write down the domain of graph k(x). (1)
- 7.2 Calculate the co-ordinates of the points of intersection of graphs k and g. (7)
- 7.3 Draw a neat sketch of graph k, clearly showing asymptotes as well as the x and y intercepts. (6)

[14]

Question 8

An exponential graph with equation $y = 4 \cdot a^{x+p} + q$ has the following properties:

- Domain: $x \in \mathbb{R}$
- Range: $y \in \mathbb{R}$; y > -8
- The y –intercept is y = -6
- The graph passes through the point (3;8)

Make a neat sketch of this exponential graph, showing all the information supplied above. [4]

[TOTAL 100]