SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GRADE 12

MATHEMATICS

LEARNER HOMEWORK SOLUTIONS

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
16	Data Handling	3 - 7
	Transformations	8 – 9
17	Functions	10 – 11
17	Calculus	12 – 13
18	Linear Programming	14 - 15
10	Trigonometry	16 - 19
19	2D Trigonometry	20
	3D Trigonometry	21 - 22

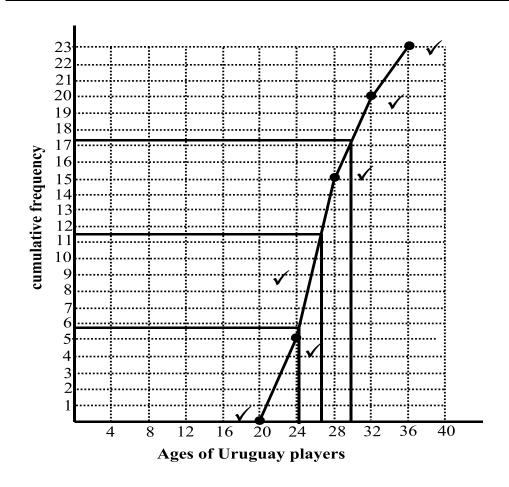
SESSION 16

(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION

16.1 TOPIC: DATA HANDLING

QUESTION 1


(a)

Class intervals (ages)	Frequency ✓	Cumulative frequency ✓
$16 \le x < 20$	0	0
$20 \le x < 24$	5	5
$24 \le x < 28$	10	15
$28 \le x < 32$	5	20
$32 \le x < 36$	3	23

(2)

(b)

Class intervals (ages)	Frequency	Cumulative frequency	Graph points
$16 \le x < 20$	0	0	(20;0)
$20 \le x < 24$	5	5	(24;5)
$24 \le x < 28$	10	15	(28;15)
$28 \le x < 32$	5	20	(32; 20)
$32 \le x < 36$	3	23	(36; 23)

(6)

GRADE 12

SESSIO 16

(LEARNER HOMEWORK SOLUTIONS)

(c)

$$23 \times \frac{1}{4} = 5,75$$

Therefore $Q_1 = 24$

Median

$$23 \times \frac{1}{2} = 11.5$$

Therefore Median = 26

Upper quartile

$$23 \times \frac{3}{4} = 17.25$$

Therefore $Q_3 = 30$

✓

[11]

(3)

QUESTION 2

(a)

Class intervals	Frequency (f)	Midpoint (<i>m</i>)	f×m✓	$m-\overline{x} \checkmark$	$(m-\overline{x})^2 \checkmark$	$f \times (m - \overline{x})^2 \checkmark$
$20 \le x < 24$	5	22	110	- 5	25	125
$24 \le x < 28$	10	26	260	-1	1	10
$28 \le x < 32$	5	30	150	3	9	45
$32 \le x < 36$	3	34	102	7	49	147
			$\overline{x} = \frac{622}{23} = 27 \checkmark$			$\sum f \times (m - \overline{x})^2$
			23			= 327

(5)

(b)
$$SD = \sqrt{\frac{\sum f.(x - \bar{x})^2}{23}} = \sqrt{\frac{327}{23}} = 3.8$$
 (2)

(c)

GRADE 12

SESSION 16

√√

(LEARNER HOMEWORK SOLUTIONS)

CASIO fx-82ES PLUS:

MODE

2:STAT

1:1-VAR

SHIFT SETUP

3: STAT

1: ON

Enter the midpoints:

22= 26= 30= 34=

Enter the frequencies:

5= 10= 5= 3=

AC SHIFT 1

4: VAR

 $3:x\sigma n$

The answer will read: 3,8

SHARP DAL:

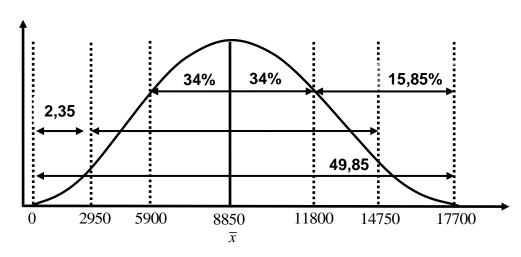
MODE 1=

Enter data:

22 STO 3 M+

26 STO 9 M+

30 STO 8 M+


34 STO 3 M+

RCL 6 to get 3,8

(2)

[9]

QUESTION 3

One standard deviation interval:

 $(\overline{x} - s; \overline{x} + s)$

=(8850-2950;8850+2950)

=(5900;11800)

Two standard deviation intervals:

 $(\overline{x}-2s;\overline{x}+2s)$

 $=(8850-2\times2950;8850+2\times2950)$

=(2950;14750)

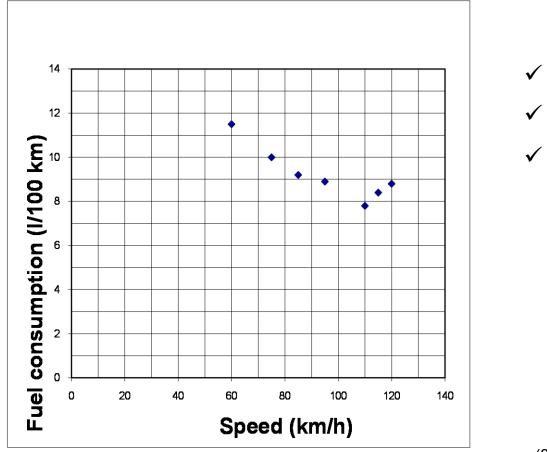
GRADE 12

SESSION 16

(LEARNER HOMEWORK SOLUTIONS)

Three standard deviation intervals:

$$(\overline{x}-3s;\overline{x}+3s)$$


$$=(8850-3\times2950;8850+3\times2950)$$

$$=(0;17700)$$

2%	$\checkmark\checkmark$	(2)
16%	✓	(1)
No, since there are some employees (less than 2%) earn below R3000,00. These employees will not live an acceptable lifestyle economically. OR Yes, there is a fair distribution of salaries since the majority of the employees,i.e. 68% earn a salary between R5 900 and R11 800 per month. Some employees will have more responsibilities or work longer hours and thus must be compensated accordingly.		(1)
Less than 2% earn below R3000,00.		[4]

QUESTION 4

a.

GAUTENG DEPARTMENT OF EDUCATION

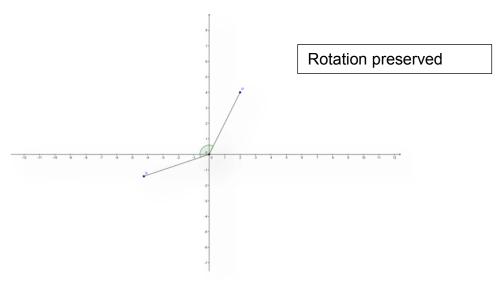
SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 SESSION 16 (LEARNER HOMEWORK SOLUTIONS)

(b)	Quadratic	\checkmark	(1)
(c)	Based on the quadratic trend the best fuel consumption occurs when the car is driven at 110 km/h. To keep its fuel bill to a minimum, drivers should drive at 110km/h	✓ ✓	(2)

[6]

GRADE 12


SESSION 16

(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION

16.2 TOPIC: TRANSFORMATIONS

QUESTION 1

$$(2-0)^{2} + (4-0)^{2} = (-3\sqrt{2}-0)^{2} + (y)^{2}$$

$$20=18 + y^{2}$$

$$y^{2} = 2$$

$$y=\pm\sqrt{2} \text{ but y<0} \quad y=-\sqrt{2}$$

$$X(-3\sqrt{2}; -\sqrt{2})$$

b)
$$x' = x_A cos\theta - y_A sin\theta$$
 and $y' = y_A cos\theta + x_A sin\theta$ $-3\sqrt{2} = 2cos\theta - 4sin\theta$ (1) $-\sqrt{2} = 4cos\theta + 2sin\theta$ (2)

Multiply equation (1) by -2 and then add the equations

$$6\sqrt{2} = -4\cos\theta + 8\sin\theta$$

$$-\sqrt{2} = 4\cos\theta + 2\sin\theta$$

$$5\sqrt{2} = 10\sin\theta$$

$$\sin\theta = \frac{\sqrt{2}}{2}$$

$$\therefore \theta = 45^{\circ} \text{ but since } \theta \text{ is obtuse } \theta = 135^{\circ}$$

$$(4)^2 + (3)^2 = r^2$$

$$\therefore r^2 = 25$$

$$\therefore r = 5$$

GRADE 12

SESSION 16

(LEARNER HOMEWORK SOLUTIONS)

2.2

$$4\cos\theta - 3\sin\theta = \frac{4\sqrt{3} - 3}{2}....A$$

$$3\cos\theta + 4\sin\theta = \frac{3\sqrt{3} + 4}{2}....B$$

$$16\cos\theta - 12\sin\theta = 2(4\sqrt{3} - 3)....A \times 4$$

$$9\cos\theta + 12\sin\theta = \frac{3(3\sqrt{3} + 4)}{2}....B \times 3$$

$$\therefore 25\cos\theta = 2(4\sqrt{3} - 3) + \frac{3(3\sqrt{3} + 4)}{2}$$

$$\therefore 25\cos\theta = \frac{25\sqrt{3}}{2}$$

$$\therefore \cos \theta = \frac{\sqrt{3}}{2}$$

$$\theta = 30^{\circ}$$

2.3

$$AB^2 = (5)^2 + (5)^2 - 2(5)(5)\cos 30^\circ$$

$$\therefore AB^2 = 50 - 50 \left(\frac{\sqrt{3}}{2} \right)$$

$$AB^2 = 50 - 25\sqrt{3}$$

$$\therefore AB^2 = 25(2 - \sqrt{3})$$

$$\therefore AB = 5\sqrt{2 - \sqrt{3}}$$

2.4

Area
$$\triangle OAB = \frac{1}{2}(5)(5)\sin 30^{\circ}$$

∴ Area
$$\triangle OAB = \frac{25}{4}$$
 units²

QUESTION 3

3.1
$$X(-6; 0) Y(3, 6)$$
and $Z(6; -6)$

3.2 Here you will use Analytical geometry to help work out the angles of inclination

$$Mxy = \frac{2}{3}$$

$$MYZ = -4$$

$$Tan\theta = \frac{2}{3}$$

$$tan\beta = -4$$

$$\beta = 104.03...$$
 $\alpha = 75.96...$

$$\hat{y} = 180 - (75.96 + 33.69) = 70.4^{\circ}$$

and

SESSION 17

(LEARNER HOMEWORK SOLUTIONS)

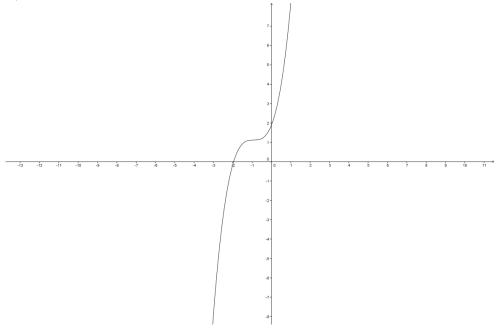
SOLUTIONS TO HOMEWORK:

SESSION 17.1 TOPIC: FUNCTIONS

QUESTION 1

$$f(x) = 2x$$

$$f(\frac{1}{x}) = 2(\frac{1}{x})$$

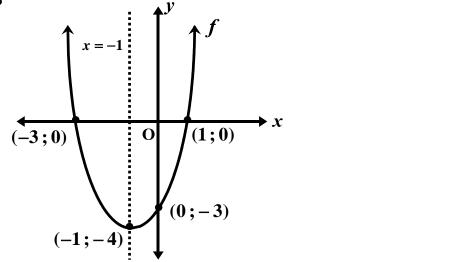

$$\frac{1}{f(x)} = \frac{1}{2x}$$

$$f^{-1}(x) = \frac{1}{2}x \quad \text{y=2x swop x and y to find inverse: } x = 2y \text{ so } y = \frac{1}{2}x$$

$$f(x) + f(\frac{1}{x}) + \frac{1}{f(x)} + f^{-1}(x) = 2x + \frac{2}{x} + \frac{1}{2x} + \frac{1}{2}x$$

$$= \frac{5x^2 + 5}{2x}$$

QUESTION 2



[5]

[6]

QUESTION 3

3.1

(6)

GRADE 12

SESSION 17

(LEARNER HOMEWORK SOLUTIONS)

3.1.1 Range:
$$y \in [-4; \infty)$$
 (2) [8]

QUESTION 4

4.1

$$y = a^{x}$$

$$\therefore \frac{1}{4} = a^{2}$$

$$\therefore a = \frac{1}{2}$$
(2)

4.2

$$y = \left(\frac{1}{2}\right)^{x}$$

$$\therefore x = \left(\frac{1}{2}\right)^{y}$$

$$\therefore y = \log_{\frac{1}{2}} x$$
(2)

4.3

$$y = \left(\frac{1}{2}\right)^x \tag{1}$$

4.4

$$y = 4x^{2}$$

$$\therefore x = 4y^{2}$$

$$\therefore \frac{x}{4} = y^{2}$$

 $\therefore y = \pm \sqrt{\frac{x}{4}}$

x > 0 or x < 0 (2)

4.5 x > 0 or x < 0

[9]

QUESTION 5

5.1
$$g(-\frac{1}{2}) = -1$$

 $\log_a \frac{1}{2} = -1$
 $\therefore a^{-1} = \frac{1}{2}$
 $\therefore a = 2$ (2)

5.2 x> 0 and $x \ne 1$ (NB: The graph of g is only drawn for 0<x<1 but this is not the domain)

5.3 $g^{-1}(x) = 2^x$ $x \in \mathbb{R}, x \neq 0$ (NB: From the log graph $x \neq 1$ so its' inverse will have $y \neq 1$ the value that will make y=1 in $g^{-1}(x)$ is x=0 so it must be excluded from the domain.)

(2) **[6]**

(2)

GRADE 12

SESSION 17

(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 17.2 TOPIC: CALCULUS

1.1.1	1 1 .	$\checkmark 2h + 2r$	
	$P = 2h + 2r + \frac{1}{2} \times 2\pi r$	$\sqrt{\pi r}$	
	$\therefore \mathbf{P} = 2h + 2r + \pi r$	(2	2)
1.1.2	$A = 2rh + \frac{1}{2}\pi r^2$	✓ 2rh	
	$A = 2m + \frac{\pi}{2}m$	$\sqrt{\frac{1}{2}\pi r^2} \tag{2}$	2)
1.2	$4 = 2rh + \frac{1}{2}\pi r^2$	$\checkmark 4 = 2rh + \frac{1}{2}\pi r^2$	
	$\therefore 8 = 4rh + \pi r^2$	$\checkmark \frac{8 - \pi r^2}{4r} = h$	
	$\therefore 8 - \pi r^2 = 4rh$	$\left(8-\pi r^2\right)$	
	$\therefore \frac{8 - \pi r^2}{4r} = h$	$\checkmark P = 2\left(\frac{8 - \pi r^2}{4r}\right) + 2r + \pi r$	
	$P = 2h + 2r + \pi r$	$\checkmark P = \left(\frac{\pi}{2} + 2\right)r + \frac{4}{r}$	
	$\therefore \mathbf{P} = 2\left(\frac{8 - \pi r^2}{4r}\right) + 2r + \pi r$	(4	1)
	$\therefore P = \frac{8 - \pi r^2}{2r} + 2r + \pi r$		
	$\therefore \mathbf{P} = \frac{4}{r} - \frac{\pi r}{2} + 2r + \pi r$		
	$\therefore P = \frac{4}{r} + \frac{\pi r}{2} + 2r$		
	$\therefore \mathbf{P} = \frac{4}{r} + \left(\frac{\pi}{2} + 2\right)r$		
	$\therefore \mathbf{P} = \left(\frac{\pi}{2} + 2\right)r + \frac{4}{r}$		

GAUTENG DEPARTMENT OF EDUCATION

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 17

(LEARNER HOMEWORK SOLUTIONS)

1.3	$C = 10\left(\frac{\pi}{2} + 2\right)r + \frac{40}{r}$	$\checkmark C = 10\left(\frac{\pi}{2} + 2\right)r + \frac{40}{r}$
	$\therefore C = 5\pi r + 20r + 40r^{-1}$	$\checkmark C = 5\pi r + 20r + 40r^{-1}$
	$\therefore C'(r) = 5\pi + 20 - 40r^{-2}$	$\checkmark 0 = 5\pi + 20 - \frac{40}{r^2}$
	$\therefore C'(r) = 5\pi + 20 - \frac{40}{r^2}$	\checkmark r = 1,06m
	$\therefore 0 = 5\pi + 20 - \frac{40}{r^2}$	(4)
	$\therefore \frac{40}{r^2} = 5\pi + 20$	
	$\therefore \frac{40}{5\pi + 20} = r^2$	
	$\therefore \sqrt{\frac{40}{5\pi + 20}} = r$	[40]
	$\therefore r = 1,06\text{m}$	[12]

2.1.	At A and B: $f'(x) = 0$	√ = 0	
	$f'(x) = 12x^2 + 54x - 30 = 0$		
	$2x^2 + 9x - 5 = 0$	✓ substitution of <i>x</i> values	
	(2x - 1)(x + 5) = 0	√√;324)	
	$x = \frac{1}{2} or x = -5$	$\sqrt{\frac{35}{4}}$	
	$f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 + 27\left(\frac{1}{2}\right)^2 - 30\left(\frac{1}{2}\right) - 1$	4)	(6)
	$=\frac{-35}{4}(-8,75)$		
	$f(-5) = 4(-5)^3 + 27(-5)^2 - 30(-5) - 1$		
	= 324		
	$A(-5;324), B\left(\frac{1}{2};\frac{-35}{4}\right)$		
2.2.	Ave Grad = $\frac{324 - \left(\frac{-35}{4}\right)}{-5 - \frac{1}{2}}$	✓ subs x and y values	
	Ave $Grad = \frac{4}{1}$	√ <u>-</u> (−60,5)	
	$-5 - \frac{1}{2}$		(2)
	$=\frac{-121}{2}$ (-60,5)		
2.3.	C(0;-1)	√-1)	
	f'(0) = -30	√= -30	
	Equ. of tangent: $y = -30x - 1$	$\sqrt{-30}x - 1$	(3)

GRADE 12

SESSION 18

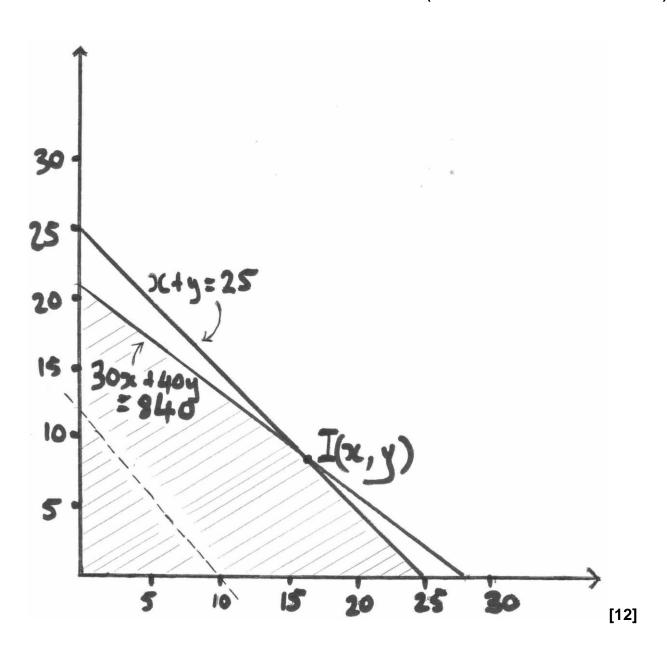
(LEARNER HOMEWORK SOLUTIONS)

2.4.	$4x^{3} + 27x^{2} - 30x - 1 = -30x - 1$ $4x^{3} + 27x^{2} = 0$ $x^{2}(4x + 27) = 0$ $x = 0 \text{ or } x = -\frac{27}{4}$	✓ cubic=tangent ✓: +27) = 0 $\sqrt{\frac{27}{4}}$	(3)
	$\therefore x = \frac{-27}{4}$		

[14]

SOLUTIONS TO HOMEWORK: SESSION 18

TOPIC: LINEAR PROGRAMMING


1.1	$x + y \le 25$ $30x + 40y \le 840$ $x \le 0$	$\sqrt{x + y} \le 25$ $\sqrt{30x + 40y} \le 840$ $\sqrt{x} \le 0 y \le 0 x, y \in \mathbb{N}$
	$y \le 0$ $x, y \in \mathbb{N}$	(3)
1.2	see diagram on next page	$ \begin{array}{l} \sqrt{x+y} \le 25 \\ \sqrt{30x+40y} \le 840 \\ \sqrt{x} \le 0 \\ \sqrt{y} \le 0 \\ \sqrt{x}, y \in \mathbb{N} \end{array} $ (5)
1.3	$10x + 12y = P$ $\therefore y = -1.2x + \frac{P}{12}$ Intersection $I(x, y)$ of $x + y = 25$ and $30x + 40y = 840$ $\therefore I(x, y) = (16, 9)$ Max at either $I(x, y)$ or $(25, 0)$ Max at $I(x, y)$, $P = 268$ $\therefore x = 16, y = 9$	Intersection $I(x, y)$ of x + y = 25 and $30x + 40y = 840Check P at I(x, y) and (25, 0)Max at I(x, y), P = 268$

GRADE 12

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK:

SESSION 18.2 TOPIC: TRIGONOMETRY

QUESTION 1

$$\frac{\sin(-145^\circ).\cos(-215^\circ)}{\sin 510^\circ.\cos 340^\circ}$$

$$=\frac{(-\sin 145^\circ)(\cos 215^\circ)}{(\sin 150^\circ)(\cos 20^\circ)}$$

$$=\frac{(-\sin 35^\circ)(-\cos 35^\circ)}{(\sin 30^\circ)(\cos 20^\circ)}$$

$$= \frac{\sin 35 \cos 35^{\circ \circ}}{\left(\frac{1}{2}\right)(\cos 20^{\circ})}$$

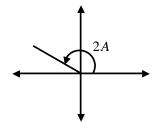
$$= \frac{2 \sin 35 \cos 35^{\circ \circ}}{\cos 20^{\circ}}$$

$$= \frac{\sin 70^{\circ}}{\cos 20^{\circ}}$$

$$= \frac{\cos 20^{\circ}}{\cos 20^{\circ}}$$

$$= 1$$

[8]


QUESTION 2

$$\sin 2A = \frac{\sqrt{5}}{3}$$

$$x^2 = r^2 - y^2$$

$$x^2 = 3^2 - \left(\sqrt{5}\right)^2$$

$$x^2 = 4$$

$$\therefore x = -2$$

 $x = \pm 2$

$$\cos 2A = \frac{-2}{3}$$

[9]

GRADE 12

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

QUESTION 3

$$\frac{\sin(90^{\circ} + \theta) + \cos(180^{\circ} + \theta)\sin(-\theta)}{\sin 180^{\circ} - \tan 135^{\circ}}$$

$$= \frac{\cos \theta + (-\cos \theta)(-\sin \theta)}{0 + 1}$$

$$= \cos \theta + \cos \theta \cdot \sin \theta$$

$$= \cos \theta (1 + \sin \theta)$$
[5]

QUESTION 4

$$\frac{4\sin A \cos A \cos 2A \cdot \sin 15^{\circ}}{\sin 2A(1 - 2\sin^{2} A)}$$

$$= \frac{4\sin A \cos A \cos 2A \cdot \sin 15^{\circ}}{2\sin A \cos A(1 - 2\sin^{2} A)}$$

$$= \frac{2\cos 2A \cdot \sin 15^{\circ}}{\cos 2A}$$

$$= 2\sin 15^{\circ}$$

$$= 2\sin (45^{\circ} - 30^{\circ})$$

$$= 2\left[\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}\right]$$

$$= 2\left[\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right]$$

$$= 2\left[\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right]$$

$$= \frac{\sqrt{6} - \sqrt{2}}{2}$$

[6]

GRADE 12

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

QUESTION 5

$$6\cos x - 5 = \frac{4}{\cos x}$$

$$6\cos^2 x - 5\cos x = 4$$

$$6\cos^2 x - 5\cos x - 4 = 0$$

$$(3\cos x - 4)(2\cos x + 1) = 0$$

$$\cos x = \frac{4}{3} \quad \text{or} \quad \cos x = \frac{-1}{2}$$
no solution or $x = 120^\circ + k.360^\circ, k \in \mathbb{Z}$
or
$$x = 240^\circ + k.360^\circ, k \in \mathbb{Z}$$

Alternative solution for
$$\cos x = \frac{-1}{2}$$

$$x = k.360^{\circ} \pm 120^{\circ} \ k \in Z$$
[6]

Note:

If candidate puts $\pm k.360$ then $k \in \mathbb{N}_0$

QUESTION 6

$$\cos^{4} 375^{\circ} - \sin^{4} 345^{\circ}$$

$$= \cos^{4} 15^{\circ} - \sin^{4} 15^{\circ}$$

$$= (\cos^{2} 15^{\circ} + \sin^{2} 15^{\circ})(\cos^{2} 15^{\circ} - \sin^{2} 15^{\circ})$$

$$= (1)(\cos 30^{\circ})$$

$$= \frac{\sqrt{3}}{2}$$

[6]

SESSION 18

(LEARNER HOMEWORK SOLUTIONS)

QUESTION 7

7.1

$$\sin 19^{\circ} = \frac{t}{1}$$

$$x^{2} + t^{2} = 1^{2}$$

$$x^{2} = 1 - t^{2}$$

$$x = \sqrt{1 - t^{2}}$$

$$\sin 79^{\circ}$$

$$= \sin(19^{\circ} + 60^{\circ})$$

$$= \sin 19^{\circ} \cos 60^{\circ} + \cos 19^{\circ} \sin 60^{\circ}$$

$$= (t) \left(\frac{1}{2}\right) + \left(\frac{\sqrt{1 - t^{2}}}{1}\right) \left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{t + \sqrt{3}\sqrt{1 - t^{2}}}{2} = \frac{t + \sqrt{3 - 3t^{2}}}{2}$$
(7)

7.2

$$\tan 71^{\circ}$$

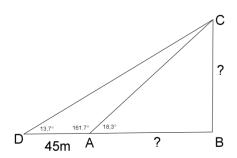
$$= \frac{\sin 71^{\circ}}{\cos 71^{\circ}}$$

$$= \frac{\cos 19^{\circ}}{\sin 19^{\circ}}$$

$$= \frac{\sqrt{1 - t^{2}}}{t}$$

$$= \frac{\sqrt{1 - t^{2}}}{t}$$

(3) **[10]**


SESSION 19

(HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK:

SESSION 19.1 TOPIC: 2D TRIGONOMETRY

QUESTION 1

$$DAC = 180 - 18,3 = 161,7^{\circ}$$

 $DCA = 180 - (13,7 + 161,7) = 4.6^{\circ}$

$$\frac{AC}{\sin 13.7} = \frac{45}{\sin 4.6}$$

$$\therefore AC = \frac{45sin13,7}{sin4,6} = 133m$$

In
$$\triangle ABC$$
 $sin 18,3 = \frac{BC}{AC} = \frac{BC}{132,89}$

$$BC = 132,89 \times sin18,3 = 42m$$

Tree is 42m

Using Pythagoras: $AB = \sqrt{((132.89 ...)^2 - (41.7 ...))^2} = 126m = width of the river$

$$\hat{NDB} = 360^{\circ} - 208^{\circ} = 152^{\circ}$$

$$\therefore \hat{MBD} = 28^{\circ}$$

$$\hat{BDA} = 208^{\circ} - 67^{\circ} = 141^{\circ}$$

$$\frac{\sin D\hat{B}A}{97} = \frac{\sin 141^{\circ}}{120}$$

$$\therefore \sin D\hat{B}A = \frac{97\sin 141^{\circ}}{120}$$

$$\therefore \hat{DBA} = 30,58^{\circ}$$

$$\therefore \hat{MBA} = 30,58^{\circ} + 28^{\circ}$$

$$\therefore \sin D\hat{B}A = 0,5087006494$$
 $\therefore M\hat{B}A = 58,58^{\circ}$

$$\therefore \hat{MBA} = 58,58^{\circ}$$

SESSION 19 SELF STUDY

(HOMEWORK SOLUTIONS)

SOLUTIONS TO HOMEWORK: SESSION 19.2 SELF

STUDY TOPIC: 3D TRIGONOMETRY

QUESTION 1

a) In
$$\triangle ABC$$

$$AC^2 = AB^2 + BC^2 - 2AB \cdot BC\cos(90 - \alpha)$$

$$= d^2 + \left(\frac{1}{2}d\right)^2 - 2d\left(\frac{1}{2}d\right)\sin\alpha$$

$$= \frac{5}{4}d^2 - d^2\sin\alpha = d^2\left(\frac{5}{4} - \sin\alpha\right)$$

$$\therefore AC = \frac{d\sqrt{(5-\sin\alpha)}}{2}$$

In
$$\triangle$$
ACP $tan\theta = \frac{PC}{AC}$ $PC = h = ACtan\theta = \frac{d\sqrt{(5-sin\alpha)}}{2}tan\theta$

b)
$$h = \frac{300(\sqrt{5-4sin32})}{2}tan63 = 500m$$

a)
$$\angle BAC = 180 - (\theta + \beta)$$

b)
$$\frac{AB}{\sin\beta} = \frac{x}{\sin(180 - (\theta + \beta))}$$
$$AB = \frac{x\sin\beta}{\sin(\theta + \beta)}$$

c i) IF AB = AC Then
$$\theta = \beta$$

$$AB = \frac{x \sin \theta}{\sin 2\theta} = \frac{x \sin \theta}{2 \sin \theta \cos \theta} = \frac{x}{2 \cos \theta}$$

ii) In
$$\triangle BDA$$

$$B = 90 - \theta$$

$$\frac{AB}{\sin \theta} = \frac{AD}{\sin(90 - \theta)} \quad \therefore AD = \frac{\cos \theta(\frac{x}{2\cos \theta})}{\sin \theta} = \frac{x}{2\sin \theta}$$

QUESTION 3

a)
$$\frac{7}{PB} = \sin 18^{\circ}$$

$$\therefore PB = \frac{7}{\sin 18^{\circ}}$$

$$\therefore$$
 PB = 22,65247584..

b)
$$\frac{18}{PA} = \cos 23^{\circ}$$

$$\therefore PA = \frac{18}{\cos 23^{\circ}}$$

$$\therefore PA = 19,55448679...$$

c)

$$AB^{2} = (22,65)^{2} + (19,55)^{2} - 2(22,65)(19,55) \cdot \cos 42^{\circ}$$

$$\therefore AB^{2} = 237,0847954...$$

$$\therefore AB = 15,40 \text{ m}$$

QUESTION 4

In ∆AEB:

$$EB^2 = 8^2 + 6^2$$

$$\therefore EB^2 = 100$$

$$\therefore EB = 10$$

In ∆GBC:

$$BC^2 = 15^2 + 8^2$$

$$\therefore BC^2 = 289$$

$$\therefore$$
 BC = 17

In ∆ACB:

$$EG^2 = 15^2 + 6^2$$

$$\therefore EG^2 = 261$$

$$\therefore$$
 EG = $\sqrt{261}$

In ∆EGB:

$$\therefore 261 = 389 - \left(340\cos E\hat{B}G\right)$$

$$\therefore -128 = -340\cos E\hat{B}G$$

$$\therefore \frac{32}{85} = \cos \hat{EBG}$$

$$\therefore \hat{EBG} = 67,88^{\circ}$$

