basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150
TIME: 3 hours

This question paper consists of 14 pages and 4 annexures.

INSTRUCTIONS AND INFORMATION

1. This question paper consists of FOUR questions. Answer ALL the questions.
2. Use ANNEXURE A and ANNEXURE B to answer QUESTION 1.3 and use ANNEXURE C and ANNEXURE D to answer QUESTION 4.1.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Start EACH question on a NEW page.
5. You may use an approved calculator (non-programmable and non-graphical), unless stated otherwise.
6. Show ALL calculations clearly.
7. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
8. Indicate units of measurement, where applicable.
9. Diagrams are NOT necessarily drawn to scale, unless stated otherwise.
10. Write neatly and legibly.

QUESTION 1

1.1 Violent incidents in South African schools are a national concern. Young persons are as much at risk of being victims of violence at school as they are outside the school.

The stacked bar graph below shows the recorded data of the number of times boys and girls committed certain types of violent acts at Metro High School during 2013.

Data showing violent incidents
at Metro High School during 2013.

Type of violent incidents

* Cyber bullying is the use of social media like SMS, BBM, WhatsApp, Facebook, Twitter, et cetera on cellphones, tablets or computers to deliberately harass, threaten or intimidate another person.
[Adapted from the South African School Administration and Management System]
1.1.1 Explain, with justification, whether the given data is discrete or continuous.
1.1.2 Determine how many more boys than girls were involved in violent incidents at Metro High School during 2013.
1.1.3 Determine the modal violent incident committed by girls at Metro High School during 2013. Explain why this type of incident is the modal violent incident committed by girls.
1.2 The majority of Metro High Schools' learners who committed violent incidents were Grade 9 boys.

The arranged ages of these Grade 9 boys and a corresponding box-and-whisker plot are given below.

[Adapted from the South African School Administration and Management System]
1.2.1 Determine the missing value \mathbf{A} if the range of the ages of the Grade 9 boys who committed violent incidents is 5 years.
1.2.2 Calculate the mean age of the Grade 9 boys who committed violent incidents.
1.2.3 Calculate the missing quartile values \mathbf{B}, \mathbf{C} and \mathbf{D} of the box-and-whisker plot.
1.2.4 A Grade 9 boy who committed a violent act is randomly selected. Determine the probability (expressed in decimal form) that the boy would be 16 years or older.
1.2.5 Give a possible reason why so many Grade 9 boys at Metro High School committed violent incidents.

The Department of Correctional Services became aware of the problem that Metro High School was experiencing with violent incidents at the school. They invited the school to visit one of their prisons on condition that one teacher had to accompany every group of 10 learners or fewer.

Mr Palm, the principal, must hire a bus to take the learners and teachers to visit the prison.
Graphs representing the total cost of hiring buses from two different transport companies are drawn on ANNEXURE A.
1.3.1 The total cost for hiring a bus from Company P is calculated by using the following formula:

Total cost (in rand) = number of passengers $\times 35$

Use the graphs on ANNEXURE A and write down a formula for calculating the total cost (in rand) for Company Q in the form:

Total cost $($ in rand $)=. .$.
1.3.2 Mr Palm has budgeted R900 for the total cost of the bus transport. Use the graphs on ANNEXURE A or the formulas in QUESTION 1.3.1 to determine the following:
(a) The maximum number of passengers that can be transported.
(b) The ratio of learners to teachers, if the maximum number of passengers is transported according to the condition set out by Correctional Services regarding the number of teachers.
1.3.3 Two of the teachers decided to play a game with two unbiased dice to determine who will accompany the learners on the trip.

Miss Ansie says she will go if the two rolled dice show a double six. Mr Boitumelo says he will go if the two rolled dice show a sum of seven.

The possible outcomes of rolling two unbiased dice are shown on ANNEXURE B.

Explain, with calculations, why it is more likely that Mr Boitumelo rather than Miss Ansie will accompany the learners.

QUESTION 2

2.1 Daya, a health worker, needs to purchase a car to travel to work. She sees advertisements for two models, a Sonic 1.6 and an Aveo 1.6.

Both cars need the same percentage deposit and have a full maintenance plan. The running costs for the first year will only be the monthly instalments and petrol costs.

TABLE 1 below shows the monthly instalment and average petrol consumption for the two models.

TABLE 1: Monthly instalment and petrol consumption of the two models

MODEL	MONTHLY INSTALMENT	AVERAGE PETROL CONSUMPTION
Sonic 1.6	R2 657	6,7 litres per 100 km
Aveo 1.6	R1 942	7,3 litres per 100 km

The petrol price was R14,04 per litre on 16 May 2014.
[Source: Daily News, Friday 16 May and www.chevrolet.co.za]
2.1.1 State, showing calculations, which model will cover a greater distance using R500 worth of petrol.

NOTE: All other conditions for both models will be identical.
2.1.2 State TWO other factors, besides petrol consumption, that could influence the distance travelled by a car using a full tank of petrol.
2.1.3 Daya estimates that she will travel a total distance of 35000 km during the first year.

Show, with calculations, which one of the models would be more economical for her to use for the first year.
2.2 Daya is interested in the different stages of child development, namely childhood, pre-adolescence and adolescence.

The graph below shows the different stages of child development according to age and average height.

Different stages of child development according to age and average height

[Source: www.WHO/growthcharts]
2.2.1 In which age group will both boys and girls have approximately the same average height for nearly a whole year?
2.2.2 Give TWO possible reasons why it cannot be said with certainty that a 10 -year-old boy will be 55 inches tall.
2.2.3 Identify the different age groups where the average height of girls is more than that of boys.
2.2.4 A colleague of Daya made the following statement: 'All the stages of child development for boys are longer than those for girls.'

Give a detailed motivation why this statement is NOT correct.
2.2.5 Describe a possible trend for the average height of girls who are 14 years and older.
2.2.6 Daya's 14 -year-old son is 165 cm tall. Show by calculation whether he is above or below the average height for his age.

NOTE: $1 \mathrm{~cm}=0,3937$ inches

QUESTION 3

3.1 Mr Fortune is a 40-year-old male who receives a basic monthly salary of R20 416,67 and an annual bonus equal to his basic monthly salary. His gross annual income for the 2013/2014 tax year is made up of his basic monthly salary and annual bonus.

He contributes 6% of his basic monthly salary towards his pension fund, but no pension contribution is deducted from his annual bonus.

The following table showing the annual income tax deductions for individuals and special trusts for the 2013/2014 tax year is used by Mr Fortune to calculate his income tax payable to SARS.

TABLE 2: Annual income tax deductions for individuals and special trusts

2013/2014

INCOME TAX: INDIVIDUALS AND SPECIAL TRUSTS

Tax rates (year of assessment ending 28 February 2014)
Individuals and special trusts

Taxable income (R)	Rate of tax (R)
$0-165600$	18% of taxable income
$165601-258750$	$29808+25 \%$ of taxable income above 165600
$258751-358110$	$53096+30 \%$ of taxable income above 258750
$358111-500940$	$82904+35 \%$ of taxable income above 358110
$500941-638600$	$132894+38 \%$ of taxable income above 500940
638601 and above	$185205+40 \%$ of taxable income above 638600
Tax rebates	R12
Primary	Secondary (Persons 65 year and older)
R6 750	
Tertiary (Persons 75 year and older)	R2 250

NOTE:

1. Annual income tax is calculated on income after the total pension contributions have been deducted.
2. Income tax payable on annual bonus amounts is spread equally over 12 months.
[Source: www.sars.gov.za]
3.1.1 Calculate Mr Fortune's gross annual taxable income.
3.1.2 Use the annual income tax table above to calculate his annual income tax payable for the year ending 28 February 2014.
3.1.3 Hence, calculate Mr Fortune's net monthly salary if only income tax and pension deductions are considered.

Dr Khoza, a representative of the South African National Defence Force, wants to compare the amount budgeted for defence in relation to the total national budget.

TABLE 3 below compares the amount budgeted for the 2012/13 to 2014/15 financial years for defence with the total national budget for the same years.

TABLE 3: The amounts budgeted for defence and the total national budget

Financial year	Amount budgeted for defence in billion rand	Total national budget in trillion rand
$2012 / 13$	41,6	1,06
$2013 / 14$	44,8	1,15
$2014 / 15$	47,9	1,25

The annual inflation rate for 2013 was 5,77\%.
NOTE: 1 trillion = 1000 billion
[Source: www.treasury.gov.za and www.inflation.eu/inflation-rates/cpi-inflation-2013.aspx]
3.2.1 Dr Khoza claimed that her department's percentage budget increase for the 2014/15 financial year exceeded the annual inflation rate for 2013.

Show by calculation whether her claim is valid.
3.2.2 Dr Khoza also compared the percentage growth for her department's budget with the percentage growth of the total national budget from 2013/14 to 2014/15. She stated that the defence budget is not increasing at the same annual rate as the national budget.

Verify, by calculation, whether statement is correct.
3.2.3 The percentage growth figures published with each year's budget are as follows:

- 2013/14: up by $8,1 \%$
- 2014/15: up by $5,9 \%$

Calculate the actual amount allocated for the 2014/15 financial year using the budgeted amount of R41,6 billion and the percentage growth figures as given above.
3.2.4 If the amount R47,9 billion is rounded off to the nearest billion, it becomes R48 billion.

Give a reason, with an example, to show why rounding off to the nearest billion will influence the budget allocation.

3.3.1 Why do you think graphical representations were used to show the data of tax collected?
3.3.2 Explain which type of graphical representation would be most suitable to represent the general trend in tax collection showing the different tax categories over a two-year period.

QUESTION 4

Jackie and her friend plan to attend an opera performance at the Royal Opera House in Muscat, the capital of Oman. She will pay the total cost of the trip for both of them. The currency of Oman is the Omani rial (OR).

The opera house in Muscat has four levels of seating. ANNEXURE C shows the layout of the seats of Level 0 only. Each level has different seating zones. The price for each zone for opera performances is summarised in the table below.

TABLE 4: Prices for opera performances

Zones	Number of seats per level				Price per ticket in OR
	Level 0	Level 1	Level 2	Level 3	
A		72			$\mathbf{7 8}$
B	380		8		$\mathbf{4 8}$
C	X	12	23		$\mathbf{4 2}$
D			81		$\mathbf{2 8}$
E			34	78	$\mathbf{1 5}$
F			8	74	$\mathbf{1 0}$
[Adapted from www.rohMuscat.org.om/book-now/pricing-seat-plans]					

Use ANNEXURE C and the information in TABLE 4 to answer the following questions.
4.1.1 All the seats of the Opera House, except for two seats in Zone B of Level 0 , were sold out for one of the opera performances. These available seats are located in the fifth row from the stage and are exactly in the middle of the row. Jackie decided to book these two available seats.
(a) Identify the seat numbers of the seats that Jackie booked.
(b) Determine the missing value \mathbf{X}.
(c) Calculate the total income, in Omani rial, from ticket sales for this performance.
4.1.2 When she made her booking, Jackie also obtained information from the Internet regarding exchange rates and flight details, as shown in the tables given on ANNEXURE D.

Use the tables on ANNEXURE D to answer the following questions.
(a) Calculate the total cost, in rand, of the opera tickets and return airline tickets for both of them.
(b) Calculate the time in South Africa when they arrive in Muscat.

While Jackie was searching for more information about Muscat she came across the following distance chart. On the chart Muscat is the centre point of the concentric circles.

NOTE: Concentric circles are circles having the same centre.

Use the distance chart above to answer the following questions.
4.2.1 In what general direction is Johannesburg from Muscat?
4.2.2 Kampala is a capital city in Africa. Explain why it would not be possible to calculate the distance between Johannesburg and Kampala using this distance chart.
4.2.3 The distance between each of the concentric circles on the chart is 3349 km , as shown on the chart. Calculate the approximate distance from Muscat to Sydney.

Jackie bought a replica of the giant incense tower she saw in Muscat as a souvenir. She displays the replica in an octagonal glass display case with a wooden base as shown in the picture below. On top of the base is an octagonal mirror to enhance the display of the incense tower.
The inside dimensions of the identical rectangular side glass panels of the display case is 110 mm by 250 mm .
The inside surface area of the octagonal top is $0,058423 \mathrm{~m}^{2}$.

Top view of the octagonal display case

NOTE: All eight sides of the octagon are equal in length.

Rectangular side glass panel

The following formula may be used: $\mathbf{T S A}=\mathbf{P} \times \mathbf{H}+\mathbf{K}$, where:
TSA = The total inside surface area of the octagonal display case, excluding the mirror
$\mathbf{P}=$ The perimeter of the octagonal base
$\mathbf{H}=$ The height of the rectangular side glass panels
$\mathbf{K}=$ The inside surface area of the octagonal top
4.3.1 Jackie would like to tint the inside of the glass using a special type of spray paint. This paint is sold in $250 \mathrm{~m} \ell$ spray cans.

The following information is printed on the side of the spray can:

- $100 \mathrm{~m} \ell$ of spray paint can cover $0,07 \mathrm{~m}^{2}$ of glass per coating.
- Apply two coats.

Calculate the number of spray cans of paint needed to tint the glass of the display case.
4.3.2 The scale of the replica is $1: 164$.

Calculate the actual height, in metres, of the tower if the height of the replica inside the display case is only 1 cm less than the height of the side glass panels.
4.4 Jackie bought another glass display cabinet for her other souvenirs. The photograph and diagrams below show five diagrammatic instructions on how the display cabinet must be assembled.

Photograph of the glass display cabinet

Diagram of the completed glass display cabinet

Diagrammatic instructions to assemble the cabinet:

Write a detailed set of instructions, using only the first FOUR diagrammatic instructions, to describe how the display cabinet should be assembled.

ANNEXURE A

QUESTION 1.3

Total cost of hiring a bus from two different
transport companies

ANNEXURE B

QUESTION 1.3.3

A representation of all the possible outcomes of rolling two unbiased dice

ANNEXURE C
QUESTION 4.1

SEATING PLAN FOR LEVEL 0

- Zone B
- Zone C

ANNEXURE D

QUESTION 4.1

TABLE 5: Exchange rates for the Omani rial

OR exchange rates				
	Indian Rupee (R)	$\begin{gathered} \text { Euro } \\ (€) \end{gathered}$	US dollar (\$)	South African rand (R)
1 OR	156,188	1,87126	2,59673	27,2183

[Source: www.xe.com/currency/omr-omani-rial?c=ZAR]

TABLE 6: Flight details from Johannesburg to Muscat for the return flight of Jackie and her friend

$\begin{gathered} \text { €492,29 } \\ \text { per } \\ \text { passenger } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { DEPARTURE } \\ \text { TIME } \\ \hline \end{array}$		ARRIVAL TIME		$\begin{gathered} \hline \text { DURATION } \\ \text { OF TRIP } \\ \hline \end{gathered}$
	Departure	20:30	Johannesburg	09:55	Muscat	11 hours 25 minutes
	Return	05:25	Muscat	17:10	Johannesburg	13 hours 45 minutes

Airline fare per passenger in euro; tax included; service fees not included

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding

This memorandum consists of $\mathbf{2 0}$ pages.

[^0]| Ques | Solution | Explanation | |
| :---: | :---: | :---: | :---: |
| * 1.1.3 | Cyber bullying $\checkmark \mathrm{A}$
 Girls avoiding physical violence. $\checkmark \checkmark \mathrm{O}$
 OR
 Girls are afraid of confrontation and fighting $\checkmark \checkmark \mathrm{O}$
 OR $\quad \checkmark \checkmark \mathrm{O}$
 Easier to express their emotions/feelings on social media | $1 \mathrm{~A} / \mathrm{RG}$ reading from graph
 2 O explanation | $\begin{array}{\|l\|} \hline \text { L3(1) } \\ \text { L4(2) } \end{array}$ |
| | | (3) | |
| 1.2.1 | $\begin{aligned} \text { Range } & =\text { Highest value }- \text { Lowest value } \\ 5 & =18-\mathrm{A} \checkmark \mathrm{M} \\ \mathbf{A} & =13 \checkmark \mathrm{CA} \end{aligned}$ | 1 M concept of range 1 CA value of A | L2 |
| | | | |
| | $\begin{gathered} \checkmark \mathrm{M} \\ \mathrm{~A}=18-5=13 \checkmark \mathrm{CA} \quad \text { OR } \end{gathered}$ | OR
 1 M concept of range using 5 1CA value of A | |
| | | Answer only full marks | |
| | | (2) | |
| 1.2.2 | $\begin{aligned} \text { Mean } & =\frac{13+14 \times 4+15 \times 5+16 \times 10+17 \times 13+18 \times 7}{40^{\checkmark} \mathrm{A}} \checkmark \mathrm{M} \\ & =\frac{651}{40} \quad \checkmark \mathrm{CA} \\ & =16,275 \end{aligned}$ | NB: Answer from Q
 1.2.1
 1 M adding all 40 values
 1 A dividing by 40
 1CA Simplification | L2 |
| | | NPR | |
| | | Answer only full marks | |
| | | (3) | |

[^1]| Ques | Solution | Explanation | L2 |
| :---: | :---: | :---: | :---: |
| 1.2.3 | $\mathbf{B}=\frac{15+\sqrt{\vee} \mathrm{A}}{2}=15,5 \checkmark \mathrm{CA}$$\begin{gathered} \checkmark \mathrm{M} \\ \mathbf{C}=\frac{16+17}{2}=16,5 \checkmark \mathrm{CA} \end{gathered}$$\mathbf{D}=17 \quad \checkmark \mathrm{CA}$ | 1 A identifying the correct values
 1 CA value of B [If only $\mathrm{B}=15$ then one mark
 and
 If answer only $\mathrm{B}=23$ then one mark]
 1 M concept of median
 1 CA value of C
 1 CA value of D | |
| | | Answer Only full marks | |
| 1.2.4 | $\begin{aligned} \mathrm{P} & =\frac{30}{40}^{\checkmark \mathrm{A}} \\ & =0,75 \checkmark \mathrm{CA} \end{aligned}$ | 1A 30 grade 9 boys
 1 A no. of boys 40
 1CA decimal
 Answer Only full marks | L2 |
| | | (3) | |
| 1.2.5 | The grade 9 boys are too old for their grade. $\checkmark \checkmark \mathrm{J}$
 OR
 Social:
 Need recognition / low self- esteem / identity crisis.
 OR
 Economic:
 To gain favours from others. $\checkmark \checkmark \mathrm{J}$
 OR
 Educational:
 They are frustrated by their lack of progress. $\checkmark \checkmark \mathrm{J}$
 OR
 Environmental factors/ emotional factors $\checkmark \checkmark \mathrm{J}$
 OR $\checkmark \checkmark J$
 Contextual factors/ No parental control/Peer pressure
 OR $\checkmark \checkmark \mathrm{J}$
 Violent community / child headed family/gang related | 2J reason | |

Ques	Solution	Explanation	
1.3.1	Total cost in Rand of persons more than $15 \checkmark \mathrm{~A}$ OR Total cost (in Rand) $\begin{array}{cc} \checkmark \mathrm{A} \\ = & \checkmark 00+(\text { the number of persons }-15) \times 50 \end{array}$ OR Total cost (in Rand) $\underset{\checkmark \mathrm{A}}{\stackrel{\checkmark}{ }} \stackrel{\checkmark \mathrm{~A}}{300}+\underset{(n-15}{ } \text { persons }) \times 50$ Where n is the number of persons more than 15 OR Total cost (in Rand) $\checkmark \mathrm{A}$ $\begin{equation*} =\text { (number of persons) } \times 50-450 \quad \checkmark \checkmark \mathrm{~A} \tag{4} \end{equation*}$	1A constant cost 1A 15 persons 1A number of persons more than 15 1A multiply by the rate R50 OR 1A constant cost 1A using 15 persons 1A using a variable with explanation 1A multiply by the rate R50 OR 1A constant cost 1A using 15 persons 1 A using a variable with explanation 1A multiply by the rate R50 OR $2 \mathrm{~A}-450$ 1A number of persons 1A multiply by the rate R50	
1.3.2 (a)	$\begin{aligned} & \checkmark \text { SF } \\ & 900=300+(n-15 \text { persons }) \times 50 \\ & (n-15 \text { persons }) \times 50=600 \\ & n-15 \text { persons }=12 \\ & n=27 \checkmark \mathrm{~A} \\ & \text { OR } \\ & 27 \quad \checkmark \vee \mathrm{RT} \end{aligned}$	1SF Substituting in formula 1A Maximum number OR 2 RT Max number of passengers [Both 25 and 27 one mark and 25 only, no marks]	L3

Ques	Solution	Explanation	
$1.3 .2$ (b)	10 learners +1 teacher 10 learners +1 teacher $\quad \checkmark \checkmark$ MA 4 learners +1 teacher $\therefore 24$ learners and 3 teachers ${ }^{\checkmark}$ A $\begin{gathered} 24: 3 \checkmark \mathrm{CA} \\ =8: 1 \quad \checkmark \mathrm{CA} \end{gathered}$ OR 1 educator for 10 learners $\therefore \frac{1}{11} \times 27=2,454545 \ldots$ teachers $\quad \checkmark \mathrm{MA}$ $\therefore 3$ teachers $\checkmark \mathrm{R}$ And 24 learners 24:3 \checkmark CA 8: $1 \checkmark \mathrm{CA}$	NB: Use CA from Q1.3.2(a) 2MA working with ratio 1A Number of teachers 1CA ratio in correct order 1CA simplified ratio OR 1MA working with ratio 1CA number of teachers 1R Rounding up 1CA ratio in correct order 1CA simplified ratio	L3
1.3.3	There is only one double six. $\checkmark \mathrm{A}$ There is 6 combinations of seven. \checkmark A \therefore Mr Boitumelo has a larger probability than Miss Ansie to accompany the learners. $\checkmark \mathrm{O}$ $\begin{gathered} \checkmark \mathrm{A} \quad \text { OR } \\ \mathrm{P}_{\text {(double six) }}=\frac{1}{36} \approx 2,8 \% \\ \mathrm{P}_{(\text {seven })}=\frac{6}{36}=\frac{1}{6} \approx 16,7 \% \quad \checkmark \mathrm{~A} \end{gathered}$ \therefore Mr Boitumelo has a larger probability than Miss Ansie to accompany the learners. $\checkmark \mathrm{O}$	1A probability of double six 1A probability of seven 10 explanation OR 1A probability of double six 1A probability of seven 10 explanation	L4
		[38]	

Ques	Solution	Explanation	
2.1.2	Number of stops and the length of stopping while the engine is running. $\quad \checkmark \mathrm{O}$ OR The driving pattern of the driver for example fast acceleration and hard breaking. \checkmark O OR \checkmark O Driving at high speeds with open windows OR Use of the air conditioner. $\checkmark \mathrm{O}$ OR The condition of the car with relation to tyre pressure, load, etc. $\checkmark \mathrm{O}$ OR $\quad \checkmark \mathrm{O}$ Condition of the road surface, and the slope of the road. $\checkmark \mathrm{O} \quad \text { OR }$ Mechanical fault / condition / Electronic damage OR Load and number of passengers in vehicle $\checkmark \mathrm{O}$ OR Traffic congestion $\checkmark \mathrm{O}$	10 any FIRST correct factor 10 for any SECOND correct factor	L4
2.1.3	Sonic Monthly petrol cost (in Rand) $\begin{gathered} \checkmark \mathrm{M} \checkmark \mathrm{~A} \quad \checkmark \mathrm{MA} \\ =\frac{35000}{12} \times 14,04 \times \frac{6,7}{100}=2743,65 \checkmark \mathrm{CA} \end{gathered}$ $\begin{aligned} \text { Total running cost(in Rand) } & =2743,65+2657,00 \\ & =5400,65 \checkmark \mathrm{CA} \end{aligned}$ Aveo Monthly petrol cost (in Rand) $=\frac{35000}{12} \times 14,04 \times \frac{7,3}{100}=2989,35 \checkmark \mathrm{CA}$ $\begin{aligned} \text { Total running } \operatorname{cost}(\text { in Rand }) & =2989,35+1942,00 \\ & =4931,35 \checkmark \mathrm{CA} \end{aligned}$ \therefore Aveo 1.6 is more economical. $\checkmark \mathrm{O}$ OR	1 M dividing by 12 1A multiply petrol price 1MA multiply by consumption rate 1 CA petrol cost Sonic 1CAtotal running cost for the Sonic 1 CA petrol cost Aveo 1CA total running cost for the Aveo 10 conclusion [3 out of 8 marks if petrol cost ignored]	

Ques	Solution	Explanation	
2.2.1	Age 6 to 7 years. $\checkmark \checkmark$ RG	2RG the age [6 or 7 one mark] [Including other intersection points ONLY one mark]	L2
2.2.2	Growth is a continuous phenomenon. $\checkmark \mathrm{O}$ OR Growth is affected by many factors like nutrition and health. OR $\checkmark \mathrm{O}$ It is influenced by genetic makeup inherited from parents. OR This graph is for average heights. $\quad \checkmark \mathrm{O}$ OR Physical disabilities will influence height $\checkmark \mathrm{O}$	10 any FIRST correct reason 10 for any SECOND correct reason	L4
2.2.3	$\begin{aligned} & \text { Between } 4 \text { and } 6 \text { years } \quad \checkmark \mathrm{RG} \\ & \text { Between } 11 \text { and } 14 \text { years } \quad \checkmark \mathrm{RG} \end{aligned}$	1RG reading from graph 1 RG reading from graph [5 and 13 only one mark]	L2
2.2.4	Boys stay longer than girls in childhood. $\checkmark \checkmark$ RG Both girls and boys remain the same in pre-adolescence $\sqrt{ } \mathrm{RG}$ Girls stay longer in adolescence. $\quad \checkmark \checkmark$ RG OR	2RG comparing childhood stage 1RG comparing preadolescence 2RG comparing adolescence OR	L4

Ques	Solution	Explanation	
$\begin{aligned} & \hline 2.2 .4 \\ & \text { Cont. } \end{aligned}$	Childhood Girls stay in childhood stage: 7 years $\quad \checkmark \checkmark$ RG Boys stay in childhood stage: 9 years Pre-adolescence Girls stay in pre-adolescent stage: 2 years Boys stay in pre-adolescent stage: 2 years $\quad \checkmark$ RG Adolescence Girls stay in adolescent stage: 6 years Boys stay in adolescent stage: 4 years $\quad \checkmark \checkmark$ RG	2RG number of years in childhood 1RG number of years in pre-adolescence 2RG number of years in adolescence	
2.2.5	The girls' height slows down/stabilizes/levels/evens out. $\checkmark \checkmark \mathrm{O}$ OR $\checkmark \checkmark \mathrm{O}$ The girls' growth rate relating to height decreases.	2 O trend [0 marks or 2 marks] [Trend relating to girls only]	L4
2.2.6	$\begin{array}{lr} \text { Height in inches } \\ =165 \times 0,3937 & \checkmark \mathrm{C} \\ =64,9605 & \checkmark \mathrm{~A} \end{array}$ $\checkmark \checkmark \mathrm{CA}$ The boy's height is above the average height for boys OR Height in cm $\begin{aligned} & =\frac{63}{0,3937} \quad \checkmark \mathrm{C} \\ & =160,02 \quad \checkmark \mathrm{~A} \end{aligned}$ The boy's height is above the average height for boys	1C conversion 1A accuracy 2CA conclusion [Range 62 to 65] OR 1C conversion 1A accuracy 2CA conclusion [Range 157 to 165]	L3
		[33]	

QUESTION 3 [34 MARKS]			
Ques	Solution	Explanation	
3.1.1	Note: Afrikaans scripts to be marked differently		L3
	$\text { Annual salary }=\text { R } 20416,67 \times 12=R 245000,04 \text { MA }$	1MA annual salary	
	Pension $=$ R $245000,04 \times 6 \%=\mathrm{R} 14700,00 \quad \checkmark \mathrm{CA}$	1CA pension	
	$\begin{aligned} & \text { Taxable amount without bonus } \\ & =\mathrm{R} 245000,04-\mathrm{R} 14700,00=\mathrm{R} 230300,04^{\checkmark} \mathrm{CA} \end{aligned}$	1CA subtracting the pension	
	$\begin{aligned} & \text { Taxable annual income } \\ & =\text { R230 } 300,04+\mathrm{R} 20 \\ & 416,67=\text { R250 } \\ & \text { 716, } \\ & \hline \end{aligned}$	1 CA taxable annual income	
	OR	OR	
	$\begin{aligned} & \text { Monthly pension = R20 } 416,67 \times 6 \%=\text { R1 } 225 \\ & \begin{aligned} \text { Monthly taxable salary } & =\text { R20 } 416,67-\text { MA } \\ & \text { R } 1925 \end{aligned} \\ & 191,67 \checkmark \text { CA } \end{aligned}$	1MA pension 1CA subtracting the pension	
	$\begin{aligned} \text { Annual taxable income } & =\text { R19 191,67 } \times 12+\mathrm{MA} \\ & =\text { R250 } 2516,71 \checkmark \mathrm{CA} \end{aligned}$	1MA annual salary 1 CA taxable annual income	
	Annual taxable income OR	OR	
		1MA multiplying by 13 1MA calculating the pension	
	$=\mathrm{R} 265416,71-\mathrm{R} 14700 \checkmark \mathrm{CA}$	1CA subtracting the pension	
	$=\mathrm{R} 250$ 716,71 ${ }^{\text {c }} \mathrm{CA}$	1 CA taxable annual income	
		[Pension omitted lose 2 marks] [Bonus omitted lose 1 mark]	
3.1.2		NB: Amount from Q3.1.1 1A for correct tax bracket 1 SF for substituting into the formula	L3
		1S simplification 1CA for tax amount	
		1CA for tax amount after rebate NPR	
		(5)	

Ques	Solution	Explanation	
3.1.3	$\text { Monthly Tax }=\text { R } 39007,18 \div 12=\text { R } 3250,60$ Net monthly salary = Monthly salary - pension - monthly tax $\begin{aligned} & =\text { R } 20416,67-\text { R } 1225-\mathrm{R} 3250,60 \\ & =\text { R } 15941,07 \checkmark \text { CA } \end{aligned}$ OR Annual salary after tax = Annual salary - pension - annual tax $\begin{aligned} & =\mathrm{R} 245000,04-\mathrm{R} 14700,00-39007,18 \\ & =\mathrm{R} 191292,86 \checkmark \mathrm{CA} \\ & \therefore \text { Net monthly salary }=\frac{\mathrm{R} 191292,86}{12} \\ & =\mathrm{R} 15941,07 \quad \checkmark \mathrm{CA} \end{aligned}$	1CA for tax value per month 1 M for subtracting both values 1CA net salary [CA only if a monthly salary is used] OR 1 M for subtracting both values 1CA annual salary 1CA monthly salary [dividing by 12]	L3
3.2.1	Amount if inflation rate was used for increase $\begin{aligned} & \checkmark \mathrm{A} \quad \checkmark \mathrm{M} \\ = & \mathrm{R} 44,8 \text { billion } \times 105,77 \% \\ = & \mathrm{R} 47,38496 \text { billion } \quad \checkmark \mathrm{CA} \end{aligned}$ $\checkmark M$ This amount is less than the amount which was allocated, therefore her claim was valid. $\quad \checkmark \mathrm{O}$ OR Amount if inflation rate was used for increase $\begin{aligned} & \checkmark \mathrm{A} \\ &= \checkmark \mathrm{M} \\ &= \mathrm{R} 44800 \\ &= 000 \\ &= 000 \times 105,77 \% \\ & \hline 184960000 \quad \checkmark \mathrm{CA} \end{aligned}$ \checkmark M This amount is less than the amount which was allocated, therefore her claim was valid. $\quad \checkmark \mathrm{O}$	1A correct amount from table 1M percentage increase 1CA increased amount 1 M comparing 10 stating that she is correct OR 1A correct amount from table 1M percentage increase 1CA increased amount 1 M comparing 10 stating that she is correct OR	$\begin{aligned} & \text { L3(4) } \\ & \text { L4(1) } \end{aligned}$

Ques	Solution	Explanation	
$3.2 .1$ Cont.	$\begin{aligned} \text { Difference } & =\text { R47,9 billion }- \text { R44,8 billion } \checkmark \mathrm{A} \\ & =\text { R3, } 1 \text { billion } \checkmark \mathrm{M} \end{aligned}$ Percentage increase $\begin{aligned} & =\frac{\mathrm{R} 3,1 \text { billion }}{\mathrm{R} 44,8 \text { billion }} \times 100 \% \checkmark \mathrm{MA} \\ & =6,919642857 \% \\ & \approx 6,9 \% \quad \checkmark \mathrm{CA} \end{aligned}$ Her claim is valid. $\quad \checkmark \mathrm{O}$ Note [Word billion must be there when subtracting and not for \%]	1A correct amount from table 1 M subtracting correct values 1MA calculating the percentage increase 1CA for rounding off 10 stating that she is correct	
3.2.2	Department of National Defence percentage growth from 2013/14 to $2014 / 15$ is $6,9 \% \checkmark \mathrm{CA}$ South African national budget percentage growth from 2013/14 to 2014/15 $\begin{aligned} & =\frac{\checkmark \mathrm{M} / \mathrm{A}}{\mathrm{R} 1,25 \text { trillion }-\mathrm{R} 1,15 \text { trillion }} \\ & \mathrm{R} 1,15 \text { trillion } \end{aligned} 100 \% \quad \checkmark \mathrm{M} .$ Dr Khoza’s statement is correct. ${ }^{\checkmark} \mathrm{O}$	* CA from Q3.2.1 1CA correct percentage 1M/A using correct values 1 M calculating growth 1CA calculating average \% 10 Stating that the increase is greater	$\begin{aligned} & \hline \text { L3(3) } \\ & \text { L4(2) } \end{aligned}$
3.2.3		1 M for increasing by $8,1 \%$ 1CA the amount 1 M for increasing by $5,9 \%$ 1CA the amount OR 1 M for increasing by $8,1 \%$ 1CA the amount 1 M for increasing by $5,9 \%$ 1CA the amount NPR [Penalty 1 mark if billions omitted]	L3

Ques	Solution	Explanation	
3.2.4	Difference $=\mathrm{R} 48$ billion $-\mathrm{R} 47,9$ billion $=\mathrm{R} 0,1$ billion. In reality the difference is not 0,1 but an amount of R100 000000 (one hundred million) $\checkmark \mathrm{O}$ Example: R 47,9 billion rounded R48 billion implies that there will be an over allocation of R100 million $\checkmark \mathrm{O}$	10 for identifying the difference of 0,1 10 For knowing that 0,1 billion is 100000000 10 suitable example must be chosen	L4
3.3.1	A visual representation is more understandable (make sense of) for the general public than a table with values only. $\quad \checkmark \checkmark$ O OR A visual representation is easier to read than text or table consisting of values. $\checkmark \checkmark \mathrm{O}$ OR The actual values are in billions and trillions which many people don't understand, where in these graphs percentages are used which are more understandable. $\checkmark \checkmark \mathrm{O}$	2 O reason	L4
3.3.2	\checkmark O A bar graph (multiple/compound) is more appropriate to display this data The bar graph will allow for a much more-in-depth analysis of the trends in the collection of tax between the different categories over a period of time. OR Line or broken line graph $\quad \checkmark \mathrm{O}$ The two lines will allow for a much more-in-depth analysis of the trends in the collection of tax between the different categories over a period of time.	10 identifying the type of graph 2 O for explaining the advantage of a bar graph OR 10 identifying the type of graph 2 O for explaining the advantage of a broken line graph	L4
		[34]	

QUESTION 4 [45 marks]			
Ques	Solution	Explanation	
4.1.1(a)		1A correct row number 1A seat number 1CA second seat number [15 and 16 two marks]	L2
4.1.1(b)	$\stackrel{\checkmark}{\wedge} \stackrel{\checkmark}{\mathrm{A}} \times 2=48 \text { seats }$	1A 24 seats 1A total number of seats (2)	L2
4.1.1(c)		* seats from Q 4.1.1 (b) 1MA adding the values 1RT cost zone A and B 1RT cost for zone C and D 1RT cost for zone E and F 1S simplification 1CA answer [One mark for every 2 zones]	L3
4.1.2(a)	$\begin{aligned} \text { Cost for } 1 \text { zone B ticket } & =48 \text { OR } \checkmark \mathrm{A} \\ & =\mathrm{R} 27,2183 \times 48 \\ & =\mathrm{R} 1306,48 \quad \checkmark \mathrm{C} \end{aligned}$ Cost in Euro for one flight ticket $=492,29$ $\begin{aligned} \text { Cost in OR for one flight ticket }= & \frac{492,29}{1,87126} \quad \checkmark \mathrm{M} \\ & =263,08 \end{aligned}$ $\begin{aligned} \text { Cost in Rand for one flight ticket } & =263,08 \times \mathrm{R} 27,2183 \checkmark \mathrm{M} \\ & =7160,59 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total cost per person } & =\text { R } 1306,48+\mathrm{R} 7160,59 \\ & =\text { R } 8467,07 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total cost for two } & =\text { R } 8467,07 \times 2 \\ & =\text { R } 16934,14 \quad \checkmark \mathrm{CA} \end{aligned}$	1A cost of ticket 1C convert OR to Rand 1M convert Euro to OR 1M convert OR to Rand 1CA cost of one ticket 1CA calculating total cost per person 1CA calculating total cost for two people OR	L4

Ques	Solution	Explanation	
$\begin{aligned} & \text { 4.1.2(a) } \\ & \text { (cont.) } \end{aligned}$	OR $\checkmark \mathrm{A}$ $\text { Cost for Zone B tickets: } 2 \times 48 \text { OR }=96 \text { OR } \checkmark \mathrm{A}$ $\text { Flight tickets in OR }=\frac{2 \times 492,29}{1,87126} \checkmark \mathrm{C}$ $=526,1588448 \checkmark \mathrm{CA}$ Total cost: $526,1588448+96=622,1588448 \checkmark \mathrm{CA}$ $\begin{aligned} \text { Cost in Rand } & =622,1588448 \times 27,2183 \checkmark \mathrm{C} \\ & =16934,11 \checkmark \mathrm{CA} \end{aligned}$	1A cost for one ticket 1 C conversion 1A 2 flight tickets 2M convert Euro to rand 1CA cost of 2 tickets in rand 1CA total cost OR 1A cost for one ticket 1 A cost of 2 tickets 1C conversion to OR 1CA ticket price 1CA total cost 1C convert OR to Rand 1CA cost in rand	
4.1.2(b)	Time leaving Johannesburg + flight time $=20 \mathrm{~h} 30+11 \mathrm{~h} 25=31 \mathrm{~h} 55 \quad \mathrm{~A}$ Time in South Africa when they arrived: 07:55 or 7.55 am or five minutes to eight in the morning	1 A adding 1CA correct time [If written as 07 h 55 one mark only] Answer only full marks	L2
4.2.1	South westerly (SW) $\quad \checkmark \checkmark$ A OR South, south westerly (SSW)	2A correct direction	L2

Ques	Solution	Explanation	
4.2.2	This chart only shows distances from Muscat. OR They don't lie in the same direction. This is not a map / strip chart.	2 O opinion	L4
4.2.3	$\begin{aligned} \text { Muscat to Sydney } & \approx 3349 \mathrm{~km} \times 3,5 \stackrel{\mathrm{RT}}{ } \quad \begin{aligned} & \\ & \approx 10716,8 \text { to } 11721,5 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned} \\ & \end{aligned}$	1RT correct value 1M multiplication by 3349 1CA correct distance [Range of values 3,2 to 3,5] [3 or 4 then max 2 marks]	L2
4.3.1	$\begin{aligned} \mathrm{TSA} & =\mathrm{P} \times \mathrm{H}+\mathrm{K} \\ & =8 \times 110 \mathrm{~A} \\ & =220000 \mathrm{~mm}^{2}+584250 \mathrm{~mm}+58423 \mathrm{~mm}^{2} \\ & =278423 \mathrm{~mm}^{2} \\ & =0,278423 \mathrm{~m}^{2} \quad \checkmark \mathrm{~S} \end{aligned}$ For $0,07 \mathrm{~m}^{2}$ one needs $100 \mathrm{~m} \ell$ of paint $\begin{aligned} & \therefore 1 \mathrm{~m}^{2} \text { one need } \begin{array}{rl} \frac{100}{0,07} & \mathrm{~m} \ell \\ =1 & 428,57 \mathrm{~m} \ell \\ \begin{aligned} \therefore 0,278423 \mathrm{~m}^{2} \text { need } & =1428,571429 \times 0,278423 \\ & =397,7471429 \mathrm{~m} \ell \\ & \approx 397,75 \mathrm{~m} \ell \\ \text { Two coats } & =2 \times 397,75 \mathrm{~m} \ell \\ & =795,49 \mathrm{~m} \ell \quad \checkmark \mathrm{CA} \\ \text { Number of spray cans } & =\frac{795,49 \mathrm{~m} \ell}{250 \mathrm{~m} \ell} \\ & =3,18184 \\ & \approx 4 \quad \checkmark \mathrm{CA} \end{aligned} \end{array} . \begin{aligned} \\ \end{aligned} \\ & \end{aligned}$	1A total area of panels 1SF substitution in formula 1S simplification 1C conversion to m^{2} 1M Method 1CA paint needed for 1 coat 1CA paint needed for 2 coats 1 CA rounding up	L4

Ques	Solution	Explanation	
$\begin{aligned} & \text { 4.3.1 } \\ & \text { cont. } \end{aligned}$	OR $\begin{aligned} \mathrm{TSA} & =\mathrm{P} \times \mathrm{H}+\mathrm{K} \\ & =8 \times \vee \mathrm{A} \quad \checkmark \mathrm{SF} \\ & =8 \times 0,11 \mathrm{~mm} \times 250 \mathrm{~mm}+0,058423 \mathrm{~m}^{2} \\ & =0,22 \mathrm{~m}^{2}+0,058423+0,0,05423 \mathrm{~m}^{2} \quad \checkmark \mathrm{C} \\ & =0,278423 \mathrm{~m}^{2} \quad \checkmark \mathrm{~S} \end{aligned}$ 100 ml covers $0,07 \mathrm{~m}^{2}$ $\therefore 0,28 \mathrm{~m}^{2}$ will need $=\frac{100 \times 0,278423}{0,07} \mathrm{~m} \ell \quad \checkmark \mathrm{M}$ $=397,7471429 \mathrm{~m} \ell$ $=397,75 \mathrm{~m} \mathrm{\ell} \quad \checkmark \mathrm{CA}$ Two coats $=2 \times 397,75 \mathrm{~m} \ell=795,49 \mathrm{~m} \ell \quad \mathrm{CA}$ Number of spray cans $=\frac{795,49 \mathrm{~m} \ell}{250 \mathrm{~m} \ell}=3,181 \approx 4 \quad \checkmark \mathrm{CA}$	OR 1A total area of panels 1SF substitution in formula 1 C conversion to m^{2} 1S simplification 1M method 1CA paint needed for 1 coat 1CA paint needed for 2 coats 1 CA rounding up	
4.3.2	$$ \therefore The height of the actual tower is approximately $39,4 \mathrm{~m}$ OR $\text { Height }=25 \mathrm{~cm}-1 \mathrm{~cm}=\stackrel{\checkmark \mathrm{MA}}{24 \mathrm{~cm}}=0,24 \stackrel{\checkmark}{\mathrm{C}} \mathrm{~m}$ Actual height $=0,24 \times 164=39,36 \mathrm{~m} \checkmark \mathrm{CA}$	1MA correct height 1CA correct answer in mm 1C conversion OR 1MA correct height 1C conversion 1CA correct answer in m NPR	L2
4.4	1. Mount the vertical poles to the kick base and fasten with the screws. $\checkmark \mathrm{A}$ 2. Slide the three glass panels into the vertical poles. 3. Place the top aluminium frame on top and fasten with screws. $\checkmark \mathrm{A}$ 4. Screw the interior standards onto the aluminium framing and insert the brackets. $\checkmark \mathrm{A}$	1A for the vertical poles 1A for the screws 1A glass panels 1A for the top frame 1A Screws 1A interior standards 1A brackets [Single word answers not acceptable.]	L2
		[45]	

TOTAL: 150

[^0]: * This question must not be marked in Limpopo. The paper will be marked out of 143 and scaled and then the candidates' total mark will be up-scaled to $\mathbf{1 5 0}$ marks

[^1]: * This question must not be marked in Limpopo. The paper will be marked out of 143 and scaled and then the candidates' total mark will be up-scaled to $\mathbf{1 5 0}$ marks

