Grade 12 Pre-Calculus Mathematics [MPC40S]

Chapter 4

Trigonometry and the Unit Circle

Outcomes

T1, T2, T3, T5

- 12P.T.1. Demonstrate an understanding of angles in standard position expressed in degrees and radians.
- 12P.T.2. Develop and apply the equation of the unit circle.
- 12P.T.3 Solve Problems, using the six trigonometric ratios for angles expressed in radians and degrees.
- 12P.T.5. Solve, algebraically and graphically, first and second-degree trigonometric equations with the domain expressed in degrees and radians.

MPC40S

Date: _____

Chapter 4 – Homework

Section	Page	Questions

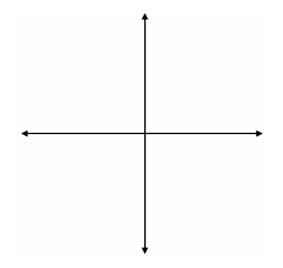
MPC40S

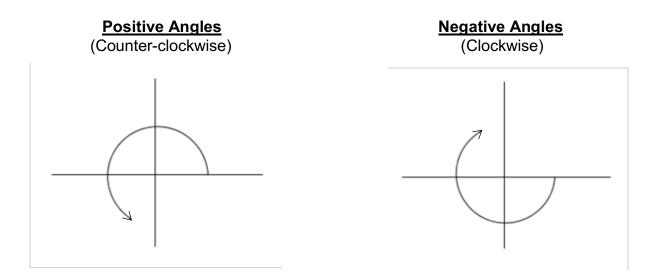
Date: _____

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE 4.1 – Angles and Angle Measure

An _____ has its centre at the origin and its initial arm along the positive x-axis

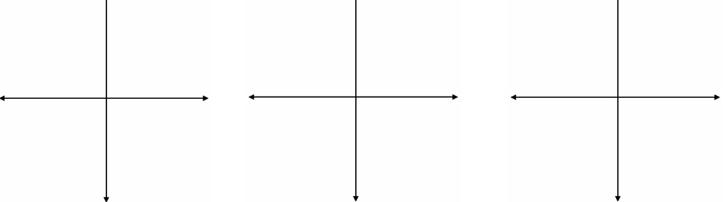
There are ______ and _____ angles.





T1

MPC40S	D	Date:		
Example #1				
In which quadrant is the te	erminal arm of each angle loc	ated?		
a) 400°	b) 700°			
c) – 65°	d) – 150)°		
Example #2				
Sketch each angle in standard position.				
a) 286°	b) -190°	c) 430°		
	4	•		



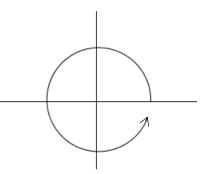
Date:

Radian Measure of an Angle

- The formula for the circumference of a circle is _____
- The unit circle has a radius = _____
- Therefore, the circumference of the unit circle is _____

 $2\pi = 6.283185...$

This means that the distance traveled from the initial arm all around the circle and back again is 6.283185...



Revolutions	Degrees	Radian Measure	
1 revolution		radians	6.283185 radians
$\frac{1}{2}$ revolution		radians	3.141592 radians
$\frac{1}{4}$ revolution		radians	1.570796 radians
$\frac{3}{4}$ revolution		radians	4.712388 radians
$\frac{1}{360}$ revolution		radians	0.017453 radians

Note that 1 radian =
$$\left(\frac{180^{\circ}}{\pi}\right) \approx 57.3^{\circ}$$

Date: _____

Converting Degrees to Radians: _____

Example #3

Express the following angle measures in radians.

a) 30° b) 225° c) 720°

Converting Radians to Degrees: _____

Example #4

a) $\frac{2\pi}{3}$

Express the following angle measures in degrees

b) 1.6 c)
$$\frac{5\pi}{6}$$

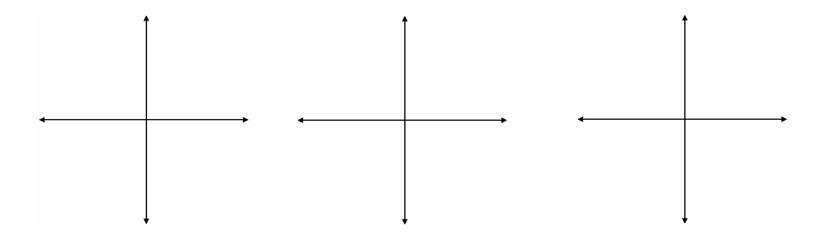
Date:

Coterminal Angles

Coterminal Angles are _____

Example #12

Sketch $\theta = 30^{\circ}$ as an angle in standard position, and show that $\theta = 390^{\circ}$ and $\theta = -330^{\circ}$ are **coterminal angles**.



The coterminal angle can be found by **adding** or **subtracting** revolutions; either $\pm 360^{\circ}$ when given degree measure or $\pm 2\pi$ when given radian measure. There are an infinite number of coterminal angles.

Example #5

Determine 3 coterminal angles for 40°.

Example #6

Determine 3 coterminal angles for $\frac{\pi}{6}$

Date: _____

General Form of Coterminal Angles

Degrees: _____

Radians: _____

Example #7	Example #8
Express the angles coterminal with 50° in <u>general form</u> .	Express a <u>general form</u> for all coterminal angles of $\frac{5\pi}{3}$

Example #9

Determine a **coterminal angle** to 740° over the interval $-360^{\circ} < \theta < 0^{\circ}$

Example #10

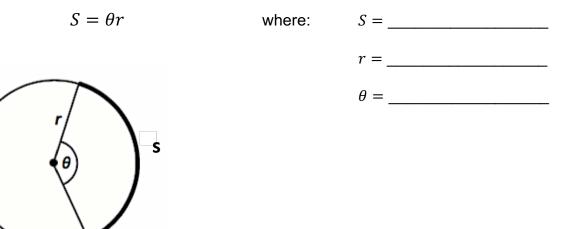
Determine all **coterminal angles** to $\frac{5\pi}{3}$ over the interval $[-4\pi, 2\pi]$

Date:

Arc Length

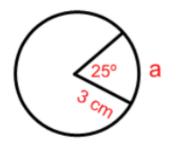
The central angle is the relationship between the length of the arc and the radius of the circle.

The equation that represents this relationship is:



Note: If there is no unit attached to the angle measure (ex: $\theta = 2.5$) it is assumed to be in **radians**.

Determine the arc length.



Example #12

A bicycle tire has a radius of 0.5 m and travels a distance of 1.5 m. Determine the rotated angle, in degrees.

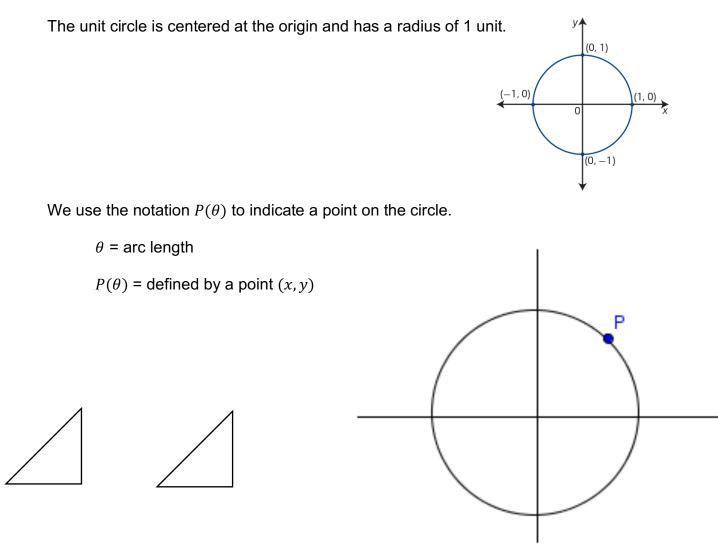
Given the following information determine the missing value.

a) r = 8.7 cm, $\theta = 75^{\circ}$ determine arc length

b) $\theta = 1.8$, S = 4.7 mm, determine the radius

c) r = 5 m, S = 13 m, determine the measure of the central angle

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE 4.2 – The Unit Circle



Since the radius is 1, then the equation of the unit circle is $x^2 + y^2 = 1$

Important ideas:

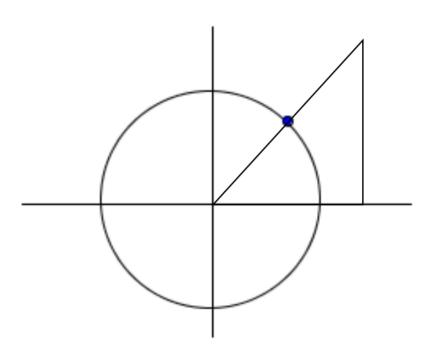
Determine whether or not the point $\left(\frac{2}{5}, \frac{3}{5}\right)$ is on the unit circle. Justify your reasoning.

Example #2

A point $\left(\frac{2}{3}, y\right)$ is on the unit circle. Determine the value of y.

The point $P(\theta)$ lies on the intersection of the unit circle and a line joining the origin to the point (4, 3).

Determine the coordinates of $P(\theta)$.



The point $P(\theta)$ lies on the intersection of the unit circle and a line joining the origin to the point (-3, 6).

Determine the coordinates of $P(\theta)$.

Determine the values of $\cos \theta$ and $\tan \theta$ over the interval $\frac{3\pi}{2} \le \theta \le 2\pi$ when $\sin \theta = -\frac{3}{5}$.

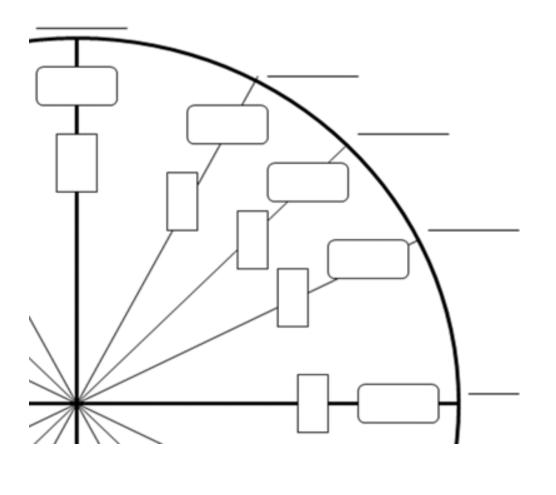
MPC40S

Date: _____

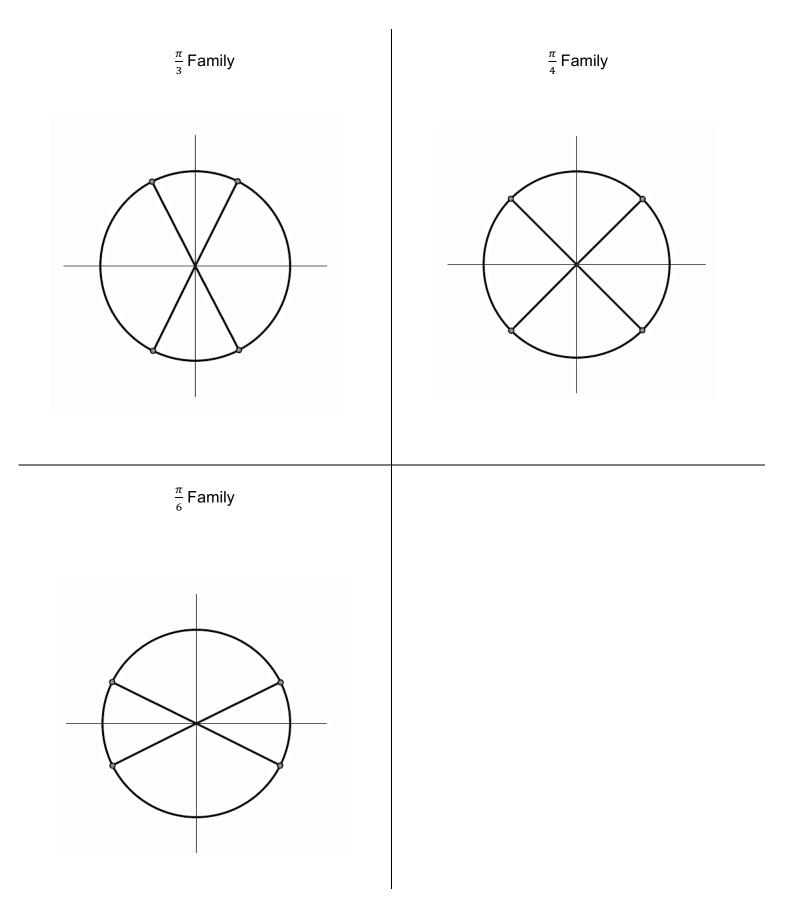
Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

The Unit Circle

QUADRANT 1

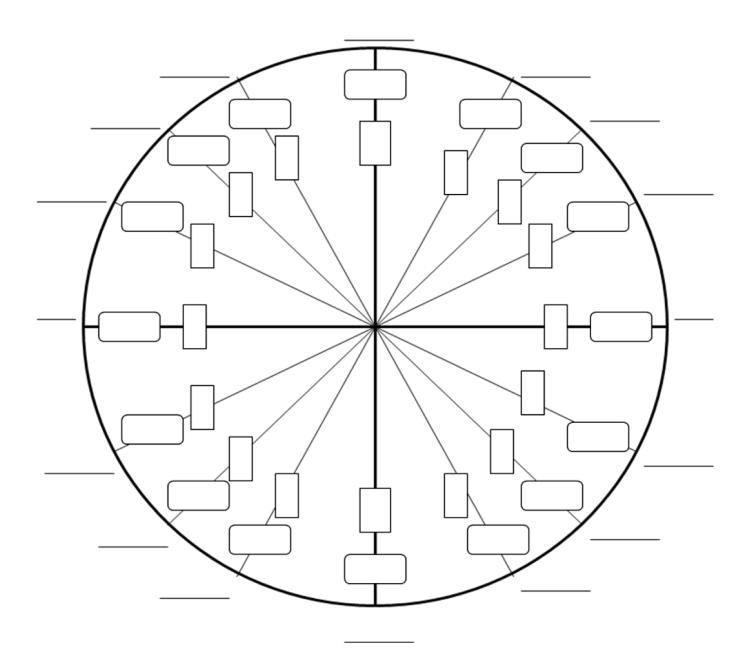


- Sketch the a terminal side
- Is the function
- Find the refe
- Use the Qua value.



Date: _____

THE UNIT CIRCLE

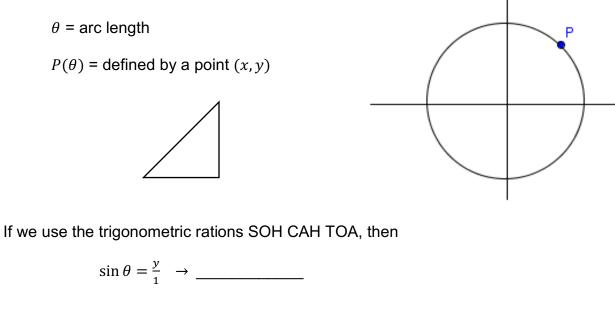


MPC40S

Date: _____

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE 4.3 – Trigonometric Ratios

Recall:



$$\cos\theta = \frac{x}{1} \rightarrow$$

$$\tan \theta = \frac{y}{x} \rightarrow$$

Thus, any point on the unit circle can be described as: $P(\theta) = (\cos \theta, \sin \theta)$

PRIMARY FUNCTIONS	RECIPROCAL FUNCTIONS $\left(\frac{1}{f(x)}\right)$
$\sin\theta = y$	cosecant
$\cos\theta = x$	secant
$\tan \theta = \frac{y}{x}$	cotangent

The point $\left(\frac{5}{13}, -\frac{12}{13}\right)$ lies on the terminal arm of an angle θ in standard position.

a) Draw a diagram to represent this situation.

b) Find all 6 trigonometric ratios for θ .

Example #2

The point $\left(-\frac{3}{5},\frac{4}{5}\right)$ lies on the terminal arm of an angle θ in standard position.

a) Draw a diagram to represent this situation.

b) Find all 6 trigonometric ratios for θ .

Date: _____

Determining Exact Values

Example #3

Determine the **exact** value of the following trigonometric ratios.

a) $\cos \frac{\pi}{3} =$	b) $\sec \frac{\pi}{3} =$
c) $\sin\left(-\frac{5\pi}{6}\right) =$	d) $\cos \frac{7\pi}{4} =$
e) cot(270°) =	f) $\csc\left(\frac{2\pi}{3}\right) =$
g) $\tan \frac{17\pi}{4} =$	h) $\sec \frac{23\pi}{3} =$

Determine the **exact** value of the following expressions.

b) $\cot\left(-\frac{3\pi}{4}\right) + \csc\left(\frac{\pi}{2}\right)$ a) $\cos(120^\circ) - \tan(-135^\circ)$ c) $\sin^2\left(\frac{7\pi}{6}\right) + \cos^2\left(\frac{7\pi}{6}\right)$ d) $\tan^2\left(\frac{-\pi}{3}\right)\sec\left(\frac{4\pi}{3}\right)$

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE 4.4 – Trigonometric Equations

We can solve trigonometric equations just like we have been solving equations from previous units.

Note: If interval/domain is given in **radians**, your answer must be in **radians**. If interval/domain is given in **degrees**, your answer must be in **degrees**.

Example #1

Solve the following trigonometric equation, over the given domain.

$$\sin\theta = \frac{1}{2}, \quad 0 \le \theta \le 2\pi$$

Example #2

Solve the following trigonometric equations, over the given domain.

a) $2\cos\theta + 3 = 1$, $0^\circ \le \theta \le 540^\circ$

b) $4 \sec x + 8 = 0$, $0 \le x \le 2\pi$

Solve the following trigonometric equations, over the given intervals.

a) $3\tan^2 x - 9 = 0$, $0^\circ \le x \le 360^\circ$

b) $2\cos^2\theta + \cos\theta = 1$, $0 \le \theta \le 2\pi$

Solve the following trigonometric equations, over the given intervals.

a) $2\sin^2 x - 1 = \sin x$, $0 \le x \le 270^\circ$

b) $\sin^2 x + \sin x - 12 = 0$, $0 \le x \le 2\pi$

Solve the following trigonometric equations, over the given intervals.

a) $\csc^2 x + \csc x - 12 = 0$, $0 \le x \le 2\pi$

b) $\tan^2 \theta - 5 \tan \theta + 4 = 0$, $-2\pi \le x \le 2\pi$

Solve the following trigonometric equations, over the given interval.

 $2 {\rm cos}^2 \theta - 4 \, {\rm cos} \, \theta - 5 = 0 \, , \quad 0 \le \theta \le 2 \pi \label{eq:eq:expansion}$

General Solution of Trigonometric Equations

If the domain is **real numbers**, there are an **infinite** number of rotations on the unit circle in both a positive and negative direction.

To determine a **general solution**, find the solutions in one positive rotation. Then use the concept of coterminal angles to write an expression that identifies all possible measures.

There are different was to request the **general solution** answers. They are:

- Domain is all real numbers
- $x \in R$ or $\theta \in R$
- General solution

Example #7

a) **Solve** $\cot \theta = \frac{1}{\sqrt{3}}$ over the interval $0 \le \theta \le 2\pi$

b) **Solve** the above equation if $\theta \in R$

Solve each of the following trigonometric equations.

a) Solve $\tan \theta = -4$ if the domain is all real numbers, in radians.

b) Find the general solution of $\cos \beta = 0$, in degrees.

Solve the following trigonometric equation, where $\theta \in R$. (In radians)

 $2\tan^2\theta - \tan\theta - 1 = 0$