Grade 12
 Pre-Calculus Mathematics
 [MPC40S]

Chapter 4

Trigonometry and the Unit Circle

Outcomes

T1, T2, T3, T5

12P.T.1. Demonstrate an understanding of angles in standard position expressed in degrees and radians.

12P.T.2. Develop and apply the equation of the unit circle.
12P.T. 3 Solve Problems, using the six trigonometric ratios for angles expressed in radians and degrees.

12P.T.5. Solve, algebraically and graphically, first and second-degree trigonometric equations with the domain expressed in degrees and radians.

Date:

Pg. \#2

Chapter 4 - Homework

Section	Page	Questions

Date:

Pg. \#4
\qquad

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

 4.1 - Angles and Angle MeasureAn \qquad has its centre at the origin and its initial arm along the positive x-axis

There are \qquad and \qquad angles.

Positive Angles

(Counter-clockwise)

Negative Angles
(Clockwise)

Date:

Example \#1

In which quadrant is the terminal arm of each angle located?
a) 400° \qquad b) 700°
c) -65° \qquad d) -150°

Example \#2

Sketch each angle in standard position.
a) 286°
b) -190°
c) 430°

Radian Measure of an Angle

- The formula for the circumference of a circle is \qquad
- The unit circle has a radius = \qquad
- Therefore, the circumference of the unit circle is \qquad

$$
2 \pi=6.283185 \ldots
$$

This means that the distance traveled from the initial arm all around the circle and back again is $6.283185 .$. .

Revolutions	Degrees	Radian Measure	
1 revolution		radians	$6.283185 \ldots$ radians
$\frac{1}{2}$ revolution		\ldots	radians
$\frac{1}{4}$ revolution		\ldots	$3.141592 \ldots$ radians
$\frac{3}{4}$ revolution		radians	$1.570796 \ldots$ radians
$\frac{1}{360}$ revolution		radians	$4.712388 \ldots$ radians

Note that 1 radian $=\left(\frac{180^{\circ}}{\pi}\right) \approx 57.3^{\circ}$

Converting Degrees to Radians: \qquad
Example \#3
Express the following angle measures in radians.
a) 30°
b) 225°
c) 720°

Converting Radians to Degrees:

\qquad

Example \#4

Express the following angle measures in degrees
a) $\frac{2 \pi}{3}$
b) 1.6
c) $\frac{5 \pi}{6}$

Coterminal Angles

Coterminal Angles are \qquad

Example \#12

Sketch $\theta=30^{\circ}$ as an angle in standard position, and show that $\theta=390^{\circ}$ and $\theta=$ -330° are coterminal angles.

The coterminal angle can be found by adding or subtracting revolutions; either $\pm 360^{\circ}$ when given degree measure or $\pm 2 \pi$ when given radian measure. There are an infinite number of coterminal angles.

Example \#5
Determine 3 coterminal angles for 40°.

Example \#6

Determine 3 coterminal angles for $\frac{\pi}{6}$

General Form of Coterminal Angles

Degrees: \qquad

Radians: \qquad
Example \#7
Express the angles coterminal with 50°
in general form.

Example \#8

Express a general form for all coterminal angles of $\frac{5 \pi}{3}$

Example \#9

Determine a coterminal angle to 740° over the interval $-360^{\circ}<\theta<0^{\circ}$

Example \#10

Determine all coterminal angles to $\frac{5 \pi}{3}$ over the interval $[-4 \pi, 2 \pi]$
\qquad

Arc Length

The central angle is the relationship between the length of the arc and the radius of the circle.

The equation that represents this relationship is:

$$
S=\theta r
$$

where: $\quad S=$ \qquad
\qquad

$\theta=$ \qquad

Note: If there is no unit attached to the angle measure (ex: $\theta=2.5$) it is assumed to be in radians.

Example \#11

Determine the arc length.

Example \#12
A bicycle tire has a radius of 0.5 m and travels a distance of 1.5 m . Determine the rotated angle, in degrees.

Date:

Example \#13

Given the following information determine the missing value.
a) $r=8.7 \mathrm{~cm}, \theta=75^{\circ}$ determine arc length
b) $\theta=1.8, S=4.7 \mathrm{~mm}$, determine the radius
c) $r=5 \mathrm{~m}, S=13 \mathrm{~m}$, determine the measure of the central angle

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

 4.2 - The Unit CircleThe unit circle is centered at the origin and has a radius of 1 unit.

We use the notation $P(\theta)$ to indicate a point on the circle.

$$
\begin{aligned}
& \theta=\operatorname{arc} \text { length } \\
& P(\theta)=\text { defined by a point }(x, y)
\end{aligned}
$$

Since the radius is 1 , then the equation of the unit circle is $x^{2}+y^{2}=1$

Important ideas:

Date:

Example \#1

Determine whether or not the point $\left(\frac{2}{5}, \frac{3}{5}\right)$ is on the unit circle. Justify your reasoning.

Example \#2

A point $\left(\frac{2}{3}, y\right)$ is on the unit circle. Determine the value of y.

Date: \qquad

Example \#3

The point $P(\theta)$ lies on the intersection of the unit circle and a line joining the origin to the point $(4,3)$.

Determine the coordinates of $P(\theta)$.

Date:

Example \#4

The point $P(\theta)$ lies on the intersection of the unit circle and a line joining the origin to the point $(-3,6)$.

Determine the coordinates of $P(\theta)$.

Date:

Example \#5

Determine the values of $\cos \theta$ and $\tan \theta$ over the interval $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$ when $\sin \theta=-\frac{3}{5}$.

Date:
\qquad

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

The Unit Circle
QUADRANT 1

MPC40S

Date: \qquad

THE UNIT CIRCLE

Date:

Pg. \#22

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

4.3 - Trigonometric Ratios

Recall:
$\theta=$ arc length
$P(\theta)=$ defined by a point (x, y)

If we use the trigonometric rations SOH CAH TOA, then

$$
\begin{aligned}
& \sin \theta=\frac{y}{1} \rightarrow \\
& \cos \theta=\frac{x}{1} \rightarrow
\end{aligned}
$$

$$
\tan \theta=\frac{y}{x} \rightarrow
$$

\qquad
Thus, any point on the unit circle can be described as: $\quad P(\theta)=(\cos \theta, \sin \theta)$
$\tan \theta=\frac{y}{x}$

RECIPROCAL FUNCTIONS $\left(\frac{1}{f(x)}\right)$

cosecant
secant
cotangent \qquad
\qquad

Example \#1

The point $\left(\frac{5}{13},-\frac{12}{13}\right)$ lies on the terminal arm of an angle θ in standard position.
a) Draw a diagram to represent this situation.
b) Find all 6 trigonometric ratios for θ.

Example \#2

The point $\left(-\frac{3}{5}, \frac{4}{5}\right)$ lies on the terminal arm of an angle θ in standard position.
a) Draw a diagram to represent this situation.
b) Find all 6 trigonometric ratios for θ.

Date:

Determining Exact Values

Example \#3

Determine the exact value of the following trigonometric ratios.

a) $\cos \frac{\pi}{3}=$	b) $\sec \frac{\pi}{3}=$
c) $\sin \left(-\frac{5 \pi}{6}\right)=$	d) $\cos \frac{7 \pi}{4}=$
e) $\cot \left(270^{\circ}\right)=$	f) $\csc \left(\frac{2 \pi}{3}\right)=$
g) $\tan \frac{17 \pi}{4}=$	

Date:

Example \#4

Determine the exact value of the following expressions.
a) $\cos \left(120^{\circ}\right)-\tan \left(-135^{\circ}\right)$
b) $\cot \left(-\frac{3 \pi}{4}\right)+\csc \left(\frac{\pi}{2}\right)$
C) $\sin ^{2}\left(\frac{7 \pi}{6}\right)+\cos ^{2}\left(\frac{7 \pi}{6}\right)$
d) $\tan ^{2}\left(\frac{-\pi}{3}\right) \sec \left(\frac{4 \pi}{3}\right)$

Chapter 4: TRIGONOMETRY AND THE UNIT CIRCLE

4.4 - Trigonometric Equations

We can solve trigonometric equations just like we have been solving equations from previous units.

Note: If interval/domain is given in radians, your answer must be in radians. If interval/domain is given in degrees, your answer must be in degrees.

Example \#1

Solve the following trigonometric equation, over the given domain.
$\sin \theta=\frac{1}{2}, \quad 0 \leq \theta \leq 2 \pi$

Example \#2
Solve the following trigonometric equations, over the given domain.
a) $2 \cos \theta+3=1, \quad 0^{\circ} \leq \theta \leq 540^{\circ}$
b) $4 \sec x+8=0, \quad 0 \leq x \leq 2 \pi$

Date:

Example \#3

Solve the following trigonometric equations, over the given intervals.
a) $3 \tan ^{2} x-9=0, \quad 0^{\circ} \leq x \leq 360^{\circ}$
b) $2 \cos ^{2} \theta+\cos \theta=1, \quad 0 \leq \theta \leq 2 \pi$

Date:

Example \#4

Solve the following trigonometric equations, over the given intervals.
a) $2 \sin ^{2} x-1=\sin x, \quad 0 \leq x \leq 270^{\circ}$
b) $\sin ^{2} x+\sin x-12=0, \quad 0 \leq x \leq 2 \pi$

Date:

Example \#5

Solve the following trigonometric equations, over the given intervals.
a) $\csc ^{2} x+\csc x-12=0, \quad 0 \leq x \leq 2 \pi$
b) $\tan ^{2} \theta-5 \tan \theta+4=0,-2 \pi \leq x \leq 2 \pi$

Date:

Example \#6

Solve the following trigonometric equations, over the given interval.

$$
2 \cos ^{2} \theta-4 \cos \theta-5=0, \quad 0 \leq \theta \leq 2 \pi
$$

General Solution of Trigonometric Equations

If the domain is real numbers, there are an infinite number of rotations on the unit circle in both a positive and negative direction.

To determine a general solution, find the solutions in one positive rotation. Then use the concept of coterminal angles to write an expression that identifies all possible measures.

There are different was to request the general solution answers. They are:

- Domain is all real numbers
- $x \in R$ or $\theta \in R$
- General solution

Example \#7

a) Solve $\cot \theta=\frac{1}{\sqrt{3}}$ over the interval $0 \leq \theta \leq 2 \pi$
b) Solve the above equation if $\theta \in R$

Example \#8

Solve each of the following trigonometric equations.
a) Solve $\tan \theta=-4$ if the domain is all real numbers, in radians.
b) Find the general solution of $\cos \beta=0$, in degrees.

Date:

Example \#9

Solve the following trigonometric equation, where $\theta \in R$. (In radians)

$$
2 \tan ^{2} \theta-\tan \theta-1=0
$$

