education
Department:
Education
PROVINCE OF KWAZULU-NATAL
FET MATHEMATICS
GRADE 12
SBA ADMINISTRATION DOCUMENTS

2019

KZN DEPARTMENT OF EDUCATION MATHEMATICS ANNUAL TEACHING PLAN
 GRADE 12-2019

\qquad
\qquad

TERM 1								
DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	DATE STARTED	DATE COMPLETED	HOD:SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 09 / 1-14 / 1 \\ (4 \text { days }) \end{gathered}$	PATTERNS, SEQUENCES AND SERIES	1. Number patterns, including arithmetic and geometric sequences and series.						4\%
$\begin{gathered} 15 / 1-22 / 1 \\ \text { (} 6 \text { days) } \end{gathered}$	PATTERNS, SEQUENCES AND SERIES	2. Sigma notation. 3. Derivation and application of the formulae for the sum of arithmetic and geometric series: 3.1 $\quad S_{n}=\frac{n}{2}\left[2 a+(n-1) d=\frac{n}{2}(a+l)\right.$; $3.2 \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ for $r \neq 1$; and $3.3 \quad S_{\infty}=\frac{a}{1-r}$ for $-1<r<1$.						9\%
$\begin{gathered} 23 / 1-30 / 1 \\ (6 \text { days }) \end{gathered}$	EUCLIDEAN GEOMETRY	1. Revise earlier work on the necessary and sufficient conditions for polygons to be similar. 2. Prove (accepting results established in earlier grades): that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Midpoint Theorem as a special case of this theorem); 3. Solve proportionality problems and prove riders.						14\%
$\begin{gathered} 31 / 1-08 / 2 \\ \text { (} 7 \text { days) } \end{gathered}$	EUCLIDEAN GEOMETRY	4. Prove (accepting results established in earlier grades): 4.1 that equiangular triangles are similar; 4.2 that triangles with sides in proportion are similar; and 4.3 the Pythagorean Theorem by similar triangles. 5. Solve similarity problems and prove riders.	ASSIGNMENT SBA Weighting: 15	F				21\%

TERM 1 (continued)								
DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	DATE COM- PLETED	HOD: SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 11 / 2-25 / 2 \\ (12 \text { days }) \end{gathered}$	TRIGONOMETRY: COMPOUND ANGLES	Compound angle identities: 1. $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 2. $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ 3. $\sin 2 \alpha=2 \sin \alpha \cos \alpha$ 4. $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$ 5. $\cos 2 \alpha=2 \cos ^{2} \alpha-1$ 6. $\cos 2 \alpha=1-2 \sin ^{2} \alpha$	INVESTI- GATION SBA Weighting: 15 (to be completed by: 11/02)	F				32\%
$\begin{gathered} 26 / 2-4 / 3 \\ (5 \text { days }) \\ \hline \end{gathered}$	TRIGONOMETRY: 2D/3D	Solve problems in two and three dimensions.						37\%
$\begin{gathered} 05 / 3-15 / 3 \\ (9 \text { days }) \end{gathered}$	REVISION and MARCH TEST	MARCH TEST to cover all the work done in Term 1, also including the work done in Grade 11 on all these topics; BUT with the exception of 2D/3D Problems in Trigonometry.	MARCH TEST SBA Weighting: 10	F				

TERM 2								
DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	DATE COMPLETED	HOD:SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 02 / 4-05 / 4 \\ (4 \text { days }) \\ \hline \end{gathered}$	ANALYTICAL GEOMETRY	1. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ defines a circle with radius r and centre $(a ; b)$.						41\%
$\begin{gathered} 08 / 4-10 / 4 \\ (3 \text { days }) \\ \hline \end{gathered}$	ANALYTICAL GEOMETRY	2. Determination of the equation of a tangent to a given circle.						44\%
$\begin{gathered} 11 / 4 \\ \text { (1 day) } \end{gathered}$	FUNCTIONS, INVERSES AND LOGARITHMS	1. Definition of a function. 2. General concept of the inverse of a function. 3. Determine and sketch graphs of the inverse of the function defined by $y=a x+q$ 4. Focus on the following characteristics: domain and range, intercepts with the axes, shape and symmetry, gradient, whether the function increases/decreases.						45\%
$\begin{gathered} 12 / 4-15 / 4 \\ (2 \text { days }) \end{gathered}$	FUNCTIONS, INVERSES AND LOGARITHMS	5. Determine and sketch graphs of the inverse of the function defined by $y=a x^{2}$ 6. Determine how the domain of the function may need to be restricted (in order to obtain a one-to-one function) to ensure that the inverse is a function. 7. Focus on the following characteristics: domain and range, intercepts with the axes, turning points, minima, maxima, shape and symmetry, average gradient (average rate of change), intervals on which the function increases/decreases.						47\%
$\begin{gathered} 16 / 4-18 / 4 \\ \text { (3 days) } \end{gathered}$	FUNCTIONS, INVERSES AND LOGARITHMS	8. Determine and sketch graphs of the inverse of the function defined by $y=b^{x}$ for $b>0, b \neq 1$. 9. Focus on the following characteristics: domain and range, intercepts with the axes, asymptotes (horizontal and vertical), shape and symmetry, average gradient (average rate of change), intervals on which the function increases/decreases. 10. Understand the definition of a logarithm: $y=\log _{b} x \Leftrightarrow x=b^{y}$, where $b>0$ and $b \neq 1$. 11. The graph of the function defined by $y=\log _{b} x$ for both the cases $0<b<1$ and $b>1$.						50\%
$\begin{gathered} 23 / 4-26 / 4 \\ (4 \text { days }) \end{gathered}$	$\begin{gathered} \text { FUNCTIONS, } \\ \text { INVERSES AND } \\ \text { LOGARITHMS } \\ \hline \end{gathered}$	12. Further sketching and interpretation of graphs of functions and their inverses.						54\%

TERM 2 (continued)

DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	DATE COMPLETED	HOD:SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 29 / 4 \\ (1 \text { day }) \end{gathered}$	CALCULUS	1. An intuitive understanding of the limit concept. 2. Use limits to define the derivative of a function f at any x : $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ Generalise to find the derivative of f at any point x in the domain of f, i.e., define the derivative function $f^{\prime}(x)$ of the function $f(x)$. Understand intuitively that $f^{\prime}(a)$ is the gradient of the tangent to the graph of f at the point with x-coordinate a.						55\%
$\begin{gathered} 30 / 4-02 / 5 \\ (2 \text { days }) \end{gathered}$	CALCULUS	3. Using the definition (first principles), find the derivative, $f^{\prime}(x)$, for a. $f(x)=a x^{2}+b x+c$; b. $f(x)=a x^{3}$; c. $\quad f(x)=\frac{a}{x}$; and d. $f(x)=c \quad(a, b$ and c are constants).						57\%
$\begin{gathered} 03 / 5-08 / 5 \\ (4 \text { days }) \end{gathered}$	CALCULUS	4. Use the formula $\frac{d}{d x}\left(a x^{n}\right)=a n x^{n-1}$, for any real number n, together with the rules a. $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)] ;$ and b. $\frac{d}{d x}[k f(x)]=k \frac{d}{d x}[f(x)] \quad(k$ a constant $)$.	TERM 2 TEST SBA Weighting: 10					61\%
$\begin{gathered} \hline 09 / 5 \\ (1 \text { day }) \\ \hline \end{gathered}$	CALCULUS	5. Find equations of tangents to graphs of functions.						62\%
$\begin{gathered} 10 / 5 \\ (1 \text { day }) \end{gathered}$	CALCULUS	6. Apply the Remainder and Factor Theorems to polynomials of degree at most 3 . 7. Factorise third degree polynomials.						63\%

TERM 2 (continued)

DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	DATE COMPLETED	HOD: SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 13 / 5-20 / 5 \\ (6 \text { days) } \end{gathered}$	CALCULUS	8. Introduce the second derivative $f^{\prime \prime}(x)=\frac{d}{d x}\left[f^{\prime}(x)\right]$ of $f(x)$, and how it determines the concavity of a function. 9. Sketch graphs of polynomial functions using differentiation to determine the coordinates of stationary points, and points of inflection (where concavity changes). Also determine the x intercepts of the graph, using the factor theorem and other techniques.						69\%
$\begin{gathered} 21 / 5-27 / 5 \\ (5 \text { days }) \\ \hline \end{gathered}$	CALCULUS	10. Solve practical problems concerning optimisation and rate of change, including calculus of motion.						74\%
$\begin{gathered} 28 / 5-14 / 6 \\ (14 \text { days }) \end{gathered}$	REVISION and JUNE EXAMINATIONS	JUNE EXAMINATION to cover - The work done in Terms 1 and 2, including the work done in Grade 11 on all these topics. Also: - Algebra, Equations and Inequalities - Gr. 11 Finance, Growth and Decay; and - Gr. 11 Probability.	JUNE EXAM SBA Weighting: 15	F				

TERM 3								
DATES	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	DATE COMPLETED	HOD:SIGNATURE and DATE	\% COM- PLETED
$\begin{gathered} 09 / 7-10 / 7 \\ (2 \text { days }) \end{gathered}$	FINANCE, GROWTH AND DECAY	1. Make use of logarithms to calculate the value of n, the time period, in the equations $A=P(1+i)^{n}$ or $A=P(1-i)^{n}$.						76\%
$\begin{gathered} 11 / 7-22 / 7 \\ \text { (8 days) } \end{gathered}$	FINANCE, GROWTH AND DECAY	2. Solve problems involving present value and future value annuities. 3. Critically analyse investment and loan options and make informed decisions as to best option(s), including pyramid schemes.						84\%
$\begin{gathered} 23 / 7-29 / 7 \\ (5 \text { days) } \end{gathered}$	COUNTING AND PROBABILITY	1. Apply the fundamental counting principle to solve probability problems.						89\%
$\begin{aligned} & 30 / 7-05 / 8 \\ & (5 \text { days }) \end{aligned}$	COUNTING AND PROBABILITY	2. Revise a. dependent and independent events; b. the product rule for independent events: $P(A \text { and } B)=P(A) \times P(B)$ c. the sum rule for mutually exclusive events: $P(A \text { or } B)=P(A)+P(B) ;$ d the identity: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$; e. the complementary rule: $P(\operatorname{not} A)=1-P(A)$. f. solving of probability problems (where events are not necessarily independent) by using Venn-diagrams, tree diagrams, two-way contingency tables and other techniques.						94\%
$\begin{gathered} 06 / 8-14 / 8 \\ \text { (} 6 \text { days) } \end{gathered}$	STATISTICS: REGRESSION AND CORRELATION	1. Revise symmetric and skewed data. 2. Use statistical summaries, scatterplots, regression (in particular the least squares regression line) and correlation to analyse and make meaningful comments on the context associated with given bivariate data, including interpolation, extrapolation and discussions on skewness.	TERM 3 TEST SBA Weighting: 10	F				100\%
$\begin{gathered} 15 / 8-20 / 9 \\ (27 \text { days }) \end{gathered}$	$\begin{gathered} \hline \text { REVISION and } \\ \text { TRIAL } \\ \text { EXAMINATIONS } \end{gathered}$	TRIAL EXAMINATION to cover all the TOPICS dealt with in both Grades 11 and 12.	TRIAL EXAM SBA Weighting: 25	F				

RECORDS OF SBA MODERATION
 GRADE 12 MATHEMATICS 2019

NAME OF DISTRICT: \qquad

NAME OF CLUSTER: \qquad

NAME OF SCHOOL: \qquad

NAME OF TEACHER: \qquad

```
Please note the following colours to be
used in the moderation of learner
evidence:
                            School-GREEN
    Cluster - ORANGE
    District - PINK
    Province - BROWN
```

PART A: SCHOOL LEVEL MODERATION PRE-ASSESSMENT MODERATION (the PART should be completed for EACH task to be ADMINISTERED) NB: Should be done before the task is administered AND comments serve as feedback to the educator.

TERM 1	NB: COMMENTS ONLY.		
Task Name	INVESTIGATION	ASSIGNMENT	MARCH TEST
1. TECHNICAL CRITERIA			
a) The question paper is neatly typed, complete and with relevant marking guideline.			
b) The cover page has all relevant details such as date, time allocation, nature of the task, name of the subject and instructions to candidates.			
c) The instructions to candidates are clearly specified and unambiguous.			
d) The task has the correct numbering.			
e) The layout of the task is candidate friendly and accessible to candidates with barriers to learning.			
f) Diagrams or illustrations are clear, accurate and correctly labelled.			
g) Mark allocations are clearly indicated on both the task and the marking guideline and they correspond.			
2. CONTENT			
a) The task is in accordance with CAPS and within the broad scope of NSC.			
b) The content tested in the assessment task adequately covers the targeted topics.			

c)The assessment task covers all four cognitive levels in the correct weighting.			
d) The cognitive analysis grid is included.			
3. QUALITY OF INDIVIDUAL QUESTIONS			
a)The questions are original (Repetition of questions from previous examinations is avoided). b)Questions are following a progression from easy to difficult (scaffolding). c)Candidates are able to answer the questions in the allocated time. 4. MARKING GUIDELINE a) The marking guideline is laid out clearly, neatly typed and accurate. b) The marking guideline allows for alternative responses.			
c)The marking guideline is complete with mark allocation and distribution within the questions.			
NAME OF MODERATOR			
SIGNATURE OF MODERATOR			
DATE OF MODERATION			
The educator incorporated comments from MODERATOR into the assessment/task before it was administered			
NAME OF MODERATOR			
SIGNATURE OF MODERATOR			

TERM 2	TERM 2 TEST	JUNE EXAMINATION
1. TECHNICAL CRITERIA		
a) The question paper is neatly typed, complete and with relevant marking guideline.		
b) The cover page has all relevant details such as date, time allocation, nature of the task, name of the subject and instructions to candidates.		
c) The instructions to candidates are clearly specified and unambiguous.		
d) The task has the correct numbering.		
e) The layout of the task is candidate friendly and accessible to candidates with barriers to learning.		
f) Diagrams or illustrations are clear, accurate and correctly labelled.		
g) Mark allocations are clearly indicated on both the task and the marking guideline and they correspond.		
2. CONTENT		
a) The task is in accordance with CAPS and within the broad scope of NSC.		
b) The content tested in the assessment task adequately covers the targeted topics.		
c) The assessment task covers all four cognitive levels in the correct weighting.		
d) The cognitive analysis grid is included.		
3. QUALITY OF INDIVIDUAL QUESTIONS		
a) Repetition of questions from previous examinations is avoided.		
b) Questions or tasks are free from subject error from an academic point of view, e.g. historic or scientific facts.		
4. MARKING GUIDELINE		
a) The marking guideline is laid out clearly, neatly typed and accurate.		
b) The marking guideline makes allowance for alternative solutions.		
c) The marking guideline is complete with mark allocation and distribution within the questions.		

NAME OF MODERATOR		
SIGNATURE OF MODERATOR		
DATE OF RE-MODERATION		
The educator incorporated comments from MODERATOR into the assessment/task before it was administered		
NAME OF MODERATOR		
SIGNATURE OF MODERATOR		
DATE OF RE-MODERATION		

TERM 3	TERM 3 TEST	PREPARATORY EXAMINATION
1. TECHNICAL CRITERIA		
a) The question paper is neatly typed, complete and with relevant marking guideline.		
b) The cover page has all relevant details such as date, time allocation, nature of the task, name of the subject and instructions to candidates.		
c) The instructions to candidates are clearly specified and unambiguous.		
d) The task has the correct numbering.		
e) The layout of the task is candidate friendly and accessible to candidates with barriers to learning.		
f) Diagrams or illustrations are clear, accurate and correctly labelled.		
g) Mark allocations are clearly indicated on both the task and the marking guideline and they correspond.		
2. CONTENT		

a)The task is in accordance with CAPS and within the broad scope of NSC.			
b)The content tested in the assessment task adequately covers the targeted topics.			
c)The assessment task covers all four cognitive levels in the correct weighting.			
d)The Assessment Framework (cognitive analysis grid) is included			
	3. QUALITY OF INDIVIDUAL QUESTIONS		
a) Repetition of questions from previous examinations is avoided.			
b)Questions or tasks are free from subject error from an academic point of view, e.g. historic or scientific facts.			
4. MARKING GUIDELINE			
a) The marking guideline is laid out clearly, neatly typed and			
accurate.			

LEARNER AND TEACHER EVIDENCE OF ASSESSMENT (COMMENTS ONLY)

		FIRST MODERATION	SECOND MODERATION	THIRD MODERATION
Does the Teacher's Records of Assessment contain...	An updated Programme of Assessment?			
	an updated Work Schedule?			
	up to date Mark Sheets?			
Is the following available for each learner...	The relevant tasks, arranged in an easily accessible way?			
	An up to date Consolidation form (including a learner's declaration of authenticity)?			

MODERATOR	FIRST MODERATION	SECOND MODERATION	THIRD MODERATION	PRINCIPAL	FIRST MODERATION	SECOND MODERATION	THIRD MODERATION
Name				Name			
Rank				Signature			
Signature				Date			
Date							

PART B: CLUSTER/DISTRICT LEVEL MODERATION

LEARNER AND TEACHER EVIDENCE OF ASSESSMENT (COMMENTS ONLY)						
		FIRST MODERATION	SECOND MODERATION	THIRD MODERATION		
Does the Teacher's Records of Assessment also contain...	An updated Programme of Assessment?	an updated Work Schedule?				
	up to date Mark Sheets?					
Is the following available for each learner...	The relevant tasks, arranged in an easily accessible way?		An up to date Consolidation form (including a learner's declaration of authenticity)?			

MODERATOR	FIRST MODERATION	SECOND MODERATION	THIRD MODERATION	CLUSTER COORDINATOR	FIRST MODERATION	SECOND MODERATION	THIRD MODERATION
Name				Name			
School				School			
Signature				Signature			
Date			Date				

OVERALL FINDINGS AND RECOMMENDATIONS (CLUSTER/ DISTRICT MODERATOR)

	TERM 1	TERM 2	TERM 3
HAVE RECOMMENDATIONS FROM PREVIOUS MODERATION BEEN IMPLEMENTED?			
GOOD PRACTICES			
AREAS OF CONCERN			
RECOMMENDATIONS			

NAME OF SUBJECT ADVISOR	COMMENTS	DATE	SIGNATURE

MATHEMATICS GRADE 12 PROGRAMME OF ASSESSMENT 2019

SCHOOL

EDUCATOR \qquad

TERM	TASK	TOPIC(S)	MARKS * see footnote below	$\begin{aligned} & \text { ASSESSMENT } \\ & \text { TOOL } \end{aligned}$	WEIGHTING	DATE
1	Assignment				10	
	Project/ Investigation				20	
	March Controlled Test		$\begin{aligned} & 100 \\ & \text { (One Paper) } \end{aligned}$		10	
2	Test				10	
	Examination		$\begin{aligned} & 300 \\ & (\mathrm{P} 1+\mathrm{P} 2) \end{aligned}$		15	
3	Test				10	
	Trial Examination		$\begin{aligned} & 300 \\ & (\mathrm{P} 1+\mathrm{P} 2) \end{aligned}$		25	
$\begin{array}{\|c\|} \hline \text { SBA } \\ \hline \text { ASSESSMENT } \\ \text { MARK } \end{array}$					100	
$\begin{gathered} \text { SBA MARK } \\ \text { (As \% of } \\ \text { Promotion } \\ \text { Mark) } \\ \hline \end{gathered}$					25\%	

Nb: Test/Assignment/Investigation minimum (at least) 50 marks

MATHEMATICS GRADE 12

SBA CONSOLIDATION FORM

 2019NAME OF LEARNER:
NAME OF TEACHER:
NAME OF SCHOOL:

I declare that the above CASS tasks were done by me, and the marks indicated above are authentic.

Name:	Term 1	Term 2	Term 3
Date :			
Signatures:			

PROVINCE OF KWAZULU NATAL
DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATIONS AND ASSESSMENT

ANNEXURE 1

DECLARATION OF AUTHENTICITY: TO BE COMPLETED BY THE LEARNER

NAME OF SCHOOL	
NAME OF LEARNER (Full name(s) and surname)	
EXAMINATION NUMBER (where applicable)	
NAME OF EDUCATOR	

I hereby declare that all pieces of writing contained in this evidence of performance are my own original work and that if I have made use of any resources, I have acknowledged sources.

ABSENCE:

- I agree that should I miss a component of School -Based Assessment (SBA) without a valid reason, I will be awarded a zero mark ("0") for such component.
- I shall endeavor to be present for all tests and examinations and should this be impossible, I shall provide evidence for my absence.

I am aware that frequent absence from school may result in my School-Based Assessment being affected.

I agree that if it is proved that I have engaged in copying information from publications, electronic media and from previous candidates' work or I have engaged in any fraudulent activities in connection with my SBA task(s), then I could forfeit the marks for this assessment.

CANDIDATE'S SIGNATURE

DATE
As far as I know, the above declaration by the learner is true and I accept that the work offered is his or her own.
TEACHER'S SIGNATURE
DATE

SCHOOL：
DISTRICT：
1．TERM ANALYSIS

		Term 1					Term 2					Term 3				
			$\begin{aligned} & \text { U } \\ & \dot{\circ} \text {. } \\ & \text { 己 } \\ & \hline \end{aligned}$	安范			$\begin{array}{cc} \infty & 0 \\ \stackrel{0}{0} \\ \stackrel{\sim}{0} \\ \dot{\sim} \end{array}$	気		$\begin{aligned} & \text { च्0 } \\ & \text { ت/ } \\ & \dot{\text { B }} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{c} \stackrel{0}{0} \\ & \stackrel{n}{2} \end{aligned}$	気		$\begin{aligned} & \text { 苟 } \\ & \text { ت } \\ & \dot{\text { B }} \end{aligned}$	\％ 0 0 0 0
All learners	Grade 10															
Progressed Learners	Grade 10															
All learners	Grade 11															
Progressed Learners	Grade 11															
All learners	Grade 12															
Progressed Learners	Grade 12															

Signature of teacher

Signature of HOD

TEACHER：
YEAR：

SUBJECT：
TERM：

1．TERM ANALYSIS

Date ．．．．．．．．．．／．．．．．．．．．／20．．．．．．

Date \qquad ／20．

2. QUARTERLY TARGETS

	Grade	Target March	\%Achieved March	Target June	\% Achieved June	Target Trial/Sept			
All learners			\% Achieved Trial /Sept	Target Nov	Achieved Nov \%				
Progressed Learners	Grade								
All learners	Grade								
Progressed Learners	Grade								
All learners	Grade								
Progressed Learners	Grade								

\qquad Date \qquad
\qquad /20......
Signature of teacher

Date \qquad
\qquad /20.....

NAME OF SCHOOL				
NAME OF TEACHER				
GRADE				
TYPE OF ASSESSMENT TASK				
ASPECTS/ SECTIONS COVERED		DURATION		
MAXIMUM MARK				

DISTRIBUTION OF MARKS			
RATING CODE	RATING	MARKS $\%$	NUMBER OF LEARNERS
7	Outstanding achievement	$80-100$	
6	Meritorious achievement	$70-79$	
5	Substantial achievement	$60-69$	
4	Adequate achievement	$50-59$	
3	Moderate achievement	$40-49$	
2	Elementary achievement	$30-39$	
1	Not achieved	$0-29$	

NO. WROTE	NO. PASSED		NO. FAILED		AVERAGE $\%$	

(Identify the questions where learners have performed poorly and indicate the reason/s for the poor performance. The reason/s could relate to teaching, learning or both or any other)

Question Number	Description of specific errors	Reasons for poor performance	Remedial Measures

COMMENTS BY MODERATOR : \qquad

TEACHER \qquad DATE : \qquad MODERATOR : \qquad DATE: \qquad

