(3) CORRELATION TO MATHEMATICS FLORIDA STANDARDS (MAFS)

Grade 2 Standards

CORRELATION TO FLORIDA GRADE 2 STANDARDS

CORRELATION TO MATHEMATICS FLORIDA STANDARDS (MAFS)

Bold type indicates lessons with the most in-depth coverage.

dOmaln Operations and Algebraic Thinking

Cluster Represent and solve problems involving addition and subtraction.

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.OA.1.1 Use addition and subtraction within 100 to solve oneand two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	4, 3-ACT MATH 37-40, Lesson 1-9 41-44, Lesson 1-10 50, Reteaching Sets G, H 77-80, Lesson 2-5 84, Reteaching Set D 92, 3-ACT MATH 113-116, Lesson 3-6 117-120, Lesson 3-7 123-125, Reteaching Sets A-F 136, Pick a Project 141-144, Lesson 4-2 145-148, Lesson 4-3 165-168, Lesson 4-8 169-172, Lesson 4-9 175-178, Reteaching Sets B, C, G, H 187, Pick a Project 188, 3-ACT MATH 213-216, Lesson 5-7 217-220, Lesson 5-8 226, Reteaching Sets G, H 236, Pick a Project 245-248, Lesson 6-3 257-260, Lesson 6-6 261-264, Lesson 6-7 268-269, Reteaching Sets C, F 279, Pick a Project 280, 3-ACT MATH 281-284, Lesson 7-1 285-288, Lesson 7-2 289-292, Lesson 7-3 293-296, Lesson 7-4 297-300, Lesson 7-5 309-312, Lesson 7-8 315-318, Reteaching Sets A-C, H 341-344, Lesson 8-4 345-348, Lesson 8-5 364-365, Reteaching Sets B, C 609-612, Lesson 14-1 613-616, Lesson 14-2 617-620, Lesson 14-3 621-624, Lesson 14-4 625-628, Lesson 14-5 631-632, Reteaching Sets A-D 649-652, Lesson 15-3 653-656, Lesson 15-4 657-660, Lesson 15-5 661-664, Lesson 15-6 668,670 , Reteaching Sets B, D	4-4C, 3-ACT MATH 37A-40B, Lesson 1-9 41A-44B, Lesson 1-10 50, Reteaching Sets G, H 77A-80B, Lesson 2-5 84, Reteaching Set D 92-92C, 3-ACT MATH 113A-116B, Lesson 3-6 123-125, Reteaching Sets A-F 136-136A, Pick a Project 141A-144B, Lesson 4-2 145A-148B, Lesson 4-3 165A-168B, Lesson 4-8 169A-172B, Lesson 4-9 175-178, Reteaching Sets B, C, G, H 18-187A, Pick a Project 213A-216B, Lesson 5-7 217A-220B, Lesson 5-8 226, Reteaching Sets G, H 236-236A, Pick a Project 245A-248B, Lesson 6-3 257A-260B, Lesson 6-6 261A-264B, Lesson 6-7 268-269, Reteaching Sets C, F 279-279A, Pick a Project 280-280C, 3-ACT MATH 281A-284B, Lesson 7-1 285A-288B, Lesson 7-2 289A-292B, Lesson 7-3 293A-296B, Lesson 7-4 297A-300B, Lesson 7-5 309A-312B, Lesson 7-8 315-318, Reteaching Sets A-C, H 341A-344B, Lesson 8-4 345A-348B, Lesson 8-5 364-365, Reteaching Sets B, C 609A-612B, Lesson 14-1 613A-616B, Lesson 14-2 617A-620B, Lesson 14-3 621A-624B, Lesson 14-4 625A-628B, Lesson 14-5 631-632, Reteaching Sets A-D 653A 656B, Leson 15-3 657A-660B, Lesson 15-5 661A-664B, Lesson 15-6 668,670 , Reteaching Sets B, D

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\text {SSTEM Activity, and Problem-Solving Reading Activity) are part of this correlation. }}$

Bold type indicates lessons with the most in-depth coverage.
domain Operations and Algebraic Thinking (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.OA.1.a Determine the unknown whole number in an equation relating four or more whole numbers. For example, determine the unknown number that makes the equation true in the equations $37+10+10=$ \qquad $+18, ?-6=13-4$, and $15-9=6+\square$.	4, 3-ACT MATH 5-8, Lesson 1-1 13-16, Lesson 1-3 47-48, Reteaching Sets A, C 253-256, Lesson 6-5 269, Reteaching Set E 236, Pick a Project 280, 3-ACT MATH 301-304, Lesson 7-6 305-308, Lesson 7-7 317-318, Reteaching Sets F, G	4-4C, 3-ACT MATH 5A-8B, Lesson 1-1 13A-16B, Lesson 1-3 47-48, Reteaching Sets A, C 253A-256B, Lesson 6-5 269, Reteaching Set E 236-236A, Pick a Project 280-280C, 3-ACT MATH 301 A-304B, Lesson 7-6 305A-308B, Lesson 7-7 317-318, Reteaching Sets F, G
Cluster Add and subtract within 20.		
MAFS.2.OA.2.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.	3, Pick a Project 4, 3-ACT MATH 5-8, Lesson 1-1 9-12, Lesson 1-2 13-16, Lesson 1-3 17-20, Lesson 1-4 21-24, Lesson 1-5 25-28, Lesson 1-6 29-32, Lesson 1-7 33-36, Lesson 1-8 37-40, Lesson 1-9 41-44, Lesson 1-10 47-50, Reteaching Sets A-H 60, Pick a Project 61-64, Lesson 2-1 65-68, Lesson 2-2 69-72, Lesson 2-3 73-76, Lesson 2-4 77-80, Lesson 2-5 83-84, Reteaching Sets A-D 91, Pick a Project 301-304, Lesson 7-6 317, Reteaching Set F 561-564, Lesson 13-1 595, Reteaching Set A	3-3A, Pick a Project 4-4C, 3-ACT MATH 5A-8B, Lesson 1-1 9A-12B, Lesson 1-2 13A-16B, Lesson 1-3 17A-20B, Lesson 1-4 21A-24B, Lesson 1-5 25A-28B, Lesson 1-6 29A-32B, Lesson 1-7 33A-36B, Lesson 1-8 37A-40B, Lesson 1-9 41A-44B, Lesson 1-10 47-50, Reteaching Sets A-H 60-60A, Pick a Project 61A-64B, Lesson 2-1 65A-68B, Lesson 2-2 69A-72B, Lesson 2-3 73A-76B, Lesson 2-4 77A-80B, Lesson 2-5 83-84, Reteaching Sets A-D 91-91A, Pick a Project 301A-304B, Lesson 7-6 317, Reteaching Set F 561A-564B, Lesson 13-1 595, Reteaching Set A
Cluster Work with equal groups of objects to gain foundations for multiplication.		
Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.OA.3.3 Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	60, Pick a Project 61-64, Lesson 2-1 65-68, Lesson 2-2 83, Reteaching Set A	60-60A, Pick a Project 61A-64B, Lesson 2-1 65A-68B, Lesson 2-2 83, Reteaching Set A

[^0]
CORRELATION TO FLORIDA GRADE 2 STANDARDS (continued)

Bold type indicates lessons with the most in-depth coverage.
DOmain Operations and Algebraic Thinking (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.OA.3.4 Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	69-72, Lesson 2-3 73-76, Lesson 2-4 77-80, Lesson 2-5 83-84, Reteaching Sets B-D 92, 3-ACT MATH 136-136A, Pick a Project 577-580, Lesson 13-5 585-588, Lesson 13-7 589-592, Lesson 13-8 597-598, Reteaching Sets E, G, H	69A-72B, Lesson 2-3 73A-76B, Lesson 2-4 77A-80B, Lesson 2-5 83-84, Reteaching Sets B-D 92-92C, 3-ACT MATH 136-136A, Pick a Project 577A-580B, Lesson 13-5 585A-588B, Lesson 13-7 589A-592B, Lesson 13-8 597-598, Reteaching Sets E, G, H

domain Number and Operations in Base Ten		
Cluster Understand place value.		
Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.NBT.1.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones.	376, 3-ACT MATH 381-384, Lesson 9-2 385-388, Lesson 9-3 389-392, Lesson 9-4 405-408, Lesson 9-8 409-412, Lesson 9-9 419-422, Reteaching Sets B, C, G	376-376C, 3-ACT MATH 381 A-384B, Lesson 9-2 385A-388B, Lesson 9-3 389A-392B, Lesson 9-4 405A-408B, Lesson 9-8 409A-412B, Lesson 9-9 419-422, Reteaching Sets B, C, G
MAFS.2.NBT.1.1.a Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special case: 100 can be thought of as a bundle of ten tens called a "hundred."	$\begin{aligned} & \text { 377-380, Lesson 9-1 } \\ & \text { 393-396, Lesson 9-5 } \\ & \text { 419-420, Reteaching Sets A, D } \end{aligned}$	377A-380B, Lesson 9-1 393A-396B, Lesson 9-5 419-420, Reteaching Sets A, D
MAFS.2.NBT.1.1.b Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special case: The numbers $100,200,300,400,500,600,700$, 800,900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	377-380, Lesson 9-1 419, Reteaching Set A	377A-380B, Lesson 9-1 419 , Reteaching Set A

[^1]Bold type indicates lessons with the most in-depth coverage.

domain Number and Operations in Base Ten (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.NBT.1.2 Count within 1000; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100s.	$\begin{aligned} & \text { 329-332, Lesson 8-1 } \\ & \text { 333-336, Lesson 8-2 } \\ & \text { 337-340, Lesson 8-3 } \\ & \text { 349-352, Lesson 8-6 } \\ & \text { 353-356, Lesson 8-7 } \\ & \text { 357-360, Lesson 8-8 } \\ & \text { 363-366, Reteaching Sets A, B, D-F } \\ & \text { 375, Pick a Project } \\ & \text { 376, 3-ACT MATH } \\ & \text { 397-400, Lesson 9-6 } \\ & \text { 401-404, Lesson 9-7 } \\ & \mathbf{4 1 3 - 4 1 6 ,} \text { Lesson 9-10 } \\ & \text { 421-422, Reteaching Sets E, F, H } \end{aligned}$	$\begin{aligned} & \text { 329A-332B, Lesson 8-1 } \\ & \text { 333A-336B, Lesson 8-2 } \\ & \text { 337A-340B, Lesson 8-3 } \\ & \text { 349A-352B, Lesson 8-6 } \\ & \text { 353A-356B, Lesson 8-7 } \\ & \text { 357A-360B, Lesson 8-8 } \\ & \text { 363-366, Reteaching Sets A, B, D-F } \\ & \text { 375-375A, Pick a Project } \\ & \text { 376-376C, 3-ACT MATH } \\ & \text { 397A-400B, Lesson 9-6 } \\ & \text { 401A-404B, Lesson 9-7 } \\ & \text { 413A-416B, Lesson 9-10 } \\ & \text { 421-422, Reteaching Sets E, F } \end{aligned}$
MAFS.2.NBT.1.3 Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	376, 3-ACT MATH 381-384, Lesson 9-2 385-388, Lesson 9-3 389-392, Lesson 9-4 393-396, Lesson 9-5 419-420, Reteaching Sets B, C, D	376-376C, 3-ACT MATH 381A-384B, Lesson 9-2 385A-388B, Lesson 9-3 389A-392B, Lesson 9-4 393A-396B, Lesson 9-5 419-420, Reteaching Sets B, C, D
MAFS.2.NBT.1.4 Compare two threedigit numbers based on meanings of the hundreds, tens, and ones digits, using $>$, $=$, and $<$ symbols to record the results of comparisons.	375, Pick a Project 405-408, Lesson 9-8 409-4 12, Lesson 9-9 413-416, Lesson 9-10 422, Reteaching Sets G, H	375-375A, Pick a Project 405A-408B, Lesson 9-8 409A-4 12B, Lesson 9-9 413A-416B, Lesson 9-10 422, Reteaching Sets G, H

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\circledR}$ STEM Activity, and Problem-Solving Reading Activity) are part of this correlation.

Bold type indicates lessons with the most in-depth coverage.
domaln Number and Operations in Base Ten (continued)
Cluster Use place value understanding and properties of operations to add and subtract.

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.NBT.2.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	92, 3-ACT MATH 93-96, Lesson 3-1 97-100, Lesson 3-2 101-104, Lesson 3-3 105-108, Lesson 3-4 109-1 12, Lesson 3-5 113-116, Lesson 3-6 117-120, Lesson 3-7 123-125, Reteaching Sets A-F 136, Pick a Project 137-140, Lesson 4-1 141-144, Lesson 4-2 145-148, Lesson 4-3 149-152, Lesson 4-4 153-156, Lesson 4-5 157-160, Lesson 4-6 161-164, Lesson 4.7 165-168, Lesson 4.8 169-172, Lesson 4-9 175-1178, Reteaching Sets A-H 187, Pick a Project 188, 3-ACT MATH 189-192, Lesson 5-1 193-196, Lesson 5-2 197-200, Lesson 5-3 201-204, Lesson 5-4 205-208, Lesson 5-5 209-212, Lesson 5-6 213-216, Lesson 5-7 217-220, Lesson 5-8 223-226, Reteaching Sets A-H 236, Pick a Project 237-240, Lesson 6-1 241-244, Lesson 6-2 245-248, Lesson 6-3 249-252, Lesson 6-4 253-256, Lesson 6-5 257-260, Lesson 6-6 267-269, Reteaching Sets A-F 279, Pick a Project 280, 3-ACT MATH 281-284, Lesson 7-1 285-288, Lesson 7-2 289-292, Lesson 7-3 293-296, Lesson 7-4 297-300, Lesson 7-5 305-308, Lesson 7-7 315-318, Reteaching Sets A-D, G	92-92C, 3-ACT MATH 93A-96B, Lesson 3-1 97A-100B, Lesson 3-2 101A-104B, Lesson 3-3 105A-108B, Lesson 3-4 109A-1 12B, Lesson 3-5 113A-116B, Lesson 3-6 117A-120B, Lesson 3-7 123-125, Reteaching Sets A-F 136-136A, Pick a Project 137A-140B, Lesson 4-1 141A-144B, Lesson 4-2 145A-148B, Lesson 4-3 149A-152B, Lesson 4-4 153A-156B, Lesson 4-5 157A-160B, Lesson 4-6 161A-164B, Lesson 4.7 165A-168B, Lesson 4-8 169A-172B, Lesson 4-9 175-1178, Reteaching Sets A-H 187-187A, Pick a Project 188-188C, 3-ACT MATH 189A-192B, Lesson 5-1 193A-196B, Lesson 5-2 197A-200B, Lesson 5-3 201A-204B, Lesson 5-4 205A-208B, Lesson 5-5 209A-21 2B, Lesson 5-6 213A-216B, Lesson 5-7 217A-220B, Lesson 5-8 223-226, Reteaching Sets A-H 236-236A, Pick a Project 237A-240B, Lesson 6-1 241A-244B, Lesson 6-2 245A-248B, Lesson 6-3 249A-252B, Lesson 6-4 253A-256B, Lesson 6-5 257A-260B, Lesson 6-6 267-269, Reteaching Sets A-F 279-279A, Pick a Project 280-280C, 3-ACT MATH 281A-284B, Lesson 7-1 285A-288B, Lesson 7-2 289A-292B, Lesson 7-3 293A-296B, Lesson 7-4 297A-300B, Lesson 7-5 305A-308B, Lesson 7-7 315-318, Reteaching Sets A-D, G

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\text {®STEM }}$ Activity, and Problem-Solving Reading Activity) are part of this correlation.

Bold type indicates lessons with the most in-depth coverage.
domain Number and Operations in Base Ten (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.NBT.2.6 Add up to four twodigit numbers using strategies based on place value and properties of operations.	105-108, Lesson 3-4 109-112, Lesson 3-5 124-125, Reteaching Sets D, E 136, Pick a Project 141-144, Lesson 4-2 157-160, Lesson 4-6 161-164, Lesson 4-7 165-168, Lesson 4-8 169-172, Lesson 4-9 177-178, Reteaching Sets F-H 279, Pick a Project 305-308, Lesson 7-7 318, Reteaching Set G	105A-108B, Lesson 3-4 109A-112B, Lesson 3-5 124-125, Reteaching Sets D, E 136-136A, Pick a Project 141A-144B, Lesson 4-2 157A-1 60B, Lesson 4-6 161A-164B, Lesson 4-7 165A-168B, Lesson 4-8 169A-172B, Lesson 4-9 177-178, Reteaching Sets F-H 279-279A, Pick a Project 305A-308B, Lesson 7-7 318, Reteaching Set G
MAFS.2.NBT.2.7 Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	432, Pick a Project 437-440, Lesson 10-2 441-444, Lesson 10-3 445-448, Lesson 10-4 449-452, Lesson 10-5 453-456, Lesson 10-6 457-460, Lesson 10-7 463-464, Reteaching Sets B-D 472, 3-ACT MATH 477-480, Lesson 11-2 481-484, Lesson 11-3 485-488, Lesson 1-4 489-492, Lesson 11-5 493-496, Lesson 11-6 499-200, Reteaching Sets B-D	432-432A, Pick a Project 437-440B, Lesson 10-2 441-444B, Lesson 10-3 445-448B, Lesson 10-4 449-452B, Lesson 10-5 453-456B, Lesson 10-6 457-460B, Lesson 10-7 463-464, Reteaching Sets B-D 472-472C, 3-ACT MATH 477-480B, Lesson 11-2 481-484B, Lesson 11-3 485-488B, Lesson 11-4 489-492B, Lesson 11-5 493-496B, Lesson 11-6 499-200, Reteaching Sets B-D
MAFS.2.NBT.2.8 Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	376, 3-ACT MATH 397-400, Lesson 9-6 401-404, Lesson 9-7 413-416, Lesson 9-10 421-422, Reteaching Sets E, F, H 433-436, Lesson 10-1 463, Reteaching Set A 473-476, Lesson 11-1 499, Reteaching Set A	376-376C, 3-ACT MATH 397A-400B, Lesson 9-6 401A-404B, Lesson 9-7 413A-416B, Lesson 9-10 421-422, Reteaching Sets E, F, H 433A-436B, Lesson 10-1 463, Reteaching Set A 473A-476B, Lesson 11-1 499, Reteaching Set A

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\text {®STEM }}$ Activity, and Problem-Solving Reading Activity) are part of this correlation.

Bold type indicates lessons with the most in-depth coverage.
domain Number and Operations in Base Ten (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.NBT.2.9 Explain why addition and subtraction strategies work, using place value and the properties of operations.	92, 3-ACT MATH 93-96, Lesson 3-1 97-100, Lesson 3-2 101-104, Lesson 3-3 109-112, Lesson 3-5 117-120, Lesson 3-7 123-125, Reteaching Sets A-F 137-140, Lesson 4-1 141-144, Lesson 4-2 145-148, Lesson 4-3 149-152, Lesson 4-4 153-156, Lesson 4-5 157-160, Lesson 4-6 161-164, Lesson 4-7 169-172, Lesson 4-9 175-178, Reteaching Sets A-H 187, Pick a Project 188, 3-ACT MATH 189-192, Lesson 5-1 193-196, Lesson 5-2 197-200, Lesson 5-3 201-204, Lesson 5-4 205-208, Lesson 5-5 209-212, Lesson 5-6 217-220, Lesson 5-8 223-226, Reteaching Sets A-F, H 237-240, Lesson 6-1 241-244, Lesson 6-2 245-248, Lesson 6-3 249-252, Lesson 6-4 253-256, Lesson 6-5 261-264, Lesson 6-7 267-269, Reteaching Sets A-F 309-312, Lesson 7-8 318, Reteaching Set H 433-436, Lesson 10-1 437-440, Lesson 10-2 441-444, Lesson 10-3 445-448, Lesson 10-4 449-452, Lesson 10-5 453-456, Lesson 10-6 457-460, Lesson 10-7 463-464, Reteaching Sets A-D 472, 3-ACT MATH 473-476, Lesson 11-1 477-480, Lesson 11-2 481-484, Lesson 11-3 485-488, Lesson 11-4 489-492, Lesson 11-5 493-496, Lesson 11-6 499-500, Reteaching Sets A, B, C	92-92C, 3-ACT MATH 93A-96B, Lesson 3-1 97A-100B, Lesson 3-2 101A-104B, Lesson 3-3 109A-112B, Lesson 3-5 17A-120B, Lesson 3-7 123-125, Reteaching Sets A-F 137A-140B, Lesson 4-1 141A-144B, Lesson 4-2 145A-148B, Lesson 4-3 149A-152B, Lesson 4-4 153A-156B, Lesson 4-5 157A-160B, Lesson 4-6 161A-164B, Lesson 4-7 169A-172B, Lesson 4-9 175-178, Reteaching Sets A-H 187-187A, Pick a Project 188-188C, 3-ACT MATH 189A-192B, Lesson 5-1 193A-196B, Lesson 5-2 197A-200B, Lesson 5-3 201A-204B, Lesson 5-4 205A-208B, Lesson 5-5 209A-212B, Lesson 5-6 217A-220B, Lesson 5-8 223-226, Reteaching Sets A-F, H 237A-240B, Lesson 6-1 241A-244B, Lesson 6-2 245A-248B, Lesson 6-3 249A-252B, Lesson 6-4 253A-256B, Lesson 6-5 261A-264B, Lesson 6-7 267-269, Reteaching Sets A-F 309A-312B, Lesson 7-8 318, Reteaching Set H 433A-436B, Lesson 10-1 437A-440B, Lesson 10-2 441A-444B, Lesson 10-3 445A-448B, Lesson 10-4 449A-452B, Lesson 10-5 453A-456B, Lesson 10-6 457A-460B, Lesson 10-7 463-464, Reteaching Sets A-D 472-472C, 3-ACT MATH 473A-476B, Lesson 11-1 477A-480B, Lesson 11-2 481A-484B, Lesson 11-3 485A-488B, Lesson 11-4 489A-492B, Lesson 11-5 493A-496B, Lesson 11-6 499-500, Reteaching Sets A, B, C

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\circledR}$ STEM Activity, and Problem-Solving Reading Activity) are part of this correlation.

Bold type indicates lessons with the most in-depth coverage.

domain Measurement and Data

Cluster Measure and estimate lengths in standard units.

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.MD.1.1 Measure the length of an object to the nearest inch, foot, centimeter, or meter by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	513-516, Lesson 12-2 517-520, Lesson 12-3 521-524, Lesson 12-4 525-528, Lesson 12-5 529-532, Lesson 12-6 533-536, Lesson 12-7 541-544, Lesson 12-9 547-550, Reteaching Sets B-F, H 560, 3-ACT MATH 565-568, Lesson 13-2 569-572, Lesson 13-3 573-576, Lesson 13-4 595-596, Reteaching Sets B-D 641-644, Lesson 15-1 645-648, Lesson 15-2 667, Reteaching Set A	513A-516B, Lesson 12-2 517A-520B, Lesson 12-3 521A-524B, Lesson 12-4 525A-528B, Lesson 12-5 529A-532B, Lesson 12-6 533A-536B, Lesson 12-7 541 A-544B, Lesson 12-9 547-550, Reteaching Sets B-F, H 560-560C, 3-ACT MATH 565A-568B, Lesson 13-2 569A-572B, Lesson 13-3 573A-576B, Lesson 13-4 595-596, Reteaching Sets B-D 641A-644B, Lesson 15-1 645A-648B, Lesson 15-2 667, Reteaching Set A
MAFS.2.MD.1.2 Describe the inverse relationship between the size of a unit and number of units needed to measure a given object. Example: Suppose the perimeter of a room is lined with one-foot rulers. Now, suppose we want to line it with yardsticks instead of rulers. Will we need more or fewer yardsticks than rulers to do the job? Explain your answer.	521-524, Lesson 12-4 533-536, Lesson 12-7 548-549, Reteaching Sets C, F 581-584, Lesson 13-6 597, Reteaching Set F	521A-524B, Lesson 12-4 533A-536B, Lesson 12-7 548-549, Reteaching Sets C, F 581A-584B, Lesson 13-6 597, Reteaching Set F
MAFS.2.MD.1.3 Estimate lengths using units of inches, feet, yards, centimeters, and meters.	509-512, Lesson 12-1 513-516, Lesson 12-2 517-520, Lesson 12-3 525-528, Lesson 12-5 529-532, Lesson 12-6 541-544, Lesson 12-9 547-550, Reteaching Sets A, B, D, E, H	509A-512B, Lesson 12-1 513A-516B, Lesson 12-2 517A-520B, Lesson 12-3 525A-528B, Lesson 12-5 529A-532B, Lesson 12-6 541 A-544B, Lesson 12-9 547-550, Reteaching Sets A, B, D, E, H
MAFS.2.MD.1.4 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	$\begin{aligned} & \text { 537-540, Lesson 12-8 } \\ & \text { 541-544, Lesson 12-9 } \\ & \text { 550, Reteaching Sets G, H } \\ & \text { 560, 3-ACT MATH } \end{aligned}$	537A-540B, Lesson 12-8 541A-544B, Lesson 12-9 550, Reteaching Sets G, H 560-560C, 3-ACT MATH

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision®STEM Activity, and Problem-Solving Reading Activity) are part of this correlation.

CORRELATION TO FLORIDA GRADE 2 STANDARDS (continued)

Bold type indicates lessons with the most in-depth coverage

domain Measurement and Data (continued)

Cluster Relate addition and subtraction to length.

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.MD.2.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	533-536, Lesson 12-7 537-560, Lesson 12-8 549-550, Reteaching Sets F, G 560, 3-ACT MATH 609-612, Lesson 14-1 613-616, Lesson 14-2 617-620, Lesson 14-3 621-624, Lesson 14-4 625-628, Lesson 14-5 631-632, Reteaching Sets A-D	533A-536B, Lesson 12-7 537A-540B, Lesson 12-8 549-550, Reteaching Sets F, G 560-560C, 3-ACT MATH 609A-612B, Lesson 14-1 613A-616B, Lesson 14-2 617A-620B, Lesson 14-3 621A-624B, Lesson 14-4 625A-628B, Lesson 14-5 631-632, Reteaching Sets A-D
MAFS.2.MD.2.6 Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.	621-624, Lesson 14-4 625-628, Lesson 14-5 632, Reteaching Sets C-D	621A-624B, Lesson 14-4 625A-628B, Lesson 14-5 632, Reteaching Sets C-D
Cluster Work with time and money.		
MAFS.2.MD.3.7 Tell and write time from analog and digital clocks to the nearest five minutes.	328, Pick a Project 349-352, Lesson 8-6 353-356, Lesson 8-7 357-360, Lesson 8-8 365-366, Reteaching Sets D-F	328-328A, Pick a Project 349A-352B, Lesson 8-6 353A-356B, Lesson 8-7 357A-360B, Lesson 8-8 365-366, Reteaching Sets D-F
MAFS.2.MD.3.8 Solve one- and twostep word problems involving dollar bills (singles, fives, tens, twenties, and hundreds) or coins (quarters, dimes, nickels, and pennies) using \$ and \$ symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations ${ }^{1}$. Example: The cash register shows that the total for your purchase is $59 \$$. You gave the cashier three quarters. How much change should you receive from the cashier?	376, 3-ACT MATH 433-436, Lesson 10-1 463, Reteaching Set A 485-488, Lesson 11-4	376-376C, 3-ACT MATH 433A-436B, Lesson 10-1 463, Reteaching Set A 485-488B, Lesson 11-4

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\text {© STEM }}$ Activity, and Problem-Solving Reading Activity) are part of this correlation.

Bold type indicates lessons with the most in-depth coverage.

domain Measurement and Data (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.MD.3.8.a Solve one- and two-step word problems involving dollar bills (singles, fives, tens, twenties, and hundreds) or coins (quarters, dimes, nickels, and pennies) using \$ and $\$$ symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations. Example: The cash register shows that the total for your purchase is $59 \$$. You gave the cashier three quarters. How much change should you receive from the cashier? Identify the value of coins and paper currency.	$\begin{aligned} & \text { 329-332, Lesson 8-1 } \\ & \text { 333-336, Lesson 8-2 } \\ & \text { 337-340, Lesson 8-3 } \\ & \text { 341-344, Lesson 8-4 } \\ & \text { 345-348, Lesson 8-5 } \\ & \text { 363-365, Reteaching Sets A-C } \end{aligned}$	$\begin{aligned} & \text { 329A-332B, Lesson 8-1 } \\ & \text { 333A-336B, Lesson 8-2 } \\ & \text { 337A-340B, Lesson 8-3 } \\ & \text { 341A-344B, Lesson 8-4 } \\ & \text { 345A-348B, Lesson 8-5 } \\ & \text { 363-365, Reteaching Sets A-C } \end{aligned}$
MAFS.2.MD.3.8.b Solve one- and two-step word problems involving dollar bills (singles, fives, tens, twenties, and hundreds) or coins (quarters, dimes, nickels, and pennies) using $\$$ and $\$$ symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations. Example: The cash register shows that the total for your purchase is 59 d . You gave the cashier three quarters. How much change should you receive from the cashier? Compute the value of any combination of coins within one dollar.	328, Pick a Project 329-332, Lesson 8-1 333-336, Lesson 8-2 345-348, Lesson 8-5 363, 365, Reteaching Sets A, C	328-328A, Pick a Project 329A-332B, Lesson 8-1 333A-336B, Lesson 8-2 345A-348B, Lesson 8-5 363, 365, Reteaching Sets A, C
MAFS.2.MD.3.8.c Solve one- and two-step word problems involving dollar bills (singles, fives, tens, twenties, and hundreds) or coins (quarters, dimes, nickels, and pennies) using \$ and Φ symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations. Example: The cash register shows that the total for your purchase is $59 \$$. You gave the cashier three quarters. How much change should you receive from the cashier? Compute the value of any combinations of dollars (e.g., If you have three tendollar bills, one five-dollar bill, and two one-dollar bills, how much money do you have?).	328, Pick a Project 337-340, Lesson 8-3 341-344, Lesson 8-4 345-348, Lesson 8-5 364-365, Reteaching Sets B, C 473-476, Lesson 11-1 481-484, Lesson 11-3 499, Reteaching Sets A, B	328-328A, Pick a Project 337A-340B, Lesson 8-3 341A-344B, Lesson 8-4 345A-348B, Lesson 8-5 364-365, Reteaching Sets B, C 473A-476B, Lesson 11-1 481A-484B, Lesson 11-3 499, Reteaching Sets A, B

*Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision®STEM Activity, and Problem-Solving Reading Activity) are part of this correlation.

CORRELATION TO FLORIDA GRADE 2 STANDARDS (continued)

Bold type indicates lessons with the most in-depth coverage.

domain Measurement and Data (continued)		
Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.MD.3.8.d Solve one- and two-step word problems involving dollar bills (singles, fives, tens, twenties, and hundreds) or coins (quarters, dimes, nickels, and pennies) using $\$$ and $\$$ symbols appropriately. Word problems may involve addition, subtraction, and equal groups situations. Example: The cash register shows that the total for your purchase is 59 d. You gave the cashier three quarters. How much change should you receive from the cashier? Relate the value of pennies, nickels, dimes, and quarters to other coins and to the dollar (e.g., There are five nickels in one quarter. There are two nickels in one dime. There are two and a half dimes in one quarter. There are twenty nickels in one dollar).	329-332, Lesson 8-1 333-336, Lesson 8-2 341-344, Lesson 8-4 345-348, Lesson 8-5 363-365, Reteaching Sets A-C	329A-332B, Lesson 8-1 333A-336B, Lesson 8-2 341A-344B, Lesson 8-4 345A-348B, Lesson 8-5 363-365, Reteaching Sets A-C
Cluster Represent and interpret data.		
MAFS.2.MD.4.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	640, 3-ACT MATH 649-652, Lesson 15-3 653-656, Lesson 15-4 657-660, Lesson 15-5 661-664, Lesson 15-6 668-670, Reteaching Sets B-D	640-640C, 3-ACT MATH 649A-652B, Lesson 15-3 653A-656B, Lesson 15-4 657A-660B, Lesson 15-5 661 A-664B, Lesson 15-6 668-670, Reteaching Sets B-D
MAFS.2.MD.4.9 Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.	640, 3-ACT MATH 641-644, Lesson 15-1 645-648, Lesson 15-2 667, Reteaching Set A	640-640C, 3-ACT MATH 641A-644B, Lesson 15-1 645A-648B, Lesson 15-2 667, Reteaching Set A
domain Geometry		
Cluster Reason with shapes and their attributes.		
Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.G.1.1 Recognize and draw shapes having specified altributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	560, 3-ACT MATH 561-564, Lesson 13-1 565-568, Lesson 13-2 569-572, Lesson 13-3 573-576, Lesson 13-4 595-596, Reteaching Sets A-D	560-560C, 3-ACT MATH 561A-564B, Lesson 13-1 565A-568B, Lesson 13-2 569A-572B, Lesson 13-3 573A-576B, Lesson 13-4 595-596, Reteaching Sets A-D

[^2]
DOMAIN Geometry (continued)

Mathematics Florida Standards	Student's Edition Pages	Teacher's Edition Pages*
MAFS.2.G.1.2 Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.	$\begin{aligned} & \text { 577-580, Lesson 13-5 } \\ & \text { 585-588, Lesson 13-7 } \\ & \text { 589-592, Lesson 13-8 } \\ & \text { 597-598, Reteaching Sets E, G, H } \end{aligned}$	577A-580B, Lesson 13-5 585A-588B, Lesson 13-7 589A-592B, Lesson 13-8 597-598, Reteaching Sets E, G, H
MAFS.2.G.1.3 Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	$\begin{aligned} & \text { 581-584, Lesson 13-6 } \\ & \mathbf{5 8 5 - 5 8 8} \text {, Lesson 13-7 } \\ & \text { 589-592, Lesson 13-8 } \\ & \text { 597-598, Reteaching Sets F, G, H } \end{aligned}$	$\begin{aligned} & \text { 581 A-584B, Lesson 13-6 } \\ & \text { 585A-588B, Lesson 13-7 } \\ & \text { 589A-592B, Lesson 13-8 } \\ & \text { 597-598, Reteaching Sets F, G, H } \end{aligned}$

MATHEMATICAL PRACTICES

Mathematics Florida Standards

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?"
They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents - and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Found Throughout the Program

Some examples are given.
enVision ${ }^{\circledR}$ Florida Mathematics provides numerous instructional opportunities to help students develop proficiency in the math practices. To get students off to a good start on all eight practices, use the Math Practices and Problem Solving Handbook pages at PearsonRealize.com, along with the Math Practices Posters, and supporting Math Practices Animations. Each lesson begins with Problem-Based Learning, an activity in which students interact with their peers and teachers to make sense of and decide on a workable solution for a situation. Another feature of each lesson is the set of problem-solving exercises in which students persevere by applying different skills and strategies to solve problems. Each ProblemSolving Lesson provides instruction and practice focused on a specific math practice.

Student's Edition and Teacher's Edition pages

13-16, Lesson 1-3
21-24, Lesson 1-5 37-40, Lesson 1-9 41-44, Lesson 1-10 69-72, Lesson 2-3 77-80, Lesson 2-5 113-116, Lesson 3-6 117-120, Lesson 3-7

141-144, Lesson 4-2
149-152, Lesson 4-4
165-168, Lesson 4-8
169-172, Lesson 4-9
193-196, Lesson 5-2
197-200, Lesson 5-3
493-496, Lesson 11-6
enVision ${ }^{\circledR}$ Florida Mathematics provides scaffolded instruction to help students develop both quantitative and abstract reasoning. In the Visual Learning Bridge, students can see how to represent a given situation numerically or algebraically. They will have opportunities later in the lesson to reason abstractly as they endeavor to represent situations symbolically. Reasonableness exercises remind students to compare their work to the original situation. Reasoning problems throughout the exercise sets focus students' attention on the structure or meaning of an operation, for example, rather than merely the solution.

Student's Edition and Teacher's Edition pages

5-8, Lesson 1-1	69-72, Lesson 2-3
13-16, Lesson 1-3	73-76, Lesson 2-4
17-20, Lesson 1-4	97-100, Lesson 3-2
21-24, Lesson 1-5	261-264, Lesson 6-7
25-28, Lesson 1-6	309-312, Lesson 7-8
33-36, Lesson 1-8	345-348, Lesson 8-5
37-40, Lesson 1-9	661-664, Lesson 15-6
41-44, Lesson 1-10	

69-72, Lesson 2-3
13-16, Lesson 1-3
73-76, Lesson 2-4
261-264, Lesson 6.7
309-312, Lesson 7-8
-348, Lesson 8-5
41-44, Lesson 1-10

MATHEMATICAL PRACTICES (continued)

Mathematics Florida Standards

MAFS.K 12.MP.3.1 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and - if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

MAFS.K12.MP.4.1 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Found Throughout the Program

Some examples are given.
Consistent with a focus on reasoning and sense-making is a focus on critical reasoning-argumentation and critique of arguments. In enVision ${ }^{\text {® }}$ Florida Mathematics, the Problem-Based Learning affords students opportunities to share with classmates their thinking about problems, their solution methods, and their reasoning about the solutions. Many exercises found throughout the program specifically call for students to justify or explain their solutions. The ability to articulate a clear explanation for a process is a stepping stone to critical analysis and reasoning of both the student's own processes and those of others.

Student's Edition and Teacher's Edition pages

29-32, Lesson 1-7	141-144, Lesson 4-2
41-44, Lesson 1-10	149-152, Lesson 4-4
69-72, Lesson 2-3	157-160, Lesson 4-6
77-80, Lesson 2-5	169-172, Lesson 4-9
93-96, Lesson 3-1	189-192, Lesson 5-1
105-108, Lesson 3-4	201-204, Lesson 5-4
$117-120$, Lesson 3-7	217-220, Lesson 5-8
$137-140$, Lesson 4-1	

Students using enVision ${ }^{\ominus}$ Florida Mathematics are introduced to mathematical modeling in the early grades. They first use manipulatives and drawings and then equations to model addition and subtraction situations. The Visual Learning Bridge and Visual Learning Animation Plus often present real-world situations, and students are shown how these can be modeled mathematically. In later grades, students expand their modeling skills to include representations such as tables and graphs, as well as equations.

Student's Edition and Teacher's Edition pages

5-8, Lesson 1-1
9-12, Lesson 1-2
21-24, Lesson 1-5
29-32, Lesson 1-7
33-36, Lesson 1-8
41-44, Lesson 1-10
61-64, Lesson 2-1
65-68, Lesson 2-2

69-72, Lesson 2-4
77-80, Lesson 2-5
101-104, Lesson 3-3
137-140, Lesson 4-1
145-148, Lesson 4-3
161-164, Lesson 4-7
165-168, Lesson 4-8

MATHEMATICAL PRACTICES (continued)

Mathematics Florida Standards

MAFS.K 12.MP.5.1 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

MAFS.K 12.MP.6.1 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school, they have learned to examine claims and make explicit use of definitions.

Found Throughout the Program

Some examples are given.
Students become fluent in the use of a wide assortment of tools ranging from physical objects, including manipulatives, rulers, protractors, and even pencil and paper, to digital tools, such as Online Math Tools and computers. As students become more familiar with the tools available to them, they are able to begin making decisions about which tools are most helpful in a particular situation.

Student's Edition and Teacher's Edition pages

17-20, Lesson 1-4
29-32, Lesson 1-7
93-96, Lesson 3-1
97-100, Lesson 3-2
109-112, Lesson 3-5
117-120, Lesson 3-7
141-144, Lesson 4-2
189-192, Lesson 5-1

Students are expected to use mathematical terms and symbols with precision. Key terms and concepts are highlighted in each lesson. The Problem-Based Learning activity provides repeated opportunities for students to use precise language to explain their solution paths while solving problems. In the Convince Me! feature, students revisit these key terms or concepts and provide explicit definitions or explanations.

Student's Edition and Teacher's Edition pages

9-12, Lesson 1-2	253-256, Lesson 6-5
37-4, Lesson 1-9	261-264, Lesson 6-7
61-64, Lesson 2-1	301-304, Lesson 7-6
77-80, Lesson 2-5	333-336, Lesson 8-2
113-116, Lesson 3-6	$341-344$, Lesson 8-4
137-140, Lesson 4-1	349-352, Lesson 8-6
197-200, Lesson 5-3	541-544, Lesson 12-9

197-200, Lesson 5-3
201-204, Lesson 5-4

193-196, Lesson 5-2
209-212, Lesson 5-6
237-240, Lesson 6-1
245-248, Lesson 6-3
261-264, Lesson 6-7
305-308, Lesson 7-7
625-628, Lesson 14-5

MATHEMATICAL PRACTICES (continued)

Mathematics Florida Standards

MAFS.K 12.MP.7.1 Look for and make use of

 structure.Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as
$2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MAFS.K 12.MP.8.1 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $\frac{(y-2)}{(x-1)}=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Found Throughout the Program

Some examples are given.
Students are encouraged to look for structure as they develop solution plans. As students mature in their mathematical thinking, they look for structure in numerical operations by focusing on place value and properties of operations. This focus on looking for and recognizing structure enables students to draw from patterns as they formalize their thinking about the structure of operations.

Student's Edition and Teacher's Edition pages

9-12, Lesson 1-2
145-148, Lesson 4-3
13-16, Lesson 1-3
25-28, Lesson 1-6
61-64, Lesson 2-1
65-68, Lesson 2-2
69-72, Lesson 2-3
77-80, Lesson 2-5
101-104, Lesson 3-3

153-156, Lesson 4-5
161-164, Lesson 4-7
189-192, Lesson 5-1
201-204, Lesson 5-4
217-220, Lesson 5-8
413-416, Lesson 9-10

Students are prompted to look for reperition in computations to help them develop shortcuts and become more efficient problem solvers. Students are reminded to think about problems they have encountered previously that may share features or processes. They are encouraged to draw on the solution plan developed for such problems, and, as their mathematical thinking matures, to look for and apply generalizations to similar situations. The Problem-Based Learning activities offer students opportunities to look for regularity in the way operations behave.

Student's Edition and Teacher's Edition pages

5-8, Lesson 1-1
17-20, Lesson 1-4
25-28, Lesson 1-6
33-36, Lesson 1-8
65-68, Lesson 2-2
77-80, Lesson 2-5
105-108, Lesson 3-4
153-156, Lesson 4-5

157-160, Lesson 4-6
157-160,
165-168, Lesson 4-8
205-208, Lesson 5-5
257-260, Lesson 6-6
281-284, Lesson 7-1
457-460, Lesson 10-7
589-592, Lesson 13-8

CORRELATION TO LANGUAGE ARTS FLORIDA STANDARDS (LAFS)

COMPREHENSION AND COLLABORATION

Language Arts Florida Standards

LAFS.2.SL.1.1 Participate in collaborative conversations with diverse partners about grade 2 topics and texts with peers and adults in small and larger groups.
a. Follow agreed-upon rules for discussions (e.g., gaining the floor in respectful ways, listening to others with care, speaking one at a time about the topics and texts under discussion).
b. Build on others' talk in conversations by linking their comments to the remarks of others.
c. Ask for clarification and further explanation as needed about the topics and texts under discussion.

LAFS.2.SL.1.2 Recount or describe key ideas or details from a text read aloud or information presented orally or through other media.

Found Throughout the Program

Some examples are given.
Students participate in one-on-one and small-group conversations as they work on the Solve \& Share problem. Students participate in teacher-led conversations in the "Discuss Solution Strategies and Key Ideas" part of Solve \& Share, which includes questions to foster conversations about Sample Student Work. Other teacher-led conversations include the "Classroom Conversation" during the Visual Learning Bridge and Visual Learning Animation Plus. And avatar speech bubbles help model mathematics conversations. The Interactive Math Story has suggestions for conversations under the heading "Speak".

Student's Edition and Teacher's Edition pages
Solve \& Share, pages 5, 93, 189, 281
Avatar speech bubbles (model conversations), pages 6, 10, 14

Teacher's Edition pages

Classroom Conversation, pages 94, 190, 282, 378
Interactive Math Story, pages 1P, 57J, 89L, 133L
Discussions about Convince Me!, Revisit the Essential Question, and Guided Practice provide opportunities for students to recount or describe key ideas and details from information presented through text, symbols, and a variety of visuals in the Visual Learning Bridge and in the online Visual Learning Animation Plus which includes audio. Discussions about the Interactive Math Story provide similar opportunities.
Student's Edition and Teacher's Edition pages
Convince Me!; Revisit the Essential Question, pages 14, 102, 198, 290, 386
Guided Practice, pages 10, 98, 194, 286, 382
Teacher's Edition pages
Interactive Math Story, pages 185L, 233P, 277L, 325L, 373L

COMPREHENSION AND COLLABORATION (continued)	
Language Arts Florida Standards	Found Throughout the Program Some examples are given.
LAFS.2.SL.1.3 Ask and answer questions about what a speaker says in order to clarify comprehension, gather additional information, or deepen understanding of a topic or issue.	The small-group and whole-class discussions in Solve \& Share, as well as the Classroom Conversations during the Visual Learning Bridge and Visual Learning Animation Plus provide many opportunities for students to ask and answer questions about what a speaker says in order to clarify comprehension, gather additional information, or deepen understanding of a topic or issue). Student's Edition and Teacher's Edition pages Solve \& Share, pages $65,141,241,333,437,513$, 613,617 Teacher's Edition pages Classroom Conversation, pages 66, 142, 242, 334, 438, 514,614
TEXT TYPES AND PURPOSES	
Language Arts Florida Standards	Found Throughout the Program Some examples are given.
LAFS.2.W.1.2 Write informative/explanatory texts in which they introduce a topic, use facts and definitions to develop points, and provide a concluding statement or section.	In addition to lesson exercises that ask students to explain their thinking, the enVision ${ }^{\circledR}$ STEM Project, Pick a Project, Solve \& Share, and Convince Me! ask students to write informative/explanatory text to convey ideas and information clearly. Student's Edition and Teacher's Edition pages enVision ${ }^{\circledR}$ STEM Project, pages 1,57, 89 Pick a Project, pages 3, 59-60, 91 Solve \& Share, pages 17, 21, 25, 29 Convince Me!, pages 18, 22, 26, 30

(3) CORRELATION TO ENGLISH LANGUAGE DEVELOPMENT STANDARDS (ELDS)

LANGUAGE OF MATHEMATICS	
English Language Development Standards	$\begin{array}{l}\text { Found Throughout the Program } \\ \text { Some examples are given. }\end{array}$
$\begin{array}{l}\text { ELD.K 12.ELL.MA. } 1 \text { English language learners } \\ \text { communicate information, ideas and concepts necessary } \\ \text { for academic success in the content area of Mathematics. }\end{array}$	$\begin{array}{l}\text { English language learners have opportunities to } \\ \text { communicate mathematical information, ideas, and } \\ \text { concepts during small-group work and whole-class } \\ \text { discussions in Solve \& Share and during Convince Me! The } \\ \text { Teacher's Edition for every lesson provides 2 ELL activities } \\ \text { to support English language learners-one to use with } \\ \text { Solve \& Share, the other to use with the Visual Learning } \\ \text { Bridge. These activities use the 5 levels identified by WIDA } \\ \text { (World-Class Instructional Design and Assessment). } \\ \text { Student's Edition and Teacher's Edition pages }\end{array}$
Solve \& Share, pages 329, 377, 433, 473, 509	
Convince Me!, pages 330, 390, 434, 474, 510	

LANGUAGE OF SOCIAL AND INSTRUCTIONAL PURPOSES

English Language Development Standards	Found Throughout the Program Some examples are given.
ELD.K12.ELL.SI. 1 English language learners communicate for social and instructional purposes within the school setting.	In the instructional portion of each lesson, English language learners have opportunities to communicate verbally and in writing during Solve \& Share, during Classroom
	Conversations about the Visual Learning Bridge and the
Visual Learning Animation Plus, and during Convince Me!	
	Student's Edition and Teacher's Edition pages Solve \& Share, pages 337, 381, 441, 477, 517 Convince Me!, pages 338, 394, 442, 478, 518
	Teacher's Edition pages Classroom Conversation, pages 342, 398, 446, 482,522

[^0]: *Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\text {®STEM }}$ Activity, and Problem-Solving Reading Activity) are part of this correlation.

[^1]: *Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision®STEM Activity, and Problem-Solving Reading Activity) are part of this correlation.

[^2]: *Blackline Masters for lessons (Reteach to Build Understanding, Build Mathematical Literacy, Enrichment, enVision ${ }^{\circledR S T E M ~ A c t i v i t y, ~ a n d ~ P r o b l e m-S o l v i n g ~ R e a d i n g ~ A c t i v i t y) ~ a r e ~ p a r t ~ o f ~ t h i s ~ c o r r e l a t i o n . ~}$

