DRAFT

Grade 3 Mathematics Item Specifications

The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as provided in CPALMs. The Specifications are a resource that defines the content and format of the test and test items for item writers and reviewers. Each grade-level and course Specifications document indicates the alignment of items with the Florida Standards. It also serves to provide all stakeholders with information about the scope and function of the FSA.

Item Specifications Definitions

Also assesses refers to standard(s) closely related to the primary standard statement.

Clarification statements explain what students are expected to do when responding to the question.

Assessment limits define the range of content knowledge and degree of difficulty that should be assessed in the assessment items for the standard.

Acceptable response mechanisms describe the characteristics from which a student must answer a question.

Context defines types of stimulus materials that can be used in the assessment items.

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard		MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA. 1 Represent and solve problems involving multiplication and division. MAFS.3.OA.1.1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.		
Assessment Limits		Products within 100. Whole number factors.		
Calculator		No		
Acceptable Response Mechanisms		Equation Response Multiple Choice Response Multi-Select Response Natural Language Response Table Response		
Context ${ }^{\text {Allowable }}$				
Example				
Context	Use numbers that have 4-5 factors other than 1.			
Context easier	Use numbers that have 2-3 factors other than 1.			
Context more difficult	Use numbers that have more than 5 factors other than 1 and more than one design for the flower arrangement.			
Sample Item Stem			Response Mechanism	Notes, Comments
Tom planted 5 rows of flowers with 7 flowers in each row. Write a multiplication equation that shows the number of flowers in Tom's rectangularshaped garden.			Equation Response	
Tom told Mary he planted 4×5 flowers. How might Mary describe the arrangement of flowers in Tom's rectangular-shaped garden?			Natural Language Response	
Tom told Mary he planted 48 flowers in the rectangular-shaped garden. Select the correct sentence Mary could use to describe how the flowers were planted.			Multiple Choice Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Tom has to plant 36 flowers in the garden. Complete the table to show 3 different designs for how Tom could plant the flowers.	Table Response			
Number of Rows Number of Columns Design 1 Design 2 Design 3				
:---				

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard		MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA. 1 Represent and solve problems involving multiplication and division. MAFS.3.OA.1.2 Interpret whole-number quotients of whole numbers, e.g., interpret 56 $\div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.		
Assessment Limits		Dividends up to 100. Whole number dividends. Whole number quotients.		
Calculator		No		
Acceptable Response Mechanisms		Equation Response Graphic Response - Drag and Drop Multiple Choice Response Multi-Select Response Natural Language Response		
Context	Allowable			
Example				
Context	Use numbers for the dividend that are between 20 and 50.			
Context easier	Use smaller numbers when expressing the dividends (e.g., dividends less than 20).			
Context more difficult	Use larger numbers when expressing the dividends. (e.g., dividends larger than 50 but not greater than 100).			
Sample Item Stem			Response Mechanism	Notes, Comments
Heidi has 12 apples and 6 bags. She places an equal number of apples in each bag. Drag apples to show how many apples are in each bag.			Graphic Response Drag and Drop	
Select all of the situations that can be represented by $56 \div 8$. o Heidi has 56 apples and places an equal number of apples into 8 baskets. o Heidi has 56 apples and gives 8 of them to a friend. o Heidi has 56 apples and her friend gives her 8 more. 0 Heidi has 8 apples and needs more apples to deliver to a customer. o Heidi picks 56 apples each day for 8			Multi-Select Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| days. | | |
| :--- | :--- | :--- | :--- |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA.1 Represent and solve problems involving multiplication and division. MAFS.3.OA.1.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\ldots 3,6 \times 6=$?		
Assessment Limits	Product is less than 100. Whole number factors and quotients. Equation must be given, and not created.		
Calculator	No		
Acceptable Response Mechanisms	Equation Response Multiple Choice Response		
No context			
Example			
Context ${ }^{\text {The prod }}$	The product or dividend is a number between 20 and 50.		
The product or dividend is a number from 0-19. A problem where the unknown is a product or a quotient.			
Context $\begin{array}{l}\text { more } \\ \text { difficult }\end{array}$ The prod	The product or dividend is a number from 51-100.		
Sample Item Stem		Response Mechanism	Notes, Comments
A multiplication problem is shown. $6 \times 3=\text { ? }$ What is the value of the unknown number?		Equation Response	
A division problem is shown. 9 equals \qquad divided by 3 What is the value of the unknown number?		Equation Response	
A division problem $72 \times ?=9$ What is the value number?	is shown. the unknown	Equation Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.OA Operations and MAFS.3.OA. 2 Understand p multiplication and division. MAFS.3.OA.2.5 Apply proper Examples: If $6 \times 4=24$ is kn of multiplication.) $3 \times 5 \times 2$ 10 , then $3 \times 10=30$. (Associ and $8 \times 2=16$, one can find (Distributive property.)	Algebraic Thinking operties of multiplication ies of operations as st wn, then $4 \times 6=24$ is an be found by $3 \times 5=$ tive property of mult $3 \times 7 \text { as } 8 \times(5+2)=(8$	and the relationship between tegies to multiply and divide. so known. (Commutative property , then $15 \times 2=30$, or by $5 \times 2=$ cation.) Knowing that $8 \times 5=40$ $\text { 5) }+(8 \times 2)=40+16=56$
Assessment Limits	Whole numbers. Product or dividend must	00 or less.	
Calculator	No		
Acceptable Response Mechanisms	Equation Response Graphic Response - Hot Spot Matching Item Response Multiple Choice Response Multi-Select Response		
Context ${ }^{\text {No conte }}$			
Example			
No context			
Context easier	Use of the Commutative Property with two factors.		
Use of multiple properties to determine an equivalent expression.			
Sample Item Stem		Response Mechanism	Notes, Comments
An equation is show $4+9=9+\square$ What is the missing A. 4 B. 5 C. 9 D. 13	n. value?	Multiple Choice Response	
Drag numbers to th expression that is $(3+4)+5=(\square+\square)$	boxes to create a different qual to $(3+4)+5$.	Graphic Response Hot Spot	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Which expression is equal to $7 \times(2 \times 3)$? A. $(7 \times 2)+(7 \times 3)$ B. $(7+2) \times(7+3)$ C. $(7+2) \times 3$ D. $(7 \times 2) \times(7 \times 3)$	Multiple Choice Response	
Select all the expressions that could be used to find 6×10.	Multi-Select Response	
0 $6 \times(2 \times 5)$		
$0 \quad 6+(2 \times 5)$		
$0 \quad(6 \times 2) \times 5$		
- 10×6		
$0(6 \times 8) \times(6 \times 2)$		

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA. 2 Understand properties of multiplication and the relationship between multiplication and division. MAFS.3.OA.2.6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .		
Assessment Limits	Whole numbers. Quotients up to 100.		
Calculator	No		
Acceptable Response Mechanisms	Equation Response Graphic Response - Drag and Drop Multiple Choice Response Multi-Select Response		
Context ${ }^{\text {No conte }}$	No context		
Example			
Context Choosing	Choosing an equivalent equation from a list of options.		
Context easier	When given a partial equation, students fill in the blanks to create an equivalent equation.		
Creating an equivalent equation based on a given equation.			
Sample Item Stem		Response Mechanism	Notes, Comments
Drag numbers to the boxes to create two true multiplication equations that could be used to solve $10 \div 5=\square$. \square $\times 5=$ $5 \times \square=$ Palette objects: 5, 2, 10		Graphic Response Drag and Drop	
Create a multiplica could use to solve	ion equation you $1 \div 3=\square$	Equation Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| Content Standard | MAFS.3.OA Operations and Algebraic Thinking
 MAFS.3.OA.3 Multiply and divide within 100. |
| :--- | :--- | :--- | :--- |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard		MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA. 4 Solve problems involving the four operations, and identify and explain patterns in arithmetic. MAFS.3.OA.4.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.				
Assessment Limits		Whole numbers. Adding and subtracting whole numbers within 1,000. Multiplying and dividing whole numbers within 100. Students will not be required to perform rounding in isolation (MAFS.3.NBT.1.1).				
Calculator		No				
Acceptable Response Mechanisms		Equation Response Multiple Choice Response Natural Language Response				
Context	Required					
Example						
Context	Students solve a two-step equation for a given problem. Setting up an equation is not required but may be provided.					
Context easier	Students are given a diagram to show the number of books sold by the bookstore in a given week. Example:					
	Monday	Tuesday	Wednesday	Thursday	Friday	Total
	40	60				250
Context more difficult	Students are given facts and a question to help solve a problem. Questions reach the higher end of the content limits (sum to 1,000 / products to 100).					
Sample Item Stem			Response Mechanism Equation Response		Notes, Comments	
On Monday, the bookstore sold 75 books. On Tuesday, the bookstore sold 125 books. The bookstore must sell 500 books by Friday. How many more books must the bookstore sell?			Equation Res	nse		
A bookstore has 4 boxes of 20 books in each box. On Monday, the bookstore sold 16 books. How many books remain to be sold?			Equation Response			

On Monday, the bookstore sold 75	Equation Response	
books. On Tuesday, the bookstore sold		
125 books. The bookstore must sell 500		
books by Friday. Write an equation that		
can be used to find how many more		
books, b, the bookstore must sell.		

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.OA Operations and Algebraic Thinking MAFS.3.OA.4 Solve problems involving the four operations, and identify and explain patterns in arithmetic. MAFS.3.OA.4.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table); and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.		
Assessment Limits	Adding and subtracting whole numbers within 1,000. Multiplying and dividing whole numbers within 100.		
Calculator	No		
Acceptable Response Mechanisms	Equation Response Graphic Response - Hot Spot Multiple Choice Response Multi-Select Response Table Response		
Context ${ }^{\text {No con }}$	No context		
Example			
Context A pat The r Contert Exa	A pattern is shown. The rule for a pattern is subtraction or multiplication.		
Context easier\quadExam Prese The r	Examine multiples of 2,5 , or 10 . Present the pattern in the context of an addition/multiplication table. The rule for a pattern is addition.		
Context more difficult\quadExam Prese tab The ru	Examine multiples of 7 or 8 . Present the pattern as a list of numbers, not in the context of an addition/multiplication table. The rule for a pattern is division.		
Sample Item Stem		Response Mechanism	Notes, Comments
A partial multiplication table (6×6) is given. Enter the multiples of 5 to complete the table.		Table Response	
A multiplication table is given (6×10). Enter the multiples for 6 to complete the table.		Table Response	
A multiplication table is given (10×10). Enter the multiples for 8 to complete the table.		Table Response	
A multiplication table is shown. Which statement correctly describes finding multiples of 6 ?		Multiple Choice Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard		MAFS.3.NBT Number and Operations in Base Ten MAFS.3.NBT. 1 Use place value understanding and properties of operations to perform multi-digit arithmetic. MAFS.3.NBT.1.1 Use place value understanding to round whole numbers to the nearest 10 or 100.		
Assessment Limits		Whole numbers up to 1,000 Avoid situations where the place the student rounded to is ambiguous. For example, asking a student to round 697 to the nearest ten is not a good item, as the student would get the exact same answer if he or she mistakenly rounded to the nearest hundred.		
Calculator		No		
Acceptable Response Mechanisms		Equation Response Graphic Response - Drawing/Graphing Matching Item Response Multi-Select Response Table Response		
Context \quad No context				
Example				
Context	Round three-digit whole numbers to the nearest ten.			
Context easier	Rounding to the nearest hundred.			
Context more difficult	Rounding one number to the nearest ten and also to the nearest hundred.			
Sample Item Stem			Response Mechanism	Notes, Comments
What value is 846 rounded to the nearest 100?			Equation Response	
Match each number with the value of the number rounded to the nearest 10.			Table Response	
	180	90		
181				
186				
194				
A. Round 846 to the nearest hundred. Enter your answer in the first response box. B. Round 846 to the nearest ten. Enter your answer in the second response box.			Equation Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| Content Standard | MAFS.3.NBT Number \& Operations in Base Ten
 MAFS.3.NBT.1 Use place value understanding and properties of operations to perform
 multi-digit arithmetic. |
| :--- | :--- | :--- | :--- |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| Content Standard | MAFS.3.NBT Number \& Operations in Base Ten |
| :--- | :--- | :--- | :--- |
| | |
| MAFS.3.NBT.1 Use place value understanding and properties of operations to perform | |
| multi-digit arithmetic. | |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Mr. Engle has 10 tables in his classroom. \quad Equation Response
There are 3 students at each table. Each student has 8 glue sticks.

- How many glue sticks are at each table?
- How many glue sticks do Mr. Engle's students have in total?

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.NF Number and Operations - Fractions MAFS.3.NF.1 Develop understanding of fractions as numbers.
MAFS.3.NF.1.1 Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a	
whole is partitioned into b equal parts; understand a fraction $\frac{a}{b}$ as the quantity	
formed by a parts of size $\frac{1}{b}$.	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Sample Item Stem	Response Mechanism	Notes, Comments
Each model shown has been shaded to represent a fraction. Which model shows $\frac{1}{4}$ shaded?	Multiple Choice Response	
Each model shown has been shaded to		
Mepresent a fraction. Which model shows		

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

The model shown represents one whole. Use the triangles to see how many equal parts the model can be divided into. Place numbers in the boxes to show the fraction of the whole each triangle represents.	Graphic Response Drag and Drop	
Each shape shown represents $\frac{1}{2}$ of a whole. Drag the shapes into the box to show $\frac{5}{2}$.	Graphic Response Drag and Drop	
Each is one whole. 表		
Each shape shown represents $\frac{1}{2}$ of a whole.	Equation Response	
How many shapes should be put together to make $\frac{5}{2}$?		

Jan and Laura have a total of 3 same-	Equation Response	
sized cookies they want to divide equally		
between the two of them. They divide		
each cookie in half as shown.		

| Content Standard | MAFS.3.NF Number and Operations - Fractions |
| :--- | :--- | :--- |
| MAFS.3.NF.1 Develop understanding of fractions as numbers. | |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Sample Item Stem	Response Mechanism	Notes, Comments
Which number line is divided into thirds?	Multiple Choice Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard		MAFS.3.NF Number and Operations - Fractions MAFS.3.NF. 1 Develop understanding of fractions as numbers. MAFS.3.NF.1.3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. MAFS.3.NF.1.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. MAFS.3.NF.1.3b Recognize and generate simple equivalent fractions, e.g., $\frac{1}{2}=\frac{2}{4}$, $\frac{4}{6}=\frac{2}{3}$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. MAFS.3.NF.1.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=\frac{3}{1}$; recognize that $\frac{6}{1}=6$; locate $\frac{4}{4}$ and 1 at the same point of a number line diagram. MAFS.3.NF.1.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
Assessment Limits		Denominators of $2,3,4,6,8$. Fractions must refer to the same whole unless intent of item is to assess reasoning about wholes. Vocabulary: lowest terms or simplify should not be used. Ordering fractions: limit to a maximum of 2. Visual models may include number lines and area models (circles, rectangles, regular polygons-see shapes from geometry standards).
Calculator		No
Acceptable Response Mechanisms		Graphic Response - Drag and Drop, Drawing/Graphing, Hot Spot Multiple Choice Response Multi-Select Response Table Response Matching Item Response
Context ${ }^{\text {Allowable }}$		
Example		
Context	Compar	fractions, fractional models, or situations involving fractional quantities: e denominators of $1,2,3,4,6 \& 8$ like denominators limited to $1,2 \& 4$
Context easier	Compare	ractions or fraction models with: ke denominators limited to 1, 2, 3, 4 rame in terms of what is used

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Jenni's and Jimmy's equal-sized pizzas are each cut into 8 slices. Jenni eats 2 slices of her pizza, and Jimmy eats 3 slices of his pizza. Complete the comparison of Jenni's pizza to Jimmy's pizza.	Grid Response - Drag and Drop, Hot Spot	
Mary has two models each divided into equal-sized sections. Each model has been shaded to represent a fraction. Create a true comparison of the two fractions represented in Mary's models.	Equation Respon	

| Mary has two models each divided into |
| :--- | :--- | :--- |
| equal-sized sections. The first model has |
| been shaded to represent a fraction. | 年 | Click to shade sections on the second |
| :--- |
| model to show a fraction equivalent to |
| the one in the first model. |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.MD Measurement and Data MAFS.3.MD. 1 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. MAFS.3.MD.1.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	
Assessment Limits	Times should be to the nearest minute. Clocks may only be analog.	
Calculator	No	
Acceptable Response Mechanisms	Equation Response Graphic Response - Drag and Drop, Drawing/Graphing, Hot Spot Multiple Choice Response Table Response	
Context Allo	Allowable	
Example		
Context \quad Use	Use time and time intervals to the nearest 15 minutes to solve problems.	
Context Tell easier Add	Tell time to the nearest 60 minutes. Add or subtract minutes within 60 minutes.	
Context Tel more difficult Add 	Tell time to any minute. Add and subtract minutes within 120 minutes.	
Sample Item Stem		Notes, Comments
A clock is shown. What time is show A. 8:00 a.m. B. $10: 00 \mathrm{a} . \mathrm{m}$ C. $12: 00 \mathrm{p} . \mathrm{m}$ D. 2:00 p.m.	on	

| Alex goes to the grocery store at the time shown. | Multiple Choice
 Response | |
| :--- | :--- | :--- | :--- |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| Content Standard | MAFS.3.MD Measurement and Data
 MAFS.3.MD.1 Solve problems involving measurement and estimation of intervals of
 time, liquid volumes, and masses of objects. |
| :--- | :--- | :--- | :--- |
| MAFs.3.MD.1.2 Measure and estimate liquid volumes and masses of objects using | |
| standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or | |
| divide to solve one-step word problems involving masses or volumes that are given in | |
| the same units. | |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Mark has the container shown. How many milliliters (mL) of water are in the container?	Equation Response	
Mark and Gina have similar containers filled with different amounts of water as shown. Mark Gina's container has 4 liters of water. About how much water, in liters, does Mark's container have?	Equation Response	
Gina and Mark each have a container of water as shown. Gina What is the difference, in milliliters (mL), between the amounts of water in their containers?	Equation Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Gina and Mark have the containers shown.	Equation Response	
Gina does not know how much water is in		
her container. Mark's container is the		
same size. About how much less water, in		
milliliters (mL), does Gina have than Mark?		

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| John surveys his classmates about their | Equation Response |
| :--- | :--- | :--- | :--- |
| favorite foods, as shown in the bar graph. | |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.Content. 3 MAFS.Content. 3 relate area to mult MAFS.3.MD.3.5 R concepts of area MAFS.3.MD.3.5a "one square unit" MAFS.3.MD.3.5b unit squares is sa Also Assessed: MAFS.3.MD.3.6 M in, square ft, and	easurement and Data Geometric measuremen tion and addition. e area as an attribute rement. e with side length 1 unit a, and can be used to figure which can be co ave an area of n square areas by counting unit vised units).	understand concepts of area and ane figures and understand alled "a unit square," is said to have sure area. without gaps or overlaps by n its. uares (square cm , square m , square
Assessment Limits	Plane figures tha Exponential nota cm^{2} is not).	covered by unit squar not expected at this gra	level (square cm is acceptable, but
Calculator	No		
Acceptable Response Mechanisms	Equation Respon Multiple Choice Multi-Select Res		
Context ${ }^{\text {Allowabl }}$			
Example			
ContextAlex is d shown.)	Alex is designing a floor with tiles to determine the area. (A graphic of a 10 by 2 rectangle is shown.)		
Context easier	Limit to single-digit side lengths.		
Increase side lengths of figures. (Note: Factors should be within 100 and should not require students to needlessly count large numbers of tiles.)			
Sample Item Stem		Response Mechanism	Notes, Comments
Alex counts the tiles of his floor. What measurement does Alex find? A. The width of one tile B. The cost of one tile C. The perimeter of the floor D. The area of the floor		Multiple Choice Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

| Content Standard | MAFS.3.MD Measurement and Data
 MAFS.3.MD.3 Geometric measurement: understand concepts of area and relate area
 to multiplication and addition. |
| :--- | :--- | :--- |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.MD Measurement and Data MAFS.3.MD. 4 Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. MAFS.3.MD.4.8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.		
Assessment Limits	Polygons that can be tiled with square units. Whole-number side lengths Multiplication is within 100.		
Calculator	No		
Acceptable Response Mechanisms	Equation Response Graphic Response - Drawing/Graphing, Hot Spot Multiple Choice Response Multi-Select Response Simulation Response		
ContextRequired			
Example			
Context ${ }^{\text {Ben has }}$	Ben has a garden with a given perimeter and/or area. (A graphic of a 10 by 2 rectangle is shown.)		
Context easierDecreas Grid squ All sides	Decrease perimeter by using single-digit factors. Grid squares provided within the graphic. All sides are labeled.		
Increase side lengths of figures. (Note: Factors should be within 100 and should not require students to needlessly count large numbers of tiles.) Construct more than one rectangle. At least one unknown side length. Do not include a graphic.			
Sample Item Stem		Response Mechanism	Notes, Comments
Ben is planning a garden. Which measurement describes the perimeter of his garden? A. The length of fence he will need B. The amount of soil he will need C. The number of seeds he will buy D. The length of the garden multiplied by the width		Multiple Choice Response	
Ben's garden has a perimeter of 32 feet. Draw a rectangle that could represent the garden.		Graphic Response Drawing/Graphing	

Ben has a rectangular garden with side lengths of 2 feet and 5 feet. What is the perimeter, in feet, of Ben's garden?	Equation Response		
Ben wants to create a rectangular garden with a perimeter of 48 feet. Draw two different rectangles that could represent Ben's garden.	Graphic Response - Drawing/Graphing		
Ben's garden is shown.			
			Graphic Response - Drawing/Graphing

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.3.G Geometry MAFS.3.G.1 Reason with shapes and their attributes.

A group of shapes was sorted into two groups.	Natural Language Response	

Grade 3 Mathematics Item Specifications
Florida Standards Assessments
\(\left.\begin{array}{|l|l|l|}\hline Content Standard \& MAFS.3.G Geometry

MAFS.3.G.1 Reason with shapes and their attributes.\end{array}\right\}\)| MAFS.3.G.1.2 Partition shapes into parts with equal areas. Express the area of each |
| :--- |
| part as a unit fraction of the whole. For example, partition a shape into 4 parts with |
| equal area, and describe the area of each part as $\frac{1}{4}$ of the area of the shape. |

Grade 3 Mathematics Item Specifications
Florida Standards Assessments

A half of a shape is shown.	Graphic Response - Hot Spot	
Click squares to complete the whole shape.	Graphic Response - Hot Spot	
A third of a shape is shown.		
Click squares to complete the whole		
shape.		

