GRADE 6 MATH

FSA Practice Student Version with Blank Answer Sheet

- DEPARTMENT -

Grade 6 Mathematics

Turnkey Educator Resources
Grade 6 Mathematics Test Item Specifications
Grade 6 Mathematics Reference Sheet Packet
Test Design Summary

TABLE OF CONTENTS

Resource	Standard	Problems	Page
FSA Grade 6 Mathematics Practice			
	MAFS.6.EE.1.1	1,2	4
	MAFS.6.EE.1.2a	3	5
	MAFS.6.EE.1.2b	4	5
	MAFS.6.EE.1.2c	5	6
	MAFS.6.EE.1.3	6,7	6,7
	MAFS.6.EE.1.4	8	7
	MAFS.6.EE.2.5	9,10	8
	MAFS.6.EE.2.6	11,12	9
	MAFS.6.EE.2.7	13,14	10
	MAFS.6.EE.2.8	15,16	11
	MAFS.6.EE.3.9	17,18	11,12
	MAFS.6.NS.1.1	19,20	12,13
	MAFS.6.NS.2.2	21	13
	MAFS.6.NS.2.3	22,23	13,14
	MAFS.6.NS.2.4	24,25	14
	MAFS.6.NS.3.5	26,27	15
	MAFS.6.NS.3.6.a	28	16
	MAFS.6.NS.3.6.b	29	16
	MAFS.6.NS.3.6.c	30	17
	MAFS.6.NS.3.7.a	31	18
	MAFS.6.NS.3.7.b	32	18
	MAFS.6.NS.3.7.c	33	18
	MAFS.6.NS.3.8	34	19
	MAFS.6.G.1.1	35,36	19, 20
	MAFS.6.G.1.2	37,38	20,21
	MAFS.6.G.1.3	39,40	22
	MAFS.6.G.1.4	41,42,43,44	22-24
	MAFS.6.RP.1.1	45,46	24,25
	MAFS.6.RP.1.2	47,48	25,26
	MAFS.6.RP.1.3a	49,50	26,27
	MAFS.6.RP.1.3b	51	28
	MAFS.6.RP.1.3c	52	28
	MAFS.6.RP.1.3d	53	29
	MAFS.6.RP.1.3e	54	29
	MAFS.6.SP.1.1	55,56	29,30
	MAFS.6.SP.1.2	57,58	30,31
	MAFS.6.SP.1.3	59,60,61	31,32
	MAFS.6.SP.2.4	62,63,64	33,34,35
	MAFS.6.SP.2.5c	65	36
Answer Sheet			37-42

Standard	MAFS.6.EE.1.1
1	Select the expression that is equivalent to the given expression. $3 \times 3 \times 3 \times 3$ (4) $4 \times 4 \times 4$ (B) 4^{3} (c) 3×4 (0) 3^{4}
Standard	MAFS.6.EE.1.1
2	A Petri dish is growing bacteria. It starts with 3 cells on day 1,9 cells on day 2 , and continues tripling the number of cells every day after that. How many cells of bacteria are there on day 5 ? 18 3^{5} 15 5^{3}

Standard	MAFS.6.EE.1.2a				
3	Match each situation to the expression that can be used to describe it.				
		$x-12$	$\frac{x}{12}$	$x+12$	12x
	Tamika earns $\$ 12$ an hour at her job.	(4)	(B)	©	(1)
	Stewart puts 12 more coins into his piggy bank.	(E)	©	©	${ }^{(1)}$
	Corrie-ann gives away 12 marbles from her collection.	(1)	(1)	®	(1)
	Frankie shares a number of baseball cards with his 12 friends.	(1)	(1)	©	(${ }^{\text {P }}$
Standard	MAFS.6.EE.1.2b				
4	Which expression has (44) $\frac{1}{2} y$ (B) $8 y^{2}$ (c) $7 y-2$ (c) $2 y^{4}$	efficient			

Standard	MAFS.6.EE.1.2c
5	What is the area of a rectangle with side lengths of s and $s+5$, where s is 21 centimeters?
Standard	MAFS.6.EE.1.3
6	When Heather goes to the movies, she spends $\$ 2.50$ on her bus tickets to get to the theatre, and $\$ 10.25$ on her movie ticket. Select all expressions that represent the amount of money, in dollars, Heather spends to go to the movies n times. $n+2.50+10.25$ $12.75 n$ $n(2.50+10.25)$ $n(2.50)(10.25)$ $n(2.50)+n(10.25)$

Standard	MAFS.6.EE.2.5
9	Which of these values of b make the inequality $b<3.8$ true? (A) 3.9 (B) 4.8 (c) 3.8 (D) 2.8
Standard	MAFS.6.EE.2.5
10	Johann has $\$ 23.25$ to spend at the stationery store. He selects a package of pencils for $\$ 11.98$ and he uses a half-off coupon. Use the equation $\frac{11.98}{2}+c=23.25$ to determine the change, c, Johann will receive.

Standard	MAFS.6.EE.2.6
11	Mandy's age is three years less than twice Danny's age. Which expression represents Mandy's age? (A) $2 m-3$, where m represents Mandy's age. (B) $3-2 m$, where m represents Mandy's age. (c) 3-2d, where d represents Danny's age. (D) 2d-3, where d represents Danny's age.
Standard	MAFS.6.EE.2.6
12	Each student in Mr. Slate's class has four colored pencils. The class is given an additional 6 pencils. An expression that represents this situation is $4 x+6$. What does the variable in this expression represent? (A) The number of students in Mr. Slate's class. (B) The total number of pencils in Mr. Slate's class. (c) The total number of colored pencils in Mr. Slate's class. (D) The total number of pencils and colored pencils in Mr. Slate's class.

Standard	MAFS.6.EE.2.7
13	What value of s makes the equation true? $59+s=80$
Standard	MAFS.6.EE.2.7
14	This question has two parts. On Sunday, Victoria ran 1.1 miles further than she did on Saturday. Part A. If she ran 3.2 miles on Sunday, which equation can you solve to find how many miles, m, she ran on Saturday? (A) $m+3.2=4.3$ (B) $m-1.1=3.2$ (c) $m+3.2=1.1$ (D) $m+1.1=3.2$ Part B. How many miles did Victoria run on Saturday?

Standard	MAFS.6.EE.3.9
18	The graph shows the height of snow during a storm. Height of Snow vs Hours Select all the statements that are true if y is the height in feet and x is the time in hours. There is 3 ft of snow after 2 hours. The equation $y=x+1$ represents the line on the graph. The height of snow is the independent variable. The height of snow is the dependent variable. There is 2 ft of snow after 3 hours.
Standard	MAFS.6.NS.1.1
19	What is the value of the expression? $\frac{3}{8} \div \frac{3}{4}$ (A) $\frac{9}{32}$ (8) $\frac{32}{9}$ (c) 2 (0) $\frac{1}{2}$

Standard	MAFS.6.NS.1.1			
20	Soma has $8 \frac{3}{4}$ cups of batches of muffins can	ch of c e? s	equires	How
Standard	MAFS.6.NS.2.2			
21	What is the value of the expression? $9,792 \div 612$ (A) 9,180 (B) 16 (c) 160 (0) 0.0625			
Standard	MAFS.6.NS.2.3			
22	Select the correct value for each expression.			
		11.52	11.53	11.58
	$10.5+1.02$	(A)	(8)	©
	7.72×1.5	(1)	(E)	©
	15.633-4.103	(${ }^{\text {c }}$	\oplus	(1)

Standard	MAFS.6.NS.2.3			
23	What is the value of the expression?$2 . 3 \longdiv { 3 5 . 8 8 }$			
Standard	MAFS.6.NS.2.4			
24	Match the equivalent expressions.			
		$8(4+3)$	4(8+3)	$3(12+5)$
	$36+15$	(A)	(8)	©
	$32+12$	(2)	(E)	© ${ }^{\text {c }}$
	$32+24$	(${ }^{\text {c }}$	(1)	(1)
Standard	MAFS.NS.2.4			
25	The least comm the possible val (A) 6 (B) 2 (c) 3 (D) 4 () 12	of two num ther numb	If one of	is 8 , sele

Standard	MAFS.6.NS.3.5
26	A cup of water has a temperature of $68^{\circ} \mathrm{F}$, while a cup of liquid nitrogen has a temperature of $-337^{\circ} \mathrm{F}$. Select all of the true statements. (®) The temperature of the water is closer to $0^{\circ} \mathrm{F}$ than the temperature of the liquid nitrogen. (8) The water is colder than the liquid nitrogen. (c) The difference in temperature is greater than $300^{\circ} \mathrm{F}$. () The liquid nitrogen is colder than the water. (®) The water has a greater temperature than the liquid nitrogen.
Standard	MAFS.6.NS.3.5
27	Ben stands on a hill and is 70 ft above sea level. Cristina stands in a valley and is 40 ft below sea level. Select all of the statements that are true. (A) Ben's elevation is -70 ft . (B) Ben's elevation is 40 ft . (C) Cristina's elevation is -40 ft . (D) Ben's is closer to sea level than Christina. (E) Christina is closer to sea level than Ben.

Standard	MAFS.6.NS.3.7.a
31	Select all of the true statements about the numbers plotted on the number line. (A) $-7>-3$ (B) $-3<-7$ (C) $-3=-7$ (D) $-7<-3$ (ㄷ) $-3>-7$
Standard	MAFS.6.NS.3.7.b
32	Todd's ending score in a board game is $\mathbf{- 1 0}$. After receiving post-game bonuses, his score increased. Select all of the values that could be Todd's final score. (A) -15 (B) 5 (C) -5 (D) -20 () 10
Standard	MAFS.6.NS.3.7.c
33	Which value is closest to zero on the number line? (A) $-\|27\|$ (B) $\|24\|$ (C) $\|-23\|$ (D) $-\|-25\|$

Standard	MAFS.6.NS.3.8
34	What is the distance between the points $(-5,-5)$ and $(1,-5)$?
Standard	MAFS.6.G.1.1
35	Find the area of the polygon. in. ${ }^{2}$

Standard	MAFS.G.1.1
36	What is the area of the arrow?
Standard	MAFS.6.G.1.2
37	The volume of a rectangular prism is $243 \mathrm{ft}^{3}$. Its length is 27 ft . Select all possible options for its height h and width w. (4) $h=3, w=3$ (8) $h=9, w=\frac{1}{3}$ (c) $h=3, w=6$ (0) $h=27, w=\frac{1}{3}$ (©) $h=\frac{1}{9}, w=81$

Standard	MAFS.6.G.1.2
38	This question has two parts. Sonya has 80 cubes, with dimensions in inches (in.), like the one shown. She uses all the cubes to fill a box shaped like a larger rectangular prism. There are no gaps between the cubes. Part A. What is the volume, in cubic inches, of the larger rectangular prism? in. ${ }^{3}$
	Part B. Select all of the possible sets of dimensions, in inches, of the larger rectangular prism. $2 \mathrm{in} . \times 5$ in. $\times 1$ in. 10 in. $\times 2$ in. $\times 4$ in. $0.5 \mathrm{in} . \times 4 \mathrm{in} . \times 5 \mathrm{in}$. $1 \mathrm{in} . \times 1 \mathrm{in} . \times 10 \mathrm{in}$. $0.5 \mathrm{in} . \times 0.5 \mathrm{in} . \times 40 \mathrm{in}$.

Standard	MAFS.6.G.1.4				
42	For each description of a net, select the three-dimensional figure the net represents.				
		Triangular prism	Triangular pyramid	Rectangular pyramid	Rectangular prism
	6 rectangles	(A)	(B)	((D)
	2 triangles and 3 rectangles	($)$	©	(${ }^{\text {] }}$	①)
	4 triangles	(1)	(1)	®	(L)
	4 triangles and 1 rectangle	(1)	(1)	©	
Standard	MAFS.6.G.1.4				
43	Antonie's tent is a trian her tent.	ngular prism 5 ft	the net to ca	the area of the fabric	that makes up

Standard	MAFS.6.G.1.4			
44	The base of a particular triangular lengths of 5 inches and a height of the surface area of the prism?	m is an 3 inches.	lateral tri e other fa	gle. The trian es of the pris
Standard	MAFS.6.RP.1.1			
45	A class of students has 18 boy Match each statement to the The ratio of boys to girls. The ratio of boys to the total number of students. The ratio of girls to the total number of students.	and 21 ot that can 18: 21 (A) ()	e used 21:39 (B)	represent it $18: 39$

Standard	MAFS.6.RP.1.1
46	Jun must put aside $\$ 5$ out of every $\$ 25$ her business earns to pay taxes. If her business earned $\$ 325$ today, how much did she put aside for taxes?
Standard	MAFS.6.RP.1.2
47	Select all the quantities that describe a unit rate. (A) Sam charges $\$ 15$ per lawn for her grass-cutting business. (B) Amir buys 1 pound of pears. (c) Carla has 2.5 granola bars for every 2 of her friends. (D) Sarah drinks 3 glasses of water at each meal. (E) Corey has 5 pens and 2 pencils in his pencil case.

Standard	MAFS.6.RP.1.3a
50	Shannon jogs 20 miles in 4 hours. If she maintains a constant speed, which graph correctly plots the points for this situation? (A) (B) © (D)

Standard	MAFS.6.RP.1.3b
51	Lance bought 4 tablets from his local computer store for $\$ 460$. At this rate, how much would it cost to buy 9 tablets?
Standard	MAFS.6.RP.1.3c
52	Of the seeds Quincey planted in his tomato garden, 75% grew into mature plants. If Quincey has 39 tomato plants in his garden, how many seeds did he plant?

Standard	MAFS.6.RP.1.3d
53	Select all of the measurements that are equivalent to 528 yards. 6,336 inches 14.7 inches 176 feet 1,584 feet 0.3 miles
Standard	MAFS.6.RP.1.3e
54	In a circle, which expression is equivalent to the ratio of the circumference to the diameter? (A) $\frac{1}{4} \pi$ (B) 2π (c) $\sqrt{\pi}$ (0) π
Standard	MAFS.6.SP.1.1
55	Select all statistical questions that you could ask to gather data on the musical instruments played by students at a school. (®4) Can Carl play the drums? (8) Do you play the piano? © How many guitars do you own? (0) How many musical instruments can you play? () How many fiddles does Haley own?

Standard	MAFS.6.SP.1.1
56	Select all of the statistical questions. (A) How many almonds are in a 2-lb bag of almonds? (B) How many eggs are broken per dozen at a grocery store? (c) How many bricks did it take to build the front wall of the firehouse? (D) How many reservations does a restaurant take each day? (®) How many trees did our group plant last summer?
Standard	MAFS.6.SP.1.2
57	Nia drew a boxplot of bowling scores from last week's tournament. Bowling Scores What is the interquartile range of bowling scores?

Standard	MAFS.6.SP.1.2
58	Curran asked households in his neighborhood how many tools they own. Which statement about the resulting data distribution is true? The distribution is symmetrical. Most of the households have 10 or more tools in their shed. The mean number of tools is the best measure of center. Most households have 11 tools in their shed.
Standard	MAFS.6.SP.1.3
59	The table shows how many goals each soccer player has scored this season. Select all of the true statements about the data set. (A) The range in the number of goals scored is 13. (B) If Sofie and her 34 goals were added to the table, the mean number of goals scored would increase by 4. (c) The mean number of goals scored is 50 . (D) The mean number of goals scored is greater than the median number of goals scored. (E) The range in the number of goals scored is 17.

Standard 60	MAFS.6.SP.1.3				
	Match each measure of center or measure of variation with its definition.				
		Median	Range	Mean	Mode
	The value in the middle of a data set.	(4)	(B)	©	(1)
	The value that occurs the most often in a data set.	(E)	© ${ }^{\text {® }}$	©	$\stackrel{(1)}{ }$
	The sum of the data values divided by the number of values.	(1)	(1)	®	(1)
	The difference between the greatest and least values in a data set.	(1)	(1)	©	(1)
Standard	MAFS.6.SP.1.3				
61	Which number can be ad median will decrease? (A) 9 (B) 15 (c) 8 (D) 10	ed to the	data set $12,4,12$	that the 6, 11	ean w

Standard	MAFS.6.SP.2.4
63	Which box plot represents the data? $4,4,3,4,8,9,6,3,9,1,8$ (A) (B) (c) (D)

Standard	MAFS.6.SP.2.5c
65	Andre collects data from skiers about how many days they spend skiing per year. The mean of his data is 12 , and the MAD of his data is 8 . Select all the statements that are true. (A) Exactly half the skiers Andre talked to must have skied between 8 and 16 days per year. (B) In this context, someone who skied 102 days would be an outlier. (c) The number of days a person skied generally varied by about 8 days from the mean. (D) The minimum number of days a person skied is 4 . (c) No one skied for more than 20 days.

\qquad Date: \qquad Period: \qquad

1. (A)(B)(C)(D)
2. (A)(B)(C)(D)
3.

	x-12	$\frac{x}{12}$	$x+12$	12x
Tamika earns \$12 an hour at her job.	(A)	(8)	©	(1)
Stewart puts 12 more coins into his piggy bank.	(E)	© ${ }^{\text {® }}$	©	탄
Corrie-ann gives away 12 marbles from her collection.	(1)	(1)	®	(1)
Frankie shares a number of baseball cards with his 12 friends.	(1)	(1)	©	(

4. (A) (B)(C)(D)
5.

6. (A) (B)(C)(D)(E)
7.

	$\begin{gathered} 3 m+ \\ 3 n \\ \hline \end{gathered}$	$\begin{gathered} 3(5 m+ \\ 3 n) \end{gathered}$	$\begin{gathered} 5 m+ \\ 3 n \\ \hline \end{gathered}$	$6 m$
$15 m+9 n$	(a)	(8)	©	(1)
$\begin{gathered} 2 m+m+ \\ 3 m \end{gathered}$	(E)	®	(${ }^{\text {a }}$	(1)
$\begin{gathered} (5 m+n)+ \\ 2 n \end{gathered}$	(1)	(1)	®	(1)
$\begin{gathered} m+3 n+ \\ 2 m \end{gathered}$	(1)	(1)	(0)	(1)

8. (A) (B)(C)(D)(E)
9. (A)(B)(C)(D)
10.

11. (A) (B)(C)(D)
12. (A) (B)(C)(D)
13. \qquad

14a. (A)(B)(C)(D)

14b.

15. (A) (B)(C) (D)
16. (A) (B)(C) (D)
17. (A) (B)(C)(D)
18. (A) (B)(C)(D)(E)
19. (A) (B)(C) (D)
20.

22.

	11.52	11.53	11.58
$10.5+1.02$	\oplus	\oplus	\odot
7.72×1.5	\odot	\oplus	\odot
$15.633-4.103$	\odot	\oplus	\odot

23. \qquad
24.

	$\mathbf{8 (4 + 3)}$	$\mathbf{4 (8 + 3)}$	$\mathbf{3 (1 2 + 5)}$
$\mathbf{3 6 + 1 5}$	\oplus	\oplus	\odot
$\mathbf{3 2 + 1 2}$	\odot	\oplus	\odot
$\mathbf{3 2 + 2 4}$	\odot	\oplus	\odot

25. (A)(B)(C)(D)(E)
26. (A) (B)(C)(D)(E)
27. (A) (B)(C)(D) (E)
28. (A) (B)(C)(D)(E)
29.

	$(-5,2)$	$(4,-1)$	$(2,2)$	$(-7,-3)$
Q1	(4)	(©	(
Q2	©	©	©	(1)
Q3	(1)	(1)	®	(1)
Q4	(1)	(1)	\bigcirc	(1)

21. (A)(B)(C)(D)
22.

31. (A) (B)(C)(D)(E)
32. (A) (B)(C)(D) (E)
33. (A)(B)(C)(D)
34.

35.

36.

37. (A)(B)(C)(D)(E)

38a.

38b. (A) (B)(C)(D)(E)
39.

40. (A) (B)(C) (D)
41. \qquad
42.

	Triangular prism	Triangular pyramid	Rectangular pyramid	Rectangular prism
6 rectangles	(A)	(B)	((1)
2 triangles and 3 rectangles	(E)	(F)	(${ }^{\text {a }}$	①+
4 triangles	(1)	(1)	®	(L)
4 triangles and 1 rectangle	(1)	(1)	©	

43.

44.

45.

	18:21	21:39	18:39
The ratio of boys to girls.	(a)	(${ }^{\text {a }}$	©
The ratio of boys to the total number of students.	(1)	©	©
The ratio of girls to the total number of students.	©	$\stackrel{(}{ }$	(1)

46.

47. (A)(B)(C)(D)(E)
48.

49. (A) (B) (C) (D)
50. (A) (B) (C) (D)
51.
\$

52.

53. (A) (B) (C) (D) (E)
54. (A) (B) (C) (D)
55. (A) (B) (C) (D) (E)
56. (A) (B)(C)(C)(E)
57.

58. (A)(B)(C)(D)
59. (A) (B)(C)(D)(E)
60.

	Median	Range	Mean	Mode
The value in the middle of a data set.	(A)	(B)	(c)	(D)
The value that occurs the most often in a data set.	(E)		(a)	®
The sum of the data values divided by the number of values.	(1)	(1)	(1)	(1)
The difference between the greatest and least values in a data set.	(1)	(1)	(0)	(P)

61. (A) (B)(C)(D)
62. (A) (B)(C)(D)
63. (A) (B)(C)(D)
64. (A) (B)(C)(D)
65. (A) (B)(C)(D) (E)
