Getting Ready for the 2017 Florida Standards Assessment (FSA)

Grade 7 Mathematics

 Answer KeyEducators Resource - Spring 2017 FSA Mathematics
Equation Editor Item Tutorial [PDF]
FSA Scientific Calculator
Florida Computer-Based Testing Work Folder [PDF]
Spring 2017 Testing Times [PDF]
Grade 6 Mathematics Test Item Specifications [PDF]
Grade 7 Mathematics Test Item Specifications [PDF]
Grade 8 Mathematics Test Item Specifications [PDF]
Mathematics Test Design Summary - Updated 01-06-16 [PDF]

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

| | MAFS.7.RP.1.1 |
| :--- | :--- | :--- |
| | Writes both unit rates correctly: |
| ANY THE BELOW TWO ANSWERS ARE CORRECT: | |

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

MAFS.7.RP.1.1 FSA Practice

1. A. The student writes $\frac{3}{4}: \frac{2}{3}$ for the ratio of red to blue ribbon.
B. Unit rate of

This question is a possible sample of a graphic response-drag and drop technology-enhanced item.
C. The student writes $\frac{2}{3}: \frac{3}{4}$ for the ratio of blue to red ribbon.
D. Unit rate of

This question is a possible sample of a graphic response-drag and drop technology-enhanced item.
A. We can create a table that shows how far each person runs for a certain number of laps:

Number of laps	Number of km
1	$\frac{2}{5}$
2	$\frac{4}{5}$
3	$\frac{6}{5}$

We can see from the table that 1 km is exactly half way between 2 and 3 laps. So it will take 2.5 laps to run 1 km .
2.

Since it takes Angela 2 minutes to run 1 lap, she will take

$$
\frac{2.5 \text { laps }}{1 \mathrm{~km}} \cdot \frac{2 \text { minutes }}{1 \text { lap }}=\frac{5 \text { minutes }}{1 \mathrm{~km}} .
$$

So it takes Angela 5 minutes to run 1 km.

Since it takes Jayden 5 minutes to runs 3 laps, she runs 1 lap in 53 minutes. Thus, it takes Jayden

$$
\frac{2.5 \text { laps }}{1 \mathrm{~km}} \cdot \frac{5 \text { minutes }}{3 \text { laps }}=\frac{5}{2} \cdot \frac{5}{3} \text { minutes } / \mathrm{km}=\frac{25}{6} \text { minutes } / \mathrm{km}=4 \frac{1}{6} \text { minutes } / \mathrm{km}
$$

So it takes Jayden $4 \frac{1}{6}$ minutes to run 1 km .

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	B. Angela runs 1 lap in 2 minutes so she runs $\frac{1}{2}$ lap in 1 minute. Since 1 lap is $\frac{2}{5} \mathrm{~km}, \frac{1}{2}$ lap is $\frac{1}{5} \mathrm{~km}$. Therefore she runs $\frac{1}{5} \mathrm{~km}$ in one minute. Since Jayden runs 1 lap in $\frac{5}{3}$ minutes, he will run $\frac{3}{5}$ laps in 1 minute. Since Jayden runs 1 km in $\frac{25}{6}$ minutes. Therefore he will run $\frac{6}{25} \mathrm{~km}$ in one minute. C. Jayden runs the same distance in less time than Angela (alternatively, Jayden runs farther in the same time than Angela), so Jayden is running faster than Angela.
3.	Her speed is 8 minutes per $\frac{2}{3}$ miles. So, 8 divided by $\frac{2}{3}=12$ minutes per mile. It will take Molly 12 minutes.
4.	A. $6: 1$ 6 cups of sugar B. The quantity of each ingredient in the original recipe needs to be multiplied by 8 in order for all the ratios to be the same in the new mixture. C. $\frac{3}{8}: \frac{1}{8}$ 3 cups of blueberries
5.	A. $\mathbf{2}$ cups of sugar is needed if there is $\mathbf{1}$ cup of blueberries. B. $\frac{1}{6}$ cup of butter is needed if there is one cup of sugar. C. $\frac{1}{2}$ cup of blueberries is needed if there is one cup of sugar.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.RP.1.2
1.	A, C, F This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.RP.1.2a
2.	Part A: This question is a possible sample of graphic response-drawing technology-enhanced item. Part B: The student correctly writes and graphs each ratio. The student references the graph and acknowledges that the points do not fall in a straight line *(if it did it must also pass through the origin) which means that number of teachers is not proportional to the number of students. The student may also calculate unit rates but demonstrates an understanding of the graph of a proportional relationship. *Note: The graph of a proportional relationship is a straight line that passes through the origin. This question is a possible sample of an open response technology-enhanced item. MAFS.7.RP.1.2a
3.	0.625 This question is a possible sample of an equation editor response technology-enhanced item. MAFS.7.RP.1.2b
4.	0.75 This question is a possible sample of a graphic response-drag and drop technologyenhanced item. MAFS.7.RP.1.2c
5.	A, C, D This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.RP.1.2d

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.RP.1.2-FSA Practice
1.	The two quantities are not proportionally related. The unit rate (in dollars per hour) differs from each rental time, and therefore, determines the rates are not proportional. This question is a possible sample of an open response technology-enhanced item. MAFS.7.RP.1.2a
2.	D MAFS.7.RP.1.2b
3.	This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.RP.1.2b
4.	C MAFS.7.RP.1.2c
A. The student explains that the ordered pair (0, 0) means that when Sandy	
babysits for zero hours, she earns zero dollars.	
B. (6, 45) means that Sandy earns \$45 for 6 hours of babysitting.	
C. Sandy charges \$7.50 per hour.	
This question is a possible sample of an open response technology-enhanced item.	
MAFS.7.RP.1.2d	

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.RP.1.3
1.	Part A: 4 Part B: 5 Part C: 17 Part D: A
2.	Part A: \$21 Part B: \$30.21
3.	A. Tiffany will have to pay about $\$ 16.97$ in taxes. B. The student calculates a total clothing cost of $\mathbf{\$ 2 6 1}$ and a tax of $\$ 16.97$ for a total purchase price of $\mathbf{\$ 2 7 7 . 9 7}$. The student is able to explain that there will not be enough money for the purchase and can determine that Tiffany will be short of money by $\mathbf{\$ 2 . 9 7}$. This question is a possible sample of an open response technology-enhanced item.
4.	The student subtracts $\mathbf{\$ 3 . 4 4}$ from $\mathbf{\$ 3 . 7 5}$ and then determines the percent that this difference, $\mathbf{\$ 0} 0.31$, represents of the original price. The student explains that gasoline prices dropped 8.3\%. This question is a possible sample of an open response technology-enhanced item.
5.	A. $\mathrm{Fee}=\mathbf{\$ 4 . 7 5}$ B. Kennedy will receive $\mathbf{\$ 4 5} .25$.
6.	2 years

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.RP.1.3-FSA Practice
1.	Part A: $\mathbf{\$ 1 2 . 5 0}$ Part B: B
2.	A. $2 \frac{2}{3}$ cups of flour will be needed. B. 64 cookies
3.	\$120
4.	63 computers 30% of 48 computers is 14.4 computers. Since you can't sell 0.4 of a computer, you should round up to 15 computers. So, $48+15=63$ computers that the sales team will need to sell. This question is a possible sample of an open response technology-enhanced item.
5.	Part A: \$46.80 $30 \times 2=\$ 60$ (cost for both) $60 \times 0.25=\$ 15$ (discount amount) $60-15=\$ 45$ (sale price) $45 \times 0.04=\$ 1.80$ (tax amount) $45+1.8=\$ 46.80$ (sale price with tax) Part B: Alexandra will make 12.5% profit on each sweatshirt. $30 \times 0.55=\$ 16.50$ (discount amount) $30-16.50=\$ 13.50$ (sale price) $13.50-12.00=\$ 1.50$ (profit) $\frac{\$ 1.50}{\$ 12}=0.125=12.5 \%$
6.	$A=(600) \cdot(0.02) \cdot(1.5)$ or $A=(600) \cdot(0.02) \cdot\left(1 \frac{1}{2}\right)$ This question is a possible sample of an equation editor response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.1.1
1.	B, E This question is a possible sample of a multi-select response technology-enhanced item.
2.	Equivalent Expressions: B,C,E Explanations: A. $6(5 x-3)$: No, because you can't subtract the 8-2 first. You have to use the Distributive Property first. B. $8-10 x+6$: Yes, because you distribute the negative two and drop the parentheses. C. $8-(10 x-6)$: Yes, because you can distribute a positive two but you have to keep the parentheses because you still have to distribute a negative. D. 8-10x-6: No, because it won't be minus six because I distributed a negative two times a negative three, which gives me positive or plus six. \square E. $\underline{-10 x+14: ~ Y e s, ~ b e c a u s e ~ a f t e r ~ y o u ~ d i s t r i b u t e, ~ y o u ~ c a n ~ c o m b i n e ~ o r ~ a d d ~ e i g h t ~ a n d ~ s i x ~}$ to make 14.
3.	A, D, E This question is a possible sample of a multi-select response technology-enhanced item.
4.	$15 x-\frac{6}{7}$ This question is a possible sample of an equation editor response technology-enhanced item.
5.	A. $2(2 x+5)$ B. $3(3 x-1)$

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.1.1-FSA Practice
1.	D
2.	Equivalent: A, C, D Explanations: A. Yes, because adding zero does not change the value of the expression. (Associative and Inverse Properties of Addition) B. No, because -1.8 was only factored out of the first term. (Distributive Property) C. Yes, because multiplying the original expression by one does not change the value. (Commutative, Inverse and Identity Properties of Multiplication) D. Yes, because adding zero does not change the original expression. (Zero Property of Multiplication) E. No, because -1 was only factored out of the first term. (Distributive Property)
3.	12x-74
4.	Yes
5.	$\frac{1}{7} x+12$ This question is a possible sample of an equation editor response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.1.2
	A, B, E
	This question is a possible sample of a multi-select response technology-enhanced item.
2.	The student explains that the first expression represents the total cost of ice cream sold including the price and quantity of each item sold.
3.	When comparing the two versions of the expression, the student may explain that the first expression shows the product of each item's cost and quantity sold. In the second expression, items that sold the same quantity are combined so there are fewer terms.
4.	Since the expression shows the sum of the two widths (x) and two lengths ($3 x$ +2), the expression represents the perimeter of the rectangle. This question is a possible sample of an open response technology-enhanced item.
5.	The two expressions are equivalent. By using the Commutative and Associative Properties of Addition, $x+(3 x+2)+x+(3 x+2)=(x+3 x+x+3 x)+(2+2)=8 x+4$ This question is a possible sample of an open response technology-enhanced item.
6.	Abbey's expression shows that an alternative way to find the perimeter is to multiply the width by 8 and add 4 since $8 x+4$ is equivalent to $x+(3 x+2)+x+(3 x+2)$ This question is a possible sample of an open response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.1.2-FSA Practice
1.	B: $9(n-8)=9 n-72$ Others: $9 n-8$
2.	When you simplify both expressions by applying the Distributive Property, you get the equivalent expression, $5 \mathrm{y}-10$. This question is a possible sample of an open response technology-enhanced item.
3.	Here are some possible expressions: $\begin{aligned} & 14-2 x \\ & 2(7-x) \\ & 14-x-x \\ & 10-2 x+4 \\ & -2 x+14 \end{aligned}$ This question is a possible sample of an equation editor response technology-enhanced item.
4.	In the expression 14-2x, the 14 represents the number of tickets Malia started with since the value of the expression is 14 when $x=0$. The -2 represents the number of tickets she spends per ride. $2 x$ represents the number of tickets she has to subtract from her initial amount after riding x rides. This question is a possible sample of an open response technology-enhanced item.
5.	In the expression 2(7-x), the 7 represents the total number of rides Malia can go on. ($7-x$) represents the number of rides she has left and the $\mathbf{2}$ represents the number of tickets required for each ride Malia has left. This question is a possible sample of an open response technology-enhanced item.
6.	A, B, \& C: $\quad 6 a+4 b+2$ D: $6 a+4 b+3$ This question is a possible sample of a multi-select response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.2.3
1.	Part A: \$4905 Part B: 5929 This question is a possible sample of an equation editor response technology-enhanced item.
2.	Part A: $\mathbf{2 . 5}$ miles Part B: $\mathbf{4 0}$ minutes
3.	Part A: B Part B: C
4.	The student indicates that it is reasonable to say that Alexa has about \$5000 in her account. The student offers an explanation such as, "I estimated by rounding each amount in the problem and then mentally calculating $\mathbf{\$ 4 3 0 0}+\mathbf{(\$ 9 0 0 ~ - ~ \$ 3 0 0) ~ = ~ \$ 4 3 0 0 ~ + ~ \$ 6 0 0 ~ = ~ \$ 4 9 0 0 ~ w h i c h ~ i s ~ a b o u t ~}$ $\mathbf{\$ 5 0 0 0 . " ~}$ This question is a possible sample of an open response technology-enhanced item.
5.	$\mathbf{\$ 2 . 9 6}$

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.EE.2.4
1.	C, D This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.EE. 2.4 a
2.	B MAFS.7.EE.2.4a
3.	\$7 MAFS.7.EE.2.4a
4.	A. The student writes the inequality as $200-\mathbf{1 5 d}<\mathbf{8 0}$. This question is a possible sample of equation editor response technology-enhanced item. B. $d>8$ C. The student explains that more than eight days have passed. This question is a possible sample of a graphic response technology-enhanced item. MAFS.7.EE.2.4b
5.	A. The student writes the inequality, $\frac{9}{5} C+32 \leq-109.3$. This question is a possible sample of equation editor response technology-enhanced item. B. $C \leq-78$ C. Scales the number line appropriately, and graphs the solutions using a closed dot at -78.5 and shading to the left. This question is a possible sample of a graphic response technology-enhanced item. MAFS.7.EE.2.4b

	MAFS.7.EE.2.4-FSA Practice
1.	35 minutes MAFS.7.EE.2.4a
2.	$\begin{aligned} & \text { \$2.25 } \\ & \text { MAFS.7.EE.2.4a } \end{aligned}$
3.	A. C, D B. $x=14$ MAFS.7.EE.2.4a
4.	A. The solution is $\boldsymbol{x} \leq \mathbf{2 1 . 2 2}$...or 21.22... $\geq x$. B. The student explains that Aaron can buy no more than $\mathbf{2 1}$ songs (or " 21 or fewer"). The student may clarify that Aaron can buy between zero and 21 songs after buying the game for $\$ 3.99$. The student may add clarifying comments such as: - It has to be greater than zero because you can't buy negative songs. - It would have to be whole numbers, because you can't buy parts of songs. This question is a possible sample of a graphic response technology-enhanced item. MAFS.7.EE.2.4b
5.	A. $\mathbf{3 w}+\mathbf{1 5} \geq \mathbf{5 0}$ This question is a possible sample of an equation editor response technology-enhanced item. B. $w \geq 11 \frac{2}{3}$ C. Since we cannot (or should not) wash just $\frac{2}{3}$ of a window, it makes sense that we round this number up to 12. Thus, Jonathan must wash at least 12 windows in order to purchase the sports set. Note that this is just the minimum number he must wash, and washing more would be in his benefit, as he can purchase more sports accessories. This question is a possible sample of an open response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

D. Using this information, and the fact that only whole numbers make sense in this context, our solution set can be graphed as follows:

This question is a possible sample of a graphic response technology-enhanced item.

There are other possible graphs, as the right hand endpoint can be determined based on a discussion based on what would be "realistic" based on, for example, how many neighbors Jonathan has, how many windows are in each house, and how much time he has to wash windows.

The point of the question is to have students realize that a context limits the solution set even when other numbers satisfies the accompanying inequality.

MAFS.7.EE.2.4b

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.NS.1.1
1.	B MAFS.7.NS.1.1a
2.	Least Value: $\quad \boldsymbol{n}-\boldsymbol{p}$ Greatest Value: $\boldsymbol{p}-\boldsymbol{n}$ This question is a possible sample of an editing task choice technology-enhanced item. MAFS.7.NS.1b, c
3.	The student describes the second dive as $\mathbf{- 1 5}$ feet. The student explains that - 12 feet represents the first dive and 3 feet deeper would mean moving down three more feet, ending up at a depth of 15 feet or 15 feet. MAFS.7.NS.1c This question is a possible sample of a graphic response technology-enhanced item.
4.	B, D, F This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.1d

	MAFS.7.NS.1.1-FSA Practice
1.	Part A: Some students put the X just above or just below the (-10) line, which is acceptable. The placement of the X is flexible so long as the X clearly indicates the (-10) line. It should not be floating between lines or so large that it may indicate another line. Part B: -50 Part C: $\mathbf{2 0}$ feet MAFS.7.NS.1.1b Part D: $\mathbf{0}$. Above the surface is positive and below the surface is negative, so the surface must be 0 . This question is a possible sample of an open response technology-enhanced item.
2.	A. Points F and $H-$ Since Point $F=-6$ and Point $H=6$, then $-6+6=0$. This question is a possible sample of an open response technology-enhanced item. MAFS.7.NS.1.1a B. The equation $\mathrm{E}-\mathrm{I}$ represents the distance between the points E and I . $d=\|-9-8\|$ This question is a possible sample of an equation editor response technology-enhanced item. MAFS.7.NS.1.1c

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	C. The distance between Point E and Point I is 17 units. Point $\mathrm{E}=-9$ and Point $\mathrm{I}=-9$, then: $\begin{aligned} & \boldsymbol{d}=\|-\mathbf{9}-\mathbf{8}\| \\ & \boldsymbol{d}=\|-9+(-\mathbf{8})\| \\ & \boldsymbol{d}=\|-\mathbf{1 7}\| \\ & \boldsymbol{d}=\mathbf{1 7} \end{aligned}$ This question is a possible sample of an open response technology-enhanced item. MAFS.7.NS.1.1c D. The value of Ethan's expression is $\mathbf{8}$. $\|-2\|+\|6\|=2+6=8$ Since Point \mathbf{G} is $\mathbf{- 2}$, the distance $\mathbf{- 2}$ is from $\mathbf{0}$ is its absolute value which is $\mathbf{2}$. Since Point H is 6 , the distance $\mathbf{6}$ is from 0 is its absolute value which is 6 . If you add their absolute values together, then you will have the distance the two numbers are from each other. This question is a possible sample of an open response technology-enhanced item.
3.	B and D This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.1c
4.	2 and $\frac{-3}{4}$ This question is a possible sample of an editing task choice technology-enhanced item. MAFS.7.NS.1.1d

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.NS.1.2
1.	A, C, D This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.2a
2.	C MAFS.7.NS.1.2b
3.	A, D, E, F This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.2c
4.	A. $0.8 \overline{3}$ B. 0 C. $\frac{5}{6}$ and $\frac{0}{17}$ are rational numbers because they are fractions of integers without a zero denominator or because their decimal representations either terminate or repeat. This question is a possible sample of an open response technology-enhanced item. MAFS.7.NS.1.2d
5.	A. $-\frac{7}{48}$ This question is a possible sample of a graphic response technology-enhanced item. MAFS.7.NS.1.2a B. The water level drops $1 \frac{1}{48}$ inches over a 7 year period.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.NS.1.2-FSA Practice			
1.	The student explains the result in terms of repeated addition, (e.g., the student says that $2 \times\left(-\frac{4}{5}\right)=-\frac{4}{5}+\left(-\frac{4}{5}\right)=-\frac{8}{5}$). The student uses the Additive Inverse and Distributive Properties to solve the problem. The student explains that $2\left(-\frac{4}{5}+\frac{4}{5}\right)$ should equal zero since $-\frac{4}{5}$ and $\frac{4}{5}$ are opposites and since $2 \times 0=0$. Use of the Distributive Property shows that $2\left(-\frac{4}{5}+\frac{4}{5}\right)=2\left(-\frac{4}{5}\right)+2\left(\frac{4}{5}\right)=2\left(-\frac{4}{5}\right)+\frac{8}{5}$ In order for this to equal zero, $2\left(-\frac{4}{5}\right)$ should be the opposite of $\frac{8}{5}$. Therefore, $2\left(-\frac{4}{5}\right)$ must equal $-\frac{8}{5}$. This question is a possible sample of an open response technology-enhanced item. MAFS.7.NS.1.2a			
2.	B, D, E This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.2b			
3.	A.	$\frac{1}{-4}$	Equivalent \square	Explanation It is equivalent because it also equals $-\frac{1}{4}$ or -0.25 ; $-5 \div 20$ simplifies to $-\frac{1}{4}$, which can also be written as $\frac{1}{-4}$.
	B.	$-\frac{20}{5}$	\square	It is not equivalent because $-5 \div 20=-\frac{1}{4}$ but $-\frac{20}{5}=-4$.
	C.	-4	\square	It is not equivalent because $-\frac{1}{4}$ does not equal -4 .
	D.	$-\left(\frac{-5}{-20}\right)$	\square	It is equivalent because the two negatives in the parentheses make the fraction positive, so the negative on the outside of the parentheses makes the whole expression negative.
	E.	$-\frac{1}{4}$	\square	It is equivalent because the negative of a fraction can be in the numerator or the denominator or out in front of the whole fraction - those are all equal.
		$\frac{-5}{-20}$		It is not equivalent because $-5 \div 20$ is negative but $\frac{-5}{-20}$ is positive.
	This question is a possible sample of a multi-select response technology-enhanced item. MAFS.7.NS.1.2b			

4.	A. The student correctly rewrites $\left(1 \frac{1}{3} \cdot 2 \frac{1}{2}\right) \cdot 3$ as $\left(1 \frac{1}{3} \cdot 3\right) \cdot 2 \frac{1}{2}$ and finds the product of $\left(1 \frac{1}{3} \cdot 3\right)$ mentally. The student correctly finds the product of 4 and $2 \frac{1}{2}$ and indicates a use of the Commutative and Associative Properties to reorder and regroup the factors to get an answer of 10 . B. The student rewrites $7 \bullet 2 \frac{4}{5}+7 \bullet 3 \frac{1}{5}$ as $7\left(2 \frac{4}{5}+3 \frac{1}{5}\right)$ and correctly completes the calculation by mentally adding $2 \frac{4}{5}$ and $3 \frac{1}{5}$ and then multiplying the sum by 7 getting a final answer of 42. The student indicates having used the Distributive Property. This question is a possible sample of a matching item technology-enhanced item.
5.	A. 1.625 B. undefined C. $\frac{13}{8}$ is a rational number because it is a fraction of integers without a zero denominator or because its decimal representation terminates. This question is a possible sample of an open response technology-enhanced item. MAFS.7.NS.1.2d

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.NS.1.3
1.	34.65 This question is a possible sample of an equation editor response technologyenhanced item.
2.	$\begin{aligned} & -10-6+4 \div(-0.5)(-2) \\ & =-10-6+(-8)(-2) \\ & =-10-6+16 \\ & =-16+16 \\ & =0 \end{aligned}$
3.	- Completing the division problem $3 \frac{4}{5} \div \frac{3}{4}=5 \frac{1}{5}$ to get five with a remainder of $\frac{1}{5}$ of a full bag. - Using repeated subtraction of $\frac{3}{4}$ from $3 \frac{4}{5}$ (OR $\frac{15}{20}$ from $\frac{76}{20}$) to get five with a remainder of $\frac{1}{20}$ of a cup. - Changing both quantities to decimals and using repeated subtraction of 0.75 from 3.80 to get five with a remainder of 0.05 of a cup. This question is a possible sample of an open response technology-enhanced item.
4.	Disagree; Selling 8 ornaments covers most of her costs but still leaves her \$2 in debt. $\begin{aligned} & 3.50 x-30 \\ & 3.50(8)-30 \\ & (24+4)-30 \\ & 38-30 \\ & =-2 \end{aligned}$ This question is a possible sample of an open response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.NS.1.3-FSA Practice
1.	-54
2.	21.6 The student uses the temperature differences to find the measured temperatures each week ($25,18.4,22,23.5$, and 19.1) and averages them by finding their sum, 108, and dividing by five to find an average water temperature of 21.6.
3.	On line 4, Travis subtracted $\$ 188$ from $\$ 180$ and got a positive answer. The difference should be $\mathbf{- \$ 8 . 0 0}$. This question is a possible sample of an open response technology-enhanced item.
4.	Starting at Line 3: $\begin{aligned} & 180.00-188.00+20.00-5.95 \\ & -8.00+20.00-5.95 \\ & 12.00-5.95 \\ & =6.05 \end{aligned}$ Travis' actual balance should be $\mathbf{\$ 6 . 0 5}$. $\begin{aligned} & 6.05+(-20.00) \text { overdraft fee } \\ & \|-20.00\|-\|6.05\| \\ & -13.95 \\ & -13.95+(-7.85) \text { outstanding charge } \\ & \|-13.95\|+\|-7.85\| \\ & -21.85 \end{aligned}$ To get his account back to $\mathbf{0}$, Travis needs to deposit $\mathbf{\$ 2 1 . 8 0}$ or more to avoid another overdraft fee. This question is a possible sample of an open response technology-enhanced item.
5.	So $\mathbf{\$ 2 8 4 . 9 9}$ should go to Mr. Aceves' class, $\mathbf{\$ 1 7 4 . 4 1}$ should go to Mrs. Baca's class, and $\$ \mathbf{1 4 0 . 6 0}$ should go to Mr. Canyon's class.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.1.1
1.	12.5 cm
2.	0.8 km
3.	780 cm
4.	$187200 \mathrm{~cm}^{2}$
5.	A. $1 \mathrm{in} \mathrm{=} \mathrm{13} \mathrm{ft}$ B. 143 ft by 169 ft C. 69.04 bags so you would need to buy 70 bags

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.1.1-FSA Practice
1.	183 m
2.	$\frac{1 i^{2}}{64 f t^{2}}$
3.	The area ratio is the square of the scale, 1 in : 8 feet.
4.	 This question is a possible sample of a graphic-drawing response technology-enhanced item.
5.	The new drawing is double the length of the original drawing because the scale is half the size.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.1.2			
1.	The student is able to dr says it is possible to draw This question is a possible s item.	tria ore t e of		gle measures $110^{\circ}, 30^{\circ}$, and 40° and gle with these conditions. ving response technology-enhanced
2.	If the sides are increased proportionally, or by the same factor, the angle measures will not be changed.			
3.	The student is able to draw measures This question is a possible s item.	tria le of		given angle and included side ving response technology-enhanced
4.	It is not possible to draw more than one triangle with these conditions. The student explains in terms of: - The uniqueness of the third side. - The relationship between the length of a side and the opposite angle measure.			
5.	Side Lengths	Yes	No	Explanation
	A. $5 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$	\checkmark		When comparing the sum of each pair of sides to the remaining third side, it is always greater.
	B. $12 \mathrm{in} ., 12 \mathrm{in} ., 12 \mathrm{in}$.	\checkmark		When comparing the sum of each pair of sides to the remaining third side, it is always greater.
	C. $3 \mathrm{ft}, 6 \mathrm{ft}, 10 \mathrm{ft}$		\checkmark	The sum of 3 and 6 is not greater than the third side which is 10 .

The length of each side of a triangle must be less than the sum of the lengths of the other two sides.

This question is a possible sample of a matching item response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.1.3
1.	B, C, D, E This question is a possible sample of a multi-select technology-enhanced item.
2.	Vertical Cut = Triangle Horizontal Cut = Circle This question is a possible sample of an open response technology-enhanced item.
3.	The cross section is a rectangle with a length equal to the length of the prism and a width equal to the width of the prism (or the same size as side AEHD). 6 units by 10 units This question is a possible sample of a graphic-drawing response technology-enhanced item.
4.	The cross section is a circle with a diameter equal to the diameter of the base of the cylinder, 4 units. This question is a possible sample of an open response technology-enhanced item.
	Thent

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.1.3-FSA Practice
1.	(1) Slice through $A B$ (2) Slice through $C D$ (3) Slice through vertex E
2.	The cross section is a rectangle with a length equal to the width (or length) of the prism and a width equal to the height of the prism, depending on the direction of the slice (or the same size as side ABCD or CDHG). 6 units by 4 units This question is a possible sample of a graphic-drawing response technology-enhanced item.
3.	The cross section is a rectangle with a length equal to the height of the cylinder and a width equal to the diameter of the base of the cylinder. 7 units by 4 units This question is a possible sample of a graphic-drawing response technology-enhanced item.
4.	The cross section is a rectangle with a length equal to the height of the cylinder, 7 units, and a width less than the diameter of the base of the cylinder.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.4
1.	Part A: C Part B: D
2.	A. Correctly identifies the formula for circumference of a circle, $C=2 \pi r$ and $C=\pi d$. This question is a possible sample of an open response technology-enhanced item. B. Explains that C is the circumference, π is the ratio of the circumference to the diameter of a circle and has an approximation of $3.14, \mathrm{~d}$ is the diameter, and r is the radius. C. Correctly draws and labels the diameter and radius of the circle.
3.	376.8 meters
4.	314 square yards
5.	A. r, The y height of the rectangular shape is equal to the circle's radius. B. $\frac{1}{2}$ The base of the shape is equal to half of the circle's circumference. C. The student writes the equation $A=\frac{1}{2} C r$, and explains that the equation indicates that the area of a circle is equal to half of the product of the circumference of the circle and its radius.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.4-FSA Practice
1.	$225 \pi \mathrm{~cm}^{2}$
2.	$25 \pi / 3 \mathrm{~cm}^{2}$
3.	Diameter of Circle (inches) Circumference of Circle (inches) $\frac{\text { Circumference of Circle }}{\text { Diameter of Circle }}$ 1 π π 2 2π π 3 3π π $\frac{1}{2}$ $\frac{1}{2} \pi$ π This question is a possible sample of a table response technology-enhanced item.
4.	The purple figure is composed of 5 squares each with an area of one unit ${ }^{2}$ and four half-circles with a radius of 1 unit. Putting two half circles together creates a whole circle with radius 1 unit which has an area of $\pi \cdot 12$ unit 2. Thus, the area of the purple figure is $5+2 \pi \approx 11.28 \text { unit }^{2}$ To find the perimeter of the purple figure, note that the boundary is composed of 4 half-circles with a radius of 1 unit and 4 segments of length 1 unit. Two half circles have a total length of $2 \pi \cdot 1$ unit so the purple figure has a perimeter of $4+4 \pi \approx 16.57 \text { units. }$

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.5
1.	A. $x+53=180$; This question is a possible sample of an equation editor response technologyenhanced item. B. $x=127$ so that the $m=127$ degrees.
2.	A. $x+53=90 ;$ This question is a possible sample of an equation editor response technologyenhanced item. B. $x=\mathbf{3 7}$ so that the measure of the complement of is $\mathbf{3 7}$ degrees.
3.	$2 x+(x-3)=90 ; x=31$
4.	$m \angle K P N=2(31)$ or 62°.
5.	The $m \angle N P O=m \angle M P L$ since $\angle N P O$ and $\angle M P L$ are vertical. $m \angle N P O=31-3$ or 28°, therefore $m \angle M P L=28^{\circ}$. This question is a possible sample of an open response technology-enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.5-FSA Practice
1.	A. $x+29.02=90$; This question is a possible sample of an equation editor response technologyenhanced item. B. $x=60.98$ so that the measure of angle $1=60.98^{\circ}$.
2.	A. $x+117=180$; This question is a possible sample of an equation editor response technologyenhanced item. B. $x=63$ so the $m \triangle W X Z=63^{\circ}$.
3.	$\frac{2}{3}=\frac{x}{180-x} ;$ $2 x+3 x=360$ or $x=72$ so the $m \angle A B D=72^{\circ}$.
4.	Part A: $\triangle D C E=63^{\circ}$ since $\angle B C F$ and \triangle CE are vertical angles, or $x+117=180, x=63$. Part $\mathrm{B}: ~ \boldsymbol{x}+\mathbf{6 3}=\mathbf{1 8 0} ; \boldsymbol{x}=\mathbf{1 1 7}$ so that $\boldsymbol{m} \Delta \mathbf{A} C E=117^{\circ}$.
5.	$\triangle D C B$ has the same measure as $\triangle F C E$ since these angles are vertical.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.6
1.	$\mathbf{4}$ square inches
2.	35 square inches This question is a possible sample of an equation editor response technology- enhanced item.
3.	Surface Area $=403.44 \mathrm{~cm}^{2}$ Volume $=551.37 \mathrm{~cm}^{3}$
4.	The student successfully decomposes the solid figure into familiar shapes, selects appropriate formulas for calculating area, and accurately calculates the surface area as $760 \mathrm{ft}^{2}$. Note: The student may include the floor of the entire structure as part of the exterior surfaces to paint which would involve adding one base equal to $100 \mathrm{ft}^{2}$ resulting in a total surface area of $860 \mathrm{ft}^{2}$.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.G.2.6-FSA Practice
1.	$\mathbf{7 4}$ square feet
2.	The volume of the rectangular prism as $21,000 \mathrm{ft}^{3}$, The volume of the triangular prism as $8,400 \mathrm{ft}^{3}$, and The volume of the house as $29,400 \mathrm{ft}^{3}$.
3.	The student successfully decomposes the figure into familiar shapes, selects appropriate formulas for calculating area, and accurately calculates the surface area as $1608 \mathrm{~cm}^{2}$.
4.	$540 \mathrm{~cm}^{3}$ This question is a possible sample of an equation editor response technology- enhanced item.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

\(\left.$$
\begin{array}{|c|l|}\hline & \text { MAFS.7.SP.1.1 } \\
\hline 1 . & \text { B } \\
\hline 2 . & \begin{array}{l}\text { The student suggests a sampling method that is likely to result in a } \\
\text { representative sample. For example, the student suggests randomly selecting } \\
\text { a large number (} n=2000 \text {) of 12-year-old boys from a number of schools } \\
\text { throughout the state in a variety of settings (urban, rural, suburban). } \\
\text { The student says the average height of these boys is a good estimate of the } \\
\text { average height of 12 year old boys in the U.S. }\end{array}
$$

\hline This question is a possible sample of an open response technology-enhanced item.\end{array}\right\}\)| The student says that Jeremy's conclusion is not valid and explains: |
| :--- |
| Jeremy's sampling method is biased since he is only surveying students |
| attending a basketball game. Most people attending the game would not go |
| unless they liked basketball. |
| 5. | | His sample is not representative of the population of seventh graders |
| :--- |
| because people other than seventh graders were surveyed and a large group |
| of seventh graders did not have the opportunity to be a part of the sample. |
| sample of more than half of the homeroom students while Benita only |
| surveyed 4 students. |
| 4. | | Jeff's survey |
| :--- |

	MAFS.7.SP.1.1-FSA Practice
1.	C
2.	The student chooses C ("Ask every third student who walks into the school.") as the best sampling method and explains: - It includes students of all grade levels so it will provide the most representative sample of the whole student population, and - All students have an equal chance of being selected to participate in the survey so it is random. The student may further explain reasons why the other choices would not be good survey methods: 1. (A) Asking only students currently buying ice cream creates a bias in favor of the current flavors. There may be students who would buy ice cream but do not because they do not like the current flavors. 2. (B) Asking only seventh graders will not represent students from all grade levels. 3. (D) Asking only student council members will not be random because all students at the school do not have an equal chance of being selected. Also, this sample may be too small. This question is a possible sample of an open response technology-enhanced item.
3.	It is unlikely that Mr. Briggs's math class is a representative of all students at the school. For example, Mr. Briggs may be a particularly good (or entertaining) teacher, or he may pass out candy every day, or this class might be an advanced elective. Perhaps the students responded positively in hopes of pleasing their teacher. A better way to gather data would be to take a random sample of $\mathbf{2 5}$ students from all students at the school, so that it would be more representative of the population of interest. Among other options, this could be done by assigning a random number to every student from 1 to N, where N is the number of students at the school. Then a random digits table or a calculator could be used to select 25 random numbers between 1 to \boldsymbol{N} for the sample. This question is a possible sample of an open response technology-enhanced item.
4.	My sample is more representative because it is more random than my friend who is just surveying students who arrive early to school.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$\left.\begin{array}{|l|l|}\hline & \text { MAFS.7.SP.1.2 } \\ \hline 1 . & \begin{array}{l}\text { The sample size is } 50 \text { students. So if } 10 \text { out of } 50 \text { students chose horror } \\ \text { movies in the sample, then } 240 \text { total students from Moorsville MS would } \\ \text { prefer horror movies. } \\ \text { This question is a possible sample of an equation editor response technology- } \\ \text { enhanced item. }\end{array} \\ \hline 2 . & \begin{array}{l}\text { The student explains that if another random sample of students were drawn, } \\ \text { the results would probably be a little different due to sampling variability. }\end{array} \\ \hline \text { This question is a possible sample of an open response technology-enhanced item. } \\ \hline 3 . & \begin{array}{l}\text { A. Since any estimate from } 24.6 \% \text { to } 42.6 \% \text { will be considered a winner, all of } \\ \text { the estimates of } 25 \%, 31.25 \%, \text { and } 37.5 \% \text { would be the "winners." From the } \\ \text { table or dot plot, that would be } 15+22+20 \text { respectively, which would make } \\ \text { for a total of } 57 \text { winning estimates. } \\ \text { B. From the table or dot plot, an estimate that is "more than half" would be } \\ \text { any estimate of } 56.25 \%, 62.5 \%, \text { or } 68.75 \% . \text { That would be } 4+2+1 \\ \text { respectively, which would make for a total of } 7 \text { estimates which have values } \\ \text { that correspond to "more than half red." }\end{array} \\ \hline 5 . & \begin{array}{l}\text { We notice from the collected data that most of the sample estimates are in } \\ \text { the } 25 \% ~ t o ~\end{array} 3.75 \% \text { range, and the graph seems to be centered more in the } \\ \text { low-30\% values. Other arguments that discuss how the graph is centered at a } \\ \text { value far from } 50 \% \text { and/or how a small number of the estimates are actually } \\ \text { near 50\% would also be appropriate. }\end{array}\right\}$

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.1.2-FSA Practice
1.	The student calculates the sample proportion, 92 out of 150. Based on the estimate, 1595 students prefer longer school days. This question is a possible sample of an equation editor response technology- enhanced item.
2.	The student offers a reasonable suggestion for increasing the confidence in the estimates such as increasing the sample size.
3.	Statement III table. Statement II-No one in the sample has a February birth month. Statement bases the inference on the exact figures calculated from the
4.	Statement IV is not strongly supported by the data.
Stable there are 10 sampled students with birthdays in April compared to the	
4 sampled students with birthdays in July.	
The statement also uses the word "probably" to emphasize that it is based	
on a sample as opposed to the entire school population.	

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.2.3
1.	The median of the $12-17$ age group is 20, and the median of the $18-24$ age group is 40.
2.	The IQR of each age group is 10.
3.	The difference between the medians is 20, which is two times the IQR.

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.2.3-FSA Practice
1.	Yes, the male hand-spans tend to be larger for males. All but two males are at least 20 cm but less than 50% of the female hands are that large.
2.	Carl
3.	Carl's median $=32$ Angela's median $=28$ $32-28=4$
4.	Carl's maximum $=62$ Angela's maximum $=57$ $62-57=5$
5.	Carl's range $=62-6=56$ Angela's range $=57-1=56$

	MAFS.7.SP.2.4
1.	BThe student compares the two distributions in context by comparing both the medians and a measure of spread such as the IQR. For example, the student writes: - The median height of Type A trees (18) is greater than the median height of Type B trees (16), so, in general, Type A trees are taller than Type B trees. - The interquartile range is the same for both distributions (8), so half of both populations of trees are between 12 and 20 feet in height. The range of the Type A distribution (14) is greater than the range of the Type B distribution (10), so Type A trees vary in height more than Type B trees.
3.	The student compares the two distributions in context by comparing both their means and their MADs. For example, the student writes: - The mean word length in the tenth grade geometry book (6.5) is greater than the mean word length in the seventh grade book (4.0) so words in the tenth grade book tend to be longer on average. There is more variation in the length of the words in the tenth grade book (MAD = 2.5) than in the seventh grade book (MAD = 1.4).

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$\left.\begin{array}{|l|l|}\hline & \text { MAFS.7.SP.2.4-FSA Practice } \\ \hline \text { The mean number of hours for students who attend the class in-person is } \\ 5.1 \text { hours while the mean number of hours for students how access the } \\ \text { class online is } 4.6 \text { hours. } \\ \text { The median for students who attend class in-person is } 5 \text { and the median for } \\ \text { students who access is } 5 . \\ \text { The range for students who attend class in-person is } 3 \text { while the range for } \\ \text { students who access class online is } 6 . \text { So, there is more variability in the } \\ \text { data for students who access the class online. } \\ \text { So, the students who attend class in -person spend more hours than } \\ \text { students who access it online if you take the variability of the data into } \\ \text { account. }\end{array} \quad \begin{array}{l}\text { The mean number of callers is } 7.5 \text { and the mean number of emailers is 7.1. } \\ \text { The median of callers is } 7.5 \text { and the median of emailers is } 7 . \\ \hline 2 .\end{array} \begin{array}{l}\text { The range of callers is } 9 \text { and the range of emailers is } 4 . \\ \text { So, based on center the data is close but the variability for the callers is } \\ \text { more spread out than the emailers. } \\ \text { So the emailers are more consistently getting between } 5 \text { to } 9 \text { customers } \\ \text { while the callers are more variable, ranging from } 3 \text { to } 12 \text { new customers. }\end{array}\right\}$
$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.5				
1.		Probability of an Event?	Yes	No	Explanation
	A.	-1		\square	Probability cannot be negative.
	B.	4.2		\square	Probability cannot be greater than 1.
	C.	0.6	\checkmark		Represents probability because it is between zero and one, inclusive.
	D.	0.888	\checkmark		Represents probability because it is between zero and one, inclusive.
	E.	0	\checkmark		Represents probability because it is between zero and one, inclusive.
	F.	0.39	\checkmark		Represents probability because it is between zero and one, inclusive.
		-0.5			Probability cannot be negative.
	This question is a possible sample of a matching response technology-enhanced item.				
2.	A. "certain" or "for sure will happen" B. "very unlikely" or "most likely will not happen" C. "impossible" or "it cannot happen" D. "as likely to happen as not happen" E. "very likely" or "almost for sure will happen"				
3.	D				
4.	A, Spinner A has a $\mathbf{3}$ out of 6 chance of landing on blue while Spinner B has a 1 out of 3 chance of landing on blue.				
5.	D				

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.5-FSA Practice
1.	Neither likely nor unlikely since 40% is close to 50%.
2.	Likely, since $\frac{9}{10}$ is close to one.
3.	Unlikely, since .08 is close to zero.
4.	A
5.	A

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.6
1.	B
2.	There is a $\frac{3}{12}$ or $\frac{1}{4}$ or 25% chance of the hen laying exactly five eggs next week.
3.	There is a $\frac{6}{12}$ or $\frac{1}{2}$ or 50% chance of the hen laying four or fewer eggs next week.
4.	D
5.	A

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.6-FSA Practice
1.	The student says that he or she would expect 30 green marbles to be drawn out of 50 tries based on the calculation $0.6(50)=30$.
2.	The student says that it is possible for Dylan to draw exactly five green marbles in 50 tries: \bullet $\bullet \quad$ Because 30 is only an estimate.
3.	The student estimates that the sum of 10 will occur 50 out of 600 tries based on the calculation $\frac{1}{12} \times 600=50$.
4.	The student explains it is not likely Olivia will roll a sum of 10 exactly 50 times because: $\bullet \quad$ It is just an estimate based on the probability. \bullet $\bullet \quad$ The value is only theoretical.
It is probable but not certain.	

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.7
1.	B MAFS.7.SP.3.7a
	80 times for yellow. The experiment will be repeated 240 times. 120 times have been predicted as blue.
2.	$240-120=120$ 40 times have been predicted as green. $120-40=80$.
	That leaves 80 times left to be predicted as yellow.
3.	MAFS.7.SP.3.7b She would repeat the experiment 240 times. 120 is half of 240 and there are Half of 12 is 6.
2 Green tiles: 4 is $\frac{1}{6}$ of 24, so 40 is $\frac{1}{6}$ of $240 . \frac{1}{6}$ of the total of 12 tiles is 2.	

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

$7^{\text {th }}$ Grade MAFS Spiral Review Packet-Answer Key

	MAFS.7.SP.3.8-FSA Practice
1.	A. MAFS.7.SP.3.8b B. $\frac{1}{4}$ MAFS.7.SP.3.8a
2.	A. 16 outcomes B. 13 outcomes MAFS.7.SP.3.8b
3.	B MAFS.7.SP.3.8c
4.	$\frac{8}{15}$ or equivalent This question is a possible sample of an equation editor response technologyenhanced item. MAFS.7.SP.3.8c
5.	The student describes a simulation that will generate frequencies for the events of "no cats with an orange coat" and "at least one cat with an orange coat" (e.g., rolling four number cubes with the number one representing a cat with an orange coat). MAFS.7.SP.3.8c

