GRADE 9 MAPWORK

REVISION EXERCISES

DISTANCE

- SCALE $1: 50000$
- Distance $=\underline{\text { measurement }(c m) \times 50000}$

100000
$=\mathrm{km}$

DISTANCE

1. Trig beacon 9 (N2) to trig beacon 66 (I 16) Answer in km.
2. Length of the landing strip (G5). Answer in m
3. Trig beacon 104 (O8) to the house at Ifafi (Q 16). Answer in Km
4. Length of the N 4 from $\mathrm{W}(\mathrm{M} 5)$ to the intersection with the R511 (E14) Answer in km
5. Width of the dam at its narrowest point (M9) Answer in m.

DISTANCE ANSWERS

1. $16.2 \mathrm{CM} \times 50000$ 100000

$$
=8.1 \mathrm{~km}
$$

2. $1.5 \mathrm{~cm} \times 50000$ 100

DISTANCE ANSWERS

3. $9 \mathrm{~cm} \times 50000$

100000
4. $12.3 \mathrm{~cm} \times 50000$ 100000

$$
=4.5 \mathrm{~km}
$$

$=\xrightarrow{6.15 \mathrm{~km}}$

5. $2 \mathrm{~mm} \times 50000$ 1000

DIRECTION

BEARING

DIRECTION AND BEARING

1. Give the compass direction and true bearing for each of the following:
$1.1 \quad$ Trig beacon 9 (N2) to Trig beacon 104 (P8)
1.2 Trig beacon 9 to the windmill (Q6)
1.3 Trig beacon 9 to the shop W (M5)
1.4 Trig beacon 153 (F7) to Trig beacon 9
$1.5 \quad$ Trig beacon 153 to trig beacon 104 (P8)
$1.6 \quad$ Trig Beacon 153 to trig beacon 66 (I 16)
1.7 Trig beacon 66 to the shop W (M5)
1.8 Trig Beacon 66 to the windmill (Q6)

DIRECTION AND BEARING ANSWERS

1.1	E	97°
1.2	ESE	120°
1.3	ENE	67°
1.4	SSW	210°
1.5	S	172°
1.6	ESE	112°
1.7	WSW	253°
1.8	SW	233°

AREA CALCULATIONS

Calculating the area of a square/rectangle:
$A=L \times B$
$\mathrm{L}=5 \mathrm{~cm}$
$B=3 \mathrm{~cm}$

AREA CALCULATIONS

Calculating the area of a square/rectangle:
$A=L \times B$
$L=5 \mathrm{~cm}$
FIRST convert L and B to km

AREA CALCULATIONS

Calculating the area of a square/rectangle:
$A=L \times B$

$5 \mathrm{~cm} \times 50000=2.5 \mathrm{~km}$ 100000

AREA CALCULATIONS

Calculating the area of a square/rectangle:
$A=L \times B$
$\mathrm{L}=5 \mathrm{~cm}$
$B=3 \mathrm{~cm}$

Answer in km²:
FIRST convert L and B to km

Breadth:
$\underline{3 \mathrm{~cm} \times 50000}=1.5 \mathrm{~km}$
100000

AREA CALCULATIONS

Calculating the area of a square/rectangle:
$A=L \times B$

$\mathrm{A}=2.5 \mathrm{~km} \times 1.5 \mathrm{~km}$
$=\xrightarrow{3.75 \mathrm{~km}^{2}}$

AREA EXERCISE

1. Find the FOUR clearly demarcated farms in blocks I 4 to L4/L5. Calculate the area of the northern most farm. Answer in m^{2}.
2. Calculate the area of the whole map. Answer in km ${ }^{2}$.
3. Calculate the area of the triangular shaped land found in blocks D 17 and E 17. Answer in m^{2}.

AREA EXERCISE: ANSWERS

1.

$$
\begin{aligned}
A=L \times B \quad L & =0.6 \mathrm{~cm} \\
B & =0.6 \mathrm{~cm}
\end{aligned}
$$

$$
\mathrm{L}=\underline{0.6 \mathrm{~cm} \times 50000} \quad=\quad 300 \mathrm{~m}
$$ 100

B (same as above)
$=300 \mathrm{~m}$
$\therefore A=300 \mathrm{~m} \times 300 \mathrm{~m}$
$=\xrightarrow{90000 \mathrm{~m}^{2}}$

AREA EXERCISE: ANSWERS

2. $A=L \times B$

$$
\begin{aligned}
\mathrm{L} & =18.4 \mathrm{~cm} \\
\mathrm{~B} & =18.2 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{L}=\underline{18.4 \mathrm{~cm} \times 50000}$ 100000
$B=\underline{18.2 \mathrm{~cm} \times 50000}$ 100000
$A=9.2 \mathrm{~km} \times 9.1 \mathrm{~km}$

AREA EXERCISE: ANSWERS

3. $A=1 / 2 B \times \perp H$

$$
\begin{aligned}
B & =\frac{2.5 \mathrm{~cm} \times 50000}{100}=1250 \mathrm{~m} \\
\perp H & =\frac{0.6 \mathrm{~cm} \times 50000}{100}=300 \mathrm{~m} \\
A & =1 / 2(1250 \mathrm{~m} \times 300 \mathrm{~m}) \\
& =187500 \mathrm{~m}^{2}
\end{aligned}
$$

SPEED / DISTANCE / TIME

Speed $=$ Distance/Time $=\mathrm{km} / \mathrm{h}$

Time = Distance/Speed = Hrs

Example: $S=$?

$$
\begin{aligned}
S & =100 \mathrm{~km} / 2.5 \\
& =40 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\mathrm{T}=21 / 2 \mathrm{hrs}
$$

SPEED/DISTANCE/TIME EXERCISE

1. A man plays a round of golf at the course in block G9 and walks a total distance of 7.5 km . If he spends 2 hours walking, what is his average speed?
2. A car travels from the shop W (M5) along the R512, to the intersection with the R511 (E14). The car travels at a speed of $40 \mathrm{~km} / \mathrm{h}$. How long will the trip take?
3. A hiker walks from the shop $\mathrm{W}(\mathrm{M} 5)$ directly to the trig beacon 104 (O8). The walk takes 40 minutes. What is his average walking speed?

ANSWERS

1. $\quad S=$?
$\mathrm{D}=7.5 \mathrm{~km}$
$\mathrm{T}=2 \mathrm{Hrs}$

$\mathrm{S}=\underline{7.5 \mathrm{~km}}$
 2 hrs

$=\xrightarrow{3.75 \mathrm{~km} / \mathrm{h}}$

ANSWERS

2. $S=40 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \mathrm{D}=12.4 \mathrm{~cm} \\
& \mathrm{~T}=?
\end{aligned}
$$

Distance $=\underline{12.4 \mathrm{~cm} \times 50000}$
$=6.2 \mathrm{~km}$ 100000

$$
\mathrm{T}=\frac{6.2 \mathrm{~km}}{40 \mathrm{~km} / \mathrm{h}}
$$

0.155 hrs x 60 minutes
$=0.155 \mathrm{hrs}$
$=9$ minutes

ANSWERS

3. $\quad \begin{aligned} & S= \\ & D=4 \mathrm{~cm}\end{aligned}$
$T=40$ minutes
$\mathrm{S}=\frac{2 \mathrm{~km}}{0.67 \mathrm{hrs}}$
$S=\frac{2 \mathrm{~km}}{0.67 \mathrm{hrs}}$
$=3 \mathrm{~km} / \mathrm{h}$

$4 \mathrm{~cm} \times 50000=2 \mathrm{~km}$ 100000

$40 / 60=0.67 \mathrm{hrs}$

