Province of the

EASTERN CAPE

SENIOR PHASE

GRADE 9

NOVEMBER 2012

TECHNOLOGY

MEMORANDUM

MARKS: 100

This memorandum consists of 9 pages.

INSTRUCTIONS AND INFORMATION

1. A learner must answer ALL the questions from SECTIONS A, B, C, D, and E.
2. Sketches must be clear, neat and done in pencil.

ALLOCATION OF MARKS

SECTION A	MULTIPLE-CHOICE QUESTIONS	
	QUESTION 1	[15]
SECTION B	STRUCTURES	
	QUESTION 2	[10]
SECTION C	PROCESSING	
	QUESTION 3	[10]
SECTION D	SYSTEMS AND CONTROL (Mechanical Systems)	
	QUESTION 4	[33]
SECTION E	SYSTEMS AND CONTROL (Electrical Systems)	
	QUESTION 5 (14)	
	QUESTION 6	[32]

SECTION A: MULTIPLE-CHOICE QUESTIONS

QUESTION 1

1.1 1.1.1 B $\sqrt{ }$(1)
1.1.2 D $\sqrt{ }$(1)
1.1.3 A $\sqrt{ }$(1)
1.1.4 C $\sqrt{ }$(1)
1.1.5 A $\sqrt{ }$(1)
1.1.6 B
1.1.7 $\sqrt{ }$
1.1.8 C $\sqrt{ }$(1)
1.1.9 B $\sqrt{ }$(1)
1.1.10 D $\sqrt{ }$(1)(1)(1)
1.2 1.2.1 Drying $\sqrt{ }$(1)
1.2.2 Varnishing $\sqrt{ }$(1)
1.2.3 Freezing(1)
1.2.4 Electroplating $\sqrt{ }$(1)
1.2.5 Irradiation $\sqrt{ }$(1)
TOTAL SECTION A: 15
SECTION B: STRUCTURES
QUESTION 2
2.1 2.1.1 • Disruption of traffic $\sqrt{ }$

- Safety of construction workers $\sqrt{ }$
- Safety of the community $\sqrt{ }$
- Use of local labour $\sqrt{ }$
- Cost and time $\sqrt{ }$
- Training of unskilled workers
- Job creation $\sqrt{ }$
2.1.2 • Steel sections $\sqrt{ }$- Steel cables $\sqrt{ }$- Steel reinforced concrete $\sqrt{ }$
- \quad Sand $\sqrt{ }$- Cement $\sqrt{ }$- Stone $\sqrt{ }$- Wood $\sqrt{ }$
- Iron $\sqrt{ }$(Any 2×1)(2)
2.1.3 Dynamic (or uneven) and $\sqrt{ } /$Static (or even) $\sqrt{ }$
2.1.4 • Tension $\sqrt{ }$
- Compression $\sqrt{ }$
- Shearing $\sqrt{ }$
- Torsion $\sqrt{ }$
(Any 1×1) (1)
2.21 beam) $\sqrt{ }$

2 column $\sqrt{ }$
3 strut $\sqrt{ }$
4 stay / guy
5 buttress $\sqrt{ }$

SECTION C: PROCESSING

QUESTION 3

3.1 3.1.1 To compensate for the nutrition lost in the processing of food. $\sqrt{ }$
3.1.2 Tantrums $\sqrt{ }$

Irritability $\sqrt{ }$
Restlessness $\sqrt{ }$
Severe sleep disturbances $\sqrt{ }$
(Any 1×1)
3.1.3 • Headaches $\sqrt{ }$

- Anxiety $\sqrt{ }$
- Upset stomach $\sqrt{ }$
(Any 1×1)
3.1.4 • Preservatives V
- Artificial sweeteners $\sqrt{ }$
- Caffeine $\sqrt{ }$
(Any 1×1)
3.1.5 - Loss of nutrients $\sqrt{ }$
- Higher prices $\sqrt{ }$
(Any 1×1)
3.2 3.2.1 EV
3.2.2 C V
3.2.3 B $\sqrt{ }$
3.2.4 AV
3.2.5 D V

SECTION D: SYSTEMS AND CONTROL (MECHANICAL SYSTEMS)

QUESTION 4

4.1

Name of object	Input	Output
Car jack	Person uses a crank to turn the handle $\sqrt{ }$	The jack lifts the car $\sqrt{ }$
Scissors	A person's hand applies force to the scissors $\sqrt{ }$	The scissors cut the paper $\sqrt{ }$
Whisk	The person's hand applies force to turn the handle $\sqrt{ }$	The mixers of the whisk spin $\sqrt{ }$
Hand-driven pulley winch	A person turns the handle on the winch $\sqrt{ }$	The load is lifted $\sqrt{ }$
Bicycle's gear system	A person pushes on the pedal $\sqrt{ }$	The wheels turn and the bicycle moves $\sqrt{ }$

4.2 4.2.1 A pulley is a grooved rotating wheel over which a rope, belt or chain can move to change the direction of a pulling force. $\sqrt{ }$
4.2.2 A person can pull down on a rope to lift a load, instead of trying to lift a load up. Pulleys create a mechanical advantage to make work easier. $\sqrt{ }$
4.3 4.3.1 Mechanical Advantage $=\frac{\text { Load }}{\text { Effort }} \sqrt{ }$

$$
\begin{align*}
& =\frac{500 \mathrm{~N}}{250 n} \sqrt{ } \\
& =2 \sqrt{ } \tag{3}
\end{align*}
$$

4.3.2 By twisting the rope or belt. $\sqrt{ }$
4.3.3

1 mark for the twisting of the rope $\sqrt{ }$ 2 marks for two pulleys $\sqrt{ } \sqrt{ }$ 1 mark for rotation direction of pulleys $\sqrt{ }$
4.4 4.4.1 B:C V
4.4.2 A: E V
4.4.3 The spring-loaded sockets adjust the tension of the chain. $\sqrt{ }$
4.5 4.5.1 B $\sqrt{ }$
4.5.2 D V(1)
4.5.3 C $\sqrt{ }$(1)(1)
4.5.4 A $\sqrt{ }$(1)
4.6 4.6.1 $\sqrt{ } \frac{C}{D}=\sqrt{ } \frac{120}{40}=4 \sqrt{ }$90 revolutions (at C) $\times 4 \sqrt{ }=360$ revolutions per minute at $D \sqrt{ }$(5)
4.6.2 D revolves in a clockwise direction. $\sqrt{ }$(1)
TOTAL SECTION D: 33

SECTION E: SYSTEMS AND CONTROL (MECHANICAL SYSTEMS)

QUESTION 5

5.1	Component	Symbol	Use
	Batteries		Batteries supply the energy to make a circuit work.
	1 Push switch $\sqrt{ }$	H_{0}^{1}	A push switch turns the flow of current on or off. The current will flow while the switch is being pressed.
	Resistors		3 A resistor reduces the amount of current that flows in a circuit. A 470 W resistor, for example, stops an LED from burning out. $\sqrt{ }$
	4 Light emitting diode (LED) $\sqrt{ }$		5 An LED is a very small light that tells you whether something is on or not. LEDs use very little electricity.
	Light-Dependent Resistor (LDR)	6	7 A Light-Dependent Resistor (LDR) is a device whose resistance changes when light shines on it. It can be used in the same way as a thermistor to make a light $\sqrt{ }$
	8 Motors $\sqrt{ }$	9	Motors change electrical energy into movement. The electricity makes the motor turn. We can then use the motor to make other things move.
	Buzzer		11 Buzzers change electricity into sound. A front door bell is an example.

(One mark for each missing part.)

5.2 5.2.1 The circuit will switch on and off when the water becomes too hot or too cold. $\sqrt{ }$

5.2.2 Light- Dependent Resistor (LDR) $\sqrt{ }$
5.2.3 Thermistor $\sqrt{ }$

QUESTION 6

6.1 6.1.1 Transistor $\sqrt{ }$
6.1.2 - Transistors operate as electronic switches (they allow or do not allow current to flow).

- They can operate as amplifiers (they enlarge - make bigger the input signal that they receive).
6.1.3 • Emitter
- Collector V
- Base V
6.2 6.2.1 Resistor 1

Grey in the $1^{\text {st }}$ band $=8$
Yellow in the $2^{\text {nd }}$ band $=4$
Red in the $3^{\text {rd }}$ band $=00$

$$
\begin{equation*}
\text { = } 8400 \text { § } \tag{3}
\end{equation*}
$$

6.2.2 Resistor 2

Violet in the $1^{\text {st }}$ band $=7$
Blue in the $2^{\text {nd }}$ band $=6$
Orange in the $3^{\text {rd }}$ band $=000$

$$
\begin{equation*}
\text { ת } 76000 \text { = } \tag{3}
\end{equation*}
$$

6.3 6.3.1 $1^{\text {st }}$ band $7=$ Violet
$2^{\text {nd }}$ band $5=$ Green
$3^{\text {rd }}$ band $0000=$ Yellow
6.3.2 $1^{\text {st }}$ band $8=$ Grey
$2^{\text {nd }}$ band $0=$ Black
$3^{\text {rd }}$ band Nil $=$ Black

