

SENIOR PHASE

GRADE 9

NOVEMBER 2012

TECHNOLOGY MEMORANDUM

MARKS: 100

This memorandum consists of 9 pages.

INSTRUCTIONS AND INFORMATION

- 1. A learner must answer ALL the questions from SECTIONS A, B, C, D, and E.
- 2. Sketches must be clear, neat and done in pencil.

ALLOCATION OF MARKS

SECTION A	MULTIPLE-CHOICE QUESTIONS		
	QUESTION 1		[15]
SECTION B	STRUCTURES		
	QUESTION 2		[10]
SECTION C	ECTION C PROCESSING		
	QUESTION 3		[10]
SECTION D	SYSTEMS AND CONTROL (Mechanical		
	Systems)		
	QUESTION 4	[33]	
SECTION E	SECTION E SYSTEMS AND CONTROL (Electrical		
	QUESTION 5	(14)	F0.01
	QUESTION 6	(18)	[32]

SECTION A: MULTIPLE-CHOICE QUESTIONS

QUESTION 1

QUES	SHONT			
1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	B √ D √ A √ C √ A √ B √ D √ C √ B √ D √		(1) (1) (1) (1) (1) (1) (1) (1) (1)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	Drying √ Varnishing √ Freezing √ Electroplating √ Irradiation √	TOTAL SECTION A:	(1) (1) (1) (1) (1)
SECT	ION B:	STRUCTURES		
	STION 2			
21 '	211 🛕	Digruption of traffic a		

2.1 2.1.1 Disruption of traffic $\sqrt{}$

- Safety of construction workers $\sqrt{}$
- Safety of the community $\sqrt{}$
- Use of local labour √
- Cost and time √
- Training of unskilled workers $\sqrt{}$
- Job creation √ (Any 1 x 1) (1)

2.1.2 Steel sections √

- Steel cables √
- Steel reinforced concrete $\sqrt{}$
- Sand √
- Cement √
- Stone √
- Wood √
- Iron √ (Any 2 x 1) (2)

Dynamic (or uneven) and $\sqrt{\ }$ 2.1.3 Static (or even) √ (Any 1 x 1) (1) 2.1.4 • Tension √

• Compression $\sqrt{}$

Shearing √
Torsion √ (Any 1 x 1) (1)

1 beam) √ 2 column √ 2.2

3 strut √

4 stay / guy √ 5 buttress √ (5)

> **TOTAL SECTION B:** 10

SECTION C: PROCESSING

QUESTION 3

3.1	3.1.1	To compensate for the nutrition lost in the processing of food. $\ensuremath{}$		
	3.1.2	Tantrums $$ Irritability $$ Restlessness $$ Severe sleep disturbances $$	(Any 1 x 1)	(1)
	3.1.3	 Headaches √ Anxiety √ Upset stomach √ 	(Any 1 x 1)	(1)
	3.1.4	 Preservatives √ Artificial sweeteners √ Caffeine √ 	(Any 1 x 1)	(1)
	3.1.5	 Loss of nutrients √ Higher prices √ 	(Any 1 x 1)	(1)
3.2	3.2.1	E√		(1)
	3.2.2	C√		(1)
	3.2.3	B√		(1)
	3.2.4	A √		(1)
	3.2.5	D√		(1)
			TOTAL SECTION C:	10

SECTION D: SYSTEMS AND CONTROL (MECHANICAL SYSTEMS)

QUESTION 4

Name of object	Input	Output
Car jack	Person uses a crank to	The jack lifts the
	turn the handle $\sqrt{}$	car √
Scissors	A person's hand applies	The scissors cut the
	force to the scissors $\sqrt{}$	paper √
Whisk	The person's hand	The mixers of the
	applies force to turn the	whisk spin √
	handle √	
Hand-driven pulley winch	A person turns the	The load is lifted $\sqrt{}$
	handle on the winch $\sqrt{}$	
Bicycle's gear system	A person pushes on the	The wheels turn and
	pedal √	the bicycle moves √

(10)

- 4.2 4.2.1 A pulley is a grooved rotating wheel over which a rope, belt or chain can move to change the direction of a pulling force. $\sqrt{}$ (1)
 - 4.2.2 A person can pull down on a rope to lift a load, instead of trying to lift a load up. Pulleys create a mechanical advantage to make work easier. $\sqrt{}$
- 4.3 4.3.1 Mechanical Advantage = $\frac{Load}{Effort} \sqrt{}$ $= \frac{500 \, N}{250 \, n} \sqrt{}$ $= 2 \, \sqrt{}$ (3)
 - 4.3.2 By twisting the rope or belt. $\sqrt{}$

4.3.3

1 mark for the twisting of the rope $\sqrt{}$

2 marks for two pulleys $\sqrt{\sqrt{}}$

1 mark for rotation direction of pulleys $\sqrt{}$ (4)

4.4 4.4.1 B: C $\sqrt{}$ (1)

4.4.2 A: $E\sqrt{}$

4.4.3 The spring-loaded sockets adjust the tension of the chain. $\sqrt{}$ (1)

(NOVEMBER 2012) TECHNOLOGY 7

4.5 4.5.1 B $\sqrt{}$

4.5.2 D
$$\sqrt{}$$

4.5.3
$$C\sqrt{}$$

4.5.4 A
$$\sqrt{}$$

4.6 4.6.1
$$\sqrt{\frac{C}{D}} = \sqrt{\frac{120}{40}} = 4 \sqrt{\frac{1}{10}}$$

90 revolutions (at C) x 4
$$\sqrt{}$$
 = 360 revolutions per minute at D $\sqrt{}$ (5)

4.6.2 D revolves in a clockwise direction.
$$\sqrt{}$$
 (1)

TOTAL SECTION D: 33

SECTION E: SYSTEMS AND CONTROL (MECHANICAL SYSTEMS)

QUESTION 5

5.1

Component	Symbol	Use
Batteries	9V	Batteries supply the energy to make a circuit work.
1 Push switch √	Ho o	A push switch turns the flow of current on or off. The current will flow while the switch is being pressed.
Resistors	2	3 A resistor reduces the amount of current that flows in a circuit. A 470 W resistor, for example, stops an LED from burning out. √
4 Light emitting diode (LED) √		5 An LED is a very small light that tells you whether something is on or not. LEDs use very little electricity. √
Light-Dependent Resistor (LDR)	6	7 A Light-Dependent Resistor (LDR) is a device whose resistance changes when light shines on it. It can be used in the same way as a thermistor to make a light √
8 Motors √	9 -M- _√	Motors change electrical energy into movement. The electricity makes the motor turn. We can then use the motor to make other things move.
Buzzer	10	11 Buzzers change electricity into sound. A front door bell is an example. √
(One mark for each	ch missing part.)	

(11)

5.2	5.2.1	The circuit will switch on and off when the water becomes too hot or too cold. $\sqrt{}$	
	5.2.2	Light- Dependent Resistor (LDR) √	(1)
	5.2.3	Thermistor √	(1) [14]
QUE	STION (6	1
6.1	6.1.1	Transistor √	(1)
	6.1.2	 Transistors operate as electronic switches (they allow or do not allow current to flow). √ They can operate as amplifiers (they enlarge – make bigger – the input signal that they receive). √ 	(2)
	6.1.3	 Emitter √ Collector √ Base √ 	(3)
6.2	6.2.1	Resistor 1	(0)
		Grey in the 1 st band = 8 $$ Yellow in the 2 nd band = 4 $$ Red in the 3 rd band = 00 $$	
		= 8 400 Ώ	(3)
	6.2.2	Resistor 2	
		Violet in the 1 st band = 7 $\sqrt{}$ Blue in the 2 nd band = 6 $\sqrt{}$ Orange in the 3 rd band = 000 $\sqrt{}$	
		= 76 000 Ώ	(3)
6.3	6.3.1	1^{st} band $7 = \text{Violet}$ $\sqrt{2^{\text{nd}}}$ band $5 = \text{Green}$ $\sqrt{3^{\text{rd}}}$ band $0000 = \text{Yellow}$	(3)
	6.3.2	1^{st} band $8 = \text{Grey}$ $\sqrt{2^{\text{nd}}}$ band $0 = \text{Black}$ $\sqrt{3^{\text{rd}}}$ band $ N = \text{Black}$ $\sqrt{3^{\text{rd}}}$	(3) [18]
		TOTAL SECTION E: GRAND TOTAL:	32 100