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Abstract—The role of gradient estimation in global opti-
mization is investigated. The concept of a regional gradient is
introduced as a tool for analyzing and comparing different types
of gradient estimates. The correlation of different estimated
gradients to the direction of the global optima is evaluated for
standard test functions. Experiments quantify the impact of dif-
ferent gradient estimation techniques in two population-based
global optimization algorithms: fully-informed particle swarm
(FIPS) and multiresolutional estimated gradient architecture
(MEGA).

I. INTRODUCTION

In this paper we explore the importance of using gradient
information to direct searches for global optima, and how
different types of gradient estimates may affect the perfor-
mance of population-based global algorithms. Consider the
optimization problem of finding a global minimum z* € RP
of an objective function f(z) € R such that

x* = argmin f(z), (1
reS
where S C RP is a compact set. Many functions of interest
will also have multiple local minima.

A standard approach for finding local minima is to calcu-
late or estimate a gradient and follow the path of steepest
descent. Line search algorithms have been developed for
problems without gradient information as well, in which
steps are taken in conjugate directions, or descent directions
are estimated in trust regions [13]. This paper proposes a
regional gradient for use in these line searches. In global
optimization problems this line search may be combined with
a method of escaping from, or searching over, local minima
so that the global location is found. Understanding the role
that a gradient search plays in optimization is important to
understanding global search methods.

Many real-world problems of interest have functions with
some structure, such that using more information about the
function will result in a more efficient search. However, in
many problems the objective function f(z) is modeled as
a black box: f(x) can only be obtained for a specific z
by running a program, taking measurements, or modeling
a system. Functional information, in particular the function
gradient, is unobtainable, but estimates of gradients based on
previously-evaluated operating points may be useful. In this
paper we compare a few different methods of estimating a
gradient direction.

Many gradient-free global optimization methods have been
developed [11], [17], [2]. Purely stochastic methods are able
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to converge to a global minimum, but it is our contention that
moving downhill can direct the search more quickly toward
the optimal area. In fact, many popular global optimization
algorithms implicitly or explicitly estimate which direction
is downhill at a given operating point. For example, finite
difference methods require 2D extra function evaluations
to estimate a gradient. Simultaneous perturbation stochas-
tic approximation (SPSA) uses a modified finite difference
method that approximately estimates the downhill direction
using only two extra function evaluations [14]. Trust region
optimization uses a linear model of previously evaluated
operating points to determine a search direction, and has
proven convergence on single-minima functions [13].

In this paper we focus on two population-based optimiza-
tion algorithms which incorporate rough estimates of the
downhill direction. Specifically, particle swarm optimization
(PSO) [4], and its variant fully informed particle swarm
(FIPS) [10], use a point difference approach to direct the
search, while the multiresolution estimated gradient architec-
ture (MEGA) [8] algorithm uses a regression-based gradient
estimate. The FIPS and MEGA algorithms were chosen for
this work because the structure of these algorithms allows
for the insertion of different gradient estimates. The goal of
this paper is not to compare these two algorithms, but rather
to explore the interaction of the gradient estimates with two
different global optimization algorithms.

First, to enable discussion of gradients from a multireso-
lutional perspective, we introduce the concept of a regional
gradient in Section II. An experiment compares different gra-
dient estimation techniques for global search using randomly
generated sample points in Section III. The more practical
question of the impact of different gradient estimates in
conjunction with the architecture of a global optimization
algorithm is considered for the FIPS and MEGA algorithms
in Section IV. Section V ends the paper with a discussion of
the findings and some open questions.

II. REGIONAL GRADIENTS AND MULTIRESOLUTIONAL
SEARCHING

Global optimization algorithms often search at many dif-
ferent resolutions. A coarse resolution search finds the most
promising area of a large region, while a finer resolution
search finds the local minima in a small region. In this section
we discuss the challenges of searching at multiple resolutions
and define a regional gradient that enables analysis of mul-
tiresolutional search.

Some algorithms change the search resolution sequen-
tially: first finding a region of attraction, then searching
it locally to find that local optima, then broadening the
search again to find another region of attraction. Tabu search



describes this process explicitly with the processes of ‘inten-
sification’ (combining known good solutions to explore their
local region), and ‘diversification’ (searching previously un-
explored areas) [S]. Some algorithms accomplish multireso-
lutional search with a hybrid approach, combining stochastic
movement for the global search and more structured gradient
descent movements for honing in on optima [16], [12]. Other
global optimization algorithms, such as PSO, search at differ-
ent resolutions simultaneously, moving the particles toward
both locally-promising and globally-promising regions. The
authors recently proposed a population-based algorithm that
explicitly directs the search using gradient estimates, termed
multiresolution estimated gradient architecture (MEGA) [8].
MEGA alternates between fine and coarse resolution searches
by estimating gradients over different regions of the search
space.

A. Regional Gradient Definition

The gradient defines the downhill direction at a particular
point in the search space. When the functional space has
local minima or noise, the gradient may be ineffective or even
misleading as a search direction. Rather, we hypothesize that
one is interested in estimating what constitutes the descent
direction over different regions of the search space. To this
end, we define a regional gradient for the region S, to be the
vector 3* € R that best fits a hyperplane to the function
f(z) over the region S, C RP, that is:

5", 55) = arguiin | (7(a) = 670 - po)Pdz. @)
8,80 z€S,

The regional gradient is well-defined whether or not the
function f is differentiable. If f is differentiable, then the
following proposition holds:

Proposition: If the gradient of f(x) exists and is bounded
for all z € S), then the regional gradient 3* given in (2) is
the average of the gradients in the region S):

. 1
F= volume(S,) /zesp v flz)da. )

Proof: The proposition follows from the fact that the mean
minimizes the integral of squared error if the integral is well-
defined. That is, (2) is solved by

Joes, F(@)dz
fmGSp de

Take the gradient of both sides, and because of the proposi-
tion’s assumptions, one can swap the gradient and integration
operators to yield (3).

The proposition establishes that the regional gradient (5*
is a robust description of the descent direction in the sense
that it is the average gradient in the region. In Figure 1
two regional gradient estimations are shown, for different
resolutions, where the resolution is determined by size of
the marked circular region. The resolution in this description
is similar to the trust region used in linear-interpolation

2B+ B = @)

trust region methods, although the precise definition of trust
regions varies with algorithm specifics [13].

Fig. 1. This figure shows the sinusoidal test function and two estimated
regional gradients of the function (gradient directions are shown as arrows,
with regions outlined with circles). The finer regional gradient points towards
a local minima, while the coarser regional gradient may help avoid it.

B. Approximate Regional Gradients in Global Optimization

Many global optimization algorithms can be interpreted as
using approximate regional gradients to direct their search,
where the regional gradients are calculated for different
resolutions.

Simultaneous  perturbation stochastic approximation
(SPSA) estimates the gradient by stochastically choosing a
direction in which to perturb the operating point to calculate
a finite difference gradient [15]. Let V f(z)[d] denote the
d* vector component of _the gradient Vf(z). Then the
SPSA gradient estimate V f(z) for the k" iteration of the
algorithm has dth vector component

f(fEk + 5kAk[d]6d) - f(xk - 5kAk[d]6d)
26, Agd)] ’
&)
where e; is a D-component vector with 1 for the dth
component and O for all other components, ¢ is a scalar
that generally shrinks as the number of iterations k increases,
and Ay is a random D-component perturbation vector. The
SPSA gradient estimate can be interpreted as an estimate
of the gradient over a region defined by a hypersphere with
center x, and radius 5, Ay.

Point-differences in global optimization can also be
interpreted as approximations of the regional gradient.
A point-difference is similar to the SPSA estimation,
but does not require new points to be evaluated. Given
two previously-evaluated sample pairs (z1, f(z1)) and
(22, f(x2)) where f(x2) < f(z1), the point-difference
is defined to be the vector x; — x9, or the normalized
version (z1 — x2)/||z1 — x2||. The point-difference estimate
is a simple and elegant method of obtaining a notion
of “downhill,” and is used in PSO. This point-difference
estimate can be considered a regional gradient for the local

—
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region of z1, xs.

PSO: PSO is an evolutionary algorithm in which many
agents, or particles, search the space collaboratively [4].
The particles’ behavior is modeled after the natural flocking
behavior of birds. If on the i iteration the location of a
particle is z;, then on the (i + 1) iteration the particle’s
position evolves according to the equations:

Tit1 = T+ Viga,
Vig1 = coUi +cri(pt — ) + cora(gt —x5), (6)
where p* is the current personal best for that particle,

g* is the current global best for all the particles, 71,75
are randomly drawn, and cg,c1,co are scalar parameters.
There is a summary of current PSO information at [1],
[3], which includes information about parameter settings.
In the PSO update equation (6), the velocity v;4; specifies
the search direction and step size for the particle. The
velocity can be interpreted as a weighted combination of
a point-difference estimate of a coarse regional gradient
(g* — x;) and a point-difference estimate of a generally finer
regional gradient (p* — x;).

FIPS: In this paper, we investigate gradient estimation for
a recent variant of PSO called the fully-informed particle
swarm (FIPS) [10]. FIPS is structured in a way that makes
it more amenable to replacing the point-difference gradient
estimates with other gradient estimates, and has been shown
to outperform the canonical PSO [10].

The FIPS algorithm defines a fixed neighborhood N of
N nearby particles for each particle. Then the location z; of
a particle at the i*" iteration evolves according to the FIPS
equations:

Tit1 T; + i,
v; = X(vic1 + (P —x;)), @)
P, — ZenSPL ®)
Zke/\/ Pk

where pj is the personal best location of the kth particle
at the ¢th iteration, y = .7298 and ® = 4.1. The
are drawn independently and identically from the uniform
distribution U[0, %], and ¢ is drawn from U0, ®]. These
parameter values, suggested variants and a discussion of
different neighborhood definitions are given in [10]. In this
paper, the connected ring neighborhood is used, which gives
each operating point two neighbors and was shown to work
well [10].

The equations for the FIPS update can be interpreted as
an update with a point-difference regional gradient estimate

61’ = Pl — T, (9)
where P; (defined in (8)) is a randomly-weighted average

of the personal best values in the particle z’s neighborhood.

MEGA: The MEGA algorithm was motivated by the idea of
gradient descent at multiple resolutions [8], [7]. In MEGA a

population of active points evolves, where an active point is
a point that is used to calculate the next step of the search.
The population is initialized at the start of the optimization
with (D + 1)? randomly drawn points z; for i = 1 to
(D + 1), which are evaluated to form the initial active
population {z;, f(x;)}. Each time a new operating point
(Tnew, f(Tnew)) 18 evaluated, the current worst point is
removed, and then the newly-evaluated point is added to the
active population. This replacement forces the population to
evolve.

At each iteration a set of line-search steps creates new
points. First, fine resolution steps are taken by clustering the
active points into D + 1 clusters of spatially-adjacent points,
and taking a step from the cluster center in the direction of
the regional gradient associated with that cluster. Second, the
D + 1 new points are used to fit a coarse-resolution regional
gradient, and an additional step is taken from the mean of
the new points in the direction of that regional gradient.

The regional gradients described in the last paragraph are
obtained by fitting a hyperplane to the {z;, f(z;)} pairs in
a given cluster. The squared error is minimized such that the
hyperplane has slope coefficients p* such that

0%, p5) = axgmin Y (f(z;) = p"a; — po)?,
PsPo GETn

(10)

where pj) is an offset that does not form part of the gradient
direction.
We interpret p* as an estimate of the unknown regional
gradient 3* for the region spanned by the clusters’ points.
The closed-form solution for p* is

pr=(XTX)T Xy, (11)

where X is a matrix whose jth column is z;, and y is a
vector whose jth element is f(z;). In practice, we use the
Moore-Penrose pseudoinverse to calculate p* such that any
singular values of X below a small fixed tolerance value are
disregarded. The pseudoinverse provides the unique solution
to (10) with minimum p”p. In this way the pseudoinverse
provides a low estimation variance estimate even when fewer
than D points are used to fit the hyperplane [6].

III. GRADIENT ESTIMATION PERFORMANCE

The regional gradient is a way to capture functional trends
over a region, and one expects that the regional gradient can
be more helpful than the analytic gradient when searching
for a global optima. To test this hypothesis, we begin with
a study of the effectiveness of different regional gradient
estimation techniques abstracted from any specific global
optimization algorithm.

A. Experimental Details

We compare the angle 6 between each normalized gradient
or regional gradient estimate a calculated from a random
draw of points to the true direction b to the global optima.
That is,
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Fig. 2. Illustrations of the four test functions in two-dimensions. Clockwise
from upper left: quadratic, Rosenbrock, Griewank, sinusoidal.

The experiment was run on four different test functions for
which the true analytical gradient and the global minimum
are known and can thus be used to evaluate the estimated
gradients. These test functions were also chosen for their
varying degrees of difficulty for a global search to solve. At
the same time each function has some structure to it because
these are the type of problems for which we expect a regional
gradient based search to be powerful. For each run, (D + 1)
points x1,29,...,zp41 € S were randomly drawn, and
their mean = was calculated. The D + 1 points were drawn
uniformly across the hypercube defined by the domain of the
test function. However, the maximum difference between the
points in any single dimension was limited to a fraction of
the entire domain, and any points exceeding that distance
from the original set were thrown out. This fraction limits
the region for the gradient estimate, and was set to 0.9 for
the results in Tables I and II. The analytical gradient is taken
to be the true gradient at f(Z). The regional gradient is
calculated over a region defined by a hypersphere with z as
its center and max(||x; — Z||) as its radius, and the formula
(2) is approximated by a least-squares hyperplane fit to 1000
points drawn uniformly over the region.

A pseudoinverse regional gradient estimate p* is calculated
as in equation (11) for each draw of D + 1 points. A second
regional gradient estimate is formed for each draw of D +
1 points by the coefficients of a regularized least squares
fit hyperplane coefficients. Regularized least-squares linear
regression penalizes the slope of the fitted hyperplane, in
order to reduce estimation variance. We regularized using
ridge regression [6], [9], such that the estimated coefficients
o* are defined by

x % . 2
0%, 0] = argmin ¢ > (f(x:) — 0" wi —00)” + X0y,
9,00 €T
(12)

where A is a parameter controlling the regularization. Based

TABLE I
ANGLE 6 VALUES IN RADIANS FOR SINGLE MINIMA TEST FUNCTIONS

2D Quadratic | 2D Rosenbrock | 10D Rosenbrock
analytic gradient 0.000 0.827 0.562
regional gradient || 0.035 0.831 0.852
pseudoinverse 0.646 1.096 1.133
ridge 0.541 1.054 0.879
point-difference 0.673 1.198 1.039

on preliminary experiments, a fixed value of A = .01 was
used throughout this work. A third estimate of the regional
gradient is a point-difference (PD) which was designed to
emulate the PD estimate found in the FIPS algorithm (see
equation (9)), such that

PD = 2z

o=

13)

— Tgx,

argmin f(z;).

B. Experimental Results Comparing Estimated Gradients

Results of the average values of the angle 6 to the
optimal direction are given in Tables I, II, and III. The
statistical significance of these results was analyzed using
the Wilcoxian signed rank test, and all cases were found to
be statistically significantly different at a significance level of
0.05. Note that the value of # can range from [0, 7], and the
expected value of 6 for a randomly directed vector is /2, or
1.57. Thus even for the sinusoidal and Griewank functions
with many multiple minima, all of the search directions were
better on average than random.

Table I gives the results for two monotonic functions. Even
for monotonic functions, the analytic gradient may be mis-
leading if the curvature varies over the range of the function.
For example, in Rosenbrock’s function (Figure 2) the analytic
gradient only correlates loosely with the true direction to
the optima. Table I shows that in these convex function
cases, the regional gradient is a reasonable approximation
of the analytical gradient, and the point-difference and two
hyperplane fits provide similar approximations.

One expects the regional gradient to be the most useful
when the test function has a strong global trend with weak
local fluctuations, such as the Griewank function (Figure 2).
We expect regional information to be less useful when the
local trends are are just as strong as the global trends, such
as in the sinusoidal function (shown in Figure 1.) However,
even in such cases, we believe that the regional gradient will
provide more useful information than the analytic gradient,
which is may to point one toward a local minima. In fact,
this hypothesis is confirmed by the results in Table II, which
shows the regional gradient to be an improved indicator of
the optimal direction compared to the analytic gradient for
the sinusoidal and Griewank functions. The improvement is
larger for the Griewank function, as expected due to its strong
functional trend.

The regional gradient estimates perform similarly to each
other, but relatively poorly, on the sinusoidal function. On the
2D Griewank function the point-difference is significantly
worse than the least-squares hyperplane estimates. For the



TABLE I
ANGLE 6 VALUES IN RADIANS FOR MULTI-MINIMA TEST FUNCTIONS

2D Sinusoidal | 2D Griewank | 10D Griewank
analytic gradient 0.294 1.339 0.094
regional gradient || 0.211 0.014 0.034
pseudoinverse 1.078 0.373 0.900
ridge 1.038 0.333 0.573
point-difference 1.180 0.608 0.957
TABLE III

ANGLE 6 VALUES IN RADIANS FOR DIFFERENT RESOLUTIONS IN THE 2D
GRIEWANK TEST FUNCTION

Resolution as % of domain

0.2 0.5 0.9
analytic gradient 1.298 | 1.332 | 1.339
regional gradient || 0.008 | 0.022 | 0.014
pseudoinverse 0.289 | 0.483 | 0.373
ridge 0.277 | 0.395 | 0.333
point-difference 0.639 | 0.642 | 0.608

Griewank function calculated over a ten-dimensional hyper-
cube, all the regional gradient estimates are again relatively
poor. Throughout, the ridge regression estimate is shown to
be slightly more effective than the pseudoinverse or point-
difference in two-dimensions, and much more effective for
the ten-dimensional case. Estimation error is either due
to estimation variance (which describes how variable the
estimate is when the sample points change) or estimation
bias (which describes how wrong the average estimate is
when the average is over many random draws of sample
points) [6]. Given that there are only D + 1 points in D
dimensions used for the gradient approximations, estimation
variance will generally be a greater problem than estimation
bias, and the ridge regression’s estimation variance reduction
is what causes it to be the best estimator. Similarly, the
pseudoinverse consistently performs better than the point-
difference. This difference is because the point-difference has
the highest estimation-variance due to its use of the minimum
f(z;), which can vary greatly for different draws of D + 1
points.

Next, we present data on how the size of the region
used to estimate the gradient impacts the metric 6. Table
III compares 6 values for the 2D Griewank function where
the resolution of the gradient was limited by setting the
maximum distance between any two points in the test set was
limited to 0.2, 0.5, and 0.9 of the function domain for each
dimension. Note that the analytic gradient does not depend
on the region size, and so the analytic gradient row gives
an indication of the variance of the results. The results show
that, for the Griewank, changing the resolution has a large
impact on the power of the high-fidelity regional gradient
(8*). The impact on the three D + 1 point regional gradient
estimates is smaller, perhaps because their fidelity to the
true regional gradient is limited already. In the context of
a practical global optimization algorithm, the regional size
used to estimate gradients will vary, either due to chance or
by design. Since some region sizes may result in more useful

search directions, a well-designed region size variation may
be quite advantageous.

IV. REGIONAL GRADIENTS IN THE CONTEXT OF
EVOLUTIONARY ALGORITHMS

Gradient estimation is only one part of the overall be-
havior of a global optimization algorithm. The algorithms
considered here are population-based, which means that
the methods for choosing and evolving the population of
operating points may have a profound impact on the overall
performance of the search. The population distribution di-
rectly impacts the regions over which gradients are estimated,
thereby dictating how the current set of operating points is
updated. At the same time the population must maintain a
record of the most promising points, and allow some hill-
climbing in the search.

In this section a controlled comparison is made between
different gradient estimates in the context of FIPS and
MEGA. The results indicate how important the quality of
the gradient estimate is to the final performance of the algo-
rithms. In these tests each algorithm was allowed to run for
10,000 function evaluations so that different configurations
and algorithms could be compared.

A. Regional Gradients and FIPS

The FIPS update equations result in a velocity (v;), which
includes both the direction and the step size for a given step.
To control the FIPS step-size across the different gradient
estimates, the original velocity magnitude is used for all
the gradient estimates. The original FIPS point difference
estimate can be viewed as a regional gradient for a region
centered on the midpoint between z; and P from equation
(8), so the other gradient estimates are calculated for the
same region. The analytical gradient is also evaluated at that
midpoint.

We expect the original FIPS point-difference to perform
well, but hypothesize an improvement when better gradient
estimates are used. The results in Figure 3 show that with the
exception of the Rosenbrock function and some dimensions
of the sinusoidal function, the analytical and regional gradi-
ent outperform all other options. Using a random direction
for the gradient performs the worst in all cases, and gives
an indication of the importance of gradient information to
the population-dynamics. We hypothesize that well-designed
population evolution and parameter choices may compensate
for poor gradient information. Since FIPS was designed
to work with a point-difference gradient, the step-size and
parameter settings may be suboptimal for the other gradient
estimates and actually result in a misdirected search.

While the experiments of Section III showed that the
ridge regression could produce better gradient estimates
than the pseudoinverse or point difference, when coupled
with the FIPS algorithm the ridge estimate o lags slightly
behind the pseudoinverse estimate p. Possible reasons are
that the estimation bias of the ridge estimate ends up slowing
convergence, or that the reduced estimation variance might
actually hurt the progress of finding the optima by reducing
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Fig. 3. The FIPS results for each of the four test functions. Clockwise from upper left: quadratic, Rosenbrock, Griewank, and sinusoidal. The figures

show the average minimum value found for 100 algorithm runs, on a log scale. The error bars mark the 25th and 75th percentile of the minimum values.
The different gradient calculation techniques are the analytical gradient, the estimated regional gradient from equation (2) (betastar), the ridge regression
gradient estimate from equation (12) (ridge), the pseudoinverse gradient estimate from equation (11) (pinv), the FIPS gradient estimate from equation (13)

(point difference), and a randomly generated search direction (random).

the randomness of the search. A better scheme might be
to adapt the regularization parameter A based on the step-
size, the size of the region spanned by the sample points,
or on the size of the errors in the least-squares hyperplane
fit. In this case the extra parameter becomes a liability and
ridge regression becomes less attractive. Optimizing the FIPS
parameters for the pseudoinverse or ridge estimate would
likely improve performance.

Lastly, a difference between the FIPS point-difference and
the other estimates is the randomness. It is thought that the
PSO algorithms work by driving particles toward, but not
directly to, the nearby minimum. This process of overshoot
ensures that the algorithm does not get stuck in local min-
ima. Since earlier analysis showed that the point difference

estimate was not as good as other techniques for pointing
directly to the global minima, the randomized misdirection
appears to help FIPS avoid local minima. In fact, the FIPS
point-difference shows a generally larger improvement over
the pseudoinverse and ridge regression estimates for the two
functions with multiple minima than it does the two convex
functions.

B. Regional Gradients and MEGA

The MEGA algorithm is designed to explicitly use regional
gradient estimates. Therefore we expect that the higher
fidelity gradient estimates will improve the overall perfor-
mance. For the MEGA experiments, the point-difference
estimate is given in (13). The step size is the maximum size



of the cluster in any dimension (maxg(Zmax[d] — Zmin[d])),
and the gradient estimation techniques are used only to
determine the search direction.

The results from the MEGA algorithm are shown in
Figure 4. For all the functions but Griewank, the analytical
gradient outperforms the other gradients, followed by the
regional gradient, and then the pseudoinverse gradient. In
some of the dimensions of the sinusoidal test function the
regional gradient estimate performs poorly, suggesting that
this estimate offers a misleading search direction. Similar
behavior was seen in the FIPS results. One reason for this
result may be that the regional gradient is being estimated at
the wrong resolutions.

In the Griewank test function - the one most suited to
the use of a regional gradient - the regional gradient and
the pseudoinverse estimate perform the best. For the MEGA
results, the random descent direction and point-difference
estimated gradient do relatively poorly. As with FIPS, the
ridge regression does not do as well as the pseudoinverse;
we have discussed possible reasons for this in Section IV-A.

V. CONCLUSIONS AND FURTHER DISCUSSION

The primary question investigated in this paper is how
regional gradient estimates affect the performance of global
optimization algorithms. The results presented in Section III
show that a regional gradient can serve as a pointer to the
global minimum in a multimodal function. In Section IV it is
shown that gradient-based steps do improve the performance
of two population-based search algorithms over random
steps. The functional trend is strongest in the Griewank
function, and for both algorithms the regional gradient proves
advantageous over the analytical gradient for this function.

The random search direction experiments in Section III-B
indicated how useful using regional gradient approximations
is. There is generally a large difference between the analytic
gradient results and the random results, showing that the
search direction is important. However, in Section IV we
were surprised at how much overlap there is between the
minimum values obtained with the random search direction
and the gradient-approximation search directions. This may
imply that the quality of the gradient estimates is too poor
to offer a large advantage. It may also be that the population
evolution alone can move the search close to the goal, or that
randomness in the search direction is useful in its own right
for escaping local minima.

The results in Figures 2 and 3 show algorithm performance
and allow us to consider the theoretical performance of the
FIPS and MEGA algorithms: given a perfect analytic gra-
dient, how well can these population-evolution architectures
perform? The FIPS algorithm does well with the analytic
gradient for the quadratic and sinusoidal test functions, but
performs better with the regional gradients for the Rosen-
brock and Griewank functions. The results for the MEGA
algorithm are similar, but the analytic gradient also helps in
the Rosenbrock case. We control for the gradient direction, so
the difference between the two algorithms is the population
evolution mechanics.

This paper shows that regional gradient information is
useful for optimization, so the population dynamics of an
algorithm must support the development of that information.
The population dynamics determine which points are avail-
able for estimating gradients, and those points determine the
regional span of the gradient. More important for MEGA
than FIPS is that D + 1 linearly independent points are
available for each estimate. Neither MEGA nor FIPS exert
much explicit control over the evolution of the regional sizes
or maintaining populations that form a linearly independent
span of the space. In the trust region methods presented by
Powell [13] some of the optimization steps are designed to
minimize the function and some are designed to ensure that
the simplex used for calculated gradients is not degenerative.
Algorithms such as FIPS and MEGA might similarly benefit
from occasional steps to ensure that the population is well-
distributed in the search space.

One challenge for global optimization algorithms is the
definition of the size of each search step. Current methods for
determining step size vary, often including a random element,
or adapting according to whether the previous step returned a
promising solution. In both FIPS and MEGA the step-size is
a function of the size of the region represented by the regional
gradient estimate, such that the step-size makes appropriate
use of the regional gradient estimate. Further advances in
global optimization may be possible by considering the step
size and region size to be linked.

Gradient-based optimization algorithms can be shown to
converge for functions that only have one minima [11], but
proving convergence for global optimization is difficult. One
approach may be to consider functions that have smooth
regional gradients at some resolution, and prove convergence
at that resolution.

This paper considered at the impact of gradient estimation
in directing searches for global optima. A regional gradient
was introduced as a tool for analyzing and comparing dif-
ferent types of gradient estimates. A series of results were
presented for performance on a variety of test functions
that show that the quality of a gradient estimate has an
effect on the performance of each of two population-based
search methods. This suggests that one avenue for improving
existing global search algorithms is to examine the way a
gradient direction is estimated. Further suggestions for using
the regional gradient as a tool in global optimization are
presented in the last section of this paper.
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