
[1]

Gradle Dependency
Management

Learn how to use Gradle's powerful dependency
management through extensive code samples,
and discover how to define, customize, and
deploy dependencies

Hubert Klein Ikkink

BIRMINGHAM - MUMBAI

Gradle Dependency Management

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1120615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-278-9

www.packtpub.com

www.packtpub.com

Credits

Author
Hubert Klein Ikkink

Reviewers
Tony Dieppa

Izzet Mustafaiev

Konstantin Zgirovskiy

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Athira Laji

Technical Editor
Siddhesh Ghadi

Copy Editor
Sarang Chari

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Monica Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Hubert Klein Ikkink, born in 1973, lives in Tilburg, the Netherlands, with
his beautiful wife and three gorgeous children. He is also known as mrhaki,
which is simply the initials of his name prepended by "mr". He studied information
systems and management at Tilburg University. After finishing his studies in
1996, he started to develop Java software. Over the years, his focus switched from
applets to servlets, and from Java Enterprise Edition applications to Spring-based
software and Groovy-related technologies. He likes the expressiveness of the Groovy
language and how it is used in other tools, such as Gradle. He also wrote Gradle
Effective Implementation Guide, Packt Publishing.

In the Netherlands, Hubert works for a company called JDriven. JDriven focuses on
technologies that simplify and improve the development of enterprise applications.
Employees of JDriven have years of experience with Java and related technologies
and are all eager to learn about new technologies. Hubert works on projects using
Grails and Java combined with Groovy and Gradle.

About the Reviewers

Izzet Mustafaiev is a family guy who likes to throw BBQ parties and travel.

Professionally, he is a software engineer working at EPAM Systems with primary
skills in Java and hands-on experience in Groovy/Ruby, and is exploring FP with
Erlang/Elixir. Izzet has participated in different projects as a developer and as an
architect. He advocates XP, clean code, and DevOps practices when he speaks at
engineering conferences.

Konstantin Zgirovskiy grew up alongside Android, in a manner of speaking.
In 2008, he started programming web services and Chrome extensions for an online
browser game, which was later made official. In 2011, Konstantin continued to
explore Android through writing a game, which brought him victory in a local
programming contest. Nowadays, he works at Looksery, Inc., where he is involved
in developing an app with face-tracking and transformation technology for video
chats, video selfies, and images on mobile devices.

I would like to thank my cats, friends, colleagues, and family
for their support. My thanks also go to Packt Publishing for
this opportunity. Additionally, I would like to thank Dasha
Tsareva-Lenskaya for motivating and encouraging me
whenever I got distracted.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com,
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Defining Dependencies 1

Declaring dependency configurations 1
Declaring dependencies 4

External module dependencies 5
Defining client module dependencies 9
Using project dependencies 10
Defining file dependencies 11
Using internal Gradle and Groovy dependencies 11

Using dynamic versions 12
Getting information about dependencies 13

Accessing dependencies 16
Buildscript dependencies 17

Optional Ant task dependencies 19
Managing dependencies 20
Summary 24

Chapter 2: Working with Repositories 25
Declaring repositories 25

Using the Maven JCenter repository 26
Using the Maven Central repository 28
Using the Maven local repository 29
Using Maven repositories 30
Using the flat directory repository 34
Using Ivy repositories 36

Using different protocols 40
Summary 41

Table of Contents

[ii]

Chapter 3: Resolving Dependencies 43
Understanding dependency resolution 43

Configuring transitive dependencies 44
Disabling transitive dependencies 45
Excluding transitive dependencies 47
Using artifact-only dependencies 51

Resolving version conflicts 51
Using the newest version 52
Failing on version conflict 58
Forcing a version 59

Customizing dependency resolution rules 62
Using client modules 67

Using dynamic versions and changing modules 69
Understanding the dependency cache 69

Command-line options for caching 71
Changing cache expiration 71

Summary 74
Chapter 4: Publishing Artifacts 75

Defining artifact configurations 75
Defining artifacts 78

Using the archive task 79
Using artifact files 80

Creating artifacts 83
Publishing artifacts to the local directory 87

Excluding the descriptor file 90
Signing artifacts 92

Using configurations to sign 92
Using archive tasks to sign 94

Summary 96
Chapter 5: Publishing to a Maven Repository 97

Defining publication 97
Defining publication artifacts 98
Using archive task artifacts 99
Using file artifacts 103
Using software components 104
Generating POM files 105

Customizing the POM file 109
Defining repositories 114

Publishing to the local Maven repository 114

Table of Contents

[iii]

Publishing to the Maven repository 116
Publishing to Artifactory 118
Publishing to Nexus 120

Summary 123
Chapter 6: Publishing to Bintray 125

What is Bintray? 125
Defining a new repository 126

Defining the Bintray plugin 127
Deploying publications to Bintray 129
Configuring the Bintray plugin 135
Summary 139

Chapter 7: Publishing to an Ivy Repository 141
Defining publications 141
Defining publication artifacts 142
Using archive task artifacts 143

Using file artifacts 147
Using software components 147

Generating Ivy descriptor files 148
Customizing the descriptor file 153

Defining repositories 156
Publishing to a local directory 156
Publishing to Artifactory 158
Publishing to Nexus 161

Summary 164
Index 165

[v]

Preface
When we write code in our Java or Groovy project, we mostly have dependencies on
other projects or libraries. For example, we could use the Spring framework in our
project, so we are dependent on classes found in the Spring framework. We want to
be able to manage such dependencies from Gradle, our build automation tool.

We will see how we can define and customize the dependencies we need.
We learn not only how to define the dependencies, but also how to work with
repositories that store the dependencies. Next, we will see how to customize the
way Gradle resolves dependencies.

Besides being dependent on other libraries, our project can also be a dependency for
other projects. This means that we need to know how to deploy our project artifacts
so that other developers can use it. We learn how to define artifacts and how to
deploy them to, for example, a Maven or Ivy repository.

What this book covers
Chapter 1, Defining Dependencies, introduces dependency configurations as a way
to organize dependencies. You will learn about the different types of dependencies
in Gradle.

Chapter 2, Working with Repositories, covers how we can define repositories that store
our dependencies. We will see not only how to set the location, but also the layout of
a repository.

Chapter 3, Resolving Dependencies, is about how Gradle resolves our dependencies.
You will learn how to customize the dependency resolution and resolve conflicts
between dependencies.

Preface

[vi]

Chapter 4, Publishing Artifacts, covers how to define artifacts for our project to be
published as dependencies for others. We will see how to use configurations to
define artifacts. We also use a local directory as a repository to publish the artifacts.

Chapter 5, Publishing to a Maven Repository, looks at how to publish our artifacts to
a Maven repository. You will learn how to define a publication for a Maven-like
repository, such as Artifactory or Nexus, and how to use the new and incubating
publishing feature of Gradle.

Chapter 6, Publishing to Bintray, covers how to deploy our artifacts to Bintray. Bintray
calls itself a Distribution as a Service and provides a low-level way to publish our
artifacts to the world. In this chapter, we will look at how to use the Bintray Gradle
plugin to publish our artifacts.

Chapter 7, Publishing to an Ivy Repository, is about publishing our artifacts to an Ivy
repository. We will look into the different options to publish our artifacts to an Ivy
repository, which is actually quite similar to publishing to a Maven repository.

What you need for this book
In order to work with Gradle and the code samples in this book, we need at least
Java Development Kit (version 1.6 or higher), Gradle (samples are written with
Gradle 2.3), and a good text editor.

Who this book is for
This book is for you if you are working on Java or Groovy projects and are using, or
are going to use, Gradle to build your code. If your code depends on other projects
or libraries, you will learn how to define and customize those dependencies. Your
code can also be used by other projects, so you want to publish your project as a
dependency for others whom you want to read this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[vii]

A block of code is set as follows:

// Define new configurations for build.
configurations {

 // Define configuration vehicles.
 vehicles {
 description = 'Contains vehicle dependencies'
 }

 traffic {
 extendsFrom vehicles
 description = 'Contains traffic dependencies'
 }

}

Any command-line input or output is written as follows:

$ gradle bintrayUpload

:generatePomFileForSamplePublication

:compileJava

:processResources UP-TO-DATE

:classes

:jar

:publishSamplePublicationToMavenLocal

:bintrayUpload

BUILD SUCCESSFUL

Total time: 9.125 secs

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "From this screen,
we click on the New package button."

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/B03462_Coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Defining Dependencies
When we develop software, we need to write code. Our code consists of packages with
classes, and those can be dependent on the other classes and packages in our project.
This is fine for one project, but we sometimes depend on classes in other projects we
didn't develop ourselves, for example, we might want to use classes from an Apache
Commons library or we might be working on a project that is part of a bigger,
multi-project application and we are dependent on classes in these other projects.

Most of the time, when we write software, we want to use classes outside of our
project. Actually, we have a dependency on those classes. Those dependent classes
are mostly stored in archive files, such as Java Archive (JAR) files. Such archive files
are identified by a unique version number, so we can have a dependency on the
library with a specific version.

In this chapter, you are going to learn how to define dependencies in your Gradle
project. We will see how we can define the configurations of dependencies. You will
learn about the different dependency types in Gradle and how to use them when you
configure your build.

Declaring dependency configurations
In Gradle, we define dependency configurations to group dependencies together. A
dependency configuration has a name and several properties, such as a description
and is actually a special type of FileCollection. Configurations can extend from each
other, so we can build a hierarchy of configurations in our build files. Gradle plugins can
also add new configurations to our project, for example, the Java plugin adds several
new configurations, such as compile and testRuntime, to our project. The compile
configuration is then used to define the dependencies that are needed to compile
our source tree. The dependency configurations are defined with a configurations
configuration block. Inside the block, we can define new configurations for our build.
All configurations are added to the project's ConfigurationContainer object.

Defining Dependencies

[2]

In the following example build file, we define two new configurations, where
the traffic configuration extends from the vehicles configuration. This means
that any dependency added to the vehicles configuration is also available in
the traffic configuration. We can also assign a description property to our
configuration to provide some more information about the configuration for
documentation purposes. The following code shows this:

// Define new configurations for build.
configurations {

 // Define configuration vehicles.
 vehicles {
 description = 'Contains vehicle dependencies'
 }

 traffic {
 extendsFrom vehicles
 description = 'Contains traffic dependencies'
 }

}

To see which configurations are available in a project, we can execute the
dependencies task. This task is available for each Gradle project. The task
outputs all the configurations and dependencies of a project. Let's run this
task for our current project and check the output:

$ gradle -q dependencies

--

Root project

--

traffic - Contains traffic dependencies

No dependencies

vehicles - Contains vehicle dependencies

No dependencies

Note that we can see our two configurations, traffic and vehicles, in the
output. We have not defined any dependencies to these configurations, as shown
in the output.

Chapter 1

[3]

The Java plugin adds a couple of configurations to a project, which are used by the
tasks from the Java plugin. Let's add the Java plugin to our Gradle build file:

apply plugin: 'java'

To see which configurations are added, we invoke the dependencies task and look
at the output:

$ gradle -q dependencies

--

Root project

--

archives - Configuration for archive artifacts.

No dependencies

compile - Compile classpath for source set 'main'.

No dependencies

default - Configuration for default artifacts.

No dependencies

runtime - Runtime classpath for source set 'main'.

No dependencies

testCompile - Compile classpath for source set 'test'.

No dependencies

testRuntime - Runtime classpath for source set 'test'.

No dependencies

We see six configurations in our project just by adding the Java plugin. The archives
configuration is used to group the artifacts our project creates. The other configurations
are used to group the dependencies for our project. In the following table, the
dependency configurations are summarized:

Name Extends Description
compile none These are dependencies to compile.
runtime compile These are runtime dependencies.
testCompile compile These are extra dependencies to compile tests.

Defining Dependencies

[4]

Name Extends Description
testRuntime runtime, testCompile These are extra dependencies to run tests.
default runtime These are dependencies used by this project and

artifacts created by this project.

Later in the chapter, we will see how we can work with the dependencies
assigned to the configurations. In the next section, we will learn how to
declare our project's dependencies.

Declaring dependencies
We defined configurations or applied a plugin that added new configurations to
our project. However, a configuration is empty unless we add dependencies to
the configuration. To declare dependencies in our Gradle build file, we must add
the dependencies configuration block. The configuration block will contain the
definition of our dependencies. In the following example Gradle build file, we
define the dependencies block:

// Dependencies configuration block.
dependencies {
 // Here we define our dependencies.
}

Inside the configuration block, we use the name of a dependency configuration
followed by the description of our dependencies. The name of the dependency
configuration can be defined explicitly in the build file or can be added by a plugin
we use. In Gradle, we can define several types of dependencies. In the following
table, we will see the different types we can use:

Dependency type Description
External module dependency This is a dependency on an external module or library

that is probably stored in a repository.
Client module dependency This is a dependency on an external module where

the artifacts are stored in a repository, but the meta
information about the module is in the build file. We can
override meta information using this type of dependency.

Project dependency This is a dependency on another Gradle project in the
same build.

File dependency This is a dependency on a collection of files on the local
computer.

Chapter 1

[5]

Dependency type Description
Gradle API dependency This is a dependency on the Gradle API of the current

Gradle version. We use this dependency when we
develop Gradle plugins and tasks.

Local Groovy dependency This is a dependency on the Groovy libraries used by the
current Gradle version. We use this dependency when we
develop Gradle plugins and tasks.

External module dependencies
External module dependencies are the most common dependencies in projects.
These dependencies refer to a module in an external repository. Later in the book,
we will find out more about repositories, but basically, a repository stores modules
in a central location. A module contains one or more artifacts and meta information,
such as references to the other modules it depends on.

We can use two notations to define an external module dependency in Gradle. We
can use a string notation or a map notation. With the map notation, we can use all
the properties available for a dependency. The string notation allows us to set a
subset of the properties but with a very concise syntax.

In the following example Gradle build file, we define several dependencies using the
string notation:

// Define dependencies.
dependencies {
 // Defining two dependencies.
 vehicles 'com.vehicles:car:1.0', 'com.vehicles:truck:2.0'

 // Single dependency.
 traffic 'com.traffic:pedestrian:1.0'
}

The string notation has the following format: moduleGroup:moduleName:version.
Before the first colon, the module group name is used, followed by the module name,
and the version is mentioned last.

If we use the map notation, we use the names of the attributes explicitly and set
the value for each attribute. Let's rewrite our previous example build file and use
the map notation:

// Compact definition of configurations.
configurations {
 vehicles
 traffic.extendsFrom vehicles

Defining Dependencies

[6]

}

// Define dependencies.
dependencies {
 // Defining two dependencies.
 vehicles(
 [group: 'com.vehicles', name: 'car', version: '1.0'],
 [group: 'com.vehicles', name: 'truck', version: '2.0'],
)

 // Single dependency.
 traffic group: 'com.traffic', name: 'pedestrian', version:
 '1.0'
}

We can specify extra configuration attributes with the map notation, or we can add an
extra configuration closure. One of the attributes of an external module dependency
is the transitive attribute. We learn more about how to work with transitive
dependencies in Chapter 3, Resolving Dependencies. In the next example build file,
we will set this attribute using the map notation and a configuration closure:

dependencies {
 // Use transitive attribute in map notation.
 vehicles group: 'com.vehicles', name: 'car',
 version: '1.0', transitive: false

 // Combine map notation with configuration closure.
 vehicles(group: 'com.vehicles', name: 'car', version: '1.0') {
 transitive = true
 }

 // Combine string notation with configuration closure.
 traffic('com.traffic:pedestrian:1.0') {
 transitive = false
 }
}

In the rest of this section, you will learn about more attributes you can use to
configure a dependency.

Once of the advantages of Gradle is that we can write Groovy code in our build file.
This means that we can define methods and variables and use them in other parts
of our Gradle file. This way, we can even apply refactoring to our build file and
make maintainable build scripts. Note that in our examples, we included multiple
dependencies with the com.vehicles group name. The value is defined twice, but
we can also create a new variable with the group name and reference of the variable
in the dependencies configuration. We define a variable in our build file inside an
ext configuration block. We use the ext block in Gradle to add extra properties to an
object, such as our project.

Chapter 1

[7]

The following sample code defines an extra variable to hold the group name:

// Define project property with
// dependency group name 'com.vehicles'
ext {
 groupNameVehicles = 'com.vehicles'
}

dependencies {
 // Using Groovy string support with
 // variable substition.
 vehicles "$groupNameVehicles:car:1.0"

 // Using map notation and reference
 // property groupNameVehicles.
 vehicles group: groupNameVehicles, name: 'truck', version:
 '2.0'
}

If we define an external module dependency, then Gradle tries to find a module
descriptor in a repository. If the module descriptor is available, it is parsed to see
which artifacts need to be downloaded. Also, if the module descriptor contains
information about the dependencies needed by the module, those dependencies are
downloaded as well. Sometimes, a dependency has no descriptor in the repository,
and it is only then that Gradle downloads the artifact for that dependency.

A dependency based on a Maven module only contains one artifact, so it is easy
for Gradle to know which artifact to download. But for a Gradle or Ivy module,
it is not so obvious, because a module can contain multiple artifacts. The module
will have multiple configurations, each with different artifacts. Gradle will use
the configuration with the name default for such modules. So, any artifacts
and dependencies associated with the default configuration are downloaded.
However, it is possible that the default configuration doesn't contain the artifacts
we need. We, therefore, can specify the configuration attribute for the dependency
configuration to specify a specific configuration that we need.

The following example defines a configuration attribute for the dependency
configuration:

dependencies {
 // Use the 'jar' configuration defined in the
 // module descriptor for this dependency.
 traffic group: 'com.traffic',
 name: 'pedestrian',

Defining Dependencies

[8]

 version: '1.0',
 configuration: 'jar'

}

When there is no module descriptor for a dependency, only the artifact is
downloaded by Gradle. We can use an artifact-only notation if we only want to
download the artifact for a module with a descriptor and not any dependencies. Or,
if we want to download another archive file, such as a TAR file, with documentation,
from a repository.

To use the artifact-only notation, we must add the file extension to the dependency
definition. If we use the string notation, we must add the extension prefixed with an
@ sign after the version. With the map notation, we can use the ext attribute to set
the extension. If we define our dependency as artifact-only, Gradle will not check
whether there is a module descriptor available for the dependency. In the next build
file, we will see examples of the different artifact-only notations:

dependencies {
 // Using the @ext notation to specify
 // we only want the artifact for this
 // dependency.
 vehicles 'com.vehicles:car:2.0@jar'

 // Use map notation with ext attribute
 // to specify artifact only dependency.
 traffic group: 'com.traffic', name: 'pedestrian',
 version: '1.0', ext: 'jar'

 // Alternatively we can use the configuration closure.
 // We need to specify an artifact configuration closure
 // as well to define the ext attribute.
 vehicles('com.vehicles:car:2.0') {
 artifact {
 name = 'car-docs'
 type = 'tar'
 extension = 'tar'
 }
 }
}

Chapter 1

[9]

A Maven module descriptor can use classifiers for the artifact. This is mostly
used when a library with the same code is compiled for different Java versions,
for example, a library is compiled for Java 5 and Java 6 with the jdk15 and jdk16
classifiers. We can use the classifier attribute when we define an external module
dependency to specify which classifier we want to use. Also, we can use it in a string
or map notation. With the string notation, we add an extra colon after the version
attribute and specify the classifier. For the map notation, we can add the classifier
attribute and specify the value we want. The following build file contains an example
of the different definitions of a dependency with a classifier:

dependencies {
 // Using string notation we can
 // append the classifier after
 // the version attribute, prefixed
 // with a colon.
 vehicles 'com.vehicles:car:2.0:jdk15'

 // With the map notation we simply use the
 // classifier attribute name and the value.
 traffic group: 'com.traffic', name: 'pedestrian',
 version: '1.0', classifier: 'jdk16'

 // Alternatively we can use the configuration closure.
 // We need to specify an artifact configuration closure
 // as well to define the classifier attribute.
 vehicles('com.vehicles:truck:2.0') {
 artifact {
 name = 'truck'
 type = 'jar'
 classifier = 'jdk15'
 }
 }
}

In the following section, we will see how we can define client module dependencies
in our build file.

Defining client module dependencies
When we define external module dependencies, we expect that there is a module
descriptor file with information about the artifacts and dependencies for those
artifacts. Gradle will parse this file and determine what needs to be downloaded.
Remember that if such a file is not available on the artifact, it will be downloaded.
However, what if we want to override the module descriptor or provide one if
it is not available? In the module descriptor that we provide, we can define the
dependencies of the module ourselves.

Defining Dependencies

[10]

We can do this in Gradle with client module dependencies. Instead of relying on a
module descriptor in a repository, we define our own module descriptor locally in
the build file. We now have full control over what we think the module should look
like and which dependencies the module itself has. We use the module method to
define a client module dependency for a dependency configuration.

In the following example build file, we will write a client module dependency for the
dependency car, and we will add a transitive dependency to the driver:

dependencies {
 // We use the module method to instruct
 // Gradle to not look for the module descriptor
 // in a repository, but use the one we have
 // defined in the build file.
 vehicles module('com.vehicles:car:2.0') {
 // Car depends on driver.
 dependency('com.traffic:driver:1.0')
 }
}

Using project dependencies
Projects can be part of a bigger, multi-project build, and the projects can be
dependent on each other, for example, one project can be made dependent on
the generated artifact of another project, including the transitive dependencies of
the other project. To define such a dependency, we use the project method in
our dependencies configuration block. We specify the name of the project as an
argument. We can also define the name of a dependency configuration of the other
project we depend on. By default, Gradle will look for the default dependency
configuration, but with the configuration attribute, we can specify a specific
dependency configuration to be used.

The next example build file will define project dependencies on the car and
truck projects:

dependencies {
 // Use project method to define project
 // dependency on car project.
 vehicles project(':car')

 // Define project dependency on truck
 // and use dependency configuration api
 // from that project.
 vehicles project(':truck') {

Chapter 1

[11]

 configuration = 'api'
 }

 // We can use alternative syntax
 // to specify a configuration.
 traffic project(path: ':pedestrian',
 configuration: 'lib')
}

Defining file dependencies
We can directly add files to a dependency configuration in Gradle. The files don't
need to be stored in a repository but must be accessible from the project directory.
Although most projects will have module descriptors stored in a repository, it is
possible that a legacy project might have a dependency on files available on a shared
network drive in the company. Otherwise, we must use a library in our project,
which is simply not available in any repository. To add file dependencies to our
dependency configuration, we specify a file collection with the files and fileTree
methods. The following example build file shows the usage of all these methods:

dependencies {
 // Define a dependency on explicit file(s).
 vehicles files(
 'lib/vehicles/car-2.0.jar',
 'lib/vehicles/truck-1.0.jar'
)

 // We can use the fileTree method to include
 // multiples from a directory and it's subdirectories.
 traffic fileTree(dir: 'deps', include: '*.jar')
}

The added files will not be part of the transitive dependencies of our project if we
publish our project's artifacts to a repository, but they are if our project is part of a
multi-project build.

Using internal Gradle and Groovy
dependencies
When we write code to extend Gradle, such as custom tasks or plugins, we can
have a dependency on the Gradle API and possibly the Groovy libraries used by
the current Gradle version. We can use the gradleApi and localGroovy methods
in our dependency configuration to have all the right dependencies.

Defining Dependencies

[12]

If we are writing some Groovy code to extend Gradle, but we don't use any of the
Gradle API classes, we can use localGroovy. With this method, the classes and
libraries of the Groovy version shipped with the current Gradle version are added as
dependencies. The following example build script uses the Groovy plugin and adds
a dependency to the compile configuration on Groovy bundled with Gradle:

apply plugin: 'groovy'

dependencies {
 // Define dependency on Groovy
 // version shipped with Gradle.
 compile localGroovy()
}

When we write custom tasks or plugins for Gradle, we are dependent on the
Gradle API. We need to import some of the API's classes in order to write our code.
To define a dependency on the Gradle classes, we use the gradleApi method. This
will include the dependencies for the Gradle version the build is executed for. The
next example build file will show the use of this method:

apply plugin: 'groovy'

dependencies {
 // Define dependency on Gradle classes.
 compile gradleApi()
}

Using dynamic versions
Until now, we have set a version for a dependency explicitly with a complete
version number. To set a minimum version number, we can use a special dynamic
version syntax, for example, to set the dependency version to a minimum of 2.1 for a
dependency, we use a version value of 2.1.+. Gradle will resolve the dependency to
the latest version after version 2.1.0, or to version 2.1 itself. The upper bound is 2.2. In
the following example, we will define a dependency on a spring-context version of at
least 4.0.x:

dependencies {
 compile 'org.springframework:spring-context:4.0.+'
}

Chapter 1

[13]

To reference the latest released version of a module, we can use latest.integration
as the version value. We can also set the minimum and maximum version numbers we
want. The following table shows the ranges we can use in Gradle:

Range Description
[1.0, 2.0] We can use all versions greater than or equal to 1.0 and lower than or

equal to 2.0
[1.0, 2.0[We can use all versions greater than or equal to 1.0 and lower than 2.0
]1.0, 2.0] We can use all versions greater than 1.0 and lower than or equal to 2.0
]1.0, 2.0[We can use all versions greater than 1.0 and lower than 2.0
[1.0,) We can use all versions greater than or equal to 1.0
]1.0,) We can use all versions greater than 1.0
(, 2.0] We can use all versions lower than or equal to 2.0
(, 2.0[We can use all versions lower than 2.0

In the following example build file, we will set the version for the spring-context
module to greater than 4.0.1.RELEASE and lower than 4.0.4.RELEASE:

dependencies {
 // The dependency will resolve to version 4.0.3.RELEASE as
 // the latest version if available. Otherwise 4.0.2.RELEASE
 // or 4.0.1.RELEASE.
 compile 'org.springframework:spring-
 context:[4.0.1.RELEASE,4.0.4.RELEASE['
}

Getting information about dependencies
We have seen how we can define dependencies in our build scripts. To get more
information about our dependencies, we can use the dependencies task. When
we invoke the task, we can see which dependencies belong to the available
configurations of our project. Also, any transitive dependencies are shown. The next
example build file defines a dependency on Spring beans and we apply the Java
plugin. We also specify a repository in the repositories configuration block. We
will learn more about repositories in the next chapter. The following code captures
the discussion in this paragraph:

apply plugin: 'java'

repositories {
 // Repository definition for JCenter Bintray.
 // Needed to download artifacts. Repository

Defining Dependencies

[14]

 // definitions are covered later.
 jcenter()
}

dependencies {
 // Define dependency on spring-beans library.
 compile 'org.springframework:spring-beans:4.0.+'
}

When we execute the dependencies task, we get the following output:

$ gradle -q dependencies

--

Root project

--

archives - Configuration for archive artifacts.

No dependencies

compile - Compile classpath for source set 'main'.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

 \--- commons-logging:commons-logging:1.1.3

default - Configuration for default artifacts.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

 \--- commons-logging:commons-logging:1.1.3

runtime - Runtime classpath for source set 'main'.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

 \--- commons-logging:commons-logging:1.1.3

testCompile - Compile classpath for source set 'test'.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

Chapter 1

[15]

 \--- commons-logging:commons-logging:1.1.3

testRuntime - Runtime classpath for source set 'test'.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

 \--- commons-logging:commons-logging:1.1.3

We see all the configurations of our project, and for each configuration, we see
the defined dependency with the transitive dependencies. Also, we can see how
our dynamic version 4.0.+ is resolved to version 4.0.6.RELEASE. To only see
dependencies for a specific configuration, we can use the --configuration option
for the dependencies task. We must use the value of the configuration we want to
see the dependencies for. In the following output, we see the result when we only
want to see the dependencies for the compile configuration:

$ gradle -q dependencies --configuration compile

--

Root project

--

compile - Compile classpath for source set 'main'.

\--- org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

 \--- org.springframework:spring-core:4.0.6.RELEASE

 \--- commons-logging:commons-logging:1.1.3

There is also the dependencyInsight incubating task in Gradle. Because it is
incubating, the functionality or syntax can change in future versions of Gradle. With
the dependencyInsight task, we can find out why a specific dependency is in our
build and to which configuration it belongs. We have to use the --dependency option,
the required one, with part of the name of the dependency. Gradle will look for
dependencies where the group, name, or version contains part of the specified value
for the --dependency option. Optionally, we can specify the --configuration option
to only look for the dependency in the specified configuration. If we leave out this
option, Gradle will look for the dependency in all the configurations of our project.

Let's invoke the dependencyInsight task to find the dependencies with Spring in
the name and in the runtime configuration:
$ gradle -q dependencyInsight --dependency spring --configuration runtime

org.springframework:spring-beans:4.0.6.RELEASE

org.springframework:spring-beans:4.0.+ -> 4.0.6.RELEASE

Defining Dependencies

[16]

\--- runtime

org.springframework:spring-core:4.0.6.RELEASE

\--- org.springframework:spring-beans:4.0.6.RELEASE

 \--- runtime

In the output, we see how version 4.0.+ is resolved to 4.0.6.RELEASE. We also see
that the spring-beans dependency and the transitive spring-core dependency are
part of the runtime configuration.

Accessing dependencies
To access the configurations, we can use the configurations property of the Gradle
project object. The configurations property contains a collection of Configuration
objects. It is good to remember that a Configuration object is an instance of
FileCollection. So, we can reference Configuration in our build scripts where
FileCollection is allowed. The Configuration object contains more properties we
can use to access the dependencies belonging to the configuration.

In the next example build, we will define two tasks that work with the files and
information available from configurations in the project:

configurations {
 vehicles
 traffic.extendsFrom vehicles
}

task dependencyFiles << {
 // Loop through all files for the dependencies
 // for the traffic configuration, including
 // transitive dependencies.
 configurations.traffic.files.each { file ->
 println file.name
 }

 // We can also filter the files using
 // a closure. For example to only find the files
 // for dependencies with driver in the name.
 configurations.vehicles.files { dep ->
 if (dep.name.contains('driver')) {
 println dep.name
 }
 }

 // Get information about dependencies only belonging

Chapter 1

[17]

 // to the vehicles configuration.
 configurations.vehicles.dependencies.each { dep ->
 println "${dep.group} / ${dep.name} / ${dep.version}"
 }

 // Get information about dependencies belonging
 // to the traffice configuration and
 // configurations it extends from.
 configurations.traffic.allDependencies.each { dep ->
 println "${dep.group} / ${dep.name} / ${dep.version}"
 }
}

task copyDependencies(type: Copy) {
 description = 'Copy dependencies from configuration traffic to
 lib directory'

 // Configuration can be the source for a CopySpec.
 from configurations.traffic

 into "$buildDir/lib"
}

Buildscript dependencies
When we define dependencies, we mostly want to define them for the code we are
developing. However, we may also want to add a dependency to the Gradle build
script itself. We can write code in our build files, which might be dependent on a
library that is not included in the Gradle distribution. Let's suppose we want to use
a class from the Apache Commons Lang library in our build script. We must add
a buildscript configuration closure to our build script. Within the configuration
closure, we can define repositories and dependencies. We must use the special
classpath configuration to add dependencies to. Any dependency added to the
classpath configuration can be used by the code in our build file.

Let's see how this works with an example build file. We want to use the org.
apache.commons.lang3.RandomStringUtils class inside a randomString task.
This class can be found in the org.apache.commons:commons-lang3 dependency.
We define this as an external dependency for the classpath configuration. We also
include a repository definition inside the buildscript configuration block so that
the dependency can be downloaded. The following code shows this:

buildscript {
 repositories {
 // Bintray JCenter repository to download
 // dependency commons-lang3.

Defining Dependencies

[18]

 jcenter()
 }

 dependencies {
 // Extend classpath of build script with
 // the classpath configuration.
 classpath 'org.apache.commons:commons-lang3:3.3.2'
 }
}

// We have add the commons-lang3 dependency
// as a build script dependency so we can
// reference classes for Apache Commons Lang.
import org.apache.commons.lang3.RandomStringUtils

task randomString << {
 // Use RandomStringUtils from Apache Commons Lang.
 String value = RandomStringUtils.randomAlphabetic(10)
 println value
}

To include external plugins, which are not part of the Gradle distribution, we can
also use the classpath configuration in the buildscript configuration block. In
the next example build file, we will include the Asciidoctor Gradle plugin:

buildscript {
 repositories {
 // We need the repository definition, from
 // where the dependency can be downloaded.
 jcenter()
 }

 dependencies {
 // Define external module dependency for the Gradle
 // Asciidoctor plugin.
 classpath 'org.asciidoctor:asciidoctor-gradle-plugin:0.7.3'
 }
}

// We defined the dependency on this external
// Gradle plugin in the buildscript {...}
// configuration block
apply plugin: 'org.asciidoctor.gradle.asciidoctor'

Chapter 1

[19]

Optional Ant task dependencies
We can reuse the existing Ant tasks in Gradle. The default tasks from Ant can be
invoked from within our build scripts. However, if we want to use an optional Ant
task, we must define a dependency for the classes needed by the optional Ant task.
We create a new dependency configuration, and then we add a dependency to this
new configuration. We can reference this configuration when setting the classpath
for the optional Ant task.

Let's add the optional Ant task SCP for the secure copying of files to/from a remote
server. We create the sshAntTask configuration to add dependencies for the optional
Ant task. We can choose any name for the configuration. To define the optional
task, we use the taskdef method from the internal ant object. The method takes a
classpath attribute, which must be the actual path of all files of the sshAntTask
dependencies. The Configuration class provides the asPath property to return
the path to the files in a platform-specific way. So, if we use this on a Windows
computer, the file path separator is a ; and for other platforms it is a :. The following
example build file contains all the code to define and uses the SCP Ant task:

configurations {
 // We define a new dependency configuration.
 // This configuration is used to assign
 // dependencies to, that are needed by the
 // optional Ant task scp.
 sshAntTask
}

repositories {
 // Repository definition to download dependencies.
 jcenter()
}

dependencies {
 // Define external module dependencies
 // for the scp Ant task.
 sshAntTask(group: 'org.apache.ant',
 name: 'ant-jsch',
 version: '1.9.4')
}

// New task that used Ant scp task.
task copyRemote(
 description: 'Secure copy files to remote server') << {

 // Define optional Ant task scp.

Defining Dependencies

[20]

 ant.taskdef(
 name: 'scp',
 classname: 'org.apache.tools.ant.taskdefs.optional.ssh.Scp',

 // Set classpath based on dependencies assigned
 // to sshAntTask configuration. The asPath property
 // returns a platform-specific string value
 // with the dependency JAR files.
 classpath: configurations.sshAntTask.asPath)

 // Invoke scp task we just defined.
 ant.scp(
 todir: 'user@server:/home/user/upload',
 keyFile: '${user.home}/.ssh/id_rsa',
 passphrase: '***',
 verbose: true) {
 fileset(dir: 'html/files') {
 include name: '**/**'
 }
 }
}

Managing dependencies
You have already learned earlier in the chapter that we can refactor the dependency
definitions by extracting common parts into project properties. This way, we only have
to change a few project property values to make changes to multiple dependencies.
In the next example build file, we will use lists to group dependencies together and
reference those lists from the dependency definition:

ext {
 // Group is used multiple times, so
 // we extra the variable for re-use.
 def vehiclesGroup = 'com.vehicles'

 // libs will be available from within
 // the Gradle script code, like dependencies {...}.
 libs = [
 vehicles: [
 [group: vehiclesGroup, name: 'car', version: '2.0'],
 [group: vehiclesGroup, name: 'truck', version: '1.0']
],
 traffic: [

Chapter 1

[21]

 [group: 'com.traffic', name: 'pedestrian', version:
 '1.0']
]
]
}

configurations {
 vehicles
}

dependencies {
 // Reference ext.libs.vehicles defined earlier
 // in the build script.
 vehicles libs.vehicles
}

Maven has a feature called dependency management metadata that allows us to
define versions used for dependencies in a common part of the build file. Then, when
the actual dependency is configured, we can leave out the version because it will
be determined from the dependency management section of the build file. Gradle
doesn't have such a built-in feature, but as illustrated earlier, we can use simple code
refactoring to get a similar effect.

We can still have declarative dependency management, as we do in Maven, in our
Gradle build, with the external dependency management plugin by Spring. This
plugin adds a dependencyManagement configuration block to Gradle. Inside the
configuration block, we can define dependency metadata, such as the group, name,
and version. In the dependencies configuration closure in our Gradle build script,
we don't have to specify the version anymore because it will be resolved via the
dependency metadata in the dependencyManagement configuration. The following
example build file uses this plugin and specifies dependency metadata using
dependencyManagement:

buildscript {
 repositories {
 // Specific repository to find and download
 // dependency-management-plugin.
 maven {
 url 'http://repo.spring.io/plugins-snapshot'
 }
 }
 dependencies {
 // Define external module dependency with plugin.
 classpath 'io.spring.gradle:dependency-management-
 plugin:0.1.0.RELEASE'

Defining Dependencies

[22]

 }
}

// Apply the external plugin dependency-management.
apply plugin: 'io.spring.dependency-management'
apply plugin: 'java'

repositories {
 // Repository for downloading dependencies.
 jcenter()
}

// This block is added by the dependency-management
// plugin to define dependency metadata.
dependencyManagement {
 dependencies {
 // Specify group:name followed by required version.
 'org.springframework.boot:spring-boot-starter-web'
 '1.1.5.RELEASE'

 // If we have multiple module names for the same group
 // and version we can use dependencySet.
 dependencySet(group: 'org.springframework.boot',
 version: '1.1.5.RELEASE') {
 entry 'spring-boot-starter-web'
 entry 'spring-boot-starter-actuator'
 }
 }
}

dependencies {
 // Version is resolved via dependencies metadata
 // defined in dependencyManagement.
 compile 'org.springframework.boot:spring-boot-starter-web'
}

To import a Maven bill of materials (BOM) provided by an organization, we can
use the imports method inside the dependencyManagement configuration. In
the next example, we will use the Spring IO platform BOM. In the dependencies
configuration, we can leave out the version because it will be resolved via the BOM:

buildscript {
 repositories {
 // Specific repository to find and download
 // dependency-management-plugin.

Chapter 1

[23]

 maven {
 url 'http://repo.spring.io/plugins-snapshot'
 }
 }
 dependencies {
 // Define external module dependency with plugin.
 classpath 'io.spring.gradle:dependency-management-
 plugin:0.1.0.RELEASE'
 }
}

// Apply the external plugin dependency-management.
apply plugin: 'io.spring.dependency-management'
apply plugin: 'java'

repositories {
 // Repository for downloading BOM and dependencies.
 jcenter()
}

// This block is added by the dependency-management
// plugin to define dependency metadata.
dependencyManagement {
 imports {
 // Use Maven BOM provided by Spring IO platform.
 mavenBom 'io.spring.platform:platform-bom:1.0.1.RELEASE'
 }
}

dependencies {
 // Version is resolved via Maven BOM.
 compile 'org.springframework.boot:spring-boot-starter-web'
}

Defining Dependencies

[24]

Summary
In this chapter, you learned how to create and use dependency configurations to
group together dependencies. We saw how to define several types of dependencies,
such as external module dependency and internal dependencies.

Also, we saw how we can add dependencies to code in Gradle build scripts with the
classpath configuration and the buildscript configuration.

Finally, we looked at some maintainable ways of defining dependencies using code
refactoring and the external dependency management plugin.

In the next chapter, we will learn more about how we can configure repositories that
store dependency modules.

Purchase the full book
Get 50% discount on the eBook format using coupon code GRADLE50

https://www.packtpub.com/application-development/gradle-dependency-management/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/application-development/gradle-dependency-management/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/application-development/gradle-dependency-management/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Defining Dependencies
	Declaring dependency configurations
	Declaring dependencies
	External module dependencies
	Defining client module dependencies
	Using project dependencies
	Defining file dependencies
	Using internal Gradle and Groovy dependencies

	Using dynamic versions
	Getting information about dependencies
	Accessing dependencies
	Buildscript dependencies

	Optional Ant task dependencies
	Managing dependencies
	Summary

	Chapter 2: Working with Repositories
	Declaring repositories
	Using the Maven JCenter repository
	Using the Maven Central repository
	Using the Maven local repository
	Using Maven repositories
	Using the flat directory repository
	Using Ivy repositories

	Using different protocols
	Summary

	Chapter 3: Resolving Dependencies
	Understanding dependency resolution
	Configuring transitive dependencies
	Disabling transitive dependencies
	Excluding transitive dependencies
	Using artifact-only dependencies

	Resolving version conflicts
	Using the newest version
	Failing on version conflict
	Forcing a version

	Customizing dependency resolution rules
	Using client modules

	Using dynamic versions and changing modules
	Understanding the dependency cache
	Command-line options for caching
	Changing cache expiration

	Summary

	Chapter 4: Publishing Artifacts
	Defining artifact configurations
	Defining artifacts
	Using the archive task
	Using artifact files

	Creating artifacts
	Publishing artifacts to the local directory
	Excluding the descriptor file

	Signing artifacts
	Using configurations to sign
	Using archive tasks to sign

	Summary

	Chapter 5: Publishing to a
Maven Repository
	Defining publication
	Defining publication artifacts
	Using archive task artifacts
	Using file artifacts
	Using software components
	Generating POM files
	Customizing the POM file

	Defining repositories
	Publishing to the local Maven repository
	Publishing to the Maven repository
	Publishing to Artifactory
	Publishing to Nexus

	Summary

	Chapter 6: Publishing to Bintray
	What is Bintray?
	Defining a new repository

	Defining the Bintray plugin
	Publishing to Bintray
	Configuring the Bintray plugin
	Summary

	Chapter 7: Publishing to an
Ivy Repository
	Defining publications
	Defining publication artifacts
	Using archive task artifacts
	Using file artifacts
	Using software components

	Generating Ivy descriptor files
	Customizing the descriptor file

	Defining repositories
	Publishing to a local directory
	Publishing to Artifactory
	Publishing to Nexus

	Summary

	Index

