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Chapter 1

Introduction

1.1 Theories and Unification

The forces of electricity and magnetism have been truly unified in the U(1)em electro-
magnetic force in the sense that neither force can be entirely disentangled from the
other. Later, the weak force was combined with the electromagnetic force to form
the SU(2)w×U(1)y −→U(1)em electro-weak theory. However, unlike the electromagnetic
force, this is not a true unification. Finally, the strong force was added to the electro-weak
force to complete the Standard Model. Again, this is not true unification. It is more like
two independent theories have been added together and mixed.

The Standard Model is a true quantum field theory. The Grand Unified Theory is
the attempt to combine these theories in true unification.

The interesting thing about electrodynamics is that it is a simple theory which leads
to complex phenomena.

1.2 A Brief Overview

In electrodynamics, we have three different representations of the key equations. In the
center, and most importantly, we have Maxwell’s equations in differential form:

~∇ · ~E = 4πρ, ~∇× ~E = −1

c
∂t ~B, ~∇ · ~B = 0, ~∇× ~B =

4π

c
~J .

Integrating these gives us another representation—Maxwell’s equations in itegral
form. Also known by names like Gauss’ Law, Faraday’s Law, and Ampere’s Laws:ˆ

~E · d ~A = 4π

ˆ
V

d3rρ

...

Conversely, we can derive Maxwell’s equations, from these laws by differentiating.
The third representation is the relativistic formulation. Recall that in special rela-

tivity, we have 4-vectors like that of position

xµ = (ct,~x) ,

and Lorentz transformations
x′
µ

= Lµνx
ν .

Mapping from Maxwell’s equations in differential form to the relativistic form is just a
matter of notation. In the relativistic formulation, all four of Maxwell’s equations combine
to become the single equation

∂µF
µν =

4π

c
∂ν ,
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where
Fµν = ∂µAν − ∂νAµ,

and the scalar and vector potential are combined to form the 4-potential

Aµ =
(
φ, ~A

)
.

Recall that the potentials are related to the fields as

~B = ~∇× ~A, ~E = −~∇φ− 1

c
∂t ~A.

Plugging these into the differential form of Maxwell’s equations reduces the number of
equations from four to two but at the cost of the first-order differential equations becoming
second-order. A useful tool when working with potentials is multipole expansion. For
example, for the scalar potential,

φ =
∑
`,m

Q`m
r`+1

√
4π

2`+ 1
Y ∗`m.

Related are the Green’s functions

∆G(~x,~x ′) = −4πδ(~x− ~x ′).

These are closely related to the propagators of quantum field theory.
Gauge invariance of the potentials gives us the gauge transformation

A′
µ

= Aµ + ∂µf,

and it means the potentials have unphysical degrees of freedom.
We can also think in terms of the Lagrangian formalism

L = − 1

16π
FµνFµν + · · · ,

where the first term is the Lagrangian density for the photon field.
This leads us to conservation laws

∂µJ
µ = 0

∂µT
µν = 0.

Connecting electromagnetism to mechanics is the Lorentz force

~F = q

(
~E − 1

c
~v × ~B

)
.

Finally, we have applications and phenomena, such as electrostatics, where the chief
equation is

~∇ · ~E = 4πρ,

magnetostatics, where

~∇× ~B =
4π

c
~J ,

electromagnetic waves
~E = ~E0 cos

(
~k · ~x− ωt

)
,

and radiation

dP

dΩ
∝
∣∣∣ ~̈d ∣∣∣2

~S =
c

4π
~E × ~B.



Chapter 2

Special Relativity and
Electrodynamics

2.1 Relativity Principle

The relativity principle tells us that the laws of physics take the same form in every
inertial (i.e. nonaccelerating) frame.

Consider a stationary frame F and a frame F ′ that is moving with velocity ~v0 relative
to frame F .

Then Galilean relativity tells us that the position vector ~x of a point relative to F is
related to the position vector ~x ′ of the same point relative to F ′ by

~x ′(t) = ~x(t)− ~v0(t) + ~x0.

Velocities and accelerations in the two frames are related as

~v ′(t) =
d

dt
~x ′(t) =

d~x

dt
− ~v0 = ~v(t)− ~v0

~a ′(t) =
d

dt
~v ′(t) =

d~v

dt
= ~a(t).

In frame F , Newton’s equations of motion for a system of particles are

mi~ai =
∑
k 6=i

~F ik (~xi − ~xk) .

In frame F ′,

mi~ai
′ =

∑
k 6=i

~F
′
ik (~xi

′ − ~xk ′) .

The equations are the same but all vectors now have primes.
Now consider the Lorentz force. In frame F , the Lorentz force is

~F = q
(
~E + ~v × ~B

)
.
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In frame F ′, the Lorentz force is

~F ′ = q
(
~E ′ + ~v ′ × ~B ′

)
.

The forces should be equal, so

~F = ~F ′

~E + ~v × ~B = ~E ′ + ~v ′ × ~B ′

= ~E ′ + (~v − ~v0)× ~B ′

= ~E ′ + ~v × ~B ′ − ~v0 × ~B ′.

The transformation between the two frames should hold for any ~v. In particular, it should
hold for ~v = 0. In that case, we get

~E = ~E ′ − ~v0 × ~B ′.

On the other hand,
~v × ~B = ~v × ~B ′

for any ~v, implies that
~B = ~B ′.

But this contradicts experiments. Suppose in frame F , ~B = 0, which occurs when a
charged particle is not moving. What we found above, this means that ~B ′ = 0, always.
However, from the moving frame F ′, the particle appears to be moving, and so ~B ′ 6= 0.
Logically, there are two possible resolutions of this paradox:

1. The relativity principle holds in mechanics, but maybe it does not hold in electro-
dynamics. I.e., maybe there are special (“ether”) frames.

2. The relativity principle also holds for electrodynamics. In that case,
a) Maxwell’s equations and/or the Lorentz force law are incorrect
b) Galilean transformation is incorrect

The Michelson-Morley Experiment

The Michelson-Morley experiments disproved the ether hypothesis, then Einstein showed
in 1905 that it is in fact the Galilean transformation that is incorrect.

The idea is to rotate the apparatus and look for differences in the interference pattern
due to an optical path difference ∆s caused by the Earth traveling through the ether. If
the Earth were at rest with respect to the ether (or if there were no ether), then

∆s = 2(`2 − `1).
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On the other hand, if the Earth is moving through the ether at a velocity v0 (assume the
direction of motion through the ether is parallel with the line from the light source to
mirror 2), then the time for the light ray to travel from the half-silvered mirror to mirror
2 is

T =
`2 + x

c
=

x

v0
,

where x is the extra distance the light ray has to travel due to mirror 2 having been carried
away from the point at which the light was emitted from the source. On the return trip
(i.e. the light ray going from mirror 2 back to the half-silvered mirror), the light ray has
to travel a shorter distance due to the half-silvered mirror being carried toward it. This
travel time is

T ′ =
`2 − x′

c
=
x′

v0
.

We can solve this pair of equations for x and x′, then the total distance traveled by the
light ray in going from the half-silvered mirror to mirror 2 and back again can be found
after some algebra, to be

s2 = `2 + x+ `2 − x′ =
2`2

1−
(
v0
c

)2 .
For the light ray traveling from the half-silvered mirror to mirror 1 and back again,

we can draw a diagram.

The distance traveled by this light ray is

s1 = 2
√
`21 + y2 =

2`1√
1−

(
v0
c

)2 .
Then the optical path difference is

∆s = s2 − s1.

If we conduct the experiment multiple times while rotating the apparatus, we expect
a change in the interference pattern only if the optical path difference changes as the
apparatus is rotated (due to v0 changing). Such a change would indicate the presence of
an absolute background—the ether.

However, the Michelson-Morley experiment found no such change, leading to the
conclusion that v0 = 0. So, whereas Galilean relativity claims that

~c ′ = ~c− ~v0,

the Michelson-Morley experiment found that

~c ′ = ~c.

That is, the speed of light in a vacuum is the same no matter what speed you are moving
through the vacuum. I.e., c is the same in all inertial frames.
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Suppose you flash a light at the origin in frame F . The flash occurs at t = 0 when
the origins of frames F and F ′ coincide. The surface of the sphere corresponding to how
far the light wave has traveled, moves at a speed c. So in frame F , a point on this surface
satisfies

c2t2 = x2 + y2 + z2 =⇒ c2t2 −
(
x2 + y2 + z2

)
= 0.

In frame F ′, a point on this surface satisfies

c2t′
2

= x′
2

+ y′
2

+ z′
2

=⇒ c2t′
2 −

(
x′

2
+ y′

2
+ z′

2
)

= 0,

since c is the same in both frames. Thus, the Michelson-Morley condition is that

c2t2 −
(
x2 + y2 + z2

)
= c2t′

2 −
(
x′

2
+ y′

2
+ z′

2
)
.

2.2 Lorentz Transformations

Transformation of Position and Time

Following Einstein’s 1905 work, we will start with the axioms:
1. The laws of physics are form invariant, i.e., the relativity principle
2. The speed of light in vacuum is c in every inertial frame, i.e., the Michelson-Morley

condition
What are the consequences? What conclusions follow from these axioms?

Consider simultaneous events. Suppose in frame F ′, there is a flashing light at the
origin. There are two observers—Alice sitting at −x and Bob sitting at +x. As soon as
they see the light flash, they synchronize their individual clocks. Now, consider observer
Chris in frame F such that frame F ′ is moving to the right (with respect to F ) at speed
v.

According to Chris, Alice starts her clock first because she is moving toward the light
front approaching her and Bob is moving away from the light front approaching him. On
the other hand, if frame F ′ is moving toward the left instead of the right, then Chris sees
Bob start his clock first. So not only do the events not appear simultaneous to Chris, but
their order is not even fixed.

Conclusion: There is no absolute simultaneity. That is, there is no absolute time. If
we change from one reference frame to another, we have to modify time.

Now, let’s consider vector transformations which are compatible with our axioms. In
frame F , we have time t and a vector ~x. If frame F ′ is moving toward the right (in the
x-direction) with speed ~v0, what is the vector ~x ′?

We know that there is something special about time t and the direction of motion
x. However, there is nothing special about the y and z directions. So we start with the
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ansatz

x′ = Ax+Bt

y′ = y

z′ = z

t′ = Cx+Dt.

Recall the Michelson-Morley condition

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2.

Plugging in x′, y′, z′, t′ from our ansatz gives us

c2t2 − x2 = c2 (Cx+Dt)
2 − (Ax+Bt)

2
.

Rearranging and gathering like terms gives us

0 = c2t2
(
−1 +D2 − B2

c2

)
+ x2

(
1 + C2c2 −A2

)
+ 2xt

(
c2CD −AB

)
.

The left side is zero, so the right side must be zero. This should be true for all x and t.
This implies that the quantities in each pair of parentheses must be zero

−1 +D2 − B2

c2
= 0

1 + C2c2 −A2 = 0

c2CD −AB = 0.

Now we have three equations in four unknowns. We need one more equation. Consider
the motion of the origin of F ′. This is the point x′ = 0. Since F ′ is moving in the x
direction at speed v0 with respect to frame F , we know that x′ = 0 = Ax + Bt where
x = v0t. This implies

B = −v0A.
When we solve this system of four equations in four unknowns, we end up with

A = γ

B = −βcγ

C = −β
c
γ

D = γ,

where

γ =
1√

1− β2
,

is the Lorentz factor, and

β =
v0
c
.

So our ansatz becomes

x′ = γ (x− βct)
y′ = y

z′ = z

t′ = γ

(
−β
c
x+ t

)
.
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This is the Lorentz transformation or Lorentz boost.
Note that

βc = v0.

The directions perpendicular to the boost are not affected. Only the parallel com-
ponents change during a Lorentz boost.

Discussion:

• If we do an expansion for v0 << c (i.e. β << 1), we get the Galilean transformation

x′ = x− v0t
t′ = t.

We can think in terms of a Taylor expansion and add 1st-order correction terms
to the Galilean transformation. The first-order relativistic corrections are O(β2)
for x′ and O(β) for t′. So the time component is affected much more strongly by
relativistic effects than the spatial components.
• To get the inverse Lorentz transformations, just switch the primes and let β → −β

(or v0 → −v0)
• Consider the limit v0 → c. Then γ becomes undefined. So the speed of light c is a

limiting speed.

The above is all for a Lorentz boost in the x-direction. We can extend this to a
Lorentz boost in a general direction ~β = ~v0/c. For a generic x = (ct,~x), we want the
Lorentz transformed 4-vector x′ = (ct′,~x ′). The time component now transforms as

ct′ = γ
(
ct− ~β · ~x

)
.

Notice that we have replaced βx in the equation with ~β · ~x. For the spatial part, we
know that only the components parallel to the direction of relative motion β̂ = ~β/β will
change. The perpendicular components are unchanged. We can break the spatial part
into parallel and perpendicular components

~x = ~x⊥ + ~x‖

~x ′ = ~x′⊥ + ~x′‖.

Then since the perpendicular part doesn’t change,

~x′⊥ = ~x⊥.

The parallel part transforms as

~x′‖ = γ
(
~x‖ − ~βct

)
.

So combining the parallel and perpendicular parts, the spatial vector transforms as

~x ′ = ~x⊥ + γ
(
~x‖ − ~βct

)
.

We can write the parallel and perpendicular parts as

~x‖ =
(
~x · β̂

)
β̂ =

(
~x · ~β

) ~β

|~β|2

~x⊥ = ~x− ~x‖ = ~x−
(
~x · ~β

) ~β

|~β|2
.
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Altogether then, our Lorentz transformation

x = (ct,~x) −→ x′ = (ct′,~x ′),

for an arbitrary boost ~β, is

ct′ = γ
(
ct− ~β · ~x

)
~x ′ = ~x− γ~βct+ (γ − 1)

(
~x · ~β

) ~β

|~β|2
.

Transformation of Velocity

Suppose we have a velocity ~v in frame F . What is ~v ′ as observed from the frame F ′

which is moving in the x-direction with speed v0?
In frame F , the velocity components are

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt
.

In frame F ′, the velocity components are

v′x =
dx′

dt′
, v′y =

dy′

dt′
, v′z =

dz′

dt′
.

We want to relate the components in the different frames.
By the Lorentz transformation equations, we know that

dx′ = γ (dx− βc dt) = γ (vx − βc) dt

dt′ = γ

(
−β
c
dx+ dt

)
= γ

(
−β
c
vx + 1

)
dt.

Here, we used the fact that vx = dx
dt . Plugging these into the velocity components for

frame F ′ gives us

v′x =
dx′

dt′
=

γ (vx − βc) dt

γ
(
−βc vx + 1

)
dt

=
vx − v0
1− v0vx

c2

v′y =
dy′

dt′
=

dy

γ
(
−βc vx + 1

)
dt

=
vy

γ
(
1− v0vx

c2

)
v′z =

dz′

dt′
=

dz

γ
(
−βc vx + 1

)
dt

=
vz

γ
(
1− v0vx

c2

) .
So given

~v = (vx, vy, vz) ,

in frame F , then in frame F ′, which is moving in the positive x-direction with respect to
F , the Lorentz transformed velocity is

~v ′ =
(
v′x, v

′
y, v
′
z

)
=

(
vx − v0
1− v0vx

c2
,

vy

γ
(
1− v0vx

c2

) , vz

γ
(
1− v0vx

c2

)) .
Discussion:
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• For β << 1, we get the Galilean velocity transformations

v′x = vx − v0
v′y = vy

v′z = vz.

• The speed of light c is a limiting speed. For example, if ~v = (c, 0, 0), then the
transformed velocity is ~v ′ = (c, 0, 0). So even though the velocity c and the velocity
v0 of the relative motion between the frames should “add”, the final velocity is never
larger than c.
• To get the inverse transformation ~v ′ → ~v, just exchange the primes and let ~v0 →
−~v0
• We have experimental evidence, for example in decays

π0 −→ γ + γ,

that relativistic velocities really do add in the manner that we derived.

Transformation of Acceleration

In frame F , we have acceleration components

ax =
dvx
dt

, ay =
dvy
dt

, az =
dvz
dt
.

In frame F ′, the components of the acceleration can be found by using the chain rule and
plugging in what we found for the velocity components and for dt′/dt

a′x =
dv′x
dt′

=
dv′x
dt
· dt
dt′

=
d

dt

(
vx − v0
1− v0vx

c2

)
·

[
1

γ
(
1− v0vx

c2

)]
=

ax

γ3
(
1− v0vx

c2

)3
a′y =

dv′y
dt′

=
dv′y
dt
· dt
dt′

=
d

dt

(
vy

γ
(
1− v0vx

c2

)) · [ 1

γ
(
1− v0vx

c2

)]

=
ay

γ2
(
1− v0vx

c2

)2 +
v0vy
c2 ax

γ2
(
1− v0vx

c2

)3
a′z =

dv′z
dt′

=
dv′z
dt
· dt
dt′

=
d

dt

(
vz

γ
(
1− v0vx

c2

)) · [ 1

γ
(
1− v0vx

c2

)]

=
az

γ2
(
1− v0vx

c2

)2 +
v0vz
c2 ax

γ2
(
1− v0vx

c2

)3 .
Notice that all three components of ~a ′ depend on ax.

Discussion:

• In the limit β = v0/c → 0, we get the expected Galilean transformations for the
acceleration

a′x = ax, a′y = ay, a′z = az.

• Relativistic mechanics is a lot more complicated than Newtonian mechanics, because
we have a mixing of the components of acceleration when one changes reference
frames.
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Tip

Lorentz contraction tells us
that a moving scale always
appears shorter.

Tip

Time dilation tells us that
moving clocks run slower.

2.3 Length Contraction and Time Dilation

Lorentz Contraction

Consider an object of length ` that is at rest in frame F . What is its length in frame F ′?

By applying the inverse Lorentz transformation to both x0 and x1, we get

` = x1 − x0 = γ (x′1 + βct′)− γ (x′0 + βct′) = γ(x′1 − x′0) = γ`′.

Thus,

`′ =
`

γ
, where always γ > 1.

Note that t′ is the same for both x1 and x0 because we are assuming that both positions
are measured at the same time in F ′.

Discussion:

• The same shortening effect is seen if the change of frames is reversed. Notice that
the relation between the lengths in the two frames is completely independent of the
sign of v0.

• Contraction happens only in the direction of the boost. I.e., a moving volume is
contracted only in the x-direction. The volume elements in the different frames are
related by

dV ′ = dx′ dy′ dz′ =

(
1

γ
dx

)
(dy) (dz) =

1

γ
dV.

Notice that there is only γ instead of γ3 since the contraction only occurs along one
direction.
• A real observer would also have to take light propagation into account to really

explain the appearance of a fast-moving object.
• There is no direct experimental evidence for length contraction simply due to how

difficult it would be to measure this effect.

Time Dilation

Consider a time interval τ in F . Then in F ′,

τ ′ = t′2 − t′1 = γ(t2 − t1) = γτ.

Thus,

τ ′ = γτ, where always γ > 1.

That is, the time interval appears longer in F ′.
Discussion:

1. The same effect is seen for change of frames in the reverse direction. I.e. all moving
clocks run slower.
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2. Twin paradox: To be able to compare their ages, one of the traveling twins has to
return to the other. Only the one that didn’t accelerate was always in an inertial
frame. The twin who returns, and therefore accelerates and travels in a noninertial
frame, is younger.

Example 2.3.1: Relativistic Muons

Primary cosmic rays such as pions, produce µ± particles at high speed in our
atmosphere. However, these muons decay quickly via the following mechanisms:

µ− −→ e− + νe + νµ

µ+ −→ e+ + νe + νµ.

In their rest frame, muons have a lifetime of

τµ = 2.2× 10−6 s.

So classically, they travel a distance of

d = v0τµ ≈ cτµ = 6.6× 102 m,

assuming they enter the atmosphere at essentially the speed of light. This is much
less than the 15 km thickness of our atmosphere, so we would expect most muons
to decay before reaching the surface of Earth.

However, if we take into account relativistic effects, we know that time dilation
means the muon lives a lot longer (and therefore travels further) in its frame. The
time dilation equation tells us that

τearth = γτµ.

Then the actual distance traveled by the muon, as measured on Earth, is closer to

drelativistic = v0τEarth = v0γτµ ' 10× dclassical,

where we’ve taken γ = 10, which corresponds to about 99% the speed of light.
Now, we get a value of

d ≈ 6.6× 103 m = 6.6 km.

This factor of 10 increase in the lifetime of the muon makes a significant
difference in the number of observed muons. For example, the exponential decay
formula gives us the number N(t) of muons expected to remain after time t

N(t) = N0e
−t/τ ,
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where N0 was the initial number of particles. For example, if we wait 23 lifetimes,
then

N(23τ) = N0e
−23 ≈ N0

1010
.

So the number of muons has been reduced by a factor of 1010. This is a very large
number, so we expect to see zero particles remaining. However, if we take the
factor of 10 from relativistic effects into account, we get

N(2.3τ) = N0e
−2.3 ≈ N0

10
,

which is just a reduction by a factor of 10 in the number of remaining particles.
We should definitely still see particles.

In practice, relativistic muons have been used to verify γ with a fractional
error of 2× 10−3.

2.4 Minkowski Space

4-vectors and the Metric Tensor

In classical mechanics, a point in space is represented by a 3D vector ~x = (x, y, z), which
has a norm-squared of ||~x||2 = ~x · ~x, and general scalar product

~x · ~y =

3∑
i,j=1

xiδijxj .

Scalar products are useful because they are invariant under orthogonal transformations
such as rotations and reflections. The space of these 3D vectors is called “Euclidean
space”.

In special relativity, we have rotations as well as Lorentz transformations. The norm-
squared is

s2 = c2t2 − x2 − y2 − z2.

This quantity is invariant under the Lorentz group which includes rotations and Lorentz
transformations. More explicitly,

s2 =
[
ct x y z

]
gµν


ct

x

y

z

,

where

gµν =


1

−1

−1

−1

 = diag(1,−1,−1,−1),

is the metric tensor. The space of these 4-vectors is called “Minkowski space”.
In 3D Euclidean space, the norm-squared of a vector is positive definite. This is not

true in Minkowski space. In Minkowski space, the norm of a 4-vector can be positive,
zero, or even negative.
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For some event in spacetime, we define a contravariant 4-vector as

xµ =
[
ct x y z

]T
.

Note that we use Greek (or “Lorentz”) indices for 4-vectors (i.e. µ = 0, 1, 2, 3), and we
use Latin indices for 3-vectors (i.e. i = 1, 2, 3).

We can write

s2 =

3∑
µ,ν=0

xµgµνx
ν .

We will use the Einstein summation convention where repeated indices implies a sum
over those indices unless noted otherwise. Using Einstein notation, we write the above
simply as

s2 = xµgµνx
ν ,

with the sum being implied.
We define the covariant 4-vector as

xµ = gµνx
ν .

The scalar/inner product of two 4-vectors is

x · y = xµy
µ = xµgµνy

ν = x0y0 − ~x · ~y.

The scalar product is invariant under

• Normal rotations
• Lorentz boosts
• Parity (~x→ −~x)
• Time reversal (t→ −t)

Minkowski Diagrams

To visualize motion in 4D Minkowski spacetime, we draw 1 + 1 dimensional diagrams.
We ignore the y and z components and draw the x and t dimensions, as shown in the
example below.

The blue line is at 45◦ and represents the worldline of a particle moving at constant
speed c in the +x direction. The red line represents the worldline of a particle moving at
constant speed c in the −x direction. The green line represents the worldline of a particle
moving slower than c (|~v| < c). Note that

tanα =
ct

x
=
c

v
.
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The origin of the Minkowski diagram, (0, 0), represents the present. Anything in the
cone above this point is the future of the spacetime event (0, 0). Anything in the cone
below this point is the past of the spacetime event (0, 0).

The light cone separates causally disconnected regions of spacetime. If we add a second
spatial dimension as shown below, it becomes more obvious why we call it a “cone”.

There are three possible cases for s2:

• If s2 > 0, then the relation between the two events is called time-like. The two
events are causally connected.

• If s2 = 0, then the relation is light-like
• If s2 < 0, then the relation is space-like (i.e. causally disconnected)

In general, for a 4-vector x, determine whether its time-like, light-like, or space-like by
looking at the sign of x · x = xµxµ.

Note: Different authors use different conventions. For example, some use the con-
vention that gµν = diag(−1, 1, 1, 1). Another convention is gµν = 1 = diag(1, 1, 1, 1), and
then include the imaginary unit in the time part of a 4-vector as in xµ = (ict, x, y, z) or
even xµ = (x, y, z, ict). Which convention that we use determines, for example, whether
s2 > 0 is time-like or space-like.

Rapidity

We can write a Lorentz transformation for motion along the x-direction with speed β as
a matrix-vector multiplication

x′ µ = Λµνx
ν .
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Fully written out, this is 
x′ 0

x′ 1

x′ 2

x′ 3

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3

.
Doing the multiplication gives us the familiar Lorentz transformation

x′ 0 = γx0 − βγx1 =⇒ ct′ = γct− βγx
x′ 1 = −βγx0 + γx1 =⇒ x′ = −βγct+ γx

x′ 2 = x2 =⇒ y′ = y

x′ 3 = x3 =⇒ z′ = z.

Consider the frame F and the Lorentz boosted frame F ′ on the same spacetime
diagram as shown below.

Along the boosted time axis ct′, we know that x′ = 0. This implies that

ct =
1

β
x.

Along the boosted space axis x′, we know that t′ = 0. This implies that

ct = βx.

Thus, the angle α between ct and ct′ is the same as the angle between x and x′. This
angle is related to the relative speed between the frames via

β = tanα.

The Lorentz matrix (Λµν) is a symmetric matrix with

det(Λµν) = 1.

We can also write it using the “hyperbolic” angle ζ, called the rapidity as

(Λµν) =


cosh ζ − sinh ζ 0 0

− sinh ζ cosh ζ 0 0

0 0 1 0

0 0 0 1

.
Comparing this with the regular Lorentz transformation matrix, we see that

cosh ζ = γ, tanh ζ = β.
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Suppose we draw frames F and F ′ on a single Minkowski diagram as shown below
on the left. Then to scale between the two frames, we use a Lorentz invariant like

s2 = c2t2 − x2 = ct′ 2 − x′ 2 = const.

This equation is a hyperbola with the light lines as asymptotes. Then, we can relate a
length scale ` in frame F to the length scale `′ in frame F ′ with the Lorentz factor.

Doppler Effect and the Aberration of Light

Recall that Maxwell’s equations allow plane wave solutions for ~E and ~B of the form

~E(~x, t) = ~E0 cos
(
−~k · ~x+ ωt

)
.

Maxwell’s equations we know are already relativistic, so the phase −~k · ~x + ωt should
already be Lorentz invariant. For example, whether or not two light waves interfere with
each other should not depend on the reference frame.

First, consider the constant phase situation. We choose the constant to be zero for
convenience. Then

0 = −~k · ~x+ ωt = ωt− kx,

for propagation in the x-direction. This implies that

x

t
=
ω

k
= c,

where |~k| = ω/c. We want the phase to be Lorentz invariant, so we write it as a 4-vector.
Since ct = x0 and ω/c = k0, we can write

ct · ω
c
− ~x ·~k = xµgµνk

ν = x · k,

where

kµ =

[
ω
c

~k

]
,

is the wave 4-vector. It transforms like xµ under Lorentz transformations.
Consider a light source at rest in frame F . Now consider an observer moving in the

x-direction with speed ~v in frame F ′.
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How are ~ks and ~ko related, and how are θs and θo related?
In the source frame,

kµs =
(ωs
c
,~ks

)
=
ωs
c

(1, cos θs, sin θs, 0) .

In the observer frame,

kµo =
(ωo
c
,~ko

)
=
ωo
c

(1, cos θo, sin θo, 0) .

They are related by the Lorentz transformation

kµs = Λµνk
ν
o , ~β =

~v

c
,

or in full form,

ωs
c


1

cos θs

sin θs

0

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

ωoc


1

cos θo

sin θo

0

.
For the zero (i.e. frequency) component, we see that

ωs
c

=
ωo
c

(γ − βγ cos θo) ,

or

ωo =
ωs

γ (1− β cos θo)
.

This is the Doppler effect. Note that

• If θo = 0, then the frequency is blue-shifted

ωo =
ωs

γ(1− β)
= ωs

√
1 + β

1− β
> ωs.

• If θo = π, then the frequency is red-shifted

ωo =
ωs

γ(1 + β)
< ωs.

Next, we look at the k1 (i.e. x) component.

ωs
c

cos θs =
ωo
c
γ(cos θo − β),

or

cos θs =
cos θo − β

1− β cos θo
.
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Equivalently,

cos θo =
cos θs + β

1 + β cos θs
.

So in addition to a shift in the frequency, we also have a shift in the direction of light
propagation when we transform from one frame to another. This phenomenon is called
the aberration of light.

2.5 Relativistic Kinematics

4-momentum

Classically, momentum is defined as

~p = m
d~x

dt
.

We want a “momentum” that transforms as a Lorentz 4-vector. This classical definition
doesn’t even work as the spatial part of a 4-vector. While m is invariant and d~x transforms
under Lorentz transformation in the way we want, dt does not.

We know that
c2dτ2 = c2dt2 − dx2 − dy2 − dz2.

For real massive particles, which follow timelike trajectories, dτ2 > 0. So we can rewrite
this as

dτ =
1

γ
dt =

√
1− v2

c2
dt.

This is the proper time, which is the time in the particle’s rest frame. We know that
this quantity dτ is Lorentz invariant since we constructed it (i.e. obtained it by taking
the square root) from a scalar product. So if we define

pµ = m
dxµ

dτ
,

then we have a quantity that transforms as a 4-vector under Lorentz transformations.
I.e., scalar products of this quantity with other 4-vectors are Lorentz invariant. We call
this quantity the 4-momentum.

We can also write
pµ = muµ,

where

uµ =
dxµ

dτ
,

is the 4-velocity. However, we will rarely use this quantity.
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We can also write

pµ = m
1√

1− v2/c2

[
c

~v

]
= mγ

[
c

~v

]
,

where ~v is the ordinary 3-velocity.
We can now name the temporal and spatial components of the 4-momentum

pµ =

[
E/c

~p

]
, ~p = γm~v.

Note that ~p here is not the classical 3-momentum, but rather, it is γ times the classical 3-
momentum. Technically, we can call this ~p the relativistic 3-momentum. In general, from
now on, ~p will mean this relativistic 3-momentum rather than the classical 3-momentum.

Now the 4-velocity can be written in terms of components as

uµ = γ

[
c

~v

]
.

Discussion:

• The first component of the 4-momentum tells us that

E = γmc2.

In the β → 0 limit, this becomes

E = mc2 +
1

2
mv2 + · · · .

Notice that the first term on the right is the particle’s rest energy, and the second
term is its classical kinetic energy.
• The spatial components of the 4-momentum are

~p = γm~v.

In the β → 0 limit, this becomes

~p = m~v + · · · .

So in the non-relativistic limit, ~p becomes the classical momentum.
• The scalar product of p with itself is

p2 = p · p = pµp
µ =

E2

c2
− ~p · ~p.

In the rest frame of the particle, ~v = 0, and so ~p = 0. Then we just have

E2

c2
=

(mc2)2

c2
= m2c2.

But p2 is invariant, so if
p2 = m2c2,

in the rest frame, then it must always be true. So we can plug this into the energy
to write

E =
√
m2c4 + ~p 2c2.

Remember, ~p is the relativistic 3-momentum.
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Tip

Whenever there is a “p”
without the vector arrow
above it, then it is im-
plied to be the Lorentz 4-
momentum.

• The 4-vector

pµ =

[
E/c

~p

]
,

works also for massless particles which have p2 = m2c2 = 0. Thus, for massless
particles, we find that

E = |~p|c.

Scattering and Decay Kinematics

We will now consider decay and scattering problems like

e+ + e− −→ µ+ + µ−.

The key to solving such problems is to utilitize the various conservation laws implied by
the symmetries of the problem.

In all decay and scattering problems, the sum of the initial state momenta equals the
sum of the final state momenta. That is,∑

i

pµi =
∑
f

pµf ,

where the sum on the left is over the initial particles, and the sum on the right is over
the final particles. Note that for the 0-components, this implies energy conservation, and
for the other three components, this implies momentum conservation.

Consider the decay of a massive particle A into two particles B and C

A −→ B + C.

Then the 4-momentums are
pA = pB + pC .

Note, we are suppressing the Lorentz indices here. We want to know, what is the energy
of particle B in the rest frame of particle A?

Note: We can set c = 0 in the beginning and then just add it back in at the end (if
we want it there) by checking the units. The initial state 4-momentum, in its own rest
frame (i.e. ~pA = 0), is

pA =

[
EA
~0

]
.

The final state 4-momenta are

pB =

[
EB

~pB

]
, pC =

[
EC

~pC

]
.

Since the initial and final momenta have to be equal, we know that[
EA
~0

]
=

[
EB

~pB

]
+

[
EC

~pC

]
.

We are trying to calculate EB . We see that conservation of 4-momentum requires also
conservation of the relativistic 3-momentum. In this case, ~pC = −~pB . Next, we use the

general relation E =
√
m2 + ~p 2 to simplify EA and EC . We leave EB since that is what

we’re solving for. [
m2
A

~0

]
=

[
EB

~pB

]
+

[ √
m2
C + ~pB

2

−~pB

]
.
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This implies the energy conservation

m2
A = EB +

√
m2
C + ~pB

2.

Moving EB to the left side, squaring both sides, and then solving for ~pB
2 gives us

~pB
2 = m2

A − 2mAEB + E2
B −m2

C .

Then from the general formula EB =
√
m2
B + ~pB

2, we get that

E2
B = m2

B + ~pB
2

E2
B = m2

B +m2
A − 2mAEB + E2

B −m2
C ,

which gives us

EB =
m2
A +m2

B −m2
C

2mA
.

That was the long way of calculating EB . An easier way is to work with invariants (i.e.
scalar products). For example, starting from the equation of 4-momenta pA = pB + pC ,
we can write the square

p2C = (pA − pB)2 = p2A − 2pA · pB + p2B .

Just keep in mind that these are 4-vectors. We know that p2A = m2
A, p2B = m2

B , and
p2C = m2

C (Recall the rule that p2 = m2c2). So

m2
C = m2

A − 2pA · pB +m2
B .

For the remaining scalar product, we have

pA · pB = EAEB − ~pA · ~pB = mAEB ,

since EA = mA and ~pA = 0. Plugging this in and rearranging, we get

EB =
m2
A +m2

B −m2
C

2mA
,

as before.
Discussion:

• If we wanted to calculate something in a different frame, we could calculate in the
frame of particle A and then boost to the desired frame. Typically, this would
involve calculating angles as well.
• The example above was for a particle decay. The same procedures and rules apply

for scattering problems.

2.6 Charges in External EM Fields

Our goal is to construct a relativistic theory for the interaction of a charged particle with
electric and magnetic fields. We will start from the action principle with some action S.
Then we obtain the equations of motion from the condition that the action is stationary
(i.e. δS = 0) at the physical point. We assume we will be able to describe ~E and ~B by
some 4-vector Aµ. Our building blocks will be dτ and Aµdx

µ, both of which are Lorentz
invariant. In the end we will be able to show Lorentz invariance by the contraction of
tensors.

We define the action

S =

ˆ b

a

(
−mc2 dτ − qAµ dxµ

)
,
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where m is the mass of the particle, and q is the coupling or “charge” of the particle.
This is in SI units, and q can be positive, negative, or zero. We can write

dτ =

√
1− v2

c2
dt =

1

γ
dt,

and

dxµ = uµ dτ = γ
c

~v

1

γ
dt,

where uµ is the 4-velocity. Then the action can be written

S =

ˆ t2

t1

dt

[
−mc2 1

γ
− q

(
A0c− ~A · ~v

)]
.

In standard classical mechanics, the action has the form S =
´ t2
t1
dt L(t,~x,~v), where

L(t,~x,~v) is the Lagrangian. In our case, the Lagrangian is

L(t,~x,~v) = −mc2
√

1− v2

c2
− q

(
A0c− ~A · ~v

)
.

Keep in mind that A0 = A0(t,~x) could depend on time and space.
The Euler-Lagrange equations of motion are given by

0 =
d

dt

∂L

∂vi
− ∂L

∂xi
.

Taking the relevant derivatives, we get

∂L

∂vi
= mγvi + qAi = pi + qAi

d

dt

∂L

∂vi
= ṗi + q

∂Ai
∂t

+ q
∂Ai
∂xj

∂xj
∂t

∂L

∂xi
= −qc∂A0

∂xi
+ q

∂

∂xi

(
~A · ~v

)
.

Remember, for partial derivatives, we only care about explicit dependence. Plugging
these into the Euler-Lagrange equation and vectorizing, gives us

0 =
d

dt
~p+ q

∂

∂t
~A+ q

(
~v~∇

)
~A+ qc~∇A0 − q~∇

(
~A · ~v

)
.

Using a vector identity, we can write

~∇
(
~A · ~v

)
=
(
~A · ~∇

)
~v +

(
~v~∇

)
~A+ ~A×

(
~∇× ~v

)
+ ~v ×

(
~∇× ~A

)
.

The first and third terms on the right are zero. Using this result, our Euler-Lagrange
equation becomes the Lorentz force

d

dt
~p = q ~E + q~v × ~B,

where the fields are

~E = −c~∇A0 −
∂

∂t
~A

~B = ~∇× ~A.
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Tip

The vector potential ~A
transforms under Lorentz
transformations like the
spatial part of a 4-vector,
since it is. The fields ~E
and ~B do not.

The 4-vector Aµ is the 4-potential

Aµ =

[
A0

~A

]
=

[
φ/c

~A

]
,

where φ and ~A are the well-known scalar and vector potentials.
We can rewrite the Lorentz force in the manifestly covariant form

dpµ

dτ
= qFµνuν ,

where

Fµν = ∂µAν − ∂νAµ,

is the electromagnetic field tensor. It has components

(Fµν) =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx
Ez/c −By Bx 0

.

The dual field tensor is defined as

F̃µν =
1

2
εµναβF

αβ .

The partial derivatives are defined as

∂µ ≡ ∂

∂xµ
=

[
∂
c∂t

−~∇

]

∂µ ≡
∂

∂xµ
=

[
∂
c∂t

~∇

]
.

If we transform the 4-potential as

Aµ −→ Aµ − ∂µΛ(~x, t),

where Λ(~x, t) is some smooth function, then the field tensor does not change

Fµν −→ ∂µ (Aν − ∂νΛ)− ∂ν (Aµ − ∂µΛ) = ∂µAν − ∂νAµ = Fµν .

This transformation is called a gauge transformation and the field tensor is gauge
invariant.

The Lorentz transform of the electric and magnetic fields, separated by components
parallel and perpendicular to the direction of the relative motion of the frames, is

~E
′
‖ = ~E‖

~B
′
‖ = ~B‖

~E
′
⊥ = γ

(
~E⊥ + ~v × ~B

)
~B
′
⊥ = γ

(
~B⊥ −

1

c2
~v × ~E

)
.
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2.7 Groups and Tensors

The group of transformations which leave

ds2 = c2dt2 − dx2 − dy2 − dz2

invariant is called the Poincare group. It is the semidirect product of the group of
translations

xµ −→ Λµνx
ν + aν ,

and the Lorentz group which consists of:

• Boosts (i.e. Lorentz transformations)
• Rotations [

1 0

0 R

]
,

where R is a 3× 3 rotation matrix with det R = 1.
• Parity (or space reversal) [

1 0

0 −1

]
,

where 1 is the 3× 3 identity matrix.
• Time reversal [

−1 0

0 1

]
.

A tensor of rank n is a quantity with n Lorentz indices. Examples of rank-0 tensors
(also called “scalars”) include numbers like 1 and scalar products of 4-vectors like x · x.
Examples of rank-1 tensors (also called “4-vectors”) are the 4-vectors xµ, pµ, and Aµ.
Examples of rank-2 tensors (also called “matrices”) include gµν and Fµν . An example
of a rank-4 tensor is the totally antisymmetric tensor εµνκλ defined with the convention
ε0123 = −ε0123 = ±1.

Every Lorentz index transforms like that of a space-time 4-vector. For example,

xµ −→ Λµµ′x
µ′

Fµν −→ Λµµ′Λ
ν
ν′Fµ

′ν′
.

Fully contracted products of tensors are Lorentz invariant or covariant because of

ΛT gΛ = g.

For example, to transform a scalar product like

xµy
µ = xT gy,

we can write
x′µy

µ′ = (Λx)T g(Λy) = xTΛT gΛy = xT gy = xµy
µ.

In physics, fields are represented by tensors. For example:

symbol rank realized for

φ 0 Higgs field

Aµ 1 EM photons

hµν 2 graviton
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2.8 Maxwell’s Equations

Now our goal is to derive the equations of motion for the electromagnetic fields.
In general, the action has the form

S = Smatter + Sinteractions + Sfields.

In the last section, we considered only the first two terms

Smatter =

ˆ
dτ
(
−mc2

)
Sinteractions =

ˆ
dτ (−quµAµ) .

In general, Sfields is a function of the degrees of freedom which in this case are Aµ and
∂νAµ

Sfields = Sfields [Aµ, ∂νAµ] =

ˆ b

a

dt Lfields.

If our system consisted of a finite number of particles, then we would sum over a
finite number of degrees of freedom. Now we are dealing with fields, and we have degrees
of freedom at every point in space. Some key differences between dealing with particles
and dealing with fields are:

particles fields∑
i

−→
ˆ
d3x

xµ −→ Aµ(~x, t)

d

dt
xµ −→ ∂νAµ(~x, t)

L =
∑
i

−→ L =

ˆ
d3x L [Aµ(~x, t), ∂νAµ(~x, t)]

Note that L is the Lagrangian density.
The action

S[L] =

ˆ
d4x L,

is now a functional of L, hence the square brackets S = S[. . .]. We want S to be covariant,
i.e., Lorentz invariant. We know that d4x is already Lorentz invariant, so we just need to
ensure that L is Lorentz invariant.

We also want the whole thing to be gauge invariant, i.e., invariant under the trans-
formation

Aµ −→ Aµ − ∂µΛ.

We know that Fµν is gauge invariant. The scalar product AµA
µ is not gauge invariant.

We consider only variations of fields. We write the Lagrangian density as

L = − 1

4µ0
FµνF

µν − jµAµ,

where the first term on the right is the field part of L, and the second term is the
interaction part. The quantity jµA

µ is Lorentz invariant, and FµνF
µν is both Lorentz

and gauge invariant. Recall that previously we had

Linteractions =

ˆ
d3x Linteractions = −quµAµ.
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Now we have Linteractions = −jµAµ. The new quantity jµ is the 4-current density
defined as

jµ =

[
cρ

~j

]
,

where ρ is the regular charge density, and ~j is the regular current density. We treat jµ

here as an external (i.e. non-varying) source.
The action should be stationary, so

0 = δS =

ˆ
d4x

(
∂L
∂Aµ

δAµ +
∂L

∂(∂νAµ)
δ(∂νAµ)

)
=

ˆ
d4x

(
∂L
∂Aµ

δAµ +
∂L

∂(∂νAµ)
∂ν(δAµ)

)
=

ˆ
d4x

(
∂L
∂Aµ

− ∂ν ∂L
∂(∂νAµ)

)
δAµ.

This implies that the quantity in parentheses is zero, so

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= 0.

This is the Euler-Lagrange equation of motion for fields.
In our case, we can write the Lagrangian density in terms of the degrees of freedom

Aν and ∂µAν as

L = − 1

4µ0
FµνF

µν − jµAµ

= − 1

2µ0

(
∂µAν∂

µAν − ∂µAν∂νAµ
)
− jµAµ

= − 1

2µ0

(
∂αAβ∂

αAβ − ∂αAβ∂βAα
)
− jµAµ.

Then

∂L
∂(∂µAν)

= − 1

2µ0

(
2gαµg

β
ν∂αAβ − 2gβµg

α
ν∂αAβ

)
= − 1

µ0

(
∂µAν − ∂νAµ

)
= − 1

µ0
Fµν .

Note that

gαµ = δαµ =

{
1 if α = µ

0 else
.

Then

∂µ
∂L

∂(∂µAν)
= − 1

µ0
∂µFµν .

The other term in the Euler-Lagrange equation is

∂L
∂Aν

= −jµgµν = −jν .

Plugging both terms into the Euler-Lagrange equation and simplifying gives us

∂µF
µν = µ0j

ν .

Let’s consider the ν = 0 component of this equation. We find that

~∇ ·
~E

c
= µ0(cρ),
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where cρ = J0. Then, defining

c2 ≡ 1

µ0ε0
,

we get
~∇ · ~E =

ρ

ε0
.

For the ν = 1 component, we find

− 1

c2
∂Ex
∂t

+
∂Bz
∂y
− ∂By

∂z
= µ0jx.

We find similar equations for ν = 2 and ν = 3. Putting them all together and writing
them in vector form gives us

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~j.

Thus, the relativistic equation ∂µF
µν = µ0J

ν gives us the familiar inhomogeneous Maxwell
equations.

Recall that

F̃µν =
1

2
εµναβFαβ .

If we wanted to work with Fµν instead of Aµ, then we would look at

∂µF̃
µν =

1

2
εµναβ (∂µ∂αAβ − ∂µ∂βAα) = 0.

We know this is zero because we have a symmetric quantity (the quantity in parentheses)
contracted with an antisymmetric quantity (εµναβ). Thus,

∂µF̃
µν = 0.

In components, we get Maxwell’s homogeneous equations

~∇ · ~B = 0

~∇× ~E +
∂ ~B

∂t
= 0.

Earlier, we wrote the interaction part of the action as

Sint = −q
ˆ
dxµ Aµ = −q

ˆ
dt

1

γ
uµAµ(~x0, t).

We also had

Sint = −
ˆ
d4x jµAµ = −

ˆ
dt

ˆ
d3x jµ(~x, t)Aµ~x, t).

By comparison,

q
1

γ
uµAµ(~x0, t) =

ˆ
d3x jµAµ(~x, t).

This implies, after writing uµ/γ = c/~v, that the 4-current for a point charge at ~x0 is

jµ =

[
c

~v

]
δ(3)(~x− ~x0).

While this doesn’t look relativistic, the delta-function ensures that it is.
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Continuity Equation

From the general equation
∂µF

µν = µ0j
ν ,

we can take the partial derivative to get

∂ν∂µF
µν = µ0∂νj

ν .

We know that ∂ν∂µ is symmetric in µ and ν, and we know that Fµν is antisymmetric.
Since a symmetric quantity contracted with an antisymmetric quantity is zero, this implies

∂µj
µ = 0.

In components, this gives us the continuity equation

∂ρ

∂t
+ ~∇ ·~j = 0,

of charge conservation.
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2.9 Summary: Special Relativity

Skills to Master

• Be able to apply time dilation and length contraction to solve problems
• Be able to apply Lorentz transformations to calculate boosted 4-vectors
• Use Minkowski diagrams to understand problems graphically
• Be able to calculate the Doppler effect and the aberration of light
• Use invariant quantities and conservation laws to solve particle decay and scattering problems
• Be able to derive the EM field tensor Fµν components from its definition in terms of Aµ

• Be able to apply Lorentz transformation to electric and magnetic fields

Relativity

We will often utilize the picture of a stationary frame
F and a frame F ′ that is moving with velocity v0 rel-
ative to frame F . Unless noted otherwise, v0 will be
along the x direction, and t = t′ = 0 when the origins
of F and F ′ coincide. All primed quantities will refer
to quantities measured in the moving frame F ′, and all
unprimed quantities will refer to those measured in the
stationary frame F .

Special relativity follows from two axioms:
1. The laws of physics are form invariant
2. The speed of light in vacuum has the same value
c in every inertial (i.e. non-accelerating) frame

One consequence is that there is no absolute simul-
taneity. Even the time-ordering of events can change
depending on your frame of reference.

If a light is flashed at the origin of frame F at time
t = 0 (this also means it flashes at the origin of frame
F ′ at t′ = 0), then the expanding light front in both
frames is the surface of a sphere. Since c is the same
in both frames, the points on this surface satisfy the
Michelson-Morley condition

c2t2 −
(
x2 + y2 + z2

)
= c2t′

2 −
(
x′

2
+ y′

2
+ z′

2
)
.

Lorentz Transformations

If t, x, y, and z are measured in frame F , then the
Lorentz transformation or “boost” gives us the quan-
tities as measured in frame F ′

ct′ = γ (ct− βx)

x′ = γ (x− βct)
y′ = y

z′ = z,

where

γ =
1√

1− β2
, β =

v0
c
.

Notice that the directions perpendicular to the boost
are not affected. To get the inverse transformation
(F ′ → F ), just switch the primes and let β → −β.

For the transformation of velocity; if in frame F ,
~v = (vx, vy, vz), then in frame F ′,

~v ′ =

(
dx′

dt′
,
dy′

dt′
,
dz′

dt′

)
.

Then we can get dx′, dy′, dz′, and dt′ by taking the
differentials of the Lorentz transformation. After plug-
ging those in and simplifying, we get

~v ′ =

(
vx − v0
1− v0vx

c2
,

vy

γ
(
1− v0vx

c2

) , vz

γ
(
1− v0vx

c2

)) .
To get the inverse transformation ~v ′ → ~v, just ex-
change the primes and let ~v0 → −~v0.

For the transformation of acceleration, we have in
frame F , ~a = (ax, ay, az), then in frame F ′, we use the
chain rule to write

~a ′ =

(
dv′x
dt

dt

dt′
,
dv′y
dt

dt

dt′
,
dv′z
dt

dt

dt′

)
.

Then we plug in dt′/dt and differentiate each of the ve-
locity components v′i with respect to t and plug those
in.

An object of length ` at rest in frame F and lying
along the x-axis, has length

`′ =
`

γ
, where always γ > 1,

in frame F ′. This is length contraction. In general, a
moving length always appears shorter. Keep in mind
that this contraction only happens along the direction
of the boost. For example, a moving volume will only
be contracted along one dimension—not along all three
dimensions.

If two events at the origin of frame F are sepa-
rated by a time interval τ , then in the moving frame
F ′, those events will be separated by a time interval

τ ′ = γτ, where always γ > 1,
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This is time dilation. In general, a moving clock runs
slower.

Consider a particle moving with speed v0. If τ
is the (proper) time coordinate in the particle’s rest
frame, and t is the time coordinate in your frame, then

dτ =
1

γ
dt =

√
1− v20

c2
dt.

This can also be derived from the relation c2dτ2 =
c2dt2 − dx2 − dy2 − dz2.

Four-Vectors

A contravariant 4-vector is a 4-component vector of
the form

aµ =

[
a0

~a

]
,

where ~a is a regular 3-vector, and the Lorentz index is
µ = 0, 1, 2, 3. The corresponding covariant 4-vector is

aµ =

[
a0

−~a

]
.

They are related via

aµ = gµνaν , aµ = gµνa
ν ,

where

gµν = gµν =


1

−1

−1

−1

,
is the metric tensor of Minkowski space. To raise or
lower a single Lorentz index of a 4-vector or tensor,
multiply the object by the metric tensor. The contrac-
tion of the two objects will result in the three spatial
components associated with the index receiving a neg-
ative sign.

The scalar product of two 4-vectors is

a · b = aµb
µ = aµgµνb

ν = aT gb = a0b0 − ~a ·~b.

In general, we use Einstein summation for repeated
indices. The scalar product of 4-vectors is invari-
ant under rotations, parity, time reversal, and most
importantly—Lorentz transformations. Therefore, the
scalar product of two 4-vectors as measured in frames
under relative motion will be equal

a · b = a′ · b′.

Some useful 4-vectors include

xµ =

[
ct

~x

]
, ←position

uµ = γ

[
c

~v

]
, ←velocity

pµ = m
dxµ

dτ
= mγ

[
c

~v

]
=

[
E/c

~p

]
, ←momentum

kµ =

[
ω/c

~k

]
, ←wave vector

Aµ =

[
φ/c

~A

]
, ←EM potential

jµ =

[
cρ

~j

]
, ←current density

∂µ ≡ ∂

∂xµ
=

[
1
c
∂
∂t

−~∇

]
, ←derivative.

Note, that ~p, wherever it appears, is defined to be
the relativistic 3-momentum

~p = γm~v,

which is the ordinary 3-momentum multiplied by γ.
Since p2 is invariant, including in a particle’s rest

frame, we have the general relation

p2 = m2c2.

The relativistic energy is

E = γmc2 =
√
m2c4 + ~p 2c2.

For massless particles,

E = |~p|c.

The 4-current for a point charge at ~x0 is

jµ = q

[
c

~v

]
δ(3)(~x− ~x0).

The Lorentz transformation of a 4-vector a is

a′ µ = Λµνa
ν .

So if a is the 4-vector in frame F , then a′ is that 4-
vector in F ′. The Λµν are the elements of the Lorentz
transformation matrix. If the relative motion is occur-
ring only along the x-direction, then

Λ = [Λµν ] =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

.
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Then we can write the transformation as the matrix-
vector equation a′ = Λa.

Given a 4-vector a in frame F , get the transformed
vector a′ by a′ = Λa. Given a′ (i.e. the 4-vector in the
moving frame), then a = Λ−1a′. The only difference
between Λ and Λ−1 is that the minuses in Λ are turned
to pluses in Λ−1.

Alternatively, we can write the Lorentz matrix as

(Λµν) =


cosh ζ − sinh ζ 0 0

− sinh ζ cosh ζ 0 0

0 0 1 0

0 0 0 1

,
where ζ is the rapidity defined as

cosh ζ = γ, tanh ζ = β.

Note that rapidities add directly. For two consecutive
boosts in the x-direction with rapidities ζ1 and ζ2, the
overall rapidity is ζ1 + ζ2. This is unlike the compli-
cated equation for the addition of velocities.

In general, the Lorentz matrix (Λµν) is a symmet-
ric matrix with

det(Λµν) = 1.

In general,
ΛT gΛ = g.

This forces fully contracted products of tensors to be
Lorentz invariant. For example, for the scalar product,

x′µy
µ′ = (Λx)T g(Λy) = xTΛT gΛy = xT gy = xµy

µ.

Applications

If x is the spacetime interval between two events, then
the sign of x2 tells you if the two events could be
causally connected

• If x2 > 0, then the relation between the two
events is called time-like

• If x2 = 0, then the relation is light-like
• If x2 < 0, then the relation is space-like (i.e.

causally disconnected)

We can draw frames F and F ′ on a single
Minkowski diagram. Then to scale between the two
frames, we use a Lorentz invariant like

c2t2 − x2 = ct′ 2 − x′ 2 = const.

This is the equation of a hyperbola with the light lines
as asymptotes. Then, we can relate a unit length ` (or
unit time) in frame F to the length scale `′ in frame
F ′ by tracing along the hyperbolae.

Consider a light source at rest in frame F . At
a point on the light front, the wave is propagating
outward with some wave vector kµ whose spatial part
~k makes some angle θ with the x-axis. In frame F ′

moving in the x-direction with speed β relative to F ,
the same point on the wave front has wave vector k′ µ

and makes an angle θ′ with the x-direction. The two
wave vectors are related by the Lorentz transforma-
tion k′ µ = Λµνk

µ. Write the wave vectors in terms of

ω and θ and ω′ and θ′. Remember that |~k| = ω/c for a
light wave. Then the zeroth component of the Lorentz
transformation gives us

ω′ =
ω

γ (1− β cos θ′)
.

This shift of the light’s frequency is called the Doppler
effect. Similarly, the one-component of the Lorentz
transformation gives us

cos θ′ =
cos θ + β

1 + β cos θ
.

This change in the direction of the light’s propagation
as seen from different frames is called the aberration of
light.

To solve scattering problems and decays, we use
conservation laws and invariant quantities. In general,
total momentum is conserved,∑

i

pµi =
∑
f

pµf .

General approaches include:

• Write down the conservation of momentum equa-
tion in terms of vectors. The first component im-
plies energy conservation. The other components
imply conservation of relativistic 3-momentum.
Simplify the energies using E =

√
m2c4 + ~p 2c2

• Write down the conservation of momentum equa-
tion. Rearrange (if necessary), and square both
sides to get the invariant quantity p2. Simplify
using p2 = m2c2 and pA·pB = EAEB/c

2−~pA·~pB .

Charged Particles in EM Fields

In special relativity, electromagnetic fields ~E and ~B,
are ultimately derived from the 4-potential Aµ.

The relativistic Lagrangian for a charged particle
in electromagnetic fields is

L(t,~x,~v) = −mc2
√

1− v2

c2
− q

(
A0c− ~A · ~v

)
.

Plugging this into the action S =
´
dt L and minimiz-

ing, yields the Euler-Lagrange equation, which gives us
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the Lorentz force

d

dt
~p = q ~E + q~v × ~B,

where the fields are

~E = −c~∇A0 −
∂

∂t
~A

~B = ~∇× ~A.

The Lorentz force can be written in the form

dpµ

dτ
= qFµνuν ,

where
Fµν = ∂µAν − ∂νAµ,

is the electromagnetic field tensor. It is antisymmetric
and has components

(Fµν) =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx
Ez/c −By Bx 0

.
It transforms under Lorentz transformation as

F ′ αβ = ΛαµΛβνF
µν ⇐⇒ F ′ = ΛFΛT .

The dual field tensor is defined as

F̃µν =
1

2
εµναβF

αβ .

The field tensor, and thereby the fields, are gauge
invariant. If we make the gauge transformation

Aµ −→ Aµ − ∂µΛ(~x, t),

where Λ(~x, t) is some smooth function, then the field
tensor does not change.

The Lorentz transform of the electric and mag-
netic fields is

~E
′
‖ = ~E‖

~B
′
‖ = ~B‖

~E
′
⊥ = γ

(
~E⊥ + ~v × ~B

)
~B
′
⊥ = γ

(
~B⊥ −

1

c2
~v × ~E

)
.

This comes from the Lorentz transformation F ′ µν =
Aµµ′Aνν′Fµ

′ν′
, which is equivalent to the matrix mul-

tiplication F ′ = ΛFΛT . Notice that the components
parallel to the direction of the relative motion of the
frames do not change.

Maxwell’s Equations

For the electromagnetic fields (instead of a particle
within the fields), the Lagrangian density is

L = − 1

4µ0
FµνF

µν − jµAµ.

Then the Lagrangian is L =
´
d3x L, and the action

is S =
´
dt L. Minimizing the action and solving the

resulting Euler-Lagrange equation gives us

∂µF
µν = µ0j

ν .

This gives us the inhomogeneous Maxwell equations.
The ν = 0 component of this gives us the scalar equa-
tion

~∇ · ~E =
ρ

ε0
.

The ν = 1, 2, 3 components give us the vector equation

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~j.

If we use the dual tensor F̃µν in the Lagrangian
instead of Fµν , then we get

∂µF̃
µν = 0.

The components of this gives us Maxwell’s homoge-
neous equations

~∇ · ~B = 0

~∇× ~E +
∂ ~B

∂t
= 0.

Note that

c2 ≡ 1

µ0ε0
.

If we differentiate ∂ν(∂µF
µν) = ∂ν(µ0j

ν), we get

∂µj
µ = 0.

This is the continuity equation, and in components,

∂ρ

∂t
+ ~∇ ·~j = 0.
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Electrostatics

Recall Maxwell’s equations

~∇ · ~E =
ρ

ε0

~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~j.

Consider now the simplified case where the current and charge densities do not change in
time

∂ρ

∂t
=
∂~j

∂t
= 0,

the electric and magnetic fields do not change in time

∂ ~E

∂t
=
∂ ~B

∂t
= 0,

and everything is in a vacuum. Then, Maxwell’s equations simplify to the equations of
electrostatics

~∇ · ~E =
ρ

ε0
~∇× ~E = 0.

and magnetostatics

~∇ · ~B = 0

~∇× ~B = µ0
~j.

We will study magnetostatics in the next chapter.

3.1 Gauss’s Law

The first of Maxwell’s equations of electrostatics is

~∇ · ~E =
ρ

ε0
.
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If we integrate this over some volume V ,
ˆ
V

~∇ · ~E dV =
1

ε0

ˆ
V

ρ dV,

then we can rewrite the left-hand side by using the divergence theorem

ˆ
A(V )

~E · d ~A =
1

ε0

ˆ
V

ρ dV =
Qenc
ε0

.

This is Gauss’s law. The integral on the left is over the surface A(V ) of the volume V .

Note that d ~A = n̂ dA, where dA is an elemental area of the surface and n̂ is the unit
vector normal to the surface at that point. The second integral is the integral of the
charge density ρ over the volume, so it gives the total charge enclosed in the volume V .

Note that Gauss’s law is only useful for simple distributions with some kind of sym-
metry. If you can solve a problem using Gauss’s law, then that is usually the fastest way
of doing it.

Similarly, we can integrate the second equation of electrostatics over some surface A
ˆ
A

(
~∇× ~E

)
d ~A = 0.

Then we can rewrite the left-hand side using Stoke’s theorem to get
˛
~E · d~̀= 0,

where the closed line integral is over the closed path along the border of the surface A.

Point Charges

What is the electric field ~E produced by a point charge q at ~r0?
The charge density for a single point charge q at ~r0 is

ρ(~r) = qδ(3)(~r − ~r0).

Note that the particle sits at ~r0 in our coordinate system, and we are measuring the field
from the position ~r. We will denote the vector pointing from ~r0 to ~r as ~R = ~r − ~r0. To
use Gauss’s law, we consider a sphere of radius R = |~R| centered on the particle at ~r0.
Now the measurement point ~r is somewhere on the surface of the sphere. The surface
element d ~A is a vector with magnitude dA that points outward normally to the surface
of the sphere at point ~r.

Since there’s only a single charge at the center of the sphere, we know that ~E ‖ d ~A, and
we know the field is radially symmetric, so we can write it in the form

~E = f(R)
~R

|~R|
,
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where f(R) is a unitless function that gives the magnitude of the field, and ~R/|~R| is
included to get the right units. Then Gauss’s law reduces to

ˆ
dA f(R) =

q

ε0
.

The function f(R) is independent of position on the surface of the Gaussian sphere, so
we can pull it outside of the integral, then

´
dA is just the surface area of the sphere

f(R)

ˆ
dA = 4πR2f(R) =

q

ε0
.

Thus, we find that the field of a point charge q at ~r0 is

~E(~r) =
q

4πε0

~r − ~r0
|~r − ~r0|3

.

If we have multiple point charges, then we can add their fields using the principle
of superposition

~E(~r) =
1

4πε0

∑
i

qi
~r − ~ri
|~r − ~ri|3

,

where i goes over the particles.
For a smooth charge distribution, i.e. for macroscopic objects, consider the charge

dq = ρ dV in a small volume dV . Then

~E(~r) =
1

4πε0

ˆ
d3r′ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
. (3.1)

This is the formula for the “direct integration” of the field ~E generated by a continuous
charge distribution ρ.

Charge Distributions

For a point charge at the origin, the charge distribution in Cartesian coordinates is

ρ(~r) = δ(3)(~r) = δ(x)δ(y)δ(z).

We will also have to consider surface charge distributions when we have infinitesi-
mally thin surfaces. For example, if we have an infinitesimally thin sheet of charge in the
xy-plane, then the charge distribution has the form

ρ(~r) = G(x, y) δ(z),

where G(x, y) is the Cartesian surface charge distribution. If we are in coordinates other
than Cartesian coordinates, then the form of ρ(~r) will look different. However, we can
always parametrize it to get it in the above form so that we can read off the Cartesian
surface charge distribution G(x, y).

For a line of charge along the z-axis, we would write

ρ(~r) = λ(z) δ(x) δ(y),

where λ(z) is the line charge distribution in Cartesian coordinates.
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Example 3.1.1

Write down the charge distribution ρ(~r) in cylindrical and in spherical co-
ordinates if the charge distribution is a ring of radius R, lying in the xy-plane,
centered on the z-axis, and carrying a line charge density λ(φ).

For spherical coordinates, the temptation might be to write

ρ(~r) = λ(φ)δ(r −R)δ(θ − π/2).

But this is wrong! Notice that the units are incorrect. The left-hand side has
units of charge over length-cubed. Recalling that the units of the delta function is
the reciprocal of its argument, we see that the right-hand side has units of charge
over length-squared. In spherical coordinates, δ3(~r) 6= δ(r) δ(θ) δ(φ). Rather,

δ3(~r) = δ(r)
δ(θ)

r

δ(φ)

r sin θ
.

The correct charge distribution in our case is

ρ(~r) =
λ(φ)δ(r −R)δ(θ − π/2)

r sin θ
.

In cylindrical coordinates, we have

ρ(~r) = λ(φ)δ(s−R)δ(z).

Given the charge distribution ρ(~r), we can obtain the electric field by direct inte-
gration via Eq. (3.1). Given the electric field, we can compute the charge density by
rearranging one of the Maxwell equations

ρ = ε0~∇ · ~E.

Note, whenever you have a field that behaves as

~E ≈ const · ~r
|~r|3

= const · r̂
r2
,

when ~r ≈ 0, then this behavior is being generated by a point charge at the origin. I.e.,
its generation requires a δ(3)(~r) distribution. When you see that, it is typically helpful to
treat the point at the origin separately.

Charged Sphere

Consider a charged sphere of radius R with a spherically symmetric charge distribution
ρ(~r) = ρ(r).

We will consider a Gaussian sphere of radius r, where r ≤ R to calculate the field
inside the charged sphere or r ≥ R to calculate the field outside the charged sphere.
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We then apply Gauss’s law

ˆ
A(V )

~E · d ~A =
1

ε0

ˆ
V

dV ρ.

The radial symmetry of the charge distribution implies that ~E(~r) = E(r) r̂ and d ~A =
dA r̂. Then ˆ

dA E(r) = E(r)

ˆ
dA = E(r)4πr2 =

1

ε0
Q(r),

where

Q(r) =

ˆ
V (r)

ρ dV,

is the charge contained within the Gaussian sphere of radius r. So the electric field of the
charged sphere is

~E(~r) = E(r) r̂ =
1

4πε0
Q(r)

r̂

r2
.

For a uniformly charged sphere, we can write the charge distribution as

ρ(r) = ρ0 θ(R− r),

where the Heaviside step function θ(R− r) is +1 for r ≤ R, and 0 for r > R.
An example of a non-uniformly charged sphere is

ρ(r) = ρ0
r

R
θ(R− r).

A plot of this charge distribution is shown below:

Then if r ≤ R, the charge enclosed is

Q(r) =

ˆ
d3r′ ρ(~r ′) =

ˆ
dΩ

ˆ r

0

dr′ r′ 2 ρ0
r′

R
θ(R− r′) = 4π

ρ0
R

ˆ r

0

r′ 3dr =
πρ0
R
r4.

To get the total charge of the whole charged sphere, we just plug in R to get

Qtot = Q(R) = πρ0R
3.

Notice that in general, we can write

Q(r) = Qtot

( r
R

)4
.

For r ≥ R, i.e. outside the sphere, the charge enclosed is just Q(r) = Qtot since the
θ-function cuts off the integral at that point.
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Tip

Whenever you compute
quantities, make a habit of
checking the units of your
final quantity.

For the electric field, we get

~E(~r) =

{
Qtot
4πε0

1
r2

(
r
R

)4
r̂ for r < R

Qtot
4πε0

1
r2 r̂ for r > R

3.2 Electrostatic Potential

Helmholtz Theorem

The Helmholtz theorem gives us an alternative way to obtain ~E from ρ. It states that
for any smooth function ~C(~r),

~C(~r) = − 1

4π
~∇
ˆ
d3r′

~∇ ′ · ~C(~r ′)

|~r − ~r ′|
+

1

4π
~∇×

ˆ
d3r′

~∇ ′ × ~C(~r ′)

|~r − ~r ′|
.

This theorem is valid whenever these two integrals are well defined. Note that ~∇ ′ acts
on ~r ′ (not ~r).

We apply this theorem to the electrostatic field

~E(~r) = − 1

4π
~∇
ˆ
d3r′

~∇ ′ · ~E(~r ′)

|~r − ~r ′|
+

1

4π
~∇×

ˆ
d3r′

~∇ ′ × ~E(~r ′)

|~r − ~r ′|
.

We know that ~∇ ′ × ~E(~r ′) = 0, so the second integral is zero in this case. We also know

that ~∇ ′ · ~E(~r ′) = ρ(~r ′)/ε0, so the above simplifies to

~E(~r) = − 1

4π
~∇
ˆ
d3r′

ρ(~r ′)/ε0
|~r − ~r ′|

.

So we can write the electric field as the gradient of a scalar function

~E(~r) = −~∇φ(~r), (3.2)

where

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(~r ′)

1

|~r − ~r ′|
+ const.
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We choose the constant to be zero. Otherwise, we get contributions from all distant
charges since a constant does not go to zero as r →∞. By setting the constant to zero,
we get φ→ 0 as r →∞. So our scalar potential is

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(~r ′)

1

|~r − ~r ′|
. (3.3)

Note, for a point charge at ~r0, we find the scalar potential

φ(~r) =
q

4πε0

1

|~r − ~r0|
.

What happens if we take the gradient of this potential? We find that

~∇ 1

|~r − ~r ′|
=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)(
(x− x′)2 + (y − y′)2 + (z − z′)2

)−1/2
=

(
− 2(x− x′)

2|~r − ~r ′|3
,− 2(y − y′)

2|~r − ~r ′|3
,− 2(z − z′)

2|~r − ~r ′|3

)
= − ~r − ~r ′

|~r − ~r ′|3
.

Using this, we can take the gradient of the potential given in Eq. (3.3) then plug it into
Eq. (3.2), and we get

~E(~r) =
1

4πε0

ˆ
d3r′ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
.

This is the same result we got earlier for the electric field of a continuous charge distri-
bution.

3.3 Electric Force and Work

The force due to an electrostatic field ~E on a test charge q is

~F = q ~E.

A “test” charge means that it probes the field but does not change it.
The mechanical work done to bring a charge from ~ri to ~rf along a path C, is

W~ri→~rf =

ˆ
C

~F · d~̀= q

ˆ
C

~E · d~̀= −q
ˆ
C

(
~∇φ
)
d~̀.

Thus,

W~ri→~rf = −q
(
φ(~rf )− φ(~ri)

)
.

This is path-independent, which means the electric force is conservative.
The equation W = q

´
~E ·d~̀ implies that no work is done for motion perpendicular to

~E. So along those lines, the electric potential φ is constant. We call them “equipotential
surfaces”.

In the image below, the red lines illustrate a few of the field lines for an electric
dipole, and the blue lines show the equipotential surfaces.
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3.4 Electric Moments

Electric Monopole

Recall that for a point charge q, the potential is

φmono =
q

4πε0

1

r
,

and it goes as

φmono ∼
1

r
.

For a point charge q, the monopole is just the charge q. For a general charge distri-
bution ρ(~r ′), the monopole is the total charge

Q =

ˆ
d3r′ ρ(r′).

The monopole is also called the zeroth moment.

Electric Dipole

Consider an electric dipole with a charge −q at the origin, a charge +q at ~a, and the
observer at ~r, as shown below.

Then the potential is

φ =
q

4πε0

(
1

|~r − ~a|
− 1

|~r|

)
.

We want to consider the large distance behavior. That is, we want to look at the a << r
limit.

In general, for a Taylor expansion for small a, we can write

f(~r + ~a) ≈ f(~r) + ax
∂f

∂x

∣∣∣
~r

+ ay
∂f

∂y

∣∣∣
~r

+ az
∂f

∂z

∣∣∣
~r

+ · · · ≈ f(~r) + ~a · ~∇f.
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In our case,
1

|~r − ~a|
≈ 1

|~r|
− ~a · ~∇ 1

|~r|
+ · · · .

So

φ =
1

4πε0

(
1

|~r|
− ~a · ~∇ 1

|~r|
+ · · · − 1

|~r|

)
≈ 1

4πε0
q~a
r̂

r2
.

If we write
~p = q~a,

for the dipole moment, then

φdip =
1

4πε0

~p · r̂
r2

,

is the potential of a point dipole. Notice that this formula is independent of the coordinate-
system, and that it goes as

φdip ∼
1

r2
.

Note that ~p = q~a is the dipole moment for a pair of point charges separated by a
distance a. For a general charge distribution ρ(~r ′), the dipole moment is

~p =

ˆ
d3r′ ρ(r′)~r ′.

This is also called the first moment.
The electric field of the dipole is

~E(~r) =
1

4πε0

3(~p · r̂)r̂ − ~p
r3

.

Note, this is for an ideal point dipole. It can be used to approximate the electric fields of
non-ideal dipoles at large distances.

Next, consider the force on a dipole that is in an external field ~E. The force on the
minus charge is

~F− = −q ~E(~r−),

and the force on the positive charge is

~F+ = q ~E(~r+).

If we define ~r ≡ ~r−, and ~r+ = ~r + ~a, then

~F− = −q ~E(~r),

and
~F+ = q ~E(~r + ~a) ≈ q ~E(~r) + q~a

(
~∇ · ~E(~r)

)
.



3.4. Electric Moments 43

Tip

The interaction force be-
tween two dipoles is in gen-
eral not a central force.

Then the total force on the dipole is

~F = ~F− + ~F+ = q~a
(
~∇ · ~E(~r)

)
= ~p

(
~∇ · ~E(~r)

)
.

This can be written as

~F dip = ~p
(
~∇ · ~E

)
= ~∇

(
~p · ~E

)
,

since ~p is constant and ~E is curl-less.
The potential energy of the dipole is

U = −
ˆ
~F · d~̀= −~p · ~E.

The torque on the dipole is

~τ = ~τ− + ~τ+ = ~r− × ~F− + ~r+ × ~F+

= −q~r × ~E(~r) + q(~r + ~a)×
(
~E(~r) + ~a

(
~∇ · ~E(~r)

))
≈ (~r + ~p)(~∇ · ~E) + ~p× ~E.

Thus,

~τ = ~p× ~E + ~r × ~F .

Now, consider the two dipoles ~p1 and ~p2 as shown in the image below.

The dipole ~p2 is at the origin of our coordinate system, and ~r1 gives the position of dipole
~p1. There is no external electric field. However, each dipole has its own electric field, and
this field exerts a force on the other dipole. The potential energy of this interaction is

U = −~p1 · ~E2(~r1) = −~p2 · ~E(~0),

where, for example, ~E2(~r1) is the field due to ~p2 at the position ~r1. We can write this as

U =
1

4πε0

~p1 · ~p2 − 3 (~p2 · r̂) (~p1 · r̂)

r3
.

Electric Quadrupole

Consider the following square arrangement of two positive charges +q and two negative
charges −q. The sides of the square are a. We want to know the potential due to these
charges at some distant test point located at ~r.
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This arrangement of charges has zero net charge and zero dipole moment. We will denote,
for example, the vector from the charge in the positive x and positive y quadrant to the
test point ~r by ~r++. Similarly, the vector from the charge in the bottom right quadrant
to the test point is ~r+−. Then

~r++ = ~r − a

2
(1, 1, 0)

~r+− = ~r − a

2
(1,−1, 0)

~r−+ = ~r − a

2
(−1, 1, 0)

~r−− = ~r − a

2
(−1,−1, 0) .

Then the potential at ~r is

φ(~r) =
q

4πε0

(
1

r++
+

1

r−−
− 1

r+−
− 1

r−+

)
.

Next, we expand each term at large distance r >> a. To do a Taylor expansion of a
multivariable function about the point ~r, we use

f(~r + δ~r) = f(~r) +
(
∂if(~r)

)
δri +

1

2

(
∂i∂jf(~r)

)
δri δrj + · · ·

= f(~r) +
(
~∇f(~r)

)
δ~r +

1

2

(
∂i∂jf(~r)

)
δri δrj + · · · .

Note, summation should be performed over repeated indices.
For example, to expand 1/r++, we use ~r++ = ~r + δ~r, where δ~r = −(a/2)(1, 1, 0).

Then

1

r++
=

1

r
+ ~∇

(
1

r

)
·
(
−a

2

)
(1, 1, 0) +

1

2

(a
2

)2
(∂x∂x + 2∂x∂y + ∂y∂y)

1

r
+ · · ·

=
1

r
+

a

2r2
r̂ · (1, 1, 0) +

a2

8
(∂x∂x + 2∂x∂y + ∂y∂y)

1

r
+ · · · .

For the other three terms, we get

1

r−−
=

1

r
+

a

2r2
r̂ · (−1,−1, 0) +

a2

8
(∂x∂x + 2∂x∂y + ∂y∂y)

1

r
+ · · ·

− 1

r+−
= −1

r
− a

2r2
r̂ · (1,−1, 0)− a2

8
(∂x∂x − 2∂x∂y + ∂y∂y)

1

r
+ · · ·

− 1

r−+
= −1

r
− a

2r2
r̂ · (−1, 1, 0)− a2

8
(∂x∂x − 2∂x∂y + ∂y∂y)

1

r
+ · · · .
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When we add all four results together, the first term in each cancels due to there being
zero net charge. The second term in each cancels due to there being zero net dipole. In
the third term, only the mixed derivatives don’t cancel. We are left with

φ =
q

4πε0
a2
(
∂x∂y

1

r

)
.

Taking the partial derivative with respect to x (we are free to change their order),

∂x
1

r
= ∂x

1√
x2 + y2 + z2

= − x

r3
.

Taking the derivative with respect to y,

∂y∂x
1

r
= −x ∂y

1

r3
=

3xy

r5
.

So we get the quadrupole potential

φquad =
q

4πε0
a2

3xy

r5
.

Note that the quadrupole potential goes as

φquad ∼
1

r3
.

For a general charge distribution ρ(~r ′), the quadrupole moment is defined by the
quadrupole tensor

Qij =

ˆ
d3r′ ρ(r′)

(
3r′ir

′
j − r′ 2δij

)
.

This is also called the second moment. Note that the quadrupole tensor can be thought
of as a 3× 3 matrix. The indices i and j go over x, y, and z.

Some important properties of the quadrupole tensor include:

• It is traceless

Qijδij = 0.

Note, we are summing over repeated indices here.
• It is symmetric

Qij = Qji.

This implies that it can be diagonalized using orthogonal matrices (i.e. rotations).
In practice, Qij can be diagonalized by choosing a coordinate system aligned with
the principal axis (i.e. a symmetry axis) of Qij .
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Tip

A symmetry axis is a prin-
cipal axis, so if the coordi-
nate system is aligned with
a symmetry axis, then Qij
is diagonal.

Tip

Be careful that you inter-
pret r̂i = (r̂)i correctly.

If Qij is diagonalized by the proper choice of coordinate system, then we only need
to know three components to know the whole thing

Qxx

Qyy

Qzz

.
Then, since we know it is also traceless, we can reduce this to two required components
by writing

Qzz = −Qxx −Qyy.

If we have an additional symmetry in the problem, we can reduce the number of com-
ponents to calculate even further. For example, if our problem has cylindrical symmetry
(rotational symmetry about the z-axis), then the x and y components are the same

Qyy = Qxx.

Then we only need to calculate the single component Qxx to know the whole quadrupole
tensor.

For general charge distributions, the quadrupole potential is

φquad =
1

4πε0

1

2
Qij

r̂ir̂j
r3

.

For a discrete charge distribution,

Qij =
∑
a

qa
(
3rirj − r2δij

)
,

where the sum is over the charges.

Example 3.4.1

Calculate the quadrupole tensor for the distribution of four charges shown in
the beginning of this section.

We have a discrete distribution of four charges, so we use the formula

Qij =

4∑
a=1

qa
(
3rirj − r2δij

)
.

All of the charges are a distance r =
√

2a/2 from the origin, so r2 = a2/2.
For example,

Qxx =

4∑
a=1

qa

(
3x2 − a2

2

)
= q

(
3
(a

2

)2
− a2

2

)
− q

(
3
(a

2

)2
− a2

2

)
+ q

(
3
(a

2

)2
− a2

2

)
− q

(
3
(a

2

)2
− a2

2

)
= 0.

Similarly, for the other diagonal elements, we get zero, Qyy = Qzz = 0.
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Tip

The quadrupole tensor has
9 components. However,
you can use its proper-
ties and the symmetries of
the problem to reduce the
number of components that
have to be calculated.

For the off-diagonal elements, the Kronecker delta is zero. Then the terms
containing z are zero: Qxz = Qzx = Qyz = Qzy = 0. A nonzero term is

Qxy =
∑
a

qa (3xy)

= q

(
3
a2

4

)
− q

(
−3

a2

4

)
+ q

(
3
a2

4

)
− q

(
−3

a2

4

)
= 3qa2.

Since the tensor is symmetric, we know that Qyx = 3qa2. So the full quadrupole
tensor is

Qij =


0 3qa2 0

3qa2 0 0

0 0 0

.

Example 3.4.2

Consider a spheroidal and homogeneous charge distribution ρ with semimajor
axis a and semiminor axis b. This is a crude model of the charge distribution of a
nucleus.

We can use scaled spherical coordinates

x = aη sin θ cosφ

y = aη sin θ sinφ

z = bη cos θ,

where η ∈ [0, 1], φ ∈ [0, 2π], and θ ∈ [0, π].
Then

Qzz =

ˆ
d3r′ ρ(r′)

(
3z′z′ − δz′z′r′ 2

)
.

The Jacobian to go from x, y, z to η, θ, φ is

J = a2bη2 sin θ.

Then

3z′ 2 − r′ 2 = 3z′ 2 − (x′ 2 + y′ 2 + z′ 2)

= 2z′ 2 − x′ 2 − y′ 2

= 2b2η2 cos2 θ − a2η2 sin2 θ.
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Then

Qzz =

ˆ
a2bη2 sin θ dη dθ dφ ρ0

(
2b2η2 cos2 θ − a2η2 sin2 θ

)
.

This reduces to

Qzz =
2

5
ρ0V (b2 − a2),

where the volume is

V =
4

3
a2bπ.

Rotational symmetry about the z-axis implies that Qij is diagonal, and
Qxx = Qyy. The tracelessness of Qij implies that Qxx = Qyy = − 1

2Qzz. So
our quadrupole tensor is

Qij =
2

5
ρ0V (b2 − a2)


− 1

2 0 0

0 − 1
2 0

0 0 1

.
Since there is net charge, we know that Qij is not independent of the choice of
origin.

3.5 Multipole Expansion

Suppose we have some general charge distribution ρ(~r ′) which is localized near the origin
of our coordinate system. What is the potential at large distance?

The potential is

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(r′)

1

|~r − ~r ′|
.

We want to expand this for large r.
We can Taylor expand

1

|~r − ~r ′|
=

1

|~r|
+ r′i

∂

∂r′i

1

|~r − ~r ′|

∣∣∣
~r ′=0

+
1

2
r′ir
′
j

∂

∂r′i

∂

∂r′j

1

|~r − ~r ′|

∣∣∣
~r ′=0

+ · · · .

We can write these derivatives as

∂

∂r′i

1

|~r − ~r ′|

∣∣∣
~r ′=0

= − ∂

∂ri

1

|~r − ~r ′|

∣∣∣
~r ′=0

= −∂i
1

r
,

and then
∂

∂r′i

∂

∂r′j

1

|~r − ~r ′|

∣∣∣
~r ′=0

= ∂i∂j
1

r
.

Then
1

|~r − ~r ′|
=

1

r
− r′i∂i

1

r
+

1

2
r′ir
′
j∂i∂j

1

r
+ · · · .
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If we plug this back into the integral, we get

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(r′)

[
1

r
− r′i∂i

1

r
+

1

2
r′ir
′
j∂i∂j

1

r
+ · · ·

]
= φ(0) + φ(1) + φ(2) + · · ·

where φ(0) is the monopole term, and so on. At large r, only the leading term (i.e. the
first nonzero term) φ(i) dominates.

Recall that the monopole potential is

φ(0) =
1

4πε0

Qtot
r
,

where the monopole is

Qtot =

ˆ
d3r′ ρ(r′).

Recall that the dipole potential is

φ(1) =
1

4πε0

~p · r̂
r2

,

where the dipole is

~p =

ˆ
d3r′ ρ(r′)~r ′.

The quadrupole potential is

φ(2) =
1

4πε0

ˆ
d3r′ ρ(r′)

1

2
r′ir
′
j∂i∂j

1

r
.

We can write

∂i∂j
1

r
= ∂i

(
− rj
r3

)
=

(
−δij
r3

+
3rirj
r5

)
. (3.4)

This expression is traceless. That is,

3∑
i,j=1

δij∂i∂j
1

r
= 0.

From Eq. (3.4), we have that

r′ir
′
j∂i∂j

1

r
=
(
r′ir
′
j

)(
−δij
r3

+
3rirj
r5

)
.

Since the expression in parentheses is already traceless, if we contract this quantity with
another term containing δij , we don’t change anything. So we can write

r′ir
′
j∂i∂j

1

r
=

(
r′ir
′
j −

1

3
r′ 2δij

)(
−δij
r3

+
3rirj
r5

)
.

We have not changed anything, since the inclusion of the term − 1
3r
′ 2δij has only the

effect of adding zero. The prefactors − 1
3r
′ 2 are there for later convenience. Notice that,

up to a factor of 3, the quantity in the left pair of parentheses is the integrand of the
quadrupole tensor Qij , which we defined earlier. We know that this is also a traceless

quantity, which means the − δijr3 in the second parentheses now has only the effect of
adding a zero. So we can now remove it and write

r′ir
′
j∂i∂j

1

r
=

(
r′ir
′
j −

1

3
r′ 2δij

)(
3rirj
r5

)
.
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Tip

A given moment is indepen-
dent of the choice of origin
only if all lower moments
are zero.

Tip

Be careful that you inter-
pret r̂i = (r̂)i correctly.

Thus, putting it all back together, we get the quadrupole potential

φ(2) =
1

4πε0

1

2
Qij

r̂ir̂j
r3

.

In general, any moment is independent of the choice of origin only if all lower moments
are zero. For example, if the monopole and dipole moments of a system are both zero,
then the quadrupole moment of the system is independent of the choice of origin. Then
we could perform a system translation ~ri

′ → ~ri
′ + ~ai without affecting the quadrupole

moment.
The multipole expansion of the potential of a point charge at the origin yields a single

moment—the monopole. All higher multipoles are zero. Similarly, two oppositely charged
particles centered on the origin will yield a nonzero dipole term, but a zero quadrupole
term. However, the quadrupole term depends on the choice of origin since the dipole
term is nonzero. If the two charges are shifted away from the origin, then there will be a
nonzero quadrupole term.

We did the multipole expansion in Cartesian coordinates. These are not ideal for
rotationally-symmetric systems. For those systems, spherical coordinates are more con-
venient. However, spherical coordinates are a local coordinate system in that the unit
vectors change with position. So when we do the expansion in spherical coordinates, we
have to account for that.

All together, we write the multipole expansion of the potential as

φ =
1

4πε0

(
Qtot
r

+
~p · r̂
r2

+
1

2!
Qij

r̂ir̂j
r3

+
1

3!
Qijk

r̂ir̂j r̂k
r4

+ · · ·
)
.

We can calculate the electric field of the charge distribution using ~E = −~∇φ. Then

~E
(0)

=
1

4πε0
Qtot

r̂

r2

~E
(1)

=
1

4πε0

1

r3

[
3(~p · r̂)r̂ − ~p

]
.

For the quadrupole contribution, we can calculate the k-th component of the field as

E
(2)
k =

1

4πε0

1

2!

Qij
r4

(
δikr̂j + δjkr̂i − 5(r̂ir̂j)r̂k

)
.

NOTE: Beware of how you interpret the meaning of something like r̂i. This is a scalar—
not a vector. For example,

r̂x ≡ (r̂)x = |r̂| sin θ cosϕ = sin θ cosϕ.

Note: In general there are infinitely many higher order multipoles. Even for the
simplest dipole consisting of two opposite charges (whose dipole moment incidentally is
independent of the choice of origin since the net charge is zero) there will be infinitely
many higher order multipoles. Unlike for the monopole, there is probably no physically
realizable ideal dipole such that all higher order multipoles are zero.

3.6 Multipoles in External Field

Consider a charge distribution ρ that is localized around ~r. This charge distribution is in
some external field with potential φext that varies slowly in the region of ~r.
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The interaction energy of the distribution ρ with the external field can be found by
expanding for ~r ′ << ~r

U(~r) =

ˆ
d3r′ ρ(r′)φext(~r + ~r ′)

=

ˆ
d3r′ ρ(r′)

[
φext(~r) + r′i∂iφext(~r) +

1

2
r′ir
′
j∂i∂jφext(~r) + · · ·

]
= U (0) + U (1) + U (2) + · · · ,

where

U (0) =

ˆ
d3r′ ρ(r′)φext(~r) = Qtotφext(~r)

U (1) =

ˆ
d3r′ ρ(r′)r′i∂iφext(~r) = pi ∂iφext

U (2) =

ˆ
d3r′ ρ(r′)

1

2
r′ir
′
j∂i∂jφext(~r)

=
1

6
∂i∂jφext

ˆ
d3r′ ρ(r′)

(
3r′ir

′
j − r′ 2δij

)
=

1

6
∂i∂jφextQij .

In the last line, we moved the partial derivatives and the potential outside of the integral
since they don’t depend on r′. We also added a term −r′ 2δij . We can do this because
this term contributes nothing since

δij∂i∂jφext = −~∇ · ~E = −ρext
ε0

,

and ρext is assumed to be effectively zero in the region where our test charges ρ are.
So all together,

U(~r) = Qtotφ(~r) + pi ∂iφ(~r) +
1

6
Qij∂i∂jφ(~r) + · · · ,

where φ ≡ φext. We can also write this in terms of ~E as

U(~r) = Qtotφ(~r)− ~p · ~E − 1

6
Qij∂iEj + · · · .

The force on ρ is

~F = −~∇U = Qtot

(
−~∇φ

)
+ pi ∂i

(
−~∇φ

)
+

1

6
Qij∂i∂j

(
−~∇φ

)
+ · · · ,

which we can write in vector form as

~F = Qtot ~E + ~∇
(
~p · ~E

)
+

1

6
Qij∂i∂j ~E(~r) + · · · .

Notice that

• The monopole part of the distribution reacts to the external field
• The dipole reacts to the gradient of the field
• The quadrupole reacts to the curvature of the field
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3.7 Laplace Equation in Spherical Coordinates

By substituting ~E = −~∇φ, we can write the Maxwell equation

~∇ · ~E =
ρ

ε0
,

as
∇2φ = − ρ

ε0
.

This is Poisson’s equation. It is typically written in the form

∆φ = − ρ

ε0
,

where ∆ ≡ ~∇ · ~∇ = ∇2. If there are no charges in the considered region, then ρ = 0, and
we get the Laplace equation

∆φ = 0.

In Cartesian coordinates, the Laplace operator is

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

In spherical coordinates, where θ is the polar angle and ϕ is the azimuthal angle, the
transformation equations are

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

Then the Laplace operator is

∆φ =
1

r

∂2

∂r2
(rφ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂r

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
.

Keep in mind that φ = φ(r, θ, ϕ) is the potential and ϕ is an angle. In the Laplace
equation, this whole thing is zero.

We want to consider a solution suitable for a large distance expansion. We will try
a product ansatz of the form

φ(r, θ, ϕ) =
U(r)

r
· P (θ) ·Q(ϕ).

Note, a product ansatz will not always solve all PDEs. It will only solve those which
are separable. The most general solution of a PDE is not a product ansatz, but rather a
linear combination of products.

Plugging the ansatz into the Laplace equation gives us

PQ
d2U

dr2
+

UQ

r2 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

UP

r2 sin2 θ

d2Q

dϕ2
= 0.

Multiplying both sides by r2 sin2 θ and dividing by UQP gives us

r2 sin2 θ

[
1

U

d2U

dr2
+

1

Pr2 sin θ

d

dθ

(
sin θ

dP

dθ

)]
+

1

Q

d2Q

dϕ2
= 0.

We can write this as
F (r, θ) +G(ϕ) = 0,
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where

F (r, θ) = r2 sin2 θ

[
1

U

d2U

dr2
+

1

Pr2 sin θ

d

dθ

(
sin θ

dP

dθ

)]
G(ϕ) =

1

Q

d2Q

dϕ2
.

If the differential equation is valid for all r, θ, and ϕ, then both F (r, θ) and G(ϕ) must be
constant. In other words, since F (r, θ) is independent of ϕ, we could take the derivative
of everything with respect to ϕ, then we would see that G(ϕ) must also be independent
of ϕ. So we know that F (r, θ) and G(ϕ) are both equal to constants, and in order to sum
to zero, one of these constants must be the negative of the other.

We choose the constant such that

1

Q

d2Q

dϕ2
= −m2.

This is a differential equation of the form Q′′ = −m2Q. I.e., it is the equation of motion
of a simple harmonic oscillator. Its solution Q(ϕ) can be written in terms of sines/cosines
or exponentials. The condition that Q(ϕ+ 2π) = Q(ϕ) implies that m ∈ Z. Then we can
write the solution as

Q(ϕ) = e±imϕ.

Similarly, we set F (r, θ) = +m2, then we can rearrange the remaining differential
equation as

r2
1

U

d2U

dr2
+

1

P sin θ

d

dθ

(
sin θ

dP

dθ

)
− m2

sin2 θ
= 0.

Notice that the first term is a function only of r, and the remainder is a function only of
θ. This implies that these two pieces are separately constant. We choose our constants
to be `(`+ 1) and −`(`+ 1), then this differential equation can be separated as

d2U

dr2
− `(`+ 1)

r2
U = 0

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
P = 0.

For the U(r) differential equation, we try the power ansatz U(r) = rα. Then the
first two derivatives are

U ′(r) = αrα−1

U ′′(r) = α(α− 1)rα−2.

Plugging this back into the U(r) differential equation gives us

α(α− 1)rα−2 − `(`+ 1)rα−2 = 0,

for all r in the region of interest. This implies that

α(α− 1)− `(`+ 1) = 0,

and thus, the possible solutions are those in which α = −` or α = ` + 1. Since it is a
second-order differential equation, we only require two independent solutions, thus our
general solution for U(r) is

U(r) = C1
1

r`
+ C2r

`+1.
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The remaining ODE for P (θ) is

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
P = 0.

With x ≡ cos θ, we can write the θ-derivative as

d

dθ
=
d(cos θ)

dθ

d

d(cos θ)
= − sin θ

d

dx
.

We can also write sin2 θ = 1− cos2 θ = 1−x2. Plugging everything in, our ODE becomes

d

dx

([
1− x2

] dP
dx

)
+

(
`(`+ 1)− m2

1− x2

)
P = 0.

We now have a differential equation in terms of P = P (cos θ) = P (x). This is the
Legendre equation.

Consider the case when m = 0. This occurs whenever the system has azimuthal
symmetry. Then the ODE becomes

d

dx

([
1− x2

] dP
dx

)
+ `(`+ 1)P = 0.

Now we try a power series ansatz

P (x) = xβ
∞∑
j=0

ajx
j .

The factor of xβ serves as an offset so that we can start the sum at j = 0 regardless of
where the powers of x actually start. Using the same procedure as when we solved the
U(r) equation, we differentiate this P (x), and then plug P (x) and dP/dx back into the
ODE and equate coefficients. When we do that, we get a second-order recursion relation
that relates the coefficient aj+2 with the coefficient aj

aj+2 =
(j − 1)(j + `+ 1)

(j + 1)(j + 2)
aj .

This relation shows us that for large j, aj+2 ' aj , and since x ≡ cos θ ∈ [−1, 1], the series
will only converge if |x| < 1 or there exists some jmax such that the series terminates. In
this case, for example, jmax = `. For this to work, ` must be an integer. It turns out that
we can rename/redefine ` to be non-negative.

For the series to be finite, we must have either a0 = 0 (if ` is odd) or a1 = 0 (if ` is
even). Thus, our solutions will be polynomials containing only even or odd terms, so we
have the relation

P`(−x) = (−1)`P`(x).

Our solutions P`(x) are special polynomials called Legendre polynomials of the first
kind. They are normalized such that P0(x) = 1. The first several of them are

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
−1 + 3x2

)
...

...
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There is another solution to the differential equation that involves the associated Legendre
polynomials. These are polynomials in ln(1 − x) and ln(1 + x). These solutions are less
often required than the ones involving regular Legendre polynomials.

Recalling that we substituted x = cos θ, our solutions for the θ part of the Laplace
equation, assuming azimuthal symmetry, are the Legendre polynomials of cos θ

P (θ) = P`(cos θ).

Multiplying our three solutions together, our general solution for the Laplace equa-
tion with azimuthal symmetry (i.e. no ϕ-dependence) is

φ`(r, θ, ϕ) =
U(r)

r
· P (θ) ·Q(ϕ) =

(
A`r

` +
B`
r`+1

)
P`(cos θ),

where A` and B` are constants, which may depend on `. Note that the solution Q(ϕ)
for the ϕ part is equal to 1 since m = 0 for azimuthal symmetry. The general solution is
then a linear combination of these with different `

φ(r, θ, ϕ) =

∞∑
`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ),

Legendre Polynomials

From the previous section, recall that the first several Legendre polynomials p`(x) are

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
−1 + 3x2

)
...

...

They are normalized such that P0(x) = 1.
These polynomials have the parity relation

P`(−x) = (−1)`P`(x),

so if ` is even then P` is even, and if ` is odd then P` is odd.
They can be generated using the Rodrigues formula

P`(x) =
1

2``!

d`

dx`
(
x2 − 1

)`
.

Example 3.7.1: Basis for Function Spaces

Consider an arbitrary vector ~r in R3. We can write it as the linear combination

~r = r1~e1 + r2~e2 + r3~e3,

where the basis vectors ~ei are orthonormal

~ei · ~ej = δij , ∀i, j,

and they are complete meaning the basis vectors span R3. Then the coefficients
are ri = ~r · ~ei.
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Example 3.7.2: Square Integrable Functions

Consider the space of square-integrable functions defined on the interval
[0, 2π]. This space is denoted L2([0, 2π]). We can expand such a function f as the
linear combination

f =

∞∑
m=−∞

fmem,

where the basis functions are

em(ϕ) =
1√
2π
eimϕ,

with m ∈ Z. So our expansion is just a Fourier series.
We can also write

f =

∞∑
m=−∞

〈em|f〉 em,

where the inner product is defined as

〈f |g〉 =

ˆ 2π

0

f∗(ϕ)g(ϕ) dϕ.

The em form an orthonormal basis

〈em|em′〉 = δmm′ .

There are countably infinite basis vectors.

With the Legendre polynomials, we can write the basis functions

e` =

√
2`+ 1

2
P`(x).

These form a basis with respect to L2([−1, 1]). We normalize the basis functions like this
instead of just using the P`(x) directly, so that we get nicer expressions for the norm.
Now the orthonormality condition is

ˆ 1

−1
dx e∗`e` = δ``′ .

Any piecewise continuous function f can be expanded as

f(x) =

∞∑
`=0

f`P`(x),

where the coefficients are

f` =

ˆ 1

−1
dx e∗` (x)f(x).

The set of e` is complete. The completeness relation can be written as

∞∑
`=0

e`(x)e∗` (y) = δ(x− y),

then

f(x) =

ˆ 1

−1
dy f(y)δ(x− y) =

∞∑
`=0

ˆ 1

−1
dy e∗` (y)f(y) e`(x) =

∞∑
`=0

f` e`(x).
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Applications with Azimuthal Symmetry

Example 3.7.3: Point Charge on z-axis

Consider a point charge q at ~r ′ on the z-axis. What is the potential at ~r?
We already know the potential of a point charge, and we can simply write it

down

φ(~r) =
q

4πε0

1

|~r − ~r ′|
.

We want to relate this to what we learned above.
Since we have azimuthal symmetry, we know that up to a prefactor our solu-

tion is
1

|~r − ~r ′|
=

∞∑
`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ).

What are the coefficients?
First, let us assume that |~r| ≡ r < r′ ≡ |~r ′| = z. Using the law of cosines, we

can write

|~r − ~r ′| =
√
r2 + r′ 2 − 2~r · ~r ′ =

√
r2 + z2 − 2rz cos θ,

where θ is the angle between ~r and ~r ′. Since ~r ′ is along the z-axis, this corresponds
to the polar angle of spherical coordinates. We can write this as

|~r − ~r ′| = z

√
1 +

(r
z

)2
− 2

(r
z

)
cos θ.

Since this must hold for all θ, we look at θ = 0. Then cos θ = 1, and we find

1

|~r − ~r ′|
=

1

z
(
1− r

z

) .
Using the formula for a geometric series, we can expand the right side as

1

|~r − ~r ′|
=

1

z

∞∑
`=0

(r
z

)`
=

∞∑
`=0

r`

(r′)`+1
.

So for r < z, this is our expansion of the left side in powers of r. This must be
the r part of the solution since we set θ = 0. Putting the θ dependence back in,

1

|~r − ~r ′|
=

∞∑
`=0

r`

(r′)`+1
P`(cos θ), for r < r′.

We can do a similar thing for r > r′. Then we find that

1

|~r − ~r ′|
=

∞∑
`=0

(r′)`

r`+1
P`(cos θ), for r > r′.

We can combine these two to write a single general solution

1

|~r − ~r ′|
=

∞∑
`=0

r`<
r`+1
>

P`(cos θ),
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where r< means the smaller of r and r′ and r> means the larger of r and r′. This
formula works as a generating function of the Legendre polynomials. It is often
written in the form

1√
1− 2hx+ x2

=

∞∑
`=0

h`P`(x).

If you expand the left side, then the coefficients on the right are the Legendre
polynomials.

Example 3.7.4: Conducting Sphere in a Uniform Field

Consider a conducting sphere in a uniform electric field ~E0 that is pointing
in the z direction. The field is uniform far away, however, near the sphere it is
distorted by the sphere. Find the potential.

We have azimuthal symmetry so the general solution is

φ(r, θ, ϕ) =

∞∑
`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ).

The first step is to determine the boundary conditions. Since the sphere is a
conductor, we know that it has constant potential on its surface. Second, far away
we must have φ = −E0z, since then ~E = −~∇φ = E0ẑ as described in the problem
description. So our boundary conditions are

φ(R, θ) = φ0

φ(r →∞, θ) = −E0z.

Applying the boundary condition at r = R, we have

φ0 =

∞∑
`=0

(
A`R

` +
B`
R`+1

)
P`(cos θ).

We can multiply the left side by 1 = P0(cos θ). Then we can expand the right side
and equate coefficients of the Legendre polynomials. Since the left side has only
P0(cos θ), we find that

φ0 = A0 +
B0

R

0 = A`R
` +

B`
R`+1

, for ` > 0.

Next, we apply the second boundary condition. At r → ∞, the B terms go
to zero due to the powers of r in the denominator. Then we are left with

−E0z =

∞∑
`=0

A`r
`P`(cos θ).

Now, we replace z = r cos θ = rP1(cos θ) on the left and equate coefficients as
before. We find that

A0 = 0

A1 = −E0

A` = 0, for ` > 1.
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Thus, our solution is

φ(r, θ) = φ0
R

r
− E0r cos θ + E0

R3

r2
cos θ.

The first term is the monopole, the second is due to the external field, and the
third is the induced dipole.

Spherical Harmonics

In the previous sections, we assumed azimuthal symmetry (m = 0). Now we consider the
more general case where there is no azimuthal symmetry. We go back to the associated
Legendre equation

d

dx

[(
1− x2

) dPm`
dx

]
+

[
`(`+ 1)− m2

1− x2

]
Pm` = 0,

whose solutions Pm` (x) are the associated Legendre polynomials. They can be gen-
erated from the Legendre polynomials P`(x) by

Pm` (x) = (−1)m(1− x2)m/2
dm

dxm
P`(x), m > 0,m ∈ N.

It can be shown that regularity requires that

m = −`, . . . , `

is an integer.
The closed solution for m ≥ 0 and m < 0 is

Pm` (x) =
1

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − `)`.

For −m
P−m` (x) = (−1)m(1− x2)m/2

dm

dxm
P`(x).

The orthogonality condition isˆ 1

−1
dx Pm` (x)Pm`′ (x) = δ``′

2

2`+ 1

(`+m)!

(`−m)!
.

For m 6= m′, the orthogonality condition is more complicated.
We can combine our solutions Q(ϕ) with these Pm` (cos θ), to get the spherical

harmonics

Y m` (θ, ϕ) =

√
2`+ 1

2

√
(`−m)!

(`+m)!
Pm` (cos θ)

eimϕ√
2π
.

The first several, given in spherical and Cartesian coordinates, are

Y00 =
1√
4π

Y11 = −
√

3

8π
sin θeiϕ = −

√
3

8π

x+ iy

r

Y10 =

√
3

4π
cos θ =

√
3

4π

z

r

Y1−1 =

√
3

8π
sin θe−iϕ =

√
3

8π

x− iy
r
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The orthogonality condition is

ˆ 1

−1
d(cos θ)

ˆ 2π

0

dϕ Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) = δ``′δmm′ .

The completeness relation is

δ(2)(Ω− Ω′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′) =

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ).

A general function f on the unit sphere can be expanded as

f(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

c`mY`m(θ, ϕ),

where the coefficients are

c`m =

ˆ 1

−1
d(cos θ)

ˆ 2π

0

dϕ Y ∗`m(θ, ϕ)f(θ, ϕ).

We also have the parity relation

Y`,−m(θ, ϕ) = (−1)mY ∗`m(θ, ϕ).

Under the action of the parity operator P̂ ,

P̂ Y`m(θ, ϕ) = Y`m(π − θ, ϕ+ π) = (−1)`Y`m(θ, ϕ).

So the Y`m are even or odd under spatial inversion. That is, they have definite parity.
If our problem does not have azimuthal symmetry, then the general solution to

∆φ = 0 in spherical coordinates is

φ(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

(
A`mr

` +
B`m
r`+1

)
Y`m(θ, ϕ).

3.8 Spherical Multipole Moments

When we performed a multipole expansion of the potential

φ(~r) =
1

4πε0

ˆ
d3r′

ρ(~r ′)

|~r − ~r ′|
,

we did so in terms of Cartesian multipole moments. We want to repeat that but derive
the spherical multipole moments.

Suppose ~r ′ goes over the charge distribution, ~r is the observation point, and γ is the
angle between the two vectors. Keep in mind that we are no longer assuming azimuthal
symmetry, and ~r ′ is not generally on the z-axis. Then the cosine law gives us

|~r − ~r ′| =
√
r2 + r′ 2 − 2rr′ cos γ.

We could write cos γ = r̂ · r̂′ and then write this in terms of spherical variables r, θ, ϕ and
r′, θ′, ϕ′ which are all mixed together. But this leads to a nasty integral for φ.

We are rescued by the “addition theorem” which tells us that

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ).
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This is useful because it allows us to separate the angles. Each term on the right contains
a product of two functions—one a function of the angles of r̂′, and the other a function
of the angles of r̂. This will allow us to integrate term-by-term. The left side is in terms
of γ—the relative angle of r̂ and r̂′. Now

1

|~r − ~r ′|
=

∞∑
`=0

r`<
r`+1
>

P`(cos γ)

=

∞∑
`=0

∑̀
m=−`

4π

2`+ 1

r`<
r`+1
>

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ).

So the potential is

φ(r, θ, ϕ) =
1

4πε0

∞∑
`=0

∑̀
m=−`

4π

2`+ 1
Y`m(θ, ϕ)

ˆ
d3r′ ρ(r′, θ′, ϕ′)Y ∗`m(θ′, ϕ′)

r`<
r`+1
>

.

Example 3.8.1

Consider a sphere of radius R and ρ(~r ′) = ρ0 = constant inside the sphere.
What is the potential inside and outside the sphere?

We know that in general,

φ(r, θ, ϕ) =
1

4πε0

∞∑
`=0

∑̀
m=−`

4π

2`+ 1
Y`m(θ, ϕ)

ˆ
d3r′ ρ(r′, θ′, ϕ′)Y ∗`m(θ′, ϕ′)

r`<
r`+1
>

.

Since ρ(~r ′) is independent of the angles, we can use the fact that

1 =
√

4πY00(θ′, ϕ′),

to simplify the angular part as

ˆ
dΩ′ Y ∗`m(θ′, ϕ′) =

√
4π

ˆ
dΩ′ Y ∗`m(θ′, ϕ′)Y00(θ′, ϕ′) =

√
4π δ`0δm0.

Thus, our double sum expression for φ simplifies to a single term with ` = 0 and
m = 0.

φ(r, θ, ϕ) =
ρ0
ε0

ˆ
dr′

r′ 2

r>
.

In the region r > R, we have r> ≡ r, then

φ(r, θ, ϕ) =
ρ0
ε0

1

r

ˆ R

0

dr′ r′ 2 =
ρ0
3ε0

R3

r
.

In the region r < R, we have to be careful since now the larger of r and r′

(i.e. r>) could be either r or r′. We have to split the integral into two pieces to
get

φ(r, θ, ϕ) =
ρ0
ε0

ˆ r

0

dr′
r′ 2

r>
+
ρ0
ε0

ˆ R

r

dr′
r′ 2

r>

=
ρ0
ε0

1

r

ˆ r

0

dr′ r′ 2 +
ρ0
ε0

ˆ R

r

dr′ r′

=
ρ0
3ε0

(
3

2
R2 − 1

2
r2
)
.
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In the example above, we were probing inside the charge distribution. Now we look
at the long distance behavior. In the long distance expansion, we know that r > r′ outside
of a localized charge distribution, so

φ(~r) =
1

4πε0

∞∑
`=0

∑̀
m=−`

4π

2`+ 1

q`m
r`+1

Y`m(θ, ϕ).

This is the spherical multipole expansion of φ(~r). The coefficients q`m are the spher-
ical multipole moments

q`m =

ˆ
d3r′ ρ(~r ′)Y ∗`m(θ′, ϕ′) r′ `.

Notice that the spherical harmonic in q`m is the complex conjugate. There are alternative
definitions of the spherical multipole moments in which the complex conjugate is left in
φ(~r).

For each level `, notice that

φ ∼ 1

r`+1
.

Keep in mind that
m = −`, . . . , `,

so for a given `, there are 2`+ 1 moments q`m. We also have the simple parity relation

q`,−m = (−1)mq∗`m.

For ` = 0, we get the spherical monopole moment. It and its relation to the Cartesian
monopole moment Qtot is

q00 =

ˆ
d3r′ ρ(~r ′)

1√
4π

=
1√
4π
Qtot.

For ` = 1, we get the spherical dipole moments. It and its relation to the Cartesian dipole
~p = (px, py, pz) are

q10 =

ˆ
d3r′ ρ(~r ′)

√
3

4π
z′ =

√
3

4π
pz

q11 = −
√

3

8π
(px − ipy)

q1−1 =

√
3

8π
(px + ipy) .

If the q`m are defined in terms of the non-complex conjugated spherical harmonics, then
the signs relating the spherical and Cartesian multipole moments will be different.

Similarly, for the quadrupole moments

q22 =
1

12

√
15

2π
(Q11 − 2iQ12 −Q22)

q21 = −1

3

√
15

8π
(Q13 − iQ23)

q20 =
1

2

√
5

4π
Q33

q2−2 = q∗22

q2−1 = −q∗21.
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The ` encodes the radial fall-off of the potential, and within each `, the m encodes
the spatial information. Using spherical multipoles instead of Cartesian multipoles makes
it easier to read off the symmetry properties and to add things.

The spherical multipoles moments are closely related to the orbital angular momen-
tum of quantum mechanics. Recall from quantum mechanics that the orbital angular
momentum operator is

~L = ~x× ~p = ~x×
(
~
i
~∇
)
.

Its components satisfy the commutation relation

[Li, Lj ] = i~εijkLk.

Furthermore, its components commute with its square[
L2, Li

]
= 0, ∀i,

and this implies that we can find simultaneous eigenstates for L2 and Li, and these can
be used as a basis. The eigenvalue equations are

L2ψ`m = ~2`(`+ 1)ψ`m, Lzψ`m = m~ψ`m,

where the algebra and the normalizability requirement imply that ` ≥ 0 and m =
−`, . . . , `. Then those simultaneous eigenstates are precisely the same spherical harmonics

ψ`m = Y`m(θ, ϕ),

which we are using in electrostatics.

3.9 Poisson Equation and General Boundary Conditions

To deal with complicated boundary conditions, we have to use Green’s functions. We will
look at those in a future section.

Consider a boundary surface (e.g. a conducting surface with surface charge σ) that
separates two regions.

At a given point near the surface, we can write the electric field as the sum of normal
and tangential components

~E = ~En + ~Et.

What happens as we cross the surface from outside to inside?
Consider a Gaussian cylinder straddling the surface as shown below. The cylinder

is much smaller than the region in consideration, and its radius is much larger than its
height.
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Gauss’s law tells us‹
∂cylinder

~E · d ~A =

‹
top

~E · d ~A+

‹
bottom

~E · d ~A+

‹
side

~E · d ~A.

If we let the height of the cylinder go to zero, then the third term vanishes. We can
assume that ~E is approximately constant along the top and the bottom of the cylinder.
Then ‹

∂cylinder

~E · d ~A '
‹
top

~E1 · d ~A1 +

‹
bottom

~E2 · d ~A2

=

‹
top

~E1 · d ~A1 −
‹
bottom

~E2 · d ~A1

=
1

ε0
Qenc =

1

ε0

ˆ
d3r ρ

=
1

ε0

ˆ
σ dx dy ' 1

ε0
σ · dA1.

In the last step, we used the fact that σ ' const in a small region.
This implies that (

~E1 − ~E2

)
n̂ =

1

ε0
σ,

or

En,+ − En,− =
σ

ε0
,

where En,+ means the normal component of the field on the outside. So the normal

component of ~E jumps by σ/ε0. It is not continuous at a charged surface.
Next we apply Stoke’s law by considering a rectangular loop going through the surface

as shown below. By Stoke’s law, we know that
˛
C
~E · d~̀= 0.

Then ˛
C
~E · d~̀≈ ~E1 · d~̀1 + ~E2 · d~̀2 =

(
~E1 − ~E2

)
t̂ · const = 0.

Thus, (
~E1 − ~E2

)
t̂ = 0.
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I.e. the tangential components of ~E are continuous when crossing a charged surface. We
can write this as

Et,+ = Et,−.

where the left side is the tangential component of the electric field on the outside, and
the right-hand side is the tangential component on the inside.

For the potential,

∂φ−
∂n
− ∂φ+

∂n
=
σ

ε0
,

where
∂φ

∂n
≡ n̂ ·

(
~∇φ
)
.

So the boundary surface puts constraints on the derivatives of the potential φ.

3.10 Conductors

A simple model of a conductor is as a material containing positive and negative charges
that are free (zero resistance) to move. Two important properties of conductors in this
model are:

1. The field on the inside is zero

~Einside(~r) = 0.

If there were a field on the inside then the free charges would move, and we would
no longer be in the electrostatic case. We only care about the electrostatic case
right now, so charges are not moving by defiinition.

2. The potential is constant
φinside = const.

Consider a region within an arbitrary conductor. If we apply Gauss’s law to this
region, then using the fact that ~Einside(~r) = 0, we find that

Qenc = 0.

Thus, for any charged conductor, all of the charge must reside on its surface.
On the inside of a conductor, the tangential and normal components of the field are

Et = 0 and En = 0. Immediately on the outside of a conductor with surface charge σ,
the tangential and normal components of the field must be

Et = 0, En =
σ

ε0
.
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Recall the electric field of a homogeneously charged sphere looks like:

Now, the electric field of a conducting sphere looks like:

Since a region within a conductor contains no electric field, we could hollow out that
region, and it would still contain no electric field, regardless of whether or not there is an
electric field outside the conductor. This is the concept of a Faraday cage. If a Faraday
cage is placed in an external field, then negative charge gathers on one side of the surface
and positive charge gathers on the other side such that the field on the inside remains
zero.

3.11 Image Charges

Consider a grounded conducting sphere of radius R. There is a charge q at a position ~a
above the sphere. What is the potential in the region outside the sphere?
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Since the sphere is grounded, we have the boundary condition

φ(r ≤ R) = 0.

We also have the boundary condition

φ(~r)→ 0, as r →∞.

The Poisson equation is

∇φ = − ρ

ε0
= − q

ε0
δ(~r − ~a).

Without loss of generality, we can orient our coordinate system such that ~a is on the
z-axis. Then we have the ansatz solution

φ(~r) =
1

4πε0

∞∑
`=0

A`
r`+1

P`(cos θ) +
1

4πε0

q

|~r − ~a|
.

For convenience, we separated out the part of the potential due to the point charge at ~a.
The first term solves the Laplace equation ∆φ = 0. The second term solves the Poisson
equation ∆φ = −ρ/ε0.

To fix the boundary condition at r = R, it is useful to expand 1/|~r − ~a| in terms of
P`(cos θ) as we did before. We then apply the boundary condition φ(r = R) = 0, and fix
the coefficients A`. Then we recognize that we can write the solution in the closed form

φ(~r) =
1

4πε0

q

|~r − ~a|
+

1

4πε0

q′

|~r − ~a′|
, r >> z,

where

q′ = −qR
a
, a′ =

R2

a
.

The second term in the potential looks like the potential of a charge q′ sitting at ~a ′.
That is, we interpret q′ as an image charge (with opposite sign of the charge q) sitting at
~a′

In the region outside the sphere, the solution φ(~r) looks exactly the same as the potential
due to two charges—q at ~a and q′ at ~a′.
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Note, the potential calculated above is only valid in the region outside the sphere.
On the surface of the conducting sphere, there is an induced surface charge density

σ = −ε0
∂φoutside

∂n
,

where n̂ = r̂ in this case. If we plot it, it looks something like:

The total induced surface charge is

Qind =

‹
σ dA.

The utility of the image charge method is that if you have a good guess for the
solution, and it satisfies all the constraints, then just write it down because the solution
is unique.

Example 3.11.1

Now instead of a grounded sphere, we repeat the problem but for a conducting
sphere held at some constant potential V . Given the charge q at ~a, what is the
potential outside the sphere?
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We have the same setup as the example above. The only difference is that the
potential on the surface of the sphere is changed from zero to V . We can achieve
this by adding a (image) charge q′′ at the center of the sphere. Now, the solution
has the form

φ = φ1 +
1

4πε0

q′′

|~r − ~r ′′|
,

where φ1 is the solution for the problem with the grounded sphere. Since the
potential is a constant V at constant radius R, we want q′′ to be at the center of
the sphere. Thus, ~r ′′ = 0, and

φ(R) = φ1(R) +
1

4πε0

q′′

R
= V.

Since φ1(R) = 0, this implies that

q′′ = 4πε0V R.

Our final solution is

φ(~r) =
1

4πε0

q

|~r − ~a|
+

1

4πε0

−qR/a
|~r − ~a′|

+
1

4πε0

4πε0V R

|~r − 0|
,

Example 3.11.2

We have the same problem, but now instead of knowing anything about the
potential on the surface of the sphere, we only know that it has some total charge
Qtot distributed over its surface.

This example is really the same as the previous example, but now we don’t
know V beforehand. Now,

Qtot = q′ + q′′,

and we use

V =
1

R
(Qtot − q′) .

3.12 Green’s Theorem

Green’s theorem is useful in applications involving conductors.
For the following discussion, we consider an arbitrary region of charge density ρ

contained within an arbitrary volume V that is bounded by a surface S.
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Recall the divergence theorem
ˆ
V

~∇ · ~A d3r =

˛
S

~A · n̂ dA.

Consider two arbitrary scalar fields φ and ψ. Then

~∇ ·
(
φ~∇ψ

)
= φ∆ψ + ~∇φ · ~∇ψ.

We can write (
φ~∇ψ

)
· n̂ = φ

∂ψ

∂n
.

Then the divergence theorem implies that
ˆ
V

(
φ∆ψ + ~∇φ · ~∇ψ

)
d3r =

˛
S

φ
∂ψ

∂n
dA.

This is called Green’s first identity. We can repeat the same thing with φ and ψ
interchanged and then subtract one from the other to get the result

ˆ
V

(
φ∆ψ − ψ∆φ

)
d3r =

˛
S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dA.

This is Green’s second identity, but more commonly known as Green’s theorem.
Now we choose

ψ =
1

|~r − ~r ′|
,

where ~r is the observation point, and ~r ′ is the integration variable. Up to a prefactor of
1/4πε0, this is the potential of a point charge. Then we know from previous work that

∆ψ = −4πδ(~r − ~r ′).

We also choose φ to mean the potential. Then we know from Poisson’s equation that

∆φ = − ρ

ε0
.

Plugging φ, ∆φ, ψ, and ∆ψ into Green’s theorem gives us

ˆ
V

[
−4πφ(~r ′)δ(~r − ~r ′) +

1

ε0

ρ(~r ′)

|~r − ~r ′|

]
d3r′ =

˛
S

[
φ
∂

∂n′
1

|~r − ~r ′|
− 1

|~r − ~r ′|
∂φ

∂n′

]
dA′.

If ~r is not in the volume V , then the delta function term vanishes. On the other hand,
if ~r is in the volume V , then after integrating the delta function term, we can rearrange
the result as

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)

|~r − ~r ′|
d3r′ +

1

4π

˛
S

[
1

|~r − ~r ′|
∂φ

∂n′
− φ ∂

∂n′
1

|~r − ~r ′|

]
dA′.
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Notice that the volume integral is just the potential due to the explicit charges. The
surface integral contains two terms. The first term gives the surface charge (a discontinuity

in ~E), and the second term is the “dipole layer term” (a discontinuity in the potential).
The dipole layer corresponds to the potential of two charged surfaces in the limit that
the two surfaces come together.

If S → ∞, then the electric field ~E on the surface S falls off faster than 1/R, and
the surface integral vanishes. So in the infinite-volume limit, we only have the potential
due to the explicit charges.

For a charge-free volume, i.e. if ρ(~r ′) = 0, then the volume integral is absent. Then
we get a formula for φ in terms of φ and ∂φ

∂n on the boundary S. That is, we get an integral

equation for φ. We can’t get an explicit solution since φ and ∂φ
∂n cannot be independently

chosen.
Suppose there exist two solutions φ1 and φ2 with correct boundary conditions on the

surface S. I.e., φ1 and φ2 satisfy Poisson’s equation. Now, let

U = φ1 − φ2,

be the difference between the two solutions. Then we know that their Laplacian is zero:
∆U = 0. We also know that either

U
∣∣∣
S

= 0, or
∂U

∂n

∣∣∣
S

= 0,

where it’s the first if we have Dirichlet boundary conditions and the second if we have
Neumann boundary conditions. Let φ = ψ = U , then Green’s first identity gives us

ˆ
V

(
U∆U +

∣∣∣~∇U
∣∣∣2) d3r′ =

ˆ
S

U
dU

dn
dA.

Since we know that ∆U = 0 and either U = 0 on the surface or dU
dn = 0 on the surface,

this simplifies to ˆ
V

∣∣∣~∇U
∣∣∣2 d3r′ = 0.

This implies that
U = const.

For Dirichlet boundary conditions, U
∣∣∣
S

= 0, which implies that U = 0. In any case, we

know that φ1 and φ2 are the same, up to an overall constant (zero for Dirichlet), if we
have pure Dirichlet or Neumann boundary conditions.

Above, we chose ψ = 1/|~r − ~r ′|. What if we made a different choice? We want to
make a choice that simplifies our problem as much as possible. The requirement for the
function ψ = G(~r,~r ′) is that

∆G(~r,~r ′) = −4πδ(~r − ~r ′).

Then the function G(~r,~r ′), called the Green’s function, must have the form

G(~r,~r ′) =
1

|~r − ~r ′|
+ F (~r,~r ′), where ∆F = 0 in the volume V.

Note that Green’s function is a function of six variables (~r and ~r ′).
Think of Green’s function G as an impulse response of the inhomogeneous differential

equation with boundary conditions. I.e., it is effectively the potential of a point charge
but takes into account the reaction of the system and the boundary conditions. The
quantity F/4πε0 corresponds to the potential of the image charge.
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Tip

When using these formulae,
remember that the normal
direction n′ points outward
from the volume of interest.
For example, if the problem
is to find the potential in
the half-space z ≥ 0, then
the normal direction would
be n′ = −z′.

The idea is to choose F such that boundary constraints become easy to implement.
Now when we write Green’s theorem, we interpret φ as the potential and ψ = G

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)G(~r,~r ′)d3r′ +
1

4π

˛
S

[
G(~r,~r ′)

∂φ

∂n′
− φ(~r ′)

∂G

∂n′

]
dA′.

Case: (Dirichlet B.C.s) For Dirichlet boundary conditions, we choose F such that
G is zero on the boundary

GD(~r,~r ′)
∣∣∣
~r ′∈S

= 0.

Then the first term in the surface integral is zero and

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)GD(~r,~r ′)d3r′ − 1

4π

ˆ
S

φ(~r ′)
∂GD
∂n′

dA′.

In practice, the difficulty is in finding an F such thatG = 0 on the boundary S. Remember
that ρ(~r ′) is the explicit charges in the volume V . To construct G, we place a test charge
at ~r ′ and identify the image charge. Then

G =
1

|~r − ~r ′|
+ F,

where the first term is the potential of the test charge (up to the prefactor of 1/4πε0),
and F is the potential of the image charge (up to the prefactor), where the image charge
is placed such that the boundary conditions are satisfied. So the problem of finding G
is reduced to that of finding the potential of an image charge given a test charge at an
arbitrary location in the system.

Case: (Neumann B.C.s) For Neumann boundary conditions, one’s first guess
might be to choose an F such that ∂G

∂n′ = 0 on the boundary. However, this does not

work since
´
S
∂G
∂n′ dA

′ = −4π. The simplest allowed choice is to choose F such that

∂GN
∂n′

(~r,~r ′)
∣∣∣
~r ′∈S

= −4π

S
,

where S is the total surface area. Now we get

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)GN (~r,~r ′)d3r′ +
1

4π

ˆ
S

GN (~r,~r ′)
∂φ

∂n′
dA′ + 〈φ〉S ,

where 〈φ〉S is the average of φ over the surface S. In typical applications where S →∞,
this term vanishes. An example of Neumann boundary conditions would be a conducting
sphere in a constant, uniform field ~E. The boundary conditions are Neumann if we are
given the field ~E which is the derivative of the potential.

For Dirichlet boundary conditions,

G(~r,~r ′) = G(~r ′,~r).

I.e. the variables can be swapped. For Neumann boundary conditions, one can choose G
such that the same is true.

Example 3.12.1

Consider the case of a conducting sphere of radius R with the potential φ(r =
R, θ, ϕ) on the surface given (and it could be complicated), and the potential
φ(r → ∞) = 0 at infinity. These are Dirichlet boundary conditions. What is the
potential outside the sphere?
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In this example, we have a boundary surface at r = R (the surface of the
sphere), and at r = ∞. The volume V of interest is between these two bounding
surfaces. That is, V is the entirety of the outside of the sphere.

We can use the image charge method to write down the Green’s function. We
want

∆GD = −4πδ(~r − ~r ′),

with
GD(~r,~r ′)

∣∣∣
~r ′∈S

= 0.

Suppose the potential on the surface is zero. We solved this case earlier. To find
the Green’s function, we place a point test charge at ~r ′, and consider the response
of the system. We know that the potential on the outside can now be found by
replacing the conducting sphere with an image charge. We find thata

GD(~r,~r ′) =
1

|~r − ~r ′|
+

q′/q

|~r − ~a ′|
=

1

|~r − ~r ′|
− R/r′

|~r − R2

r′ 2~r ′|
.

aThe Green function in spherical coordinates can also be computed without reference to
image charges. See Jackson, for example.

3.13 Laplace Equation in Cylindrical Coordinates

We want to solve Laplace’s equation

∆Φ = 0,

in cylindrical coordinates

∂2Φ

∂ρ2
+

1

ρ

∂Φ

∂ρ
+

1

ρ2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
= 0.

We assume a separable solution

Φ(ρ, ϕ, z) = R(ρ)Q(ϕ)Z(z),

then using separation of variables, we get the three ODEs

d2Z

dz2
− k2Z = 0

d2Q

dϕ2
+ ν2Q = 0

d2R

dρ2
+

1

ρ

dR

dρ
+

(
k2 − ν2

ρ2

)
R = 0.
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This implies the solutions for Z and Q

Z(z) = e±kz

Q(ϕ) = e±iνϕ.

For the R ODE, there are three cases.
Case 1 (k ∈ R and k > 0): For this case, we write x ≡ kρ, then our ODE becomes

d2R

dx2
+

1

x

dR

dx
+

(
1− ν2

x2

)
R = 0.

This is the Bessel differential equation. It can be solved with a power series ansatz
to get a recursion relation between the coefficients. This leads us to two solutions

Jν(x) =
(x

2

)ν ∞∑
j=0

(−1)j

j!Γ(j + ν + 1)

(x
2

)2j
J−ν(x) =

(x
2

)−ν ∞∑
j=0

(−1)j

j!Γ(j − ν + 1)

(x
2

)2j
,

called Bessel functions of the first kind. These are linearly independent if ν /∈
Z. Away from localized charges, we require Q(ϕ + 2π) = Q(ϕ), which implies ν ∈ Z.
This means Jν(x) and J−ν(x) are not linearly independent, so we need to use a second
independent solution like

Nν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
,

which is called a Bessel function of the second kind. Also related are the Hankel
functions of the first and second kinds:

H(1)
ν (x) = Jν(x) + iNν(x)

H(2)
ν (x) = Jν(x)− iNν(x).

Case 2 (k imaginary): If k is imaginary, then we get the ODE

d2R

dx2
+

1

x

dR

dx
−
(

1− ν2

x2

)
R = 0,

where again x ≡ kρ. The solutions are the modified Bessel functions of the first and
second kinds:

Iν(x) = i−νJν(ix)

Kν(x) =
1

2
πiν+1H(1)

ν (ix).

Case 3 (k = 0): If k = 0, which occurs when the problem has no z-dependence, (i.e.
Z(z) = const). This effectively reduces it to a 2D problem. Now the ρ equation is

d2R

dρ2
+

1

ρ

dR

dρ
− ν2

ρ2
R = 0.

Suppose that R(ρ) is a solution. Then

R(ρ) ≡ R(λρ),
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Tip

The choice of the solu-
tions (oscillatory or expo-
nential) depends on the
boundary conditions of the
given problem.

is also a solution. This implies the ODE is homogeneous in ρ, which suggests that we try
the solution R = ρα. Then we get (

α2 − ν2
)
R = 0.

This should be valid for all ρ, which implies that

α = ±ν.

So our solution is
R(ρ) = Aρν +Bρ−ν .

These are two linearly independent solutions provided that ν 6= 0. In the special case
that ν = 0, we can directly integrate the ODE to get

R(ρ) = A+B ln ρ.

Then, since there’s no z-dependence, the general solution is

Φ(ρ, ϕ) = a0 + b0 ln ρ+

∞∑
n=1

{
ρn
[
an cos(nϕ) + bn sin(nϕ)

]}
+

∞∑
n=1

{
1

ρn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

Example 3.13.1

Consider a long conducting cylinder of radius R lying along the z-axis. It is
in an electric field that without the cylinder, would be uniform and ~E = E0x̂.

We are in cylindrical coordinates, and the setup is symmetric about the z-axis,
so the general solution is

Φ(ρ, ϕ) = a0 + b0 ln ρ+

∞∑
n=1

{
ρn
[
an cos(nϕ) + bn sin(nϕ)

]}
+

∞∑
n=1

{
1

ρn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

Since it is a conducting cylinder, we know that ~E = 0 on the inside. We know
the parallel components of ~E do not jump as one crosses the surface from inside
the cylinder to outside the cylinder, but the perpendicular component of the field
does jump. So at the outer surface of the sphere, we know the electric field is
perpendicular to the surface of the sphere.
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As ρ→∞, we know that ~E → E0x̂. This implies that Φ→ −E0x as ρ→∞.
We can write this boundary condition as

Φ→ −E0ρ cosϕ, as ρ→∞.

Looking at the general solution, we see that as ρ→∞,

Φ→
∞∑
n=1

ρn
[
an cos(nϕ) + bn sin(nϕ)

]
.

Equating this with the boundary condition at infinity, we see that

a1 = −E0, an = 0 for n > 1, bn = 0 for n > 0.

Now our general solution is simplified to

Φ(ρ, ϕ) = a0 + b0 ln ρ− ρE0 cosϕ+

∞∑
n=1

{
1

ρn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

At the surface of the cylinder, we have the boundary condition

Φ(R) = Φ0.

I.e. at ρ = R, Φ is constant and there is no dependence on ϕ. Then

Φ0 = a0 + b0 lnR−RE0 cosϕ+

∞∑
n=1

{
1

Rn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

Since it is independent of ϕ, the sum must cancel with the −RE0 cosϕ term. That
is,

RE0 cosϕ =

∞∑
n=1

{
1

Rn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

Equating angular pieces, implies that dn = 0 for all n and cn = 0 for all n > 1,
with c1 determined by

RE0 cosϕ =
1

R1
c1 cos(1ϕ).

This implies that c1 = R2E0. Then the angular parts cancel each other, and we
have

Φ0 = a0 + b0 lnR,

which we can use to determine the coefficient a0

a0 = Φ0 − b0 lnR.

Incorporating these facts, our general solution is now

Φ(ρ, ϕ) = Φ0 + b0 ln
ρ

R
− E0

(
1− R2

ρ2

)
ρ cosϕ.

This leaves the b0 coefficient undetermined, and it is related to the charge per
unit length on the surface of the cylinder.
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3.14 Summary: Electrostatics

Skills to Master

• Use Gauss’s law to calculate the electric fields of simple charge distributions
• Given a potential φ, calculate the field ~E
• Given a field ~E, calculate the charge distribution ρ that generates that field
• Given a charge distribution ρ, calculate the total charge of the distribution, and the field
• Plot ρ(r), Q(r), and E(r) for spherically-symmetric charge distributions
• Calculate the Cartesian electric monopole, dipole, and quadrupole moments for various discrete

and continuous charge distributions
• Calculate the potential and field of an electric monopole, dipole, or quadrupole
• Calculate the force on, potential energy of, and torque on an electric dipole in an external field
• Solve the Laplace equation in Cartesian, spherical, and cylindrical coordinate systems for various

systems of conductors
• Calculate the potential of some system using the method of images
• Calculate the potential of some system using Green’s theorem
• Calulate spherical multipole moments for various discrete and continuous charge distributions

Maxwell’s equations for electrostatics are

~∇ · ~E =
ρ

ε0
~∇× ~E = 0.

Gauss’s Law

If we integrate the first of Maxwell’s equations over
some volume V and then rewrite using the divergence
theorem, we get Gauss’s law

ˆ
A(V )

~E · d ~A =
1

ε0

ˆ
V

ρ dV =
Qenc
ε0

.

The integral on the left is over the surface A(V ) of the

volume V . Note that d ~A = n̂ dA, where dA is an el-
emental area of the surface and n̂ is the unit vector
normal to the surface at that point.

Using Gauss’s law, we find that the field of a point
charge q at ~r0 is

~E(~r) =
q

4πε0

~r − ~r0
|~r − ~r0|3

.

This can be extended immediately to multiple particles
using the principle of superposition, and to continuous
charge distributions with the integral

~E(~r) =
1

4πε0

ˆ
d3r′ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
.

Charge Distributions

Given a field ~E, the first of Maxwell’s equations for
electrostatics can be used to calculate the charge dis-

tribution that generates the field

ρ = ε0~∇ · ~E.

Usually, we don’t know ~E, and we want to cal-
culate it by writing down the charge distribution ρ(~r)
and integrating.

In Cartesian coordinates, we can use the Dirac
delta function to write the charge distribution for a
point charge at the origin, a line charge along the z-
axis, and a surface charge in the xy-plane

ρ(~r) = δ(3)(~r) = δ(x)δ(y)δ(z), point charge

ρ(~r) = λ(z) δ(x) δ(y), line charge

ρ(~r) = G(x, y) δ(z), surface charge

Here, G(x, y) is the Cartesian surface charge distribu-
tion, and λ(z) is the line charge distribution.

Potential

Using the Helmholtz theorem, we can write the electric
field as the gradient of a scalar function

~E(~r) = −~∇φ(~r),

where the scalar function

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(~r ′)

1

|~r − ~r ′|
,

is called the electric potential.
For a point charge

φ(~r) =
q

4πε0

1

|~r − ~r0|
.
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Force and Work

The force on a test charge q due to an external electro-
static field ~E is

~F = q ~E.

Thus, the mechanical work done to bring a charge from
~ri to ~rf along a path C, is

W~ri→~rf =

ˆ
C

~F · d~̀= −q
(
φ(~rf )− φ(~ri)

)
.

The work done is path-independent, which means the
electric force is conservative.

Electric Moments

Monopole

The monopole moment of a system is just the total
charge

Q =

ˆ
d3r′ ρ(r′).

The monopole potential is the potential of a point
charge Q

φmono = φ(0) =
Q

4πε0

1

r
.

Note that φ ∼ 1/r for a monopole.

Dipole

Two point charges −q and q separated by a distance
|~a| where ~a points from the negative charge to the pos-
itive charge form an ideal dipole in the limit ~a → 0.
The dipole moment of such a system is

~p = q~a.

For a general charge distribution ρ(~r ′), the dipole mo-
ment is

~p =

ˆ
d3r′ ρ(r′)~r ′.

The dipole potential is

φdip = φ(1) =
1

4πε0

~p · r̂
r2

.

Notice that it goes as φ ∼ 1/r2. The electric field of an
ideal dipole can be written in the coordinate-free form

~E(~r) =
1

4πε0

3(~p · r̂)r̂ − ~p
r3

.

This can also be used to approximate the field of non-
ideal dipoles at large distances. The force on a dipole
in an external electric field ~E is

~F dip = ~p
(
~∇ · ~E

)
= ~∇

(
~p · ~E

)
,

its potential energy is

U = −
ˆ
~F · d~̀= −~p · ~E,

and the torque on the dipole is

~τ = ~p× ~E + ~r × ~F ,

where ~F is some other external force (if it exists).
The interaction energy of two dipoles is

U =
1

4πε0

~p1 · ~p2 − 3(~p1 · r̂)(~p2 · r̂)

r3
.

This can easily be derived by calculating the field ~E1

of dipole ~p1 and then plugging that into the formula
for the potential energy of dipole ~p2.

Quadrupole

For a general charge distribution ρ(~r ′), the quadrupole
moment is defined by the quadrupole tensor

Qij =

ˆ
d3r′ ρ(r′)

(
3r′ir

′
j − r′ 2δij

)
.

The indices i and j go over x, y, and z. Note, the r’s
in the formula above all indicate distance of the charge
from the origin—not distance between the charge and
the observer. For a discrete charge distribution,

Qij =
∑
a

qa
(
3rirj − r2δij

)
,

where the sum is over the charges.
Remember, in cylindrical coordinates, r2 = s2 +

z2.
Some important properties of the quadrupole ten-

sor include:

• It is traceless: Qijδij = 0
• It is symmetric: Qij = Qji. This implies that
Qij can be diagonalized by choosing a coordinate
system aligned with a principal axis

For general charge distributions, the quadrupole
potential is

φquad = φ(2) =
1

4πε0

1

2
Qij

r̂ir̂j
r3

.

Notice that the quadrupole potential goes as φ ∼ 1/r3.
Be careful how you interpret something like r̂i.

This is a scalar—not a vector. It is a component
of the unit vector in the ~r direction. For exam-
ple, r̂x ≡ (r̂)x = sin θ cosϕ. It is not the same as
x̂ = (1, 0, 0).

In general, any moment is independent of the
choice of origin only if all lower moments are zero.
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Multipole Expansion

For a general charge distribution ρ(~r ′) localized near
the origin of our coordinate system, we can expand the
potential for large r to get the multipole expansion

φ(~r) = φ(0) + φ(1) + φ(2) + · · ·

=
1

4πε0

(
Qtot
r

+
~p · r̂
r2

+
1

2!
Qij

r̂ir̂j
r3

+ · · ·
)
.

At large r, only the leading term dominates.
We can calculate the electric field of the charge

distribution using ~E = −~∇φ. Then

~E = ~E
(0)

+ ~E
(1)

+ · · ·

=
1

4πε0

(
Qtot

r̂

r2
+

1

r3

[
3(~p · r̂)r̂ − ~p

]
+ · · ·

)
.

Laplace’s Equation

Spherical Coordinates

By substituting ~E = −~∇φ, into one of Maxwell’s equa-
tions, we get Poisson’s equation ∇2φ = ∆φ = − ρ

ε0
.

If there are no charges in the considered region, then
ρ = 0, and we get the Laplace equation

∇2φ = ∆φ = 0.

In spherical coordinates, this is

0 =
1

r

∂2

∂r2
(rφ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂r

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
.

Assuming a separable solution, we try φ(r, θ, ϕ) =
U(r)
r · P (θ) ·Q(ϕ).

If our system is azimuthally symmetric, so that
there is no dependence on ϕ, then the general solution
to Laplace’s equation is

φ(r, θ) =

∞∑
`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ).

The P`(x) are Legendre polynomials. The first
several are

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
−1 + 3x2

)
...

...

These polynomials have the parity relation

P`(−x) = (−1)`P`(x),

so if ` is even then P` is even, and if ` is odd then P`
is odd.

The P`(x) form a basis with orthonormality con-
dition ˆ 1

−1
dx P`(x)Pm(x) =

2

2`+ 1
δ`m.

A useful trick when integrating a Legendre poly-
nomial is to use the orthonormality condition and
1 = P0(cos θ).

If integrating Legendre polynomials, it’s often
much faster to make the substitution x = cos θ. Then
the Legendre polynomials are simply polynomials in x,
which are much easier to integrate than polynomials in
cos θ. For example,

ˆ π

0

sin θ dθ P`(cos θ) =

ˆ 1

−1
dx P`(x).

If a problem does not have azimuthal symmetry,
then the general solution is

φ(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

(
A`mr

` +
B`m
r`+1

)
Y`m(θ, ϕ),

where the Y`m(θ, ϕ) are the spherical harmonics. The
first several, given in spherical and Cartesian coordi-
nates, are

Y00 =
1√
4π

Y11 = −
√

3

8π
sin θeiϕ = −

√
3

8π

x+ iy

r

Y10 =

√
3

4π
cos θ =

√
3

4π

z

r

Y1−1 =

√
3

8π
sin θe−iϕ =

√
3

8π

x− iy
r

The orthogonality condition is

ˆ
dΩ Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) = δ``′δmm′ ,

where the integral goes over the spherical angles. The
spherical harmonics have definite parity, and

Y`,−m(θ, ϕ) = (−1)mY ∗`m(θ, ϕ).

Remember that m = −`, . . . , `.
A useful trick when integrating a Legendre poly-

nomial is to use the orthonormality condition and
1 =
√

4πY00(θ, ϕ).



80 Electrostatics

Cylindrical Coordinates

Laplace’s equation ∆Φ = 0, in cylindrical coordinates
is

∂2Φ

∂ρ2
+

1

ρ

∂Φ

∂ρ
+

1

ρ2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
= 0.

We again assume a separable solution Φ(ρ, ϕ, z) =
R(ρ)Q(ϕ)Z(z). In general, the solutions are Bessel
functions or modified Bessel functions. However, if the
problem has no z-dependence, then the general solu-
tion reduces to

Φ(ρ, ϕ) = a0 + b0 ln ρ+

∞∑
n=1

{
ρn
[
an cos(nϕ) + bn sin(nϕ)

]}
+

∞∑
n=1

{
1

ρn

[
cn cos(nϕ) + dn sin(nϕ)

]}
.

General Procedure

The general procedure for solving Laplace’s equation
is:

1. Choose a coordinate system
2. Write down the general solution for Laplace’s

equation in that coordinate system. Is the prob-
lem azimuthally symmetric?

3. Identify the boundary conditions and write them
in the most convenient form for your chosen coor-
dinate system. For example, if a boundary con-
dition contains z and you are in spherical coor-
dinates, then write z = r cos θ = rP1(cos θ).

• What is the potential at the given surfaces?
Are they conductors?
• What is the potential at infinity? Does it

go to zero?

4. Apply the boundary conditions to identify the
values of the nonzero coefficients in your general
solution. Equate coefficients. Use the orthonor-
mality condition.

Spherical Multipole Expansion

If we’re far away from a charge distribution, we can
expand the potential of the charge distribution as

φ(~r) =
1

4πε0

∞∑
`=0

∑̀
m=−`

4π

2`+ 1

q`m
r`+1

Y`m(θ, ϕ),

where

q`m =

ˆ
d3r′ ρ(~r ′)Y ∗`m(θ′, ϕ′) r′ `,

are the spherical multipole moments. For discrete
charges,

q`m =
∑
i

qir
`
iY
∗
`m.

Notice that the spherical harmonic in q`m is the com-
plex conjugate. Remember, if the system has az-
imuthal symmetry, then m = 0.

For each level `, notice that φ ∼ 1/r`+1. Keep in
mind that m = −`, . . . , `, so for a given `, there are
2` + 1 moments q`m. We also have the simple parity
relation

q`,−m = (−1)mq∗`m.

For ` = 0, we get the spherical monopole moment.
It and its relation to the Cartesian monopole moment
Qtot is

q00 =

ˆ
d3r′ ρ(~r ′)

1√
4π

=
1√
4π
Qtot.

For ` = 1, we get the spherical dipole moments,
which can be related to the Cartesian dipole moment
~p = (px, py, pz)

q10 =

ˆ
d3r′ ρ(~r ′)

√
3

4π
z′ =

√
3

4π
pz

q11 = −
√

3

8π
(px − ipy)

q1−1 =

√
3

8π
(px + ipy) .

Boundary Behavior

Consider a boundary surface with surface charge den-
sity σ. The normal component of the electric field is
discontinuous across such a charged surface. In gen-
eral,

En,+ − En,− =
σ

ε0
,

where En,+ means the normal component of the field

on the outside. So the normal component of ~E jumps
by σ/ε0. The tangential components are continuous
across a charged surface

Et,+ = Et,−.

Since the electric field is the negative derivative of the
potential, we can write these two results in terms of
the potential. For example,

∂φ−
∂n
− ∂φ+

∂n
=
σ

ε0
.
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Conductors

We model conductors as materials containing positive
and negative charges that are completely free to move.
Some important facts about conductors are:

• The field inside a conductor is zero

~Einside(~r) = 0.

• The potential inside a conductor is constant

φconst(~r) = const.

• Within a conductor, Gauss’s law and ~E = 0 im-
ply that

Qenc = 0.

Thus, any charge, if it exists, must reside on the
surface of the conductor.
• On the inside of a conductor, the tangential and

normal components of the field ~E are zero. Im-
mediately on the outside of a conductor with sur-
face charge σ, these components are

Et = 0, En =
σ

ε0
.

These follow directly from the boundary condi-
tions discussed earlier.

Image Charges

The solution to the Poisson equation is unique. Thus, if
a solution can be guessed that satisfies all the boundary
conditions, then it must be the solution to the problem.
This is the idea behind image charges. The general
procedure is:

1. Identify the boundary conditions and the region
within which you want to solve Poisson’s equa-
tion for the potential φ. Typically, this is the
region outside of any conductors described in the
problem statement

2. Remove all conductors from the problem. Put
in image charges such that the potential due to
all original charges plus all image charges satis-
fies the same boundary conditions as the original
problem containing conductors

3. Write down the potential due to all original and
image charges and verify explicitly that the orig-
inal boundary conditions are satisfied. Since
the solution to Laplace’s equation is unique, this
must be the solution to the original problem

Keep in mind:

• Never put image charges into the region for which
you are calculating the potential

• The calculated potential is only valid in the re-
gion identified earlier. It is not valid in the region
containing image charges

A charge near a conducting surface will induce a
surface charge density

σ = ε0En = −ε0
∂φoutside

∂n
,

on the conducting surface. This is evaluated on the
surface. The total induced surface charge is

Qind =

‹
σ dA,

where the integral goes over the entire surface.

Green’s Theorem

Consider an arbitrary region of charge density ρ con-
tained within an arbitrary volume V that is bounded
by a surface S. Given two arbitrary scalar fields φ and
ψ, Green’s theorem says thatˆ

V

(
φ∆ψ − ψ∆φ

)
d3r =

˛
S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dA.

To get a version of this theorem that is particularly
useful for electrodynamics, we choose φ to be the ordi-
nary electric potential, and call ψ the Green’s function
G(~r,~r ′), whose only requirement is that ∆G(~r,~r ′) =
−4πδ(~r − ~r ′). This implies the form

G(~r,~r ′) =
1

|~r − ~r ′|
+ F (~r,~r ′),

where ∆F = 0 in the volume V. Note that ~r is the
observation point and ~r ′ is the integration variable.

If the problem has Dirichlet boundary conditions,
we choose F such that G is zero on the boundary

GD(~r,~r ′)
∣∣∣
~r ′∈S

= 0.

Then the Green’s theorem can be written as

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)GD(~r,~r ′)d3r′

− 1

4π

ˆ
S

φ(~r ′)
∂GD
∂n′

dA′.

In practice, the difficulty is in finding an F such that
G = 0 on the boundary S. Remember that ρ(~r ′) is the
explicit charges in the volume V . To construct G, we
place a test charge at ~r ′ and identify the image charge.
Then

G =
1

|~r − ~r ′|
+ F,

where the first term is the potential of the test charge
(up to the prefactor of 1/4πε0), and F is the potential
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of the image charge (up to the prefactor), where the
image charge is placed such that the boundary condi-
tions are satisfied.

Remember, G(~r,~r ′) is a function only of the ge-
ometry and does not care about the actual value the
potential may or may not have.

If the problem has Neumann boundary conditions,
we choose F such that

∂GN
∂n′

(~r,~r ′)
∣∣∣
~r ′∈S

= −4π

S
,

where S is the total surface area. Now we get

φ(~r) =
1

4πε0

ˆ
V

ρ(~r ′)GN (~r,~r ′)d3r′

+
1

4π

ˆ
S

GN (~r,~r ′)
∂φ

∂n′
dA′ + 〈φ〉S ,

where 〈φ〉S is the average of φ over the surface S. In
typical applications where S →∞, this term vanishes.

When using these formulae, remember that the
normal direction n′ points outward from the volume of
interest.

Miscellaneous

Memorize at least the radial part of the gradient, and
divergence in spherical coordinates.

~∇φ =
∂φ

∂r
r̂

~∇ · ~E =
1

r2
∂

∂r

(
r2Er

)
.

Be careful when taking divergences. If you’re taking
the divergence of something that contains any r̂/r2,
then it is generally safer to fully expand the divergence
of products of functions using the product rule

~∇ · (f ~A) = f(~∇ · ~A) + ~A · (∇f),

and then using the fact

~∇ · r̂
r2

= 4π δ(3)(~r).

Whenever you have a field that behaves as ~E ∼ r̂/r2
when ~r ≈ 0, then this behavior is being generated by
a point charge, i.e., the charge distribution contains a
delta function.

The law of cosines may be useful:

|~r − ~r ′|2 = r2 + r′ 2 − 2~r · ~r ′.

To do Taylor expansion of a multivariable scalar
function about the point ~r, we use

f(~r + δ~r) = f(~r) +
(
~∇f(~r)

)
δ~r

+
1

2

(
∂i∂jf(~r)

)
δri δrj + · · · .

If ~F (~r + δ~r) is a vector function, then

~F (~r + δ~r) = ~F (~r) +
(
~∇ · ~F (~r)

)
δ~r + · · · .

Notice that for a vector function, the gradient becomes
the divergence.
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Magnetostatics

Recall that Maxwell’s equations decouple when ρ, ~j, ~E, and ~B are independent of time.
The two Maxwell’s equations for magnetostatics are

~∇× ~B = µ0
~j

~∇× ~B = 0.

4.1 Laws of Ampere and Biot-Savart

We can use the continuity equation ∂µj
µ = 0, and the time-independence of the charge

density ∂ρ
∂t = 0 to conclude that

~∇ ·~j = 0,

in electrostatics and magnetostatics. Then we can use ~∇× ~B = µ0
~j and Stoke’s theorem

ˆ
S

(
~∇× ~B

)
d ~A =

˛
C

~B · d~̀,

where S is the surface of some volume and C is the closed curve along the boundary of
S, to get Ampere’s law ˛

C

~B · d~̀= µ0IC ,

where

IC =

ˆ
S

~j · d ~A,

is the current passing through the surface S.
The other Maxwell equation, ~∇· ~B = 0, implies that there exist no monopoles. Using

the divergence theorem gives us ˛
S

~B · d ~A = 0,

where S is the surface enclosing some volume V . More generally,
ˆ
S

~B · d ~A = φM ,

is the flux of the magnetic field through the surface S.
Similar to what we did in electrostatics, we can use the Helmholtz theorem to write a

function ~B(~r) in terms of the divergence and curl of ~B. This leads us to the Biot-Savart
law

~B(~r) = ~∇× µ0

4π

ˆ
d3r′

~j(~r ′)

|~r − ~r ′|
,
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which can be written as

~B(~r) =
µ0

4π

ˆ
d3r′ ~j(~r ′)× ~r − ~r ′

|~r − ~r ′|3
.

For a thin wire, we can write the Biot-Savart law as

~B(~r) =
µ0I

4π

ˆ
d~̀′ × ~r − ~r ′

|~r − ~r ′|3
.

4.2 The Vector Potential

Recall that
~B = ~∇× ~A,

where ~A is the vector potential. This equation holds in general—not just for magneto-
statics.

By gauge invariance, we can choose a different ~A resulting in the same field ~B. For
the 4-potential, the gauge transformation is

Aµ → Aµ − ∂µΛ,

for some function Λ. For the 3-potential,

~A→ ~A+ ~∇Λ.

Suppose we have some generic ~A ′, which we can transform via the gauge transformation

~A = ~A ′ + ~∇Λ.

Then
~∇ · ~A = ~∇ · ~A ′ + ∆Λ.

We can always set this quantity to zero because we can always find a Λ such that

∆Λ = −~∇ · ~A ′.

In other words, we can always choose ~A ′ such that

~∇ · ~A = 0.

This is called the Coulomb gauge. There are other gauge choices such as the Lorentz
gauge, but the Coulomb gauge is often the most convenient because then we get magne-
tostatics equations which are similar in form to the equations of electrostatics.

The Coulomb gauge is also valid in dynamical situations. It is not just for magneto-
statics.
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The Coulomb gauge ~∇ · ~A = 0 does not uniquely determine ~A. Whenever ∆Λ = 0,
the resulting ~A is the same. That is, we can have different choices Λ and Λ′, but if
∆Λ′ = ∆Λ, then the resulting ~A will be the same. On the other hand, if ~A vanishes at
infinity, then ~∇ · ~A = 0 does uniquely determine ~A.

One drawback of the Coulomb gauge is that it hides causality and the Lorentz struc-
ture. Results in the Coulomb gauge can end up looking acausal, but once you go to the
level of the fields, all acausalities are resolved.

In the Coulomb gauge,

~∇× ~B = ~∇×
(
~∇× ~A

)
= ~∇

(
~∇ · ~A

)
−∆ ~A = µ0

~j.

Since we are in the Coulomb gauge, ~∇ · ~A = 0, and we get

∆ ~A = −µ0
~j.

This is the Poisson equation for the vector potential. Keep in mind that this is a vector
equation, so it is really three Poisson equations. From this, if we know ~j, then we can
calculate ~A by integration

~A(~r) =
µ0

4π

ˆ
d3r′

~j(~r ′)

|~r − ~r ′|
.

Taking the curl of this equation gives us the Biot-Savart law. This result for the vector
potential is similar to the result in electrostatics for the scalar potential, but now we
have three equations. This results in richer physical phenomena in magnetostatics than
is found in electrostatics.

4.3 Magnetic Dipoles

Consider currents ~j localized in some volume.

As in electrostatics, we can expand

1

|~r − ~r ′|
=

1

r
− ~r ′~∇1

r
+ · · · ,

for large ~r. Then we can expand the components of the vector potential as

Ai(~r) =
µ0

4π

[
1

r

ˆ
d3r′ ji(~r

′) +
~r

r3
·
ˆ
d3r′ ~r ′ji(~r

′) + · · ·
]
.

The first term gives us the monopole contribution, and the second term gives us the dipole
contribution.

Since the currents are localized, i.e. ~j = 0 on the surface of some volume, then the
divergence theorem implies that

ˆ
d3r′ ~∇ ′ ·

(
r′i~j
)

= 0.
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We can expand the left side asˆ
d3r′

(
ji(~r

′) + r′i~∇ ′ ·~j
)

= 0.

Since we’re only considering the static case, we know that ~∇ ′ ·~j = 0, so the second term
in the integral is zero. Thus, ˆ

d3r′ ji(~r
′) = 0.

That is, there is no monopole contribution, and so

Ai(~r) =
µ0

4π

[
~r

r3
·
ˆ
d3r′ ~r ′ji(~r

′) + · · ·
]
.

For the dipole term, we again use charge localization and the divergence theorem to
reason that ˆ

d3r′ ~∇ ′ ·
(
r′ir
′
j
~j
)

= 0.

We can expand this as ˆ
d3r′

(
jir
′
j + jjr

′
i

)
= 0.

So we can write

~r ·
ˆ
d3r′ ~r ′ji(~r

′) = rj

ˆ
d3r′ r′jji

= −1

2
rj

ˆ
d3r′

(
r′ijj − r′jji

)
= −1

2
εijkrj

ˆ
d3r′

(
~r ′ ×~j

)
k

= −1

2

(
~r ×
ˆ
d3r′

(
~r ′ ×~j

))
i

.

Remember, we are using Einstein summation notation. So we can write the vector po-
tential as

~A(~r) =
µ0

4π

~m× ~r
r3

+ · · · ,

where

~m =
1

2

ˆ
d3r′ ~r ′ ×~j(~r ′),

is the magnetic dipole moment.
Taking the cross product allows us to write the magnetic field in terms of the magnetic

dipole moment as

~B(~r) =
µ0

4π

[
3(~m · r̂)r̂ − ~m

r3
+ · · ·

]
.

The dipole term is typically the leading term. In fact, we will not do anything beyond
the dipole term in this course.

Recall that the force on a moving point charge due to a magnetic field is

~F = q~v × ~B.

This implies that ~F ⊥ ~v, which implies that the magnetic field does no work on the
particle. Now, suppose q~v is a small current element, then we get the force on a current
density due to a magnetic field

~F =

ˆ
d3r′ ~j × ~B.
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For a thin wire,
d~F = I d~̀× ~B.

If we expand the magnetic field

~B(~r ′) = ~B(0) +
(
~r ′~∇

)
~B(0) + · · · ,

and plug it into the integral formula for ~F , we get

~F (~r) =
(
~m× ~∇

)
× ~B,

which we can write as

~F (~r) = ~∇
(
~m · ~B

)
+ · · ·

This is the force on a magnetic dipole ~m due to ~B.
This implies that the potential energy of a magnetic dipole ~m in a magnetic field ~B

is

U = −~m · ~B + · · ·

Note that this is not exact—hence the ellipses. Even an ideal current loop has higher
orders.

The general formula for the torque on a dipole is

~τ =

ˆ
d3r′ ~r ′ ×

(
~j × ~B

)
.

With multipole expansion,

~τ =

ˆ
d3r′

[(
~r ′ · ~B

)
~j −

(
~r ′ ·~j

)
~B
]
.

This simplifies to

~τ = ~m× ~B + · · ·

Does ~m depend on the origin of the coordinate system? Given a magnetic moment

~m =
1

2

ˆ
d3r′ ~r ′ ×~j(~r ′),

we can shift it by a constant vector ~r0 to get

~m =
1

2

ˆ
d3r′ (~r0 + ~r ′)×~j(~r ′) =

1

2

ˆ
d3r′ ~r ′ ×~j(~r ′) +

1

2
~r0 ×

ˆ
d3r′ ~j(~r ′).

The first term on the right is the old expression for ~m, and the second term is zero, so
~m does not depend on the choice of origin.

Previously, we had ~j localized at the origin, then

~τ = ~m× ~B(0).

Now we generalize to distributions away from the origin.
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Now,

~τ =

ˆ
d3r′ (~r + ~r ′)×

(
~j(~r + ~r ′)× ~B(~r + ~r ′)

)
= ~r ×

ˆ
d3r′

(
~j(~r + ~r ′)× ~B(~r + ~r ′)

)
+

ˆ
d3r′ ~r ′ ×

(
~j(~r + ~r ′)× ~B(~r + ~r ′)

)
.

The first term is ~r cross the force ~F (~r) and the second is the expression for ~τ for ~j
localized at the origin. So

~τ (~r) = ~r × ~F (~r) + ~m× ~B(~r) + · · ·

4.4 Field of Moving Point Charge

For a moving particle with trajectory ~r0(t),

~j(~r, t) = q~vδ(3) (~r − ~r0) .

To calculate ~A, we can’t just plug this into our previous integral formula for ~A(~r) since
that was derived assuming magnetostatics.

Consider a point charge q at rest at the origin in frame F ′. Its potential in this frame
is

φ′(~r ′) =
1

4πε0

q

|~r ′|
, ~A ′(~r ′) = 0.

Now consider a frame F wherein the charge (which is at rest in F ′) is moving in the +x
direction with velocity ~v. Assume the charge is at the origin in F at time t = 0.

The potentials in F and F ′ are

F ′ : Aµ ′ =

(
φ′

c
, ~A ′

)
=

(
φ′

c
, 0, 0, 0

)
F : Aµ =

(
φ

c
, ~A

)
=

(
φ

c
,Ax, Ay, Az

)
.

Then we do a Lorentz boost Aµ ′ → Aµ

Aµ =


γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

Aµ ′, ~β =
~v

c
.

This implies that
φ = γφ′,

and

Ax = γβ
φ′

c
, Ay = Az = 0,
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or

~A =
γ

c
~βφ′ =

~β

c
φ.

We have

φ(x′, y′, z′) =
1

4πε0

γq√
x′ 2 + y′ 2 + z′ 2

.

We want φ(x, y, z), rather than φ(x′, y′, z′), so we Lorentz transform the coordinates

xµ ′ = Λµν x
ν .

This implies
x′ = γ(x− βct), y′ = y, z′ = z,

so
|~r ′|2 = γ2(x− βct)2 + y2 + z2,

with 1/γ2 = 1− β2. Thus,

φ(x, y, z) =
1

4πε0

q

s
,

where

s ≡
√

(x− βct)2 + (1− β2)(y2 + z2).

The electric field is

~E = −~∇φ− ∂ ~A

∂t
.

Plugging in what we found,

~E =
1

4πε0

q(1− β2)

s3

(
x− vt, y, z

)
.

More generally,

~E =
1

4πε0

q(1− β2)

s3
(~r − ~vt) .

For the magnetic field,

~B = ~∇× ~A = ~∇×
(
~β

c
φ

)
=
(
~∇φ
)
×
~β

c
+ φ~∇×

~β

c
=

(
−~E − ∂ ~A

∂t

)
×
~β

c
= −~E ×

~β

c
.

Here we used the fact that ~∇ × ~β = 0 and that ∂ ~A
∂t × ~β = 0 since ~A ‖ ~β. This tells us

that a moving charge generates a magnetic field

~B = − 1

c2
~E × ~v.
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The fields refer to the charge’s location at its current position—seemingly violating time
dilation. However, it just appears to be wrong. It is really the field of the charge at a
slightly earlier time (retarded position).

Keep in mind that this is no longer magnetostatics since ~j is not time-independent.
Consider the non-relativistic limit β << 1. In this limit,

~B =
µ0

4π
q
~v × (~r − ~r0)

|~r − ~r0|
+O(β2).

This reproduces the Biot-Savart law for ~j = q~vδ(3)(~r − ~r0).

4.5 Larmor Precession

Consider a magnetic dipole

~m =
1

2

ˆ
d3r′ ~r ′ ×~j(~r ′),

generated by point charges qi moving non-relativistically with speed v(i) << c. Then

~j(i) = qi~v(i)δ
(3)
(
~r − ~r(i)(t)

)
.

Then

~m =
∑
i

1

2

ˆ
d3r′ ~r ′ ×

(
qi~v(i)δ

(3)
(
~r − ~r(i)(t)

))
=
∑
i

1

2
qi ~r(i) × ~v(i)

=
∑
i

1

2

qi
mi

~r(i) ×mi~v(i)

=
∑
i

1

2

qi
mi

~L(i)

If all charges have the same charge to mass ratio, then qi/mi = q/m is a constant and

~m =
q

2m
~L,

where
~L =

∑
i

~L(i) =
∑
i

~L(i) =
∑
i

~r(i) ×mi~v(i),

is the total angular momentum of the system.
Consider a dipole at the origin in a uniform magnetic field ~B. Then

~τ = ~m× ~B =
d~L

dt
.

This implies

d~L

dt
=

q

2m
~L× ~B.

Thus,

d~L

dt
= ~ω × ~L,

where

~ω = − q

2m
~B.
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So the angular momentum ~L, and thus ~m, precesses around ~ω (or − ~B) with Larmor
frequency ω.

The spin of a particle is also an angular momentum and generates a magnetic dipole
moment. Consider a particle with charge e

~m = g
e

2m
~S,

for g = 1 for orbital momentum. For spin, it can have other values. For example, for a
spin-1/2 electron, |~S| = ~/2 and Dirac theory predicts ge = 2. In reality, g deviates from
2 due to quantum field effects. This anomalous magnetic moment of the electron is

ae ≡
ge − 2

2
=

α

2π
+ · · · 6= 0,

where α ≈ 1/137 is the fine structure constant. The experimental value for the electron
is

aexpe = 0.001 159 652 180 85(76).

This agrees very well with QED, and it’s actually how we are able to measure the fine
structure constant α to high precision.
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4.6 Summary: Magnetostatics

Skills to Master

•

The two Maxwell’s equations for magnetostatics
are

~∇× ~B = µ0
~j

~∇× ~B = 0.

Ampere and Biot-Savart Laws

Using ~∇× ~B = µ0
~j and Stoke’s theorem, we can derive

Ampere’s law ˛
C

~B · d~̀= µ0IC ,

which allows us to easily calculate the magnetic field
for some simple symmetric current distributions. The
current IC through the closed loop C is given by

IC =

ˆ
S

~j · d ~A.

The flux of the magnetic field ~B through a surface
S is ˆ

S

~B · d ~A = φM .

This quantity is zero for any closed surface.
Using the Helmholtz theorem with the magnetic

field gives us the Biot-Savart law

~B(~r) =
µ0

4π

ˆ
d3r′ ~j(~r ′)× ~r − ~r ′

|~r − ~r ′|3
,

which allows us to calculate the magnetic field due to
a general current distribution. For a thin wire, this
simplifies to

~B(~r) =
µ0I

4π

ˆ
d~̀′ × ~r − ~r ′

|~r − ~r ′|3
,

where I is the current through the wire.

The Vector Potential

Recall that the magnetic field can be written as the
curl of a vector potential ~A

~B = ~∇× ~A.

Under a gauge transformation,

~A→ ~A+ ~∇Λ,

where Λ is some scalar function, the magnetic field
is unchanged. This allows us always to choose the
Coulomb gauge where

~∇ · ~A = 0.

In the Coulomb gauge, replacing ~B in the Maxwell
equation ~∇× ~B = µ0

~j with the equivalent ~∇× ~A gives
us the Poisson equation for the vector potential

∆ ~A = −µ0
~j.

Since ~A is a 3-vector, this is really a set of three Pois-
son equations. This Poisson equation implies that for
a general current distribution,

~A(~r) =
µ0

4π

ˆ
d3r′

~j(~r ′)

|~r − ~r ′|
.

Magnetic Dipoles

If the current distribution ~j is localized in some re-
gion, we can perform a long distance expansion of the
integral formula for ~A(~r). This allows us to write the
vector potential as

~A(~r) =
µ0

4π

~m× ~r
r3

+ · · · ,

where

~m =
1

2

ˆ
d3r′ ~r ′ ×~j(~r ′),

is the magnetic dipole moment. This is the first
nonzero moment in the multipole expansion of ~A(~r).
As such, ~m is always independent of the choice of ori-
gin.

Taking the cross product of ~A(~r) gives us

~B(~r) =
µ0

4π

[
3(~m · r̂)r̂ − ~m

r3
+ · · ·

]
.

The force on a current distribution, due to an ex-
ternal ~B field is

~F (~r) = ~∇
(
~m · ~B

)
+ · · · .

This is the force on a magnetic dipole ~m due to ~B. Its
potential energy is

U = −~m · ~B + · · ·
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The torque on it is

~τ (~r) = ~m× ~B(~r) + ~r × ~F (~r) + · · ·

If ~j is localized at the origin, then the second term is
zero.

Field of Moving Point Charge

For a moving point charge with trajectory ~r0(t), we
have the “current”

~j(~r, t) = q~vδ(3) (~r − ~r0) .

Consider the scalar and vector potentials in our frame
F and in the particle’s rest frame F ′, which is mov-
ing in the +x direction with velocity ~v. After Lorentz
transforming the 4-potential to get ~A(x′, y′, z′) and
φ(x′, y′, z′) and then Lorentz transformating the co-
ordinates to get them in terms of x, y, z, we find that
the scalar and vector potentials are

φ(x, y, z) =
1

4πε0

q

s

~A =
~β

c
φ.

where

s ≡
√

(x− βct)2 + (1− β2)(y2 + z2).

Then the electric field of the moving particle is

~E =
1

4πε0

q(1− β2)

s3
(~r − ~vt) .

For example, if the particle is moving in the x direc-
tion with speed v, then ~r − ~vt = (x − vt, y, z). The
associated magnetic field is

~B = − 1

c2
~E × ~v.

Larmor Precession

If we have a group of point charges moving non-
relativistically and they all have the same charge to
mass ratio q/m, then the magnetic dipole moment they
form can be written in terms of the total angular mo-
mentum of the system

~m =
q

2m
~L.

Recall that the total angular momentum of a system
of particles is just the sum of their individual angular
momenta

~L =
∑
i

~ri ×mi~vi.

For a dipole ~m at the origin in a uniform magnetic
field ~B, we can write the torque ~τ = ~m × ~B as the
time derivative of the total angular momentum. Thus,

d~L

dt
= ~ω × ~L,

where

~ω = − q

2m
~B.

This implies that the angular momentum vector ~L (and

also ~m) precesses about ~ω (or − ~B) with the Larmor
frequency

ω ≡ |~ω| = qB

2m
.
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Electrodynamics

5.1 Plane Waves

Now we return to the full time-dependent Maxwell equations

~∇ · ~E =
ρ

ε0

~∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~j

~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0.

Consider a region with no charge or currents, so ρ = 0 and ~j = ~0. Then

~∇×
(
~∇× ~E

)
= ~∇

(
~∇ · ~E

)
−∆~E = − ∂

∂t
~∇× ~B = − 1

c2
∂2

∂t2
~E.

Here we used a vector calculus identity as well as the Maxwell equations with ρ = 0 and
~j = 0. This implies that (

1

c2
∂2

∂t2
−∆

)
~E = 0.

This is the wave equation for the electric field ~E. We define the d’Alembert operator
as

� ≡ 1

c2
∂2

∂t2
−∆ = ∂µ∂

µ,

then we can write the wave equation as

�~E = 0.

Recall that

∂µ =

[
1
c
∂
∂t

−~∇

]
, ∂µ =

[
1
c
∂
∂t

~∇

]
.

We repeat the same thing for ~B,

~∇×
(
~∇× ~B

)
= −∆ ~B =

1

c2
∂

∂t
~∇× ~E.

This gives us the wave equation for the magnetic field ~B(
1

c2
∂2

∂t2
−∆

)
~B = 0.
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Consider solutions f = f(z, t) which depend only one a single spatial variable. Such
solutions are called plane waves. We can “factor” the PDE as(

1

c2
∂2

∂t2
−∆

)
f(z, t) = 0(

1

c

∂

∂t
− ∂

∂z

)(
1

c

∂

∂t
+

∂

∂z

)
f(z, t) = 0.

If we define the d’Alembert variables

ξ ≡ z + ct, η ≡ z − ct,

then
∂

∂ξ
=

1

2

(
∂

∂z
+

1

c

∂

∂t

)
,

∂

∂η
=

1

2

(
∂

∂z
− 1

c

∂

∂t

)
,

and
∂2

∂ξ∂η
f(z, t) = 0.

Thus, we can treat f(z, t) as independent of ξ, then

∂

∂η
f(x, t) = g2(η) =⇒ f(ξ, η) =

ˆ
dη g2(η) + f2(ξ).

Alternatively, we can treat f(z, t) as independent of η, then

∂

∂ξ
f(x, t) = g1(ξ) =⇒ f(ξ, η) =

ˆ
dξ g1(ξ) + f1(η).

This implies that

f(ξ, η) = f1(η) + f2(ξ),

which we can write as

f(z, t) = f1(z − ct) + f2(z + ct).

A function like f1(z− ct) gives some shape defined by f1 that is moving to the right with
speed c. A function like f2(z + ct) gives some shape defined by f2 that is moving to the
left with speed c.

Transverse EM Waves

We now consider transverse electromagnetic (TEM) plane waves involving ~E = ~E(z, t)

and ~B = ~B(z, t), which depend only a single spatial variable—z. Since ρ = 0, we know

that ~∇ · ~E = 0, and this implies that

∂Ez
∂z

= 0.

That is, Ez has no z-dependence. We also have

(
~∇× ~B

)
· ẑ =

(
1

c2
∂ ~E

∂t

)
· ẑ =⇒ ∂Ez

∂t
= c2

(
~∇× ~B

)
z

= 0,

which implies that Ez also has no t-dependence.

∂Ez
∂t

= 0.
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Thus, Ez(z, t) has neither z nor t dependence, so

Ez = constant.

We can set the constant to be zero. Thus, ~E oscillates only in the xy-plane. We have
two solutions, both of which are perpendicular to ẑ

~E+(z, t) = ~f⊥(z + ct), ~E−(z, t) = ~g⊥(z − ct).

Then

∂

∂t
~B+ = −~∇× ~f⊥(z + ct) =


∂zf⊥,y

−∂zf⊥,x
0

 = −ẑ × ∂ ~f⊥
∂z

= −ẑ ×
(

1

c

∂

∂t
~f⊥

)
.

In the last equality we used the fact that the dependence of f⊥ on z and t has the form
z + ct, so

∂ ~f⊥
∂z

=
1

c

∂ ~f⊥
∂t

.

So we found that,

∂

∂t
~B+ = −ẑ ×

(
1

c

∂

∂t
~f⊥

)
= −ẑ ×

(
1

c

∂

∂t
~E+

)
,

which implies
c ~B+ = −ẑ × ~E+ + (time-independent piece).

This implies that
~E+ · ~B+ = 0 =⇒ ~E+ ⊥ ~B+.

Similarly, one can show that

~E− · ~B− = 0 =⇒ ~E− ⊥ ~B−.

In general,
~E = ~E+ + ~E−.

but (
~E+ + ~E−

)
·
(
~B+ + ~B−

)
6= 0.

For EM waves traveling in a generic but constant direction k̂,

~E(~r, t) = ~E⊥(ct− k̂ · ~r),

where ~E⊥ is perpendicular to the direction of propagation k̂. The associated magnetic
field is

c ~B(~r, t) = k̂ × ~E(~r, t).

The magnitudes of the field are related as

|~E| = c| ~B|.

In general, for transverse EM waves, ~E, ~B, and k̂ form a right-handed mutually-
perpendicular triad of vectors.
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Monochromatic Plane Waves

For the wave equation (
1

c2
∂2

∂t2
− ∂2

∂z2

)
f(z, t) = 0,

we assume a separable solution

f(z, t) = Z(z)T (t).

In the special case of monochromatic plane waves, we can write the solution in the
form

~E⊥(φ) = Re
(
~E⊥,0e

iφ
)
,

where φ ∝ k̂ · ~r − ct, and ~E⊥,0 is a complex constant vector in the xy-plane. That is,

~E⊥(~r, t) = Re
(
~E⊥,0e

i(~k·~r−ωt)
)
,

with ω = c|~k|. We can also write it in 4-vector notation as

~E⊥(~r, t) = Re
(
~E⊥,0e

−ikµxµ
)
,

where
kµ =

(ω
c
,~k
)
,

is the wave 4-vector. For ~B we have a similar structure.
The physical fields are always real. Remember that

Re eiφ = cosφ.

Typically people will write the fields without explicitly noting that the real part must be
taken. For example, people will write

~E⊥(~r, t) = ~E⊥,0e
i(~k·~r−ωt).

This is fine as long as we only perform linear operations with the fields. However, taking
products, magnitudes, etc. of the fields will cause problems unless we first take the real
parts of the fields.

Polarization

At a fixed point ~r in space, the fields are harmonic oscillators.
Consider a linear combination of two plane wave solutions with the same direction

of propagation

~E = Aê1 cos
(
~k · ~r − ωt+ δ1

)
+Bê2 cos

(
~k · ~r − ωt+ δ2

)
= E1ê1 + E2ê2, (5.1)

where all quantities are real and ê1 and ê2 are perpendicular to k̂ and to each other. At
a fixed position ~r, ~E1 and ~E2 act like a pair of perpendicular harmonic oscillators, and
the general shape traced out by the vector ~E (at the fixed position ~r) is an ellipse. After
some algebra, it can be shown that(

E1

A

)2

+

(
E2

B

)2

− 2
E1E2

AB
cos δ = sin2 δ,

where δ ≡ δ1 − δ2. This is the equation of an ellipse centered at the origin and rotated
through an angle

θ =
1

2
cot−1

[
A2 −B2

2AB cos δ

]
.
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Elliptic Polarization

In general, for the EM wave given in Eq. (5.1), we have elliptical polarization

Circular Polarization

For the EM wave given in Eq. (5.1), if A = B and δ = δ1 − δ2 = π/2 + mπ for m ∈ Z,
then we have circular polarization.

Circular polarization corresponds to the spin of the photon in or opposite the direction
of motion. We can have left or right circular polarization. The convention in high en-
ergy physics, is that if the photon’s spin is in the direction of motion, then it has right
polarization. If its spin is opposite its direction of motion then it has left polarization.

A circular wave is right-polarized if when you wrap your fingers around the direction
of rotation (i.e. right-hand rule) your thumb points in the direction of the wave’s propa-
gation. It is left-polarized if your thumb points opposite the direction of propagation.

Linear Polarization

For the EM wave given in Eq. (5.1), if δ = δ1 − δ2 = mπ for m ∈ Z, then we have linear
polarization
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Wave Packets

We can write the general superposition of solutions as the Fourier transform with respect
to space

f(~r, t) = Re

(ˆ
d3k f(~k)ei(

~k·~r−ωt)
)
,

where for electromagnetic waves in a vacuum,

ω(k) = ck,

is the dispersion relation. The Fourier coefficient is

f(~k) =
1

(2π)3

ˆ
d3~r f(~r, t = 0)e−i

~k·~r.

Note, the “Re(· · · )” ensures that we only need to include the −iωt solutions and not also
the +iωt solutions since

Re
(
ei(

~k·~r+ωt)
)

= cos(~k · ~r + ωt) = cos(−~k · ~r − ωt) = Re
(
ei(−

~k·~r−ωt)
)
.

That is, by integrating over −~k as well as +~k, we are already including the +iωt solutions.
In 1D, e.g. for a wave packet traveling in the z-direction,

f(z, t) =

ˆ ∞
−∞

dk f(k)ei(kz−ωt)

f(k) =
1

2π

ˆ ∞
−∞

dz f(z, 0)e−ikz.

Taking the real part in the end is implied here.

Lorenz Gauge

Recall that

~E = −~∇φ− ∂ ~A

∂t
.

Plugging this into Maxwell equation ~∇ · ~E = ρ/ε0 gives us

~∇ ·
(
−~∇φ− ∂ ~A

∂t

)
= −∆φ− ∂

∂t
~∇ · ~A =

ρ

ε0
.

Adding and subtracting 1
c2
∂2φ
∂t2 between the two equality symbols allows us to write(

1

c2
∂2

∂t2
−∆

)
φ− ∂

∂t

(
1

c2
∂φ

∂t
+ ~∇ · ~A

)
=

ρ

ε0
.

Similarly, one can derive(
1

c2
∂2

∂t2
−∆

)
~A+ ~∇

(
1

c2
∂φ

∂t
+ ~∇ · ~A

)
= µ0

~j.

We want to pick a gauge where the second term is zero

1

c2
∂φ

∂t
+ ~∇ · ~A = 0.
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This is called the Lorenz gauge, and in covariant notation, it is

∂µA
µ = 0.

In the Lorenz gauge, the simplified equations for φ and ~A can be written in covariant
form as

∂ν∂
νAµ = µ0j

µ.

If Aµ is not in the Lorenz gauge, then we can make a gauge transformation

A′ µ = Aµ + ∂µΛ.

Then we need a Λ such that

0 = ∂µA
′ µ = ∂µA

µ + ∂µ∂
µΛ.

This implies
∂µ∂

µΛ = −∂µAµ.

This is a wave equation, and it can always be solved for Λ.
One advantage of the Lorenz gauge is that ∂µA

µ = 0 is a scalar product of two
Lorentz vectors, so it is Lorentz invariant and independent of the frame. A disadvantage
of the Lorenz gauge is that it’s not very restrictive. For monochromatic plane waves,
there are six components of ~E and ~B, but there are really only two degrees of freedom
since ~E ⊥ ~B, ~E ⊥ ~k and ~B ⊥ ~k.

In a charge-free vacuum, it is possible to choose a frame with φ = 0. Combine this
with the Lorenz gauge condition ∂µA

µ = 0, and this implies ~∇ · ~A = 0. This is the
Coulomb gauge. With this choice (and remember this is not generally true), A0 = 0,
and

~A(~r, t) = Re

ˆ
d3k ~A(~k)ei(

~k·~r−ωt),

where
~A(~k) =

1

(2π)3

ˆ
d3r ~A(~r, t = 0)e−i

~k·~r.

Then ~∇ · ~A = 0 implies that

0 = Re ~∇ ·
ˆ
d3k ~A(~k)ei(

~k·~r−ωt) = Re

ˆ
d3k i~k · ~A(~k)ei(

~k·~r−ωt),

and this implies that
~k · ~A = 0.

5.2 Energy and Momentum Conservation

Poynting’s Theorem and Energy Conservation

Consider the work performed by the electric field ~E on a charged particle (recall that ~B
does no work). The Lorentz force is

~F = q
(
~E + ~v × ~B

)
.

Then
dEmech = ~F · d~S = ~F · ~v dt,

where Emech is the mechanical energy. Recall that for a charged particle,

~j = q~vδ(~r − ~r0(t)).
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We can write
dEmech
dt

=

ˆ
d3r ~F ·

~j

q
=

ˆ
d3r ~E ·~j.

Here, ~E · ~j is the “mechanical work density per unit time” or the “mechanical power
density”.

If we plug in one of the Maxwell equations,

~E ·~j = ~E · 1

µ0

(
~∇× ~B − 1

c2
∂ ~E

∂t

)
.

Using the vector identity

~∇ ·
(
~E × ~B

)
= ~B ·

(
~∇× ~E

)
− ~E ·

(
~∇× ~B

)
,

we can write

~E ·~j =
1

µ0

[
~B ·
(
~∇× ~E

)
− ~∇ ·

(
~E × ~B

)]
− ε0 ~E ·

∂ ~E

∂t

=
1

µ0

[
− ~B · ∂

~B

∂t
− ~∇ ·

(
~E × ~B

)]
− ε0 ~E ·

∂ ~E

∂t

= − ∂

∂t

[
1

2

(
ε0|~E|2 +

1

µ0
| ~B|2

)]
− ~∇ ·

(
~E × ~B
µ0

)

= −∂u
∂t
− ~∇ · ~S,

where

u =
1

2

(
ε0|~E|2 +

1

µ0
| ~B|2

)
,

is the energy density of the electromagnetic fields, and

~S =
~E × ~B
µ0

,

is the Poynting vector with units of energy per area per unit time. It is a measure of
the energy flowing in the Ŝ direction.

A non-vanishing ~S on the surface of a volume V does not necessarily imply that there
is an energy exchange through the surface of V . There could be energy exchange, but ~S
could also be parallel to the surface implying no energy exchange through the surface.

Then
~E ·~j +

∂u

∂t
+ ~∇ · ~S = 0,

which implies Poynting’s theorem of energy conservation

d

dt
(Emech + Efields) +

ˆ
surface

~S · d ~A = 0,

where
d

dt
Emech =

ˆ
V

d3r ~E ·~j,

and

Efields =

ˆ
V

d3r u.

This all assumes that no particles are leaving the volume.
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Momentum Conservation

We know that
d

dt
~pmech = ~F = q

(
~E + ~v × ~B

)
.

This implies

d

dt
~pmech =

ˆ
d3r

(
ρ~E +~j × ~B

)
,

where

ρ~E +~j × ~B,

is the “mechanical momentum density per unit time”.
Using Maxwell’s equations to eliminate all references to the charges ρ and ~j, it can

be shown that

ρ~E +~j × ~B = −ε0
∂

∂t

(
~E × ~B

)
+

∂

∂xi
σij ,

where

σij = ε0

(
EiEj −

1

2
δij |~E|2

)
+

1

µ0

(
BiBj −

1

2
δij | ~B|2

)
,

are the components of Maxwell’s stress tensor. Then we can write(
ρ~E +~j × ~B +

∂~g

∂t

)
j

=
∂

∂xi
σij ,

where

~g = ε0 ~E × ~B =
1

c2
~S,

is the momentum density of the fields. If we integrate, then[ˆ
V

dV
(
ρ~E +~j × ~B

)
+
d

dt

ˆ
V

dV ~g

]
j

=

ˆ
S

dA n̂iσij .

This is momentum conservation. The quantity on the right side is a force. Specifically,
σij dAi is a force in the jth direction and applied across the area dA pointing in the ith
direction. That is,

σij dAi =
force in the jth direction

area in the ith direction
.

For example

σxx =
Fx
Ax

, (compression)

σxy =
Fy
Ax

, (shear).



5.3. Retarded Green’s Function 103

In 4D, we can write energy-momentum conservation together as

∂νT
µν + fµ = 0,

where fµ is the force density and

Tµν =


u Sx/c Sy/c Sz/c

gxc −σxx −σxy −σxz
gyc −σyx −σyy −σyz
gzc −σzx −σzy −σzz

 =


u Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz

.
Notice that µ = 0 gives us energy conservation, and µ = i gives us momentum conserva-
tion.

5.3 Retarded Green’s Function

We now look at Green’s function for time-dependent potentials.
Recall

∂ν∂
νAµ = µ0j

µ ⇐⇒
(

1

c2
∂2

∂t2
−∆

)
Aµ = µ0j

µ.

Recall that for the Poisson equation ∆φ = −ρ/ε0 with boundaries at infinity we can
use Green’s function. For a point charge distribution, G = 1/|~r − ~r ′|, then ∆G =
−4πδ(~r − ~r ′). For a general charge distribution,

φ(~r) =
1

4πε0

ˆ
d3r′ ρ(~r ′)G(~r,~r ′).

We repeat this but now for the time-dependent Green’s function. We start with(
1

c2
∂2

∂t2
−∆

)
G(~r, t,~r ′, t′) = 4πδ(3)(~r − ~r ′)δ(t− t′).

This implies

φ(~r, t) =
1

4πε0

ˆ
d3r′ dt′ ρ(~r ′, t′)G(~r, t,~r ′, t′).

We can show that this time-dependent potential solves ∂µ∂
µφ = ρ/ε0. Note that if we

calculate
(

1
c2

∂2

∂t2 −∆
)
φ, then the operator

(
1
c2

∂2

∂t2 −∆
)

acts only on ~r and t and not on

~r ′ or t′.
Now we want to construct an appropriate Green’s function G(~r, t,~r ′, t′). As for

boundary conditions, we will assume the volume is bounded at infinity.
Our first assumption is that G is invariant under translations in time and space.

That is, we want G to be invariant under

~r,~r ′ −→ ~r + ~a,~r ′ + ~a

t, t′ −→ t+ b, t′ + b,

where ~a and b are arbitrary constants. Notice that under this transformation,

~r − ~r ′ −→ ~r − ~r ′.

So we can write
G(~r, t,~r ′, t′) = G(~R, τ),

where
~R ≡ ~r − ~r ′, τ ≡ t− t′.
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Our second assumption is that G→ 0 at infinity.
The Fourier transform is

G(~R, τ) =

ˆ
d3k dω G̃(~k, ω)ei

~k·~R−iωτ .

Notice that

4πδ(~R)δ(τ) =
4π

(2π)4

ˆ
d3k dω ei

~k·~R−iωτ . (5.2)

From the Fourier definition of G,

∂µ∂
µG =

(
1

c2
∂2

∂t2
−∆

)
G =

ˆ
d3k dω

(
(−iω)2

c2
− (i~k)2

)
ei

~k·~R−iωτ .

We want this to be equal to the negative of Eq. (5.2). So we require(
(−iω)2

c2
− (i~k)2

)
G̃ =

4π

(2π)4
.

This implies

G̃(~k, ω) = − 4π

(2π)4
c2

ω2 −~k 2c2
.

Then

G(~R, τ) = − 4πc2

(2π)4

ˆ
d3k dω

1

ω2 −~k 2c2
ei

~k·~R−iωτ .

This is the Green’s function G that solves

∂µ∂
µG = −4πδ(3)(~R)δ(τ).

We can perform the angular integrals using

ˆ
d3k =

ˆ ∞
0

dk k2
ˆ 1

−1
d(cos θ)

ˆ 2π

0

dϕ.

Writing ~k · ~R = kR cos θ,

G(~R, τ) = − 4πc2

(2π)4

ˆ
d3k dω

1

ω2 −~k 2c2
ei

~k·~R−iωτ

= − 4πc2

(2π)4

ˆ
dω e−iωτ

ˆ ∞
0

dk k2
1

ω2 − k2c2

ˆ 1

−1
d(cos θ) eikR cos θ

ˆ 2π

0

dϕ

= − 4πc2

(2π)3

ˆ
dω e−iωτ

ˆ ∞
0

dk k2
1

ω2 − k2c2

ˆ 1

−1
d(cos θ)

1

ikR

(
eikR − e−ikR

)
= − 4πc2

(2π)3
1

iR

ˆ
dω e−iωτ

ˆ ∞
0

dk k
1

ω2 − k2c2
(
eikR − e−ikR

)
= − 4πc2

(2π)3
1

iR

ˆ
dω e−iωτ

ˆ ∞
−∞

dk k
1

ω2 − k2c2
eikR

= − 4πc2

(2π)3
1

iR

ˆ ∞
−∞

dk k

ˆ ∞
−∞

dω
1

ω2 − k2c2
ei(kR−ωτ).

Next, we want to do the ω-integral. Using partial fraction decomposition, we can write

ˆ ∞
−∞

dω
1

ω2 − k2c2
ei(kR−ωτ) =

ˆ ∞
−∞

dω
1

2kc

(
1

ω − kc
− 1

ω + kc

)
ei(kR−ωτ).
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The problem is that we have poles at ω = kc where the integral over ω is undefined. We
must define it more carefully. To resolve this, we redefine the integral using a regularizing
parameter ε, which is taken to zero in the end. This is a standard approach in quantum
field theory.

The idea is to deform the integration contour into the complex ω-plane. When we
integrate along the real axis, we avoid the poles at ±kc by integrating along semi-circles
of radius ε.

Note, this choice of integration path is not unique. We could also choose the semi-circles
to extend downward, or for either one to extend upwards and the other one downwards.

To evaluate the integral, we use Cauchy’s theorem, which states that

‰
C
dz f(z) = 2πi

∑
zi

Res f(zi).

On the left, we have the counter-clockwise integral of a complex function f(z) over a
closed curve C. On the right, we have a sum over the residues of the poles zi, contained
inside C, of the function f(z). Cauchy’s theorem is valid for functions f(z) which are
analytic except for a finite number of poles. To obtain the residue of a pole, we can use a
Laurent series expansion. For example, for a pole at z = 0, we would expand f(z) about
z = 0

f(z) =
c−n
zn

+ · · ·+ c−1
z

+ c0 + · · ·

Then the residue of the pole is the coefficient of the 1/z term. In this case, the residue is
c−1.

We can close the contour (remember, we require a closed loop to apply Cauchy’s
theorem), either by going upward (C1) or downward (C2) in a semi-circle of radius R→∞.
In this limit, the contribution from the semi-circle part of the contour must go to zero in
order for us to recover the integral along only the real axis, which is what we want.
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The contour we choose depends on the sign of τ = t− t′.
If τ < 0, we use the upper semi-circle. That is, we use the contour C1, which contains

no poles. So by Cauchy’s theorem,

‰
C1
dω

e−iτω

ω2 − k2c2
= 0.

We can break the contour into the real line and the upper semi-circle,

‰
C1
dω

e−iτω

ω2 − k2c2
=

ˆ ∞
−∞

e−iτω

ω2 − k2c2
+

ˆ
semi−circle

dω
e−iτω

ω2 − k2c2
.

It can be shown that the second integral goes to zero in the limit in which the semi-circle
radius goes to infinity, thus implying that

ˆ ∞
−∞

e−iτω

ω2 − k2c2
=

‰
C1
dω

e−iτω

ω2 − k2c2
= 0, for τ < 0.

If τ > 0, we use the lower semi-circle. That is, we use the contour C2, which contains
the two poles. Calculating the residue of each pole and then applying Cauchy’s theorem,
we get ‰

C2
dω

e−iτω

ω2 − k2c2
= 2πi

1

2kc

(
e−ikcτ − eikcτ

)
.

A slight complication is that this result is valid for a counter-clockwise oriented circle,
and we want a clockwise oriented circle so that the integral along the real line goes in
the right direction. So when we break the contour into two pieces—the real line plus the
lower semi-circle, we have to insert a negative sign.

−
‰
C2
dω

e−iτω

ω2 − k2c2
=

ˆ ∞
−∞

e−iτω

ω2 − k2c2
+

ˆ
semi−circle

dω
e−iτω

ω2 − k2c2
.

Again, it can be shown that the second integral goes to zero in the limit in which the
semi-circle radius goes to infinity, thus implying that

ˆ ∞
−∞

e−iτω

ω2 − k2c2
= −

‰
C1
dω

e−iτω

ω2 − k2c2
= −2πi

1

2kc

(
e−ikcτ − eikcτ

)
, for τ > 0.

Now that we’ve completed the ω-integral, our Green’s function is simplified to

G(~R, τ) = 0,
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for τ < 0. For τ ≥ 0,

G(~R, τ) =
1

2π

c

R

ˆ ∞
−∞

dk
(
e−ikcτ − eikτ

)
eikR

=
c

R

(
δ(R− cτ)− δ(R+ cτ)

)
.

The quantity R + cτ is always positive for the case when τ ≥ 0, so the second delta-
function does not contribute. We can then combine both τ < 0 and τ ≥ 0 cases in the
single function

G(~R, τ) =
1

R
δ (τ −R/c) ,

or

G(~r, t,~r ′, t′) =
1

|~r − ~r ′|
δ

(
t− t′ − |~r − ~r

′|
c

)
.

If we have a source at ~r ′, then points on the wave front satisfy the retarded time
relation

|~r − ~r ′| = c(t− t′).

A change of source at ~r ′ and time t′ changes the potential at another point ~r only at the
later (retarded) time

t = t′ +
|~r − ~r ′|

c
.

In the limit where c→∞, we get the “instantaneous” Green’s function

G =
1

|~r − ~r ′|
δ(t− t′).

We can also consider the advanced (as opposed to the retarded) Green’s function.
However, this seems to be unphysical since the reaction at ~r occurs before the change in
source at ~r ′.

From

φ(~r, t) =
1

4πε0

ˆ
d3r′ dt′ ρ(~r ′, t′)G(~r ′, t′,~r, t),

we get the retarded potential

φ(~r, t) =
1

4πε0

ˆ
d3r′

ρ
(
~r ′, t− |~r−~r

′|
c

)
|~r − ~r ′|

.

Similarly,

~A(~r, t) =
µ0

4π

ˆ
d3r′

~j
(
~r ′, t− |~r−~r

′|
c

)
|~r − ~r ′|

.
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5.4 Radiation

Radiation of Oscillating Sources

Consider an oscillating source
~j(~r, t) = e−iωt~j(~r).

In general we can decompose a current density in a Fourier decomposition

~j(~r, t) =

ˆ ∞
−∞

dω e−iωt~j(~r, ω),

and treat each component separately. Then the oscillating source gives us the vector
potential

~A(~r, t) =
µ0

4π
e−iωt

ˆ
d3r′ ~j(~r ′)

eik|~r−~r
′|

|~r − ~r ′|
,

where k = ω/c.
There are three relevant length scales:

• We assume that the source is localized such that |~r ′| . d for some d. Also, we
assume the source is at the origin
• We have the observer at ~r
• We have the wavelength

λ =
2π

k
=

2π

ω/c
,

of the emitted radiation

So our three relevant length scales are d, ~r, and λ. In general, we assume the observer
is outside the source distribution (i.e. r >> d) and the sources are non-relativistic (i.e.
λ >> d)

We have three zones to consider:

• Near (static) zone: d << r << λ
• Intermediate (induction) zone: d << r ∼ λ
• Far (radiation) zone: d << λ << r

Near Zone

In the near zone, we have λ >> r which implies ω, k ∼ 0. That is,

k|~r − ~r ′| ≈ kr << 1 =⇒ eik|~r−~r
′| ≈ 1.

Then

~A(~r, t) = e−iωt
µ0

4π

ˆ
d3r′

~j(~r ′)

|~r − ~r ′|
.

This is just e−iωt times the static vector potential. This is a quasistationary result. I.e.,
the source varies so slowly that the static solution is good.
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Intermediate Zone

In the intermediate or induction zone, we have d << r ∼ λ. In this zone we have to keep
all powers of kr, making this region complicated to deal with. We will not do anything
in this zone.

Far Zone

In the far or radiation zone, we have d << λ << r. For this zone we can do a simultaneous
expansion of r′/r and kr′. We can write

|~r − ~r ′| =
√
r2 + r′ 2 − 2~r · ~r ′ = r − ~r

r
· ~r ′ + · · · ' r − r̂ · ~r ′.

Thus,
1

|~r − ~r ′|
≈ 1

r
+O

(
d2

r2

)
,

so
eik|~r−~r

′| = eikre−ik(r̂·~r
′) +O(d/r).

So the vector potential can be written as

~A(~r, t) =
µ0

4π

ei(kr−ωt)

r

ˆ
d3r′ ~j(~r ′)e−ik(r̂·~r

′).

At large distances, ei(kr−ωt)/r, is an outgoing spherical wave. At very large distances,
the spherical wave front looks locally like a plane wave.

From ~B = ~∇ × ~A and ~E = c ~B × r̂ and with ~A in spherical coordinates, we can
write (after some algebra)

~B =
∂ ~A

∂t
× r̂ = i~k × ~A

~E = c ~B × r̂.

The energy carried away by radiation is given by the Poynting vector which reduces
to

~S =
c

µ0
| ~B|2r̂.

The power is given by

P =
dE
dt

=

ˆ
~S · d ~A =

ˆ
|~S|r2dΩ.

The r2 in the integrand is cancelled by a factor of 1/r2 in | ~B|2. The power radiated in
some solid angle dΩ is

dP

dΩ
= |~S|r2 =

c

µ0
| ~B|2r2.

We can expand the remaining oscillating factor as

e−ik(r̂·~r
′) = 1− ik (r̂ · ~r ′)− 1

2
(kr̂ · ~r ′)2 + · · · .

Each term is suppressed by kd ∼ v/c. Typically, we keep only the leading term. The
first term in this expansion corresponds to electric dipole radiation, and the second term
corresponds to magnetic dipole or electric quadrupole radiation.
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Electric Dipole Radiation

For the dipole approximation, we keep only the first term in the k · d expansion

e−ik(r̂·~r
′) ≈ 1.

Then the vector potential can be written

~A(~r, t) =
µ0

4π

e−iωt
′

r

ˆ
d3r′ ~j(~r ′),

where t′ = t− r/c. Since ~j(~r, t) = eiωt~j(~r), we can write this as

~A(~r, t) =
µ0

4π

1

r

ˆ
d3r′ ~j(~r ′, t′).

Integrating by parts (integrating ‘1’ and differentiating ~j), and then applying the
continuity equation, we can write

ˆ
d3r′ ~j(~r ′, t′) = −

ˆ
d3r′ ~r ′

(
~∇ ·~j(~r ′, t′)

)
+ surface term

= −
ˆ
d3r′ ~r ′

(
−∂ρ
∂t

)
=

d

dt

ˆ
d3r′ ρ(~r ′, t′)~r ′

= ~̇p(t′).

where ~p is the electric dipole moment. Note that d/dt = d/dt′ here. Therefore,

~A(~r, t) =
µ0

4π

1

r
~̇p(t′)

∣∣∣
t′=t−r/c

.

The magnetic field is

~B(~r, t) =
1

c

∂ ~A

∂t
× r̂,

which becomes

~B(~r, t) =
µ0

4πc

1

r
~̈p(t′)× r̂

∣∣∣
t′=t−r/c

.

Only the magnitude of ~B enters into the formula for the power. Suppose ~p is along the
z-axis, and θ is the angle between ~p and the observer at ~r, then since the time derivative
doesn’t change the direction of ~p, we can write∣∣∣~̈p× r̂∣∣∣ =

∣∣∣~̈p∣∣∣ sin θ.
Therefore,

dP

dΩ
=

µ0

16π2c

∣∣∣~̈p(t′)
∣∣∣2 sin2 θ

∣∣∣
t′=t−r/c

.

This is the power at a moment in time. It gives the general angular distribution of
radiated power for electric dipole radiation. In general, the angle between the dipole and
the observer can be time-dependent, and ~p may not be in the z-direction, so we should
really write

dP

dΩ
=

µ0

16π2c

∣∣∣~̈p(t′)
∣∣∣2 sin2(α(t′))

∣∣∣
t′=t−r/c

,
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where α(t′) is the angle between ~p and ~r. Note that dP/dΩ is does not depend on the
distance r to the observer, because the solid angle does not depend on the distance to
the observer. However, the total power received by a receiver with fixed surface area will
fall off as 1/r2 since the solid angle subtended by the receiver falls off as 1/r2.

Consider the dependence in dP/dΩ of r, ω, and the angles:

• We know that ~B ∝ 1/r2, but this cancels in dP/dΩ. Then the only r-dependence
in dP/dΩ is in t′ = t− r/c, which is averaged out. So dP/dΩ is effectively constant
in r for a given dΩ.

• This form of the equation for dP/dΩ is independent of ω—it works for all modes.
For a single mode, we would have dP/dΩ ∝ ω4.

• The only angular dependence in dP/dΩ is sin2 θ. We see that no radiation is pro-
jected in the forward or backward directions relative to ~p. In fact, most of the
radiation is orthogonal to the direction of ~B.

To get the total power radiated, we have to integrate

ˆ
dΩ sin2 θ = 2π

ˆ 1

−1
d(cos θ)(1− cos2 θ) =

8

3
π.

So we get

P =
2

3

µ0

4πc

∣∣∣~̈p(t′)
∣∣∣2 .

Suppose

~p = ~p0 cos
(
ωt− ωr

c

)
.

The time average of cos2(ωt− ωr/c) over a single period is

1

T

ˆ T

0

dt cos2(ωt) =
1

2π

ˆ 2π

0

dφ cos2 φ =
1

2
.

When averaging, we can ignore the phase shift r/c in the cosine since a phase shift does
not change the average value. Then the time average of the radiated power is〈

dP

dΩ

〉
t

=
µ0

32π2c
|~p0|

2
ω4 sin2 θ.

The time average of the total power radiated is

〈P 〉t =
1

6

µ0

4πc
|~p0|

2
ω4.

Example 5.4.1

Suppose you have a dipole moment ~p that rotates in the xy-plane with angular
velocity ~ω = ωẑ.
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The dipole moment is

~p =
(

cos(ωt− ϕ), sin(ωt− ϕ), 0
)
,

and so
~̈p = −ω2~p.

Then plugging it into the formula,

dP

dΩ
=

µ0

16π2c
ω4 |~p|2 sin2(α(t′))

∣∣∣
t′=t−r/c

.

Note that the angle α between ~p and the observer at ~r is now time-dependent.
We can write the cosine of the angle as a dot product cosα = p̂ · r̂. Since we will
be taking the time-average anyway, we are free to choose r̂ to be in the xz-plane
at a given time. So

cosα = p̂ · r̂ =
(

cos(ωt− ϕ), sin(ωt− ϕ), 0
)
·
(

sin θ, 0, cos θ
)

= cos(ωt− ϕ) sin θ.

Then 〈
sin2 α(t)

〉
t

=
〈
1− cos2 α(t)

〉
t

= 1−
〈
cos2 α(t)

〉
t

= 1−
〈
cos2(ωt− ϕ)

〉
t
sin2 θ

= 1− 1

2
sin2 θ =

1 + cos2 θ

2
.

Therefore, 〈
dP

dΩ

〉
t

=
µ0

16π2c
ω4 |~p|2 1 + cos2 θ

2
.

Keep in mind that θ is the polar angle to the observation point. Notice that the
radiation is stronger in the directions perpendicular to the plane in which ~p is
rotating.

For a point charge q with mass m at ~r, the dipole moment is simply

~p = q~r =⇒ ~̈p = q~̈r.

If the particle is accelerated by some force ~F = ma = m~̈r, then

p̈ = qa.

Then it radiates power

P =
2

3

µ0

4πc

∣∣∣~̈p(t′)
∣∣∣2 =

2

3

µ0

4πc
q2a2.

This is the rate at which the particle loses energy due to dipole radiation. This is the
Larmor formula. It is generally valid for non-relativistic particles with speed v << c.

Suppose instead of being given ~p, we are given the current distribution. Then we
know from earlier work that

~̇p(t) =

ˆ
d3r′ ~j(~r ′, t).

From this,

~̈p(t) =
d

dt

ˆ
d3r′ ~j(~r ′, t).
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Example 5.4.2

Consider a center-fed linear antenna as shown below. It has length 2a, is
centered at the origin, and lies along the z-axis. The current in the antenna is

I(t) = I0

(
1− |z|

a

)
cos(ωt).

In this example,

~̇p =

ˆ
d3r ~j =

ˆ a

−a
dz Iẑ = I0 cos(ωt)ẑ

ˆ a

−a
dz

(
1− |z|

a

)
= aI0 cos(ωt)ẑ.

Then
|~̈p|2 = a2I20ω

2 sin2(ωt).

The total power radiated is

P =
2

3

µ0

4πc

∣∣∣~̈p(t′)
∣∣∣2 =

2

3

µ0

4πc
(aI0ω)2 sin2(ωt).

Then

〈P 〉t =
2

3

µ0

4πc

∣∣∣~̈p(t′)
∣∣∣2 =

1

3

µ0

4πc
(aI0ω)2.

Magnetic Dipole and Electric Quadrupole Radiation

Suppose we have a current loop carrying an AC current I = I0 sinωt. This system has
no electric dipole, so there is no electric dipole radiation. We have to go to the next term
in the expansion

~A(~r, t) =
µ0

4π

1

r
ei(kr−ωt)

ˆ
d3r′ ~j(~r ′)

[
1− ikr̂ · ~r ′ + · · ·

]
.

We can write this expansion in the form

~A(~r, t) = ~A0 + ~A1 + · · · ,

where ~A0 is the dipole term that we already derived. Note that

1

c

d

dt′
~j(~r ′, t′) = −ikei(kr−ωt)~j(~r ′).

After some algebra and with the use of vector identities, the new term can be written

~A1(~r, t) = ~A1A(~r, t) + ~A1B(~r, t),
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where

~A1A(~r, t) =
µ0

4π

1

cr
r̂ × d

dt

1

2

ˆ
d3r′ ~r ′ ×~j(~r ′, t′)

~A1B(~r, t) =
µ0

4π

1

cr

d

dt

ˆ
d3r′

[
1

2

(
r̂ ·~j

)
~r ′ + (r̂ · ~r ′)~j

]
.

The first can be written as
~A1A(~r, t) =

µ0

4π

1

cr
r̂ × ~̇m.

Using the continuity equation and integrating by parts, the components of the second one
can be written as (

~A1B

)
i

=
µ0

4π

1

cr
r̂k

1

6

d2

dt2

ˆ
d3r′ 3ρr′kr

′
i.

Double-check this result. This is almost the electric quadrupole moment Qki. Recall that

Qki =

ˆ
d3r′

(
3ρr′kr

′
i − δkir′ 2

)
.

Note that
r̂kδki = r̂i.

The result is that
~A1B = ~A1B

′ =
µ0

4π

1

6cr
~̈Q,

where (~Q)i ≡ r̂kQki. Then

~B1 =
µ0

4πc

[
1

cr

(
~̈m× r̂

)
× r̂ +

1

6rc

...
~Q× r̂

]
.

Compare this with the result from electric dipole radiation

~B0 =
µ0

4πc

1

r

(
~̈p× r̂

)
.

We have the same 1/r behavior in both, but in ~B1 we have a factor of 1/c. This velocity
suppression is the result of this being a higher-order term in the kd expansion.

For the electric field, we get

~E1 =
µ0

4π

[
1

cr

(
~̈m× r̂

)
+

1

6rc

(...
~Q× r̂

)
× r̂
]
.

Compare this with the result from electric dipole radiation

~E0 =
µ0

4π

1

r

(
~̈p× r̂

)
× r̂.

The electric dipole, magnetic dipole, and electric quadrupole contributions to multi-
pole radiation are

~A =
µ0

4π

[
1

r
~̇p+

1

rc

(
~̇m× r̂ +

1

6
~̈Q

)
+ · · ·

]
~B =

µ0

4πc

[
1

r

(
~̈p× r̂

)
+

1

rc

((
~̈m× r̂

)
× r̂ +

1

6

(...
~Q× r̂

))
+ · · ·

]
~E =

µ0

4π

[
1

r

(
~̈p× r̂

)
× r̂ +

1

rc

(
~̈m× r̂ +

1

6

(...
~Q× r̂

)
× r̂
)

+ · · ·
]
.

The total power radiated is

Ptot =
µ0

4πc

[
2

3
|~̈p|2 +

2

3c2
| ~̈m|2 +

1

180c2

...
~Q
ij ...
~Q
ji

+ · · ·
]
.
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Example 5.4.3

Consider a circular antenna of radius R carrying an alternating current

I(t) = I0 sin(ωt),

along the wire. What is the total power radiated?

In vector form, we write the current along the wire as

~I(t) = I0 sin(ωt) φ̂.

For the electric dipole, we know that

~̇p(t) =

ˆ
d3r′ ~j(~r ′, t) = I0 sin(ωt)

ˆ
d` φ̂

= I0 sin(ωt)R

ˆ 2π

0

dϕ (− sinϕ x̂+ cosϕ ŷ) = 0.

So there is no electric dipole contribution to the radiation.
Recall that the magnetic dipole moment of a flat loop of current is ~m = I~a.

In this case,
~m = I0πR

2 sin(ωt) ẑ.

Then
~̈m = −ω2I0πR

2 sin(ωt) ẑ.

The power radiated is

Ptot =
µ0

4πc

2

3c2
| ~̈m|2 =

µ0

4πc

2

3c2
ω4I20π

2R4 sin2(ωt).

The time average is

〈Ptot〉t =
µ0

4πc

ω4I20π
2R4

3c2
.
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5.5 Summary: Electrodynamics

Skills to Master

•

Plane Waves

Consider a region with no charge (ρ = 0) or currents

(~j = 0). If we take the curl of two of Maxwell’s equa-
tions and plug in the other two equations, we can derive
the wave equations for the electric and magnetic fields(

1

c2
∂2

∂t2
−∆

)
~E = 0(

1

c2
∂2

∂t2
−∆

)
~B = 0.

In the special case of monochromatic plane waves
traveling in the ~k direction, we can write the solutions
in the complex form

~E(~r, t) = ~E0e
i(~k·~r−ωt) = ~E0e

−ikµxµ

~B(~r, t) =
1

c
k̂ × ~E(~r, t),

where ω = c|~k| and kµ = (ω/c,~k) is the wave 4-vector.

In general, the coefficient ~E0 is a complex vector whose
real part is perpendicular to ~k. The physical fields are
always real. The implication is that one takes the real
part of the complex fields given above.

Consider a linear combination of two plane wave
solutions with the same direction of propagation

~E = Aê1 cos
(
~k · ~r − ωt+ δ1

)
+Bê2 cos

(
~k · ~r − ωt+ δ2

)
= E1ê1 + E2ê2,

where all quantities are real and ê1 and ê2 are perpen-
dicular to k̂ and to each other. At a fixed position ~r,
~E1 and ~E2 act like a pair of perpendicular harmonic
oscillators, and the general shape traced out by the
vector ~E (at the fixed position ~r) is an ellipse. After
some algebra, it can be shown that(

E1

A

)2

+

(
E2

B

)2

− 2
E1E2

AB
cos δ = sin2 δ,

where δ ≡ δ1 − δ2. Then

• In general, we have elliptic polarization
• If A = B and δ = δ1− δ2 = π/2 +mπ for m ∈ Z,

then we have circular polarization

• δ = δ1− δ2 = mπ for m ∈ Z, then we have linear
polarization

We can write the general superposition of plane
wave solutions as the Fourier transform with respect
to space

f(~r, t) =

ˆ
d3k f(~k)ei(

~k·~r−ωt)

f(~k) =
1

(2π)3

ˆ
d3~r f(~r, t = 0)e−i

~k·~r,

where for electromagnetic waves in a vacuum,

ω(k) = ck,

is the dispersion relation. Taking the real part in the
end is implied here. In 1D, e.g. for a wave packet
traveling in the z-direction,

f(z, t) =

ˆ ∞
−∞

dk f(k)ei(kz−ωt)

f(k) =
1

2π

ˆ ∞
−∞

dz f(z, 0)e−ikz.

In the Lorenz gauge,

∂µA
µ = 0.

Then φ and ~A can be written in covariant form as
∂ν∂

νAµ = µ0j
µ. If Aµ is not in the Lorenz gauge, then

we can always make a gauge transformation A′ µ =
Aµ + ∂µΛ that leads to the wave equation for ~A:
∂µ∂

µΛ = −∂µAµ, which can always be solved for Λ.
One advantage of the Lorenz gauge is that ∂µA

µ = 0 is
a scalar product of two Lorentz vectors, so it is Lorentz
invariant and independent of the frame.

In a charge-free vacuum, it is possible to choose a
frame with φ = 0. Combine this with the Lorenz gauge
condition ∂µA

µ = 0, and this implies the Coulomb
gauge

~∇ · ~A = 0.

With this choice (and remember this is not generally
true), A0 = 0, and

~A(~r, t) = Re

ˆ
d3k ~A(~k)ei(

~k·~r−ωt)

~A(~k) =
1

(2π)3

ˆ
d3r ~A(~r, t = 0)e−i

~k·~r.

Then ~∇ · ~A = 0 implies that ~k · ~A = 0.
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Energy and Momentum

Poynting’s theorem of energy conservation states that

d

dt
(Emech + Efields) +

ˆ
surface

~S · d ~A = 0,

where the time rate of change of the mechanical energy
is

d

dt
Emech =

ˆ
V

d3r ~E ·~j,

and the energy stored in the fields is the integral over
the volume of the fields

Efields =

ˆ
V

d3r u,

of the energy density of the fields

u =
1

2

(
ε0|~E|2 +

1

µ0
| ~B|2

)
.

The Poynting vector

~S =
~E × ~B
µ0

,

with units of energy per area per unit time, is a mea-
sure of the energy flowing in the Ŝ direction. The flux
of energy through a surface isˆ

~S · d ~A.

The statement of momentum conservation is given
by[ˆ

V

dV
(
ρ~E +~j × ~B

)
+
d

dt

ˆ
V

dV ~g

]
j

=

ˆ
S

dA n̂iσij ,

where ρ~E+~j× ~B is the mechanical momentum density
per unit time,

~g = ε0 ~E × ~B =
1

c2
~S,

is the momentum density of the fields, and σij dAi is
a force in the jth direction applied across the area dA
pointing in the ith direction.

In 4D, we can write energy-momentum conserva-
tion together as

∂νT
µν + fµ = 0,

where fµ is the force density and

Tµν =


u Sx/c Sy/c Sz/c

gxc −σxx −σxy −σxz
gyc −σyx −σyy −σyz
gzc −σzx −σzy −σzz

.
Notice that µ = 0 gives us energy conservation, and
µ = i gives us momentum conservation.

Retarded Green’s Function

In electrostatics, we were able to write the potential as
an integral over the charge distribution times a Green’s
functionG(~r) that satisfied ∆G = −4πδ(3)(~r−~r ′). For
the time-dependent case, we can derive the retarded
Green’s function

G(~r, t,~r ′, t′) =
1

|~r − ~r ′|
δ

(
t− t′ − |~r − ~r

′|
c

)
,

which satisfies

∂µ∂
µG = −4πδ(3)(~r − ~r ′)δ(t− t′).

If we have a source at ~r ′, then points on the
wave front satisfy the retarded time relation |~r−~r ′| =
c(t− t′). A change of source at ~r ′ and time t′ changes
the potential at another point ~r only at the later (re-
tarded) time

t = t′ +
|~r − ~r ′|

c
.

The retarded potentials are

φ(~r, t) =
1

4πε0

ˆ
d3r′

ρ
(
~r ′, t− |~r−~r

′|
c

)
|~r − ~r ′|

~A(~r, t) =
µ0

4π

ˆ
d3r′

~j
(
~r ′, t− |~r−~r

′|
c

)
|~r − ~r ′|

.

Radiation

Consider an oscillating source

~j(~r, t) = e−iωt~j(~r).

This implies the vector potential

~A(~r, t) =
µ0

4π
e−iωt

ˆ
d3r′ ~j(~r ′)

eik|~r−~r
′|

|~r − ~r ′|
,

where k = ω/c.

In general, we assume the source~j is localized and
small such that both the wavelength λ of the emitted
radiation and the observer distance r are much larger
than the extent of the source distribution.

In the “near” zone where r << λ, we have
eik|~r−~r

′| ≈ 1, then we get the quasistationary result

~A(~r, t) = e−iωt
µ0

4π

ˆ
d3r′

~j(~r ′)

|~r − ~r ′|
.



118 Electrodynamics

In the “far” or “radiation” zone where r >> λ, we
can do a simultaneous expansion of r′/r and kr′ to get

~A(~r, t) =
µ0

4π

ei(kr−ωt)

r

ˆ
d3r′ ~j(~r ′)e−ik(r̂·~r

′).

From now on we will assume that we are in the radi-
ation zone. We can expand the remaining oscillating
factor as

e−ik(r̂·~r
′) = 1− ik (r̂ · ~r ′)− 1

2
(kr̂ · ~r ′)2 + · · · .

The first term corresponds to electric dipole radiation,
and the second term corresponds to magnetic dipole or
electric quadrupole radiation. Typically, we keep only
the leading term.

From ~B = ~∇× ~A and ~E = c ~B× r̂ and with ~A in
spherical coordinates, we can derive the fields

~B =
∂ ~A

∂t
× r̂ = i~k × ~A

~E = c ~B × r̂.

The energy carried away by radiation is given by
the Poynting vector which reduces to

~S =
c

µ0
| ~B|2r̂.

The power radiated in some solid angle dΩ is

dP

dΩ
= |~S|r2 =

c

µ0
| ~B|2r2.

E1 Radiation

For electric dipole (E1) radiation,

~A(~r, t) =
µ0

4π

1

r

ˆ
d3r′ ~j(~r ′, t′).

This leads us to

~B(~r, t) =
µ0

4πc

1

r
~̈p(t′)× r̂

∣∣∣
t′=t−r/c

,

where ~̈p(t′) is the second time derivative of the electric
dipole moment ~p.

Recall that for discrete point charges,

~p =
∑
i

ei~ri.

More generally,

~p(t′) =

ˆ
d3r′ ρ(~r ′, t′)~r ′.

If given a current distribution, the first time derivative
of the dipole moment can be calculated (after integrat-
ing by parts and applying the continuity equation) as

~̇p(t′) =

ˆ
d3r′ ~j(~r ′, t′).

If α(t′) is the (possibly time-dependent) angle be-
tween the dipole moment ~p and the observation point
~r, then the angular distribution of the power radiated
at a given moment in time is

dP

dΩ
=

µ0

16π2c

∣∣∣~̈p(t′)
∣∣∣2 sin2(α(t′))

∣∣∣
t′=t−r/c

.

Note that dP/dΩ is does not depend on the distance
r to the observer, because the solid angle does not de-
pend on the distance to the observer. However, the
total power received by a receiver with fixed surface
area will fall off as 1/r2 since the solid angle subtended
by the receiver falls off as 1/r2. To get the total power
P , we integrate dP/dΩ over the spherical angles. Typ-
ically we want a time average of P or dP/dΩ in which
case it is helpful to remember that the time average of
sin2 θ and cos2 θ is simply 1/2.

For a point charge q with mass m at ~r, the
dipole moment is simply ~p = q~r, which implies that
~̈p = q~̈r = q~a, where ~a is the acceleration of the parti-
cle. Then it radiates power

P =
2

3

µ0

4πc

∣∣∣~̈p(t′)
∣∣∣2 =

2

3

µ0

4πc
q2a2.

This is the Larmor formula for the rate at which the
particle loses energy due to dipole radiation.

In summary, for electric dipole radiation,

~A =
µ0

4π

~̇p

r

~B =
µ0

4π

1

c

(
~̈p× r̂

)
r

~E =
µ0

4π

(
~̈p× r̂

)
× r̂

r

Ptot =
µ0

4πc

2

3
|~̈p|2.

M1 Radiation

If ~p = 0 as is the case for a current loop, then to cal-
culate the radiation fields and radiated power, we have
to go to higher order such as to magnetic dipole (M1)
or electric quadrupole (E2).
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For M1 radiation,

~A =
µ0

4π

1

rc

(
~̇m× r̂

)
~B =

µ0

4π

1

rc2

(
~̈m× r̂

)
× r̂

~E =
µ0

4π

1

rc

(
~̈m× r̂

)
Ptot =

µ0

4π

2

3c3
| ~̈m|2.

Procedure

If given a time-dependent current I(t), calculate the
radiation as follows:

1. Write the current in vector form I(t)→ ~I(t). For
example, if it is along the z-axis, attach a ẑ. If

it forms a circle in the xy-plane, attach a φ̂
2. Calculate the second time-derivative of the elec-

tric dipole moment

~̈p(t′) =
d

dt

ˆ
d3r′ ~j(~r ′, t′)→ d

dt

ˆ
d` ~I.

When you integrate, remember to also integrate
the unit direction vector e.g. (φ̂ = − sinφ x̂ +
cosφ ŷ)

3. Plug this result into the E1 formulae for the fields
and radiated power

4. If the electric dipole moment is zero, calculate
the magnetic dipole moment. For a flat loop of
current, ~m = I~a.

5. Plug this result into the M1 formulae for the fields
and radiated power
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