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Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful

comments and suggestions. The second edition represents a major change from

the first edition. Indeed, one might say that it is a totally new book, with the

exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and

roughly 20 books worth of experience has enabled me to improve the quality of

my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,

separation and positive solutions to linear systems (Chapter 15) and a chapter on

the QR decomposition, singular values and pseudoinverses (Chapter 17). The

treatments of tensor products and the umbral calculus have been greatly

expanded and I have included discussions of determinants (in the chapter on

tensor products), the complexification of a real vector space, Schur's lemma and

Ger gorin disks.š

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or

advanced undergraduate student. Prerequisites are limited to a knowledge of the

basic properties of matrices and determinants. However, since we cover the

basics of vector spaces and linear transformations rather rapidly, a prior course

in linear algebra (even at the sophomore level), along with a certain measure of

“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are

required for the sequel. This chapter should be skimmed quickly and then used

primarily as a reference. Chapters 1–3 contain a discussion of the basic

properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison

between the properties of modules and those of vector spaces. Chapter 5

provides more on modules. The main goals of this chapter are to prove that any

two bases of a free module have the same cardinality and to introduce

noetherian modules. However, the instructor may simply skim over this chapter,

omitting all proofs. Chapter 6 is devoted to the theory of modules over a

principal ideal domain, establishing the cyclic decomposition theorem for

finitely generated modules. This theorem is the key to the structure theorems for

finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis

here is on the finite-dimensional case, in order to arrive as quickly as possible at

the finite-dimensional spectral theorem for normal operators, in Chapter 10.

However, we have endeavored to state as many results as is convenient for

vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with

the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric

vector spaces, where we describe the structure of symplectic and orthogonal

geometries over various base fields. Chapter 12 contains enough material on

metric spaces to allow a unified treatment of topological issues for the basic



x Preface

Hilbert space theory of Chapter 13. The rather lengthy proof that every metric

space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate

the universal property of tensor products, without getting too involved in

categorical terminology, we first treat both free vector spaces and the familiar

direct sum, in a universal way. Chapter 15 [Chapter 16 in the second edition] is

on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the

umbral calculus. This is an algebraic theory used to study certain types of

polynomial functions that play an important role in applied mathematics. We

give only a brief introduction to the subject emphasizing the algebraic

aspects, rather than the applications. This is the first time that this subject has

appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text

is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California
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Chapter 0

Preliminaries

In this chapter, we briefly discuss some topics that are needed for the sequel.

This chapter should be skimmed quickly and used primarily as a reference.

Part 1 Preliminaries

Multisets

The following simple concept is much more useful than its infrequent

appearance would indicate.

Definition Let  be a nonempty set. A   with   is amultiset underlying set

set of ordered pairs

 for 

where . The number  is referred to as the  of themultiplicity

elements  in . If the underlying set of a multiset is finite, we say that the

multiset is . The  of a finite multiset  is the sum of the multiplicitiesfinite size

of all of its elements. 

For example,  is a multiset with underlying set

. The elements  has multiplicity . One often writes out the

elements of a multiset according to multiplicities, as in .

Of course, two mutlisets are equal if their underlying sets are equal and if the

multiplicity of each element in the comon underlying set is the same in both

multisets.

Matrices

The set of  matrices with entries in a field  is denoted by  or

by  when the field does not require mention. The set  is denoted

by  or  If , the -th entry of  will be denoted by .

The identity matrix of size  is denoted by . The elements of the base
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field  are called . We expect that the reader is familiar with the basicscalars

properties of matrices, including matrix addition and multiplication.

The  of an  matrix  is the sequence of entriesmain diagonal

where .min

Definition The  of  is the matrix  defined bytranspose

A matrix  is  if  and  if . symmetric skew-symmetric

Theorem 0.1 (Properties of the transpose) Let , . Then

1) 

2) 

3)  for all 

4)  provided that the product  is defined

5) . det det

Partitioning and Matrix Multiplication

Let  be a matrix of size . If  and  then

the   is the matrix obtained from  by keeping only thesubmatrix

rows with index in  and the columns with index in . Thus, all other rows and

columns are discarded and  has size .

Suppose that  and . Let

1)  be a partition of 

2)  be a partition of 

3)  be a partition of 

(Partitions are defined formally later in this chapter.) Then it is a very useful fact

that matrix multiplication can be performed at the block level as well as at the

entry level. In particular, we have

When the partitions in question contain only single-element blocks, this is

precisely the usual formula for matrix multiplication
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Block Matrices

It will be convenient to introduce the notational device of a block matrix. If 

are matrices of the appropriate sizes then by the block matrix

block

we mean the matrix whose upper left  is , and so on. Thus, thesubmatrix

's are  of  and not entries. A square matrix of the formsubmatrices

block

where each  is square and  is a zero submatrix, is said to be a block

diagonal matrix.

Elementary Row Operations

Recall that there are three types of elementary row operations. Type 1

operations consist of multiplying a row of  by a nonzero scalar. Type 2

operations consist of interchanging two rows of . Type 3 operations consist of

adding a scalar multiple of one row of  to another row of .

If we perform an elementary operation of type  to an identity matrix , the

result is called an  of type . It is easy to see that allelementary matrix

elementary matrices are invertible.

In order to perform an elementary row operation on  we can perform

that operation on the identity , to obtain an elementary matrix  and then take

the product . Note that multiplying on the right by  has the effect of

performing column operations.

Definition A matrix  is said to be in  ifreduced row echelon form

1) All rows consisting only of 's appear at the bottom of the matrix.

2) In any nonzero row, the first nonzero entry is a . This entry is called a

leading entry.

3) For any two consecutive rows, the leading entry of the lower row is to the

right of the leading entry of the upper row.

4) Any column that contains a leading entry has 's in all other positions. 

Here are the basic facts concerning reduced row echelon form.
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Theorem 0.2 Matrices  are , denoted by ,row equivalent

if either one can be obtained from the other by a series of elementary row

operations.

1) Row equivalence is an equivalence relation. That is,

 a) 

 b) 

 c) , .

2) A matrix  is row equivalent to one and only one matrix  that is in

reduced row echelon form. The matrix  is called the reduced row

echelon form of . Furthermore,

where  are the elementary matrices required to reduce  to reduced row

echelon form.

3)  is invertible if and only if its reduced row echelon form is an identity

matrix. Hence, a matrix is invertible if and only if it is the product of

elementary matrices. 

The following definition is probably well known to the reader.

Definition A square matrix is  if all of its entries below theupper triangular

main diagonal are . Similarly, a square matrix is  if all of itslower triangular

entries above the main diagonal are . A square matrix is  if all of itsdiagonal

entries off the main diagonal are . 

Determinants

We assume that the reader is familiar with the following basic properties of

determinants.

Theorem 0.3 Let . Then  is an element of . Furthermore,det

1) For any ,

det det det

2)  is nonsingular (invertible) if and only if .det

3) The determinant of an upper triangular or lower triangular matrix is the

product of the entries on its main diagonal.

4) If a square matrix  has the block diagonal form

block

then . det det
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Polynomials

The set of all polynomials in the variable  with coefficients from a field  is

denoted by . If , we say that  is a polynomial  . Ifover

is a polynomial with  then  is called the  of leading coefficient

and the  of  is , written . For convenience, the degreedegree deg

of the zero polynomial is . A polynomial is  if its leading coefficientmonic

is .

Theorem 0.4  Let  where  .( )Division algorithm deg

Then there exist unique polynomials  for which

where  or . deg deg

If   , that is, if there exists a polynomial  for whichdivides

then we write .

Theorem 0.5 Let . The  of  andgreatest common divisor

, denoted by , is the unique monic polynomial  over gcd

for which

1)  and 

2) if  and  then .

Furthermore, there exist polynomials  and  over  for which

gcd

Definition The polynomials  are  ifrelatively prime

gcd . In particular,  and  are relatively prime if and

only if there exist polynomials  and  over  for which

Definition A nonconstant polynomial  is  if wheneverirreducible

 then one of  and  must be constant. 

The following two theorems support the view that irreducible polynomials

behave like prime numbers.

Theorem 0.6 A nonconstant polynomial  is irreducible if and only if it has

the property that whenever  then either  or

.
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Theorem 0.7 Every nonconstant polynomial in  can be written as a product

of irreducible polynomials. Moreover, this expression is unique up to order of

the factors and multiplication by a scalar. 

Functions

To set our notation, we should make a few comments about functions.

Definition Let  be a function from a set  to a set .

1) The  of  is the set .domain

2) The  or  of  is the set .image range im

3)  is  ( ), or an , if .injective one-to-one injection

4)  is  (  ), or a , if .surjective onto surjection im

5)  is , or a , if it is both injective and surjective.bijective bijection

6) Assuming that , the  of  issupport

supp

If  is injective then its inverse  exists and is well-im

defined as a function on .im

It will be convenient to apply  to subsets of  and . In particular, if 

and if , we set

and

Note that the latter is defined even if  is not injective.

Let . If , the  of  to  is the function restriction

defined by

for all . Clearly, the restriction of an injective map is injective.

Equivalence Relations

The concept of an equivalence relation plays a major role in the study of

matrices and linear transformations.

Definition Let  be a nonempty set. A binary relation on  is called an

equivalence relation on  if it satisfies the following conditions:
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1) ( )Reflexivity

for all .

2) ( )Symmetry

for all .

3) ( )Transitivity

for all . 

Definition Let be an equivalence relation on . For , the set of all

elements equivalent to  is denoted by

and called the  of . equivalence class

Theorem 0.8 Let be an equivalence relation on . Then

1) 

2) For any , we have either  or . 

Definition A  of a nonempty set  is a collection  ofpartition

nonempty subsets of , called the  of the partition, for whichblocks

1)  for all 

2) . 

The following theorem sheds considerable light on the concept of an

equivalence relation.

Theorem 0.9

1) Let be an equivalence relation on . Then the set of  equivalencedistinct

classes with respect to are the blocks of a partition of .

2) Conversely, if  is a partition of , the binary relation defined by

 if  and  lie in the same block of 

is an equivalence relation on , whose equivalence classes are the blocks

of .

This establishes a one-to-one correspondence between equivalence relations on

 and partitions of . 

The most important problem related to equivalence relations is that of finding an

efficient way to determine when two elements are equivalent. Unfortunately, in



8 Advanced Linear Algebra

most cases, the definition does not provide an efficient test for equivalence and

so we are led to the following concepts.

Definition Let be an equivalence relation on . A function , where

 is any set, is called an  of if it is constant on the equivalenceinvariant

classes of , that is,

and a  if it is constant and distinct on the equivalencecomplete invariant

classes of , that is,

A collection  of invariants is called a complete system of

invariants if

 for all 

Definition Let be an equivalence relation on . A subset  is said to be

a set of  (or just a ) for if for every ,canonical forms canonical form

there is   such that . Put another way, each equivalenceexactly one

class under contains  member of . exactly one

Example 0.1 Define a binary relation on  by letting  if and

only if  for some nonzero constant . This is easily seen to be

an equivalence relation. The function that assigns to each polynomial its degree

is an invariant, since

deg deg

However, it is not a complete invariant, since there are inequivalent polynomials

with the same degree. The set of all monic polynomials is a set of canonical

forms for this equivalence relation. 

Example 0.2 We have remarked that row equivalence is an equivalence relation

on . Moreover, the subset of reduced row echelon form matrices is a

set of canonical forms for row equivalence, since every matrix is row equivalent

to a unique matrix in reduced row echelon form. 

Example 0.3 Two matrices ,  are row equivalent if and only if

there is an invertible matrix  such that . Similarly,  and  are

column equivalent, that is,  can be reduced to  using elementary column

operations if and only if there exists an invertible matrix  such that .

Two matrices  and  are said to be  if there exist invertibleequivalent

matrices  and  for which
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Put another way,  and  are equivalent if  can be reduced to  by

performing a series of elementary row and/or column operations. (The use of the

term equivalent is unfortunate, since it applies to all equivalence relations, not

just this one. However, the terminology is standard, so we use it here.)

It is not hard to see that an  matrix  that is in both reduced row echelon

form and reduced column echelon form must have the block form

block

We leave it to the reader to show that every matrix  in  is equivalent to

exactly one matrix of the form  and so the set of these matrices is a set of

canonical forms for equivalence. Moreover, the function  defined by

, where , is a complete invariant for equivalence.

Since the rank of  is  and since neither row nor column operations affect the

rank, we deduce that the rank of  is . Hence, rank is a complete invariant for

equivalence. In other words, two matrices are equivalent if and only if they have

the same rank. 

Example 0.4 Two matrices ,  are said to be  if there existssimilar

an invertible matrix  such that

Similarity is easily seen to be an equivalence relation on . As we will learn,

two matrices are similar if and only if they represent the same linear operators

on a given -dimensional vector space . Hence, similarity is extremely

important for studying the structure of linear operators. One of the main goals of

this book is to develop canonical forms for similarity.

We leave it to the reader to show that the determinant function and the trace

function are invariants for similarity. However, these two invariants do not, in

general, form a complete system of invariants. 

Example 0.5 Two matrices ,  are said to be  if therecongruent

exists an invertible matrix  for which

where  is the transpose of . This relation is easily seen to be an equivalence

relation and we will devote some effort to finding canonical forms for

congruence. For some base fields  (such as ,  or a finite field), this is

relatively easy to do, but for other base fields (such as ), it is extremely

difficult.
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Zorn's Lemma

In order to show that any vector space has a basis, we require a result known as

Zorn's lemma. To state this lemma, we need some preliminary definitions.

Definition A  is a pair  where  is a nonempty setpartially ordered set

and is a binary relation called a , read “less than or equal to,”partial order

with the following properties:

1)  For all ,( )Reflexivity

2)  For all ,( )Antisymmetry

 and  implies 

3)  For all ,( )Transitivity

 and  implies 

Partially ordered sets are also called . posets

It is customary to use a phrase such as “Let  be a partially ordered set” when

the partial order is understood. Here are some key terms related to partially

ordered sets.

Definition Let  be a partially ordered set.

1) A  is an element  with the property that there is nomaximal element

larger element in , that is

2) A  is an element  with the property that there is nominimal element

smaller element in , that is

3) Let . Then  is an  for  and  ifupper bound

 and 

The unique smallest upper bound for  and , if it exists, is called the least

upper bound of  and  and is denoted by .lub

4) Let . Then  is a  for  and  iflower bound

 and 

The unique largest lower bound for  and , if it exists, is called the

greatest lower bound of  and  and is denoted by . glb
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Let  be a subset of a partially ordered set . We say that an element  is

an  for  if  for all . Lower bounds are definedupper bound

similarly.

Note that in a partially ordered set, it is possible that not all elements are

comparable. In other words, it is possible to have  with the property

that  and .

Definition A partially ordered set in which every pair of elements is

comparable is called a , or a . Anytotally ordered set linearly ordered set

totally ordered subset of a partially ordered set  is called a  in . chain

Example 0.6

1) The set  of real numbers, with the usual binary relation , is a partially

ordered set. It is also a totally ordered set. It has no maximal elements.

2) The set  of natural numbers, together with the binary

relation of divides, is a partially ordered set. It is customary to write 

to indicate that  divides . The subset  of  consisting of all powers of 

is a totally ordered subset of , that is, it is a chain in . The set

 is a partially ordered set under . It has two maximal

elements, namely  and . The subset  is a partially

ordered set in which every element is both maximal and minimal!

3) Let  be any set and let  be the power set of , that is, the set of all

subsets of . Then , together with the subset relation , is a partially

ordered set. 

Now we can state Zorn's lemma, which gives a condition under which a

partially ordered set has a maximal element.

Theorem 0.10 ( ) If  is a partially ordered set in which everyZorn's lemma

chain has an upper bound then  has a maximal element. 

We will not prove Zorn's lemma. Indeed, Zorn's lemma is a result that is so

fundamental that it cannot be proved or disproved in the context of ordinary set

theory. (It is equivalent to the famous .) Therefore, Zorn'sAxiom of Choice

lemma (along with the Axiom of Choice) must either be accepted or rejected as

an axiom of set theory. Since almost all mathematicians accept it, we will do so

as well. Indeed, we will use Zorn's lemma to prove that every vector space has a

basis.

Cardinality

Two sets  and  have the same , writtencardinality

if there is a bijective function (a one-to-one correspondence) between the sets.
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The reader is probably aware of the fact that

 and 

where  denotes the natural numbers,  the integers and  the rational

numbers.

If  is in one-to-one correspondence with a  of , we write . Ifsubset

 is in one-to-one correspondence with a  subset of  but not all of proper

then we write . The second condition is necessary, since, for instance,

 is in one-to-one correspondence with a proper subset of  and yet  is also in

one-to-one correspondence with  itself. Hence, .

This is not the place to enter into a detailed discussion of cardinal numbers. The

intention here is that the cardinality of a set, whatever that is, represents the

“size” of the set. It is actually easier to talk about two sets having the same, or

different, size (cardinality) than it is to explicitly define the size (cardinality) of

a given set.

Be that as it may, we associate to each set  a cardinal number, denoted by 

or , that is intended to measure the size of the set. Actually, cardinalcard

numbers are just very special types of sets. However, we can simply think of

them as vague amorphous objects that measure the size of sets.

Definition

1) A set is  if it can be put in one-to-one correspondence with a set of thefinite

form , for some nonnegative integer . A set that is

not finite is . The  (or ) of a finite set isinfinite cardinal number cardinality

just the number of elements in the set.

2) The  of the set  of natural numbers is  (read “alephcardinal number

nought”), where  is the first letter of the Hebrew alphabet. Hence,

3) Any set with cardinality  is called a  set and any finitecountably infinite

or countably infinite set is called a  set. An infinite set that is notcountable

countable is said to be . uncountable

Since it can be shown that , the real numbers are uncountable.

If  and  are  sets then it is well known thatfinite

 and 

The first part of the next theorem tells us that this is also true for infinite sets.

The reader will no doubt recall that the   of a set  is the set ofpower set

all subsets of . For finite sets, the power set of  is always bigger than the set
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itself. In fact,

The second part of the next theorem says that the power set of any set  is

bigger (has larger cardinality) than  itself. On the other hand, the third part of

this theorem says that, for infinite sets , the set of all  subsets of  is thefinite

same size as .

Theorem 0.11

1) –  For any sets  and ,( )Schroder Bernstein theorem¨

 and 

2)  If  denotes the power set of  then( )Cantor's theorem

3) If  denotes the set of all finite subsets of  and if  is an infinite set

then

Proof. We prove only parts 1) and 2). Let  be an injective function

from  into  and let  be an injective function from  into . We

want to use these functions to create a bijective function from  to . For this

purpose, we make the following definitions. The  of an elementdescendants

 are the elements obtained by repeated alternate applications of the

functions  and , namely

If  is a descendant of  then  is an  of . Descendants and ancestors ofancestor

elements of  are defined similarly.

Now, by tracing an element's ancestry to its beginning, we find that there are

three possibilities: the element may originate in , or in , or it may have no

point of origin. Accordingly, we can write  as the union of three disjoint sets

 originates in 

 originates in 

 has no originator

Similarly,  is the disjoint union of ,  and .

Now, the restriction

is a bijection. To see this, note that if  then  originated in  and therefore

must have the form  for some . But  and its ancestor  have the
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same point of origin and so  implies . Thus,  is surjective and

hence bijective. We leave it to the reader to show that the functions

 and 

are also bijections. Putting these three bijections together gives a bijection

between  and . Hence, , as desired.

We now prove Cantor's Theorem. The map  defined by 

is an injection from  to  and so . To complete the proof we

must show that if no injective map  can be surjective. To this end,

let

We claim that  is not in . For suppose that  for some .im

Then if , we have by the definition of  that . On the other hand, if

, we have again by the definition of  that . This contradiction

implies that  and so  is not surjective. im

Cardinal Arithmetic

Now let us define addition, multiplication and exponentiation of cardinal

numbers. If  and  are sets, the   is the set of allcartesian product

ordered pairs

The set of all functions from  to  is denoted by .

Definition Let  and  denote cardinal numbers. Let  and  be any sets for

which  and .

1) The   is the cardinal number of .sum

2) The   is the cardinal number of .product

3) The   is the cardinal number of . power

We will not go into the details of why these definitions make sense. (For

instance, they seem to depend on the sets  and , but in fact they do not.) It

can be shown, using these definitions, that cardinal addition and multiplication

are associative and commutative and that multiplication distributes over

addition.

Theorem 0.12 Let ,  and  be cardinal numbers. Then the following

properties hold:

1) ( )Associativity

 and 
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2) ( )Commutativity

 and 

3) ( )Distributivity

4) Properties of Exponents( )

 a) 

 b) 

 c)  

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as

the next theorem shows.

Theorem 0.13 Let  and  be cardinal numbers, at least one of which is

infinite. Then

max

It is not hard to see that there is a one-to-one correspondence between the power

set  of a set  and the set of all functions from  to . This leads to

the following theorem.

Theorem 0.14 For any cardinal 

1) If  then 

2)  

We have already observed that . It can be shown that  is the smallest

infinite cardinal, that is,

0  is a natural number

It can also be shown that the set  of real numbers is in one-to-one

correspondence with the power set  of the natural numbers. Therefore,

The set of all points on the real line is sometimes called the  and socontinuum

 is sometimes called the  and denoted by .power of the continuum

Theorem 0.13 shows that cardinal addition and multiplication have a kind of

“absorption” quality, which makes it hard to produce larger cardinals from

smaller ones. The next theorem demonstrates this more dramatically.

Theorem 0.15

1) Addition applied a countable number of times or multiplication applied a

finite number of times to the cardinal number , does not yield anything
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more than . Specifically, for any nonzero , we have

 and 

2) Addition and multiplication, applied a countable number of times to the

cardinal number  does not yield more than . Specifically, we have

 and 

Using this theorem, we can establish other relationships, such as

which, by the Schröder–Bernstein theorem, implies that

We mention that the problem of evaluating  in general is a very difficult one

and would take us far beyond the scope of this book.

We will have use for the following reasonable–sounding result, whose proof is

omitted.

Theorem 0.16 Let  be a collection of sets, indexed by the set ,

with . If  for all  then

Let us conclude by describing the cardinality of some famous sets.

Theorem 0.17

1) The following sets have cardinality .

 a) The rational numbers .

 b) The set of all finite subsets of .

 c) The union of a countable number of countable sets.

 d) The set  of all ordered -tuples of integers.

2) The following sets have cardinality .

 a) The set of all points in .

 b) The set of all infinite sequences of natural numbers.

 c) The set of all infinite sequences of real numbers.

 d) The set of all finite subsets of .

 e) The set of all irrational numbers. 

Part 2 Algebraic Structures

We now turn to a discussion of some of the many algebraic structures that play a

role in the study of linear algebra.
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Groups

Definition A  is a nonempty set , together with a binary operationgroup

denoted by *, that satisfies the following properties:

1)  For all ( )Associativity

2)  There exists an element  for which( )Identity

for all .

3)  For each , there is an element  for which( )Inverses

Definition A group  is , or , ifabelian commutative

for all . When a group is abelian, it is customary to denote the

operation  by +, thus writing  as . It is also customary to refer to the

identity as the  and to denote the inverse  by , referred to aszero element

the  of . negative

Example 0.7 The set  of all bijective functions from a set  to  is a group

under composition of functions. However, in general, it is not abelian. 

Example 0.8 The set  is an abelian group under addition of matrices.

The identity is the zero matrix 0  of size . The set  is not a

group under multiplication of matrices, since not all matrices have multiplicative

inverses. However, the set of invertible matrices of size  is a (nonabelian)

group under multiplication. 

A group  is  if it contains only a finite number of elements. Thefinite

cardinality of a finite group  is called its  and is denoted by  ororder

simply . Thus, for example,  is a finite group under

addition modulo , but  is not finite.

Definition A  of a group  is a nonempty subset  of  that is asubgroup

group in its own right, using the same operations as defined on . 

Rings

Definition A  is a nonempty set , together with two binary operations,ring

called  (denoted by ) and  (denoted by juxtaposition),addition multiplication

for which the following hold:

1)  is an abelian group under addition
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2)  For all ,( )Associativity

3)  For all ,( )Distributivity

 and 

A ring  is said to be  if  for all . If a ring commutative

contains an element  with the property that

for all , we say that  is a . The identity  is usuallyring with identity

denoted by . 

Example 0.9 The set  is a commutative ring under

addition and multiplication modulo 

mod mod

The element  is the identity. 

Example 0.10 The set  of even integers is a commutative ring under the usual

operations on , but it has no identity. 

Example 0.11 The set  is a noncommutative ring under matrix addition

and multiplication. The identity matrix  is the identity for . 

Example 0.12 Let  be a field. The set  of all polynomials in a single

variable , with coefficients in , is a commutative ring, under the usual

operations of polynomial addition and multiplication. What is the identity for

? Similarly, the set  of polynomials in  variables is a

commutative ring under the usual addition and multiplication of polynomials. 

Definition A  of a ring  is a subset  of  that is a ring in its ownsubring

right, using the same operations as defined on  and having the same

multiplicative identity as . 

The condition that a subring  have the same multiplicative identity as  is

required. For example, the set  of all  matrices of the form

for  is a ring under addition and multiplication of matrices (isomorphic to

). The multiplicative identity in  is the matrix , which is not the identity 

of . Hence,  is a ring under the same operations as  but it is

not a subring of .
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Applying the definition is not generally the easiest way to show that a subset of

a ring is a subring. The following characterization is usually easier to apply.

Theorem 0.18 A nonempty subset  of a ring  is a subring if and only if

1) The multiplicative identity  of  is in 

2)  is closed under subtraction, that is

3)  is closed under multiplication, that is,

Ideals

Rings have another important substructure besides subrings.

Definition Let  be a ring. A nonempty subset  of  is called an  ifideal

1)  is a subgroup of the abelian group , that is,  is closed under

subtraction

2)  is closed under multiplication by  ring element, that is,any

 and 

Note that if an ideal  contains the unit element  then .

Example 0.13 Let  be a polynomial in . The set of all multiples of

is an ideal in , called the  . ideal generated by

Definition Let  be a subset of a ring  with identity. The set

of all finite linear combinations of elements of , with coefficients in , is an

ideal in , called the  . It is the smallest (in the sense of setideal generated by

inclusion) ideal of  containing . If  is a finite set, we write

Note that in the previous definition, we require that  have an identity. This is

to ensure that .

Theorem 0.19 Let  be a ring.
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1) The intersection of any collection  of ideals is an ideal.

2) If  is an ascending sequence of ideals, each one contained in

the next, then the union  is also an ideal.

3) More generally, if

is a chain of ideals in  then the union  is also an ideal in .

Proof. To prove 1), let . Then if , we have  for all

. Hence,  for all  and so . Hence,  is closed

under subtraction. Also, if  then  for all  and so . Of

course, part 2) is a special case of part 3). To prove 3), if  then 

and  for some . Since one of  and  is contained in the other, we

may assume that . It follows that  and so  and if

 then . Thus  is an ideal. 

Note that in general, the union of ideals is not an ideal. However, as we have

just proved, the union of any  of ideals is an ideal. chain

Quotient Rings and Maximal Ideals

Let  be a subset of a commutative ring  with identity. Let be the binary

relation on  defined by

It is easy to see that is an equivalence relation. When , we say that 

and  are  . The term “mod” is used as a colloquialism forcongruent modulo

modulo and  is often written

mod

As shorthand, we write .

To see what the equivalence classes look like, observe that

 for some 

The set

is called a  of  in . The element  is called a  forcoset coset representative

.
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Thus, the equivalence classes for congruence mod  are the cosets  of 

in . The set of all cosets is denoted by

This is read “  mod .” We would like to place a ring structure on .

Indeed, if  is a subgroup of the abelian group  then  is easily seen to be

an abelian group as well under coset addition defined by

In order for the product

to be well defined we must have

or, equivalently,

But  may be any element of  and  may be any element of  and so this

condition implies that  must be an ideal. Conversely, if  is an ideal then coset

multiplication is well defined.

Theorem 0.20 Let  be a commutative ring with identity. Then the quotient

 is a ring under coset addition and multiplication if and only if  is an ideal

of . In this case,  is called the  of   , wherequotient ring modulo

addition and multiplication are defined by

Definition An ideal  in a ring  is a  if  and if whenevermaximal ideal

 is an ideal satisfying  then either  or . 

Here is one reason why maximal ideals are important.

Theorem 0.21 Let  be a commutative ring with identity. Then the quotient

ring  is a field if and only if  is a maximal ideal.

Proof. First, note that for any ideal  of , the ideals of  are precisely the

quotients  where  is an ideal for which . It is clear that 

is an ideal of . Conversely, if  is an ideal of  then let

It is easy to see that  is an ideal of  for which .
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Next, observe that a commutative ring  with identity is a field if and only if 

has no nonzero proper ideals. For if  is a field and  is an ideal of 

containing a nonzero element  then  and so . Conversely, if

 has no nonzero proper ideals and  then the ideal  must be  and

so there is an  for which . Hence,  is a field.

Putting these two facts together proves the theorem. 

The following result says that maximal ideals always exist.

Theorem 0.22 Any commutative ring  with identity contains a maximal ideal.

Proof. Since  is not the zero ring, the ideal  is a proper ideal of . Hence,

the set  of all proper ideals of  is nonempty. If

is a chain of proper ideals in  then the union  is also an ideal.

Furthermore, if  is not proper, then  and so , for some ,

which implies that  is not proper. Hence, . Thus, any chain in 

has an upper bound in  and so Zorn's lemma implies that  has a maximal

element. This shows that  has a maximal ideal. 

Integral Domains

Definition Let  be a ring. A nonzero element r  is called a  ifzero divisor

there exists a nonzero  for which . A commutative ring  with

identity is called an  if it contains no zero divisors. integral domain

Example 0.14 If  is not a prime number then the ring  has zero divisors and

so is not an integral domain. To see this, observe that if  is not prime then

 in , where . But in , we have

mod

and so  and  are both zero divisors. As we will see later, if  is a prime then

 is a field (which is an integral domain, of course). 

Example 0.15 The ring  is an integral domain, since  implies

that  or . 

If  is a ring and  where  then we cannot in general cancel

the 's and conclude that . For instance, in , we have , but

canceling the 's gives . However, it is precisely the integral domains in

which we can cancel. The simple proof is left to the reader.

Theorem 0.23 Let  be a commutative ring with identity. Then  is an integral

domain if and only if the cancellation law
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holds.

The Field of Quotients of an Integral Domain

Any integral domain  can be embedded in a field. The  (or quotient field field

of quotients) of  is a field that is constructed from  just as the field of

rational numbers is constructed from the ring of integers. In particular, we set

Thinking of  as the “fraction”  we define addition and multiplication of

fractions in the same way as for rational numbers

and

It is customary to write  in the form . Note that if  has zero divisors,

then these definitions do not make sense, because  may be  even if  and 

are not. This is why we require that  be an integral domain.

Principal Ideal Domains

Definition Let  be a ring with identity and let . The principal ideal

generated by  is the ideal

An   in which every ideal is a principal ideal is called aintegral domain

principal ideal domain.

Theorem 0.24 The integers form a principal ideal domain. In fact, any ideal 

in  is generated by the smallest positive integer a that is contained in . 

Theorem 0.25 The ring  is a principal ideal domain. In fact, any ideal  is

generated by the unique monic polynomial of smallest degree contained in .

Moreover, for polynomials ,

gcd

Proof. Let  be an ideal in  and let  be a monic polynomial of

smallest degree in . First, we observe that there is only one such polynomial in

. For if  is monic and  thendeg deg

and since , we must have  and sodeg deg

.
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We show that . Since , we have . To establish

the reverse inclusion, if  then dividing  by  gives

where  or deg deg . But since  is an ideal,

and so   is impossible. Hence,  anddeg deg

This shows that  and so .

To prove the second statement, let . Then, by what we

have just shown,

where  is the unique monic polynomial  in  of smallest degree. In

particular, since , we have  for each .

In other words,  is a common divisor of the 's.

Moreover, if  for all , then  for all , which implies

that

and so . This shows that  is the  common divisor of thegreatest

's and completes the proof. 

Example 0.16 The ring  of polynomials in two variables  and  is

not a principal ideal domain. To see this, observe that the set  of all

polynomials with zero constant term is an ideal in . Now, suppose that  is the

principal ideal . Since , there exist polynomials 

and  for which

 and (0.1)

But  cannot be a constant for then we would have . Hence,

deg  and so  and  must both be constants, which

implies that (0.1) cannot hold. 

Theorem 0.26 Any principal ideal domain  satisfies the ascending chain

condition, that is,  cannot have a strictly increasing sequence of ideals

where each ideal is properly contained in the next one.
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Proof. Suppose to the contrary that there is such an increasing sequence of

ideals. Consider the ideal

which must have the form  for some . Since  for some ,

we have  for all , contradicting the fact that the inclusions are

proper.

Prime and Irreducible Elements

We can define the notion of a prime element in any integral domain. For

, we say that    (written ) if there exists an  fordivides

which .

Definition Let  be an integral domain.

1) An invertible element of  is called a . Thus,  is a unit if unit

for some .

2) Two elements  are said to be  if there exists a unit  forassociates

which .

3) A nonzero nonunit  is said to be  ifprime

 or 

4) A nonzero nonunit  is said to be  ifirreducible

 or  is a unit  

Note that if  is prime or irreducible then so is  for any unit .

Theorem 0.27 Let  be a ring.

1) An element  is a unit if and only if .

2)  and  are associates if and only if .

3)  divides  if and only if .

4)   , that is,  where  is not a unit, if and only ifproperly divides

.

In the case of the integers, an integer is prime if and only if it is irreducible. In

any integral domain, prime elements are irreducible, but the converse need not

hold. (In the ring  the prime element 

divides the product  but does not divide either

factor.)

However, in principal ideal domains, the two concepts are equivalent.

Theorem 0.28 Let  be a principal ideal domain.

1) An  is irreducible if and only if the ideal  is maximal.

2) An element in  is prime if and only if it is irreducible.



26 Advanced Linear Algebra

3) The elements  are , that is, have no commonrelatively prime

nonunit factors if and only if there exist  for which

Proof. To prove 1), suppose that  is irreducible and that . Then

 and so  for some . The irreducibility of  implies that  or

 is a unit. If  is a unit then  and if  is a unit then .

This shows that  is maximal. (We have , since  is not a unit.)

Conversely, suppose that  is not irreducible, that is,  where neither  nor

 is a unit. Then . But if  then  and  are associates,

which implies that  is a unit. Hence . Also, if  then  must be

a unit. So we conclude that  is not maximal, as desired.

To prove 2), assume first that  is prime and . Then  or . We

may assume that . Therefore, . Canceling 's gives 

and so  is a unit. Hence,  is irreducible. (Note that this argument applies in

any integral domain.)

Conversely, suppose that  is irreducible and let . We wish to prove that

 or . The ideal  is maximal and so  or . In the

former case,  and we are done. In the latter case, we have

for some . Thus,

and since  divides both terms on the right, we have .

To prove 3), it is clear that if  then  and  are relatively prime. For

the converse, consider the ideal  which must be principal, say .

Then  and  and so  must be a unit, which implies that .

Hence, there exists  for which . 

Unique Factorization Domains

Definition An integral domain  is said to be a unique factorization domain

if it has the following factorization properties:

1) Every nonzero nonunit element  can be written as a product of a finite

number of irreducible elements .

2) The factorization into irreducible elements is unique in the sense that if

 and  are two such factorizations then  and

after a suitable reindexing of the factors,  and  are associates. 

Unique factorization is clearly a desirable property. Fortunately, principal ideal

domains have this property.
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Theorem 0.29 Every principal ideal domain  is a unique factorization

domain.

Proof. Let  be a nonzero nonunit. If  is irreducible then we are done. If

not then , where neither factor is a unit. If  and  are irreducible, we

are done. If not, suppose that  is not irreducible. Then , where

neither  nor  is a unit. Continuing in this way, we obtain a factorization of

the form (after renumbering if necessary)

Each step is a factorization of  into a product of nonunits. However, this

process must stop after a finite number of steps, for otherwise it will produce an

infinite sequence  of nonunits of  for which  properly divides .

But this gives the ascending chain of ideals

where the inclusions are proper. But this contradicts the fact that a principal

ideal domain satisfies the ascending chain condition. Thus, we conclude that

every nonzero nonunit has a factorization into irreducible elements.

As to uniqueness, if  and  are two such factorizations

then because  is an integral domain, we may equate them and cancel like

factors, so let us assume this has been done. Thus,  for all . If there are

no factors on either side, we are done. If exactly one side has no factors left then

we have expressed  as a product of irreducible elements, which is not possible

since irreducible elements are nonunits.

Suppose that both sides have factors left, that is,

where . Then , which implies that  for some . We can

assume by reindexing if necessary that . Since  is irreducible 

must be a unit. Replacing  by  and canceling  gives

This process can be repeated until we run out of 's or 's. If we run out of 's

first then we have an equation of the form  where  is a unit, which

is not possible since the 's are not units. By the same reasoning, we cannot run

out of 's first and so  and the 's and 's can be paired off as

associates.

Fields

For the record, let us give the definition of a field (a concept that we have been

using).
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Definition A  is a set , containing at least two elements, together with twofield

binary operations, called  (denoted by ) and addition multiplication

(denoted by juxtaposition), for which the following hold:

1)  is an abelian group under addition.

2) The set  of all  elements in  is an abelian group undernonzero

multiplication.

3)  For all ,( )Distributivity

 and 

We require that  have at least two elements to avoid the pathological case, in

which .

Example 0.17 The sets ,  and , of all rational, real and complex numbers,

respectively, are fields, under the usual operations of addition and multiplication

of numbers. 

Example 0.18 The ring  is a field if and only if  is a prime number. We

have already seen that  is not a field if  is not prime, since a field is also an

integral domain. Now suppose that  is a prime.

We have seen that  is an integral domain and so it remains to show that every

nonzero element in  has a multiplicative inverse. Let . Since

, we know that  and  are relatively prime. It follows that there exist

integers  and  for which

Hence,

mod

and so  in , that is,  is the multiplicative inverse of . 

The previous example shows that not all fields are infinite sets. In fact, finite

fields play an extremely important role in many areas of abstract and applied

mathematics.

A field  is said to be  if every nonconstant polynomialalgebraically closed

over  has a root in . This is equivalent to saying that every nonconstant

polynomial  into linear factors over . For example, the complex field  issplits

algebraically closed but the real field  is not. We mention without proof that

every field  is contained in an algebraically closed field , called the

algebraic closure of .

The Characteristic of a Ring

Let  be a ring with identity. If  is a positive integer then by , we simply

mean
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 terms

Now, it may happen that there is a positive integer  for which

For instance, in , we have . On the other hand, in , the

equation  implies  and so no such positive integer exists.

Notice that, in any  ring, there must exist such a positive integer , sincefinite

the infinite sequence of numbers

cannot be distinct and so  for some  , whence .

Definition Let  be a ring with identity. The smallest positive integer  for

which  is called the  of . If no such number  exists, wecharacteristic

say that  has characteristic . The characteristic of  is denoted by

char .

If  then for any , we havechar

 terms  terms

Theorem 0.30 Any finite ring has nonzero characteristic. Any finite field has

prime characteristic.

Proof. We have already seen that a finite ring has nonzero characteristic. Let 

be a finite field and suppose that . If , where char

then . Hence, , implying that  or . In

either case, we have a contradiction to the fact that  is the smallest positive

integer such that . Hence,  must be prime. 

Notice that in any field  of characteristic , we have  for all .

Thus, in 

 for all 

This property takes a bit of getting used to and makes fields of characteristic 

quite exceptional. (As it happens, there are many important uses for fields of

characteristic .)

Algebras

The final algebraic structure of which we will have use is a combination of a

vector space and a ring. (We have not yet officially defined vector spaces, but

we will do so before needing the following definition, which is placed here for

easy reference.)
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Definition An   over a field  is a nonempty set , together withalgebra

three operations, called  (denoted by ),  (denoted byaddition multiplication

juxtaposition) and  (also denoted by juxtaposition), forscalar multiplication

which the following properties hold:

1)  is a vector space over  under addition and scalar multiplication.

2)  is a ring under addition and multiplication.

3) If  and  then

Thus, an algebra is a vector space in which we can take the product of vectors,

or a ring in which we can multiply each element by a scalar (subject, of course,

to additional requirements as given in the definition).
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Chapter 1

Vector Spaces

Vector Spaces

Let us begin with the definition of one of our principal objects of study.

Definition Let  be a field, whose elements are referred to as . A scalars vector

space vectors over  is a nonempty set , whose elements are referred to as ,

together with two operations. The first operation, called  and denotedaddition

by , assigns to each pair  of vectors in  a vector  in . The

second operation, called  and denoted by juxtaposition,scalar multiplication

assigns to each pair r  a vector  in . Furthermore, the

following properties must be satisfied:

1)  For all vectors ( )Associativity of addition

2)  For all vectors ( )Commutativity of addition

3)   There is a vector  with the property that( )Existence of a zero

for all vectors .

4)  For each vector , there is a vector( )Existence of additive inverses

in , denoted by , with the property that
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5)  For all scalars F and for all( )Properties of scalar multiplication

vectors

Note that the first four properties in the definition of vector space can be

summarized by saying that  is an abelian group under addition.

Any expression of the form

where  and  for all , is called a  of the vectorslinear combination

. If at least one of the scalars  is nonzero, then the linear combination

is .nontrivial

Example 1.1

1) Let  be a field. The set  of all functions from  to  is a vector space

over , under the operations of ordinary addition and scalar multiplication

of functions

and

2) The set  of all  matrices with entries in a field  is a vector

space over , under the operations of matrix addition and scalar

multiplication.

3) The set  of all ordered -tuples, whose components lie in a field , is a

vector space over , with addition and scalar multiplication defined

componentwise

and

When convenient, we will also write the elements of  in column form.

When  is a finite field  with  elements, we write  for .

4) Many sequence spaces are vector spaces. The set Seq  of all infinite

sequences with members from a field  is a vector space under

componentwise operations
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and

In a similar way, the set  of all sequences of complex numbers that

converge to  is a vector space, as is the set  of all bounded complex

sequences. Also, if  is a positive integer then the set  of all complex

sequences  for which

is a vector space under componentwise operations. To see that addition is a

binary operation on , one verifies Minkowski's inequality

which we will not do here. 

Subspaces

Most algebraic structures contain substructures, and vector spaces are no

exception.

Definition A  of a vector space  is a subset  of  that is a vectorsubspace

space in its own right under the operations obtained by restricting the

operations of  to . 

Since many of the properties of addition and scalar multiplication hold a fortiori

in a nonempty subset , we can establish that  is a subspace merely by

checking that  is closed under the operations of .

Theorem 1.1  A nonempty subset  of a vector space  is a subspace of  if

and only if  is closed under addition and scalar multiplication or, equivalently,

 is closed under linear combinations, that is

Example 1.2 Consider the vector space  of all binary -tuples, that is,

-tuples of 's and 's. The   of a vector  is the numberweight

of nonzero coordinates in . For instance, . Let  be the set of

all vectors in  of even weight. Then  is a subspace of .

To see this, note that

where  is the vector in  whose th component is the product of the
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th components of  and , that is,

Hence, if  and  are both even, so is . Finally, scalar

multiplication over  is trivial and so  is a subspace of , known as

the  of . even weight subspace

Example 1.3 Any subspace of the vector space  is called a .linear code

Linear codes are among the most important and most studied types of codes,

because their structure allows for efficient encoding and decoding of

information. 

The Lattice of Subspaces

The set  of all subspaces of a vector space  is partially ordered by set

inclusion. The   is the smallest element in  and the entirezero subspace

space  is the largest element.

If  then  is the largest subspace of  that is contained in both

 and . In terms of set inclusion,  is the  of  andgreatest lower bound

glb

Similarly, if  is any collection of subspaces of  then their

intersection is the greatest lower bound of the subspaces

glb

On the other hand, if  (and  is infinite) then  if and

only if  or . Thus, the union of two subspaces is never a subspace

in any “interesting” case. We also have the following.

Theorem 1.2 A nontrivial vector space  over an infinite field  is not the

union of a finite number of proper subspaces.

Proof. Suppose that , where we may assume that

Let  and let . Consider the infinite set

which is the “line” through , parallel to . We want to show that each 

contains at most one vector from the infinite set , which is contrary to the fact

that . This will prove the theorem.



Vector Spaces 37

If  for  then  implies , contrary to assumption.

Next, suppose that  and  , for , where .

Then

and so , which is also contrary to assumption. 

To determine the smallest subspace of  containing the subspaces  and , we

make the following definition.

Definition Let  and  be subspaces of . The   is defined bysum

More generally, the  of any collection  of subspaces is the setsum

of all finite sums of vectors from the union 

It is not hard to show that the sum of any collection of subspaces of  is a

subspace of  and that in terms of set inclusion, the sum is the least upper

bound

lub

More generally,

lub

If a partially ordered set  has the property that every pair of elements has a

least upper bound and greatest lower bound, then  is called a . If  haslattice

a smallest element and a largest element and has the property that every

collection of elements has a least upper bound and greatest lower bound, then 

is called a .complete lattice

Theorem 1.3 The set  of all subspaces of a vector space  is a complete

lattice under set inclusion, with smallest element , largest element ,

glb

and

lub
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Direct Sums

As we will see, there are many ways to construct new vector spaces from old

ones.

External Direct Sums

Definition Let  be vector spaces over a field . The external direct

sum of , denoted by

is the vector space  whose elements are ordered -tuples

with componentwise operations

and

Example 1.4 The vector space  is the external direct sum of  copies of ,

that is,

where there are  summands on the right-hand side. 

This construction can be generalized to any collection of vector spaces by

generalizing the idea that an ordered -tuple  is just a function

 from the   to the union of the spacesindex set

with the property that .

Definition Let  be any family of vector spaces over . The

direct product of  is the vector space

thought of as a subspace of the vector space of all functions from  to . 

It will prove more useful to restrict the set of functions to those with finite

support.

Definition Let  be a family of vector spaces over . The

support of a function  is the set

supp
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Thus, a function  has  if  for all but a finite number offinite support

. The  of the family  is the vector spaceexternal direct sum

ext
,  has finite support

thought of as a subspace of the vector space of all functions from  to . 

An important special case occurs when  for all . If we let 

denote the set of all functions from  to  and  denote the set of all

functions in  that have finite support then

  and
ext

Note that the direct product and the external direct sum are the same for a finite

family of vector spaces.

Internal Direct Sums

An internal version of the direct sum construction is often more relevant.

Definition Let  be a vector space. We say that  is the ( ) internal direct sum

of a family  of subspaces of  if every vector  can be

written, in a unique way (except for order), as a finite sum of vectors from the

subspaces in , that is, if for all ,

for  and furthermore, if

where  then  and (after reindexing if necessary)  for all

.

If  is the direct sum of , we write

and refer to each  as a  of . If  is a finitedirect summand

family, we write

If  then  is called a  of  in . complement
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Note that a sum is direct if and only if whenever  where

 and  then  for all , that is, if and only if  has a unique

representation as a sum of vectors from distinct subspaces.

The reader will be asked in a later chapter to show that the concepts of internal

and external direct sum are essentially equivalent (isomorphic). For this reason,

we often use the term “direct sum” without qualification. Once we have

discussed the concept of a basis, the following theorem can be easily proved.

Theorem 1.4 Any subspace of a vector space has a complement, that is, if  is a

subspace of  then there exists a subspace  for which . 

It should be emphasized that a subspace generally has many complements

(although they are isomorphic). The reader can easily find examples of this in

. We will have more to say about the existence and uniqueness of

complements later in the book.

The following characterization of direct sums is quite useful.

Theorem 1.5 A vector space  is the direct sum of a family 

of subspaces if and only if

1)  is the sum of the 

2) For each ,

Proof. Suppose first that  is the direct sum of . Then 1) certainly holds and

if

then  for some  and

where  and  for all . Hence, by the uniqueness of

direct sum representations,  and so . Thus, 2) holds.

For the converse, suppose that 1) and 2) hold. We need only verify the

uniqueness condition. If

and
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where  and  then by including additional terms equal to  we

may assume that the index sets  and  are the same set

, that is

and

Thus,

Hence, each term  is a sum of vectors from subspaces other than

, which can happen only if . Thus,  for all  and  is

the direct sum of . 

Example 1.5 Any matrix  can be written in the form

(1.1)

where  is the transpose of . It is easy to verify that  is symmetric and  is

skew-symmetric and so (1.1) is a decomposition of  as the sum of a symmetric

matrix and a skew-symmetric matrix.

Since the sets Sym and SkewSym of all symmetric and skew-symmetric

matrices in  are subspaces of , we have

Sym SkewSym

Furthermore, if , where  and  are symmetric and  and 

are skew-symmetric, then the matrix

is both symmetric and skew-symmetric. Hence, provided that , wechar

must have  and so  and . Thus,

Sym SkewSym

Spanning Sets and Linear Independence

A set of vectors  a vector space if every vector can be written as a linearspans

combination of some of the vectors in that set. Here is the formal definition.
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Definition The  (or ) by a set  ofsubspace spanned subspace generated

vectors in  is the set of all linear combinations of vectors from 

span

When  is a finite set, we use the notation , or

span . A set  of vectors in  is said to  , or  , ifspan generate

span , that is, if every vector  can be written in the form

for some scalars  and vectors . 

It is clear that any superset of a spanning set is also a spanning set. Note also

that all vector spaces have spanning sets, since the entire space is a spanning set.

Definition A nonempty set  of vectors in  is  if for anylinearly independent

 in , we have

If a set of vectors is not linearly independent, it is said to be linearly

dependent.

It follows from the definition that any nonempty subset of a linearly

independent set is linearly independent.

Theorem 1.6  Let  be a set of vectors in . The following are equivalent:

1)  is linearly independent.

2) Every vector in  has a  expression as a linear combination ofspan unique

the vectors in .

3) No vector in  is a linear combination of the other vectors in . 

The following key theorem relates the notions of spanning set and linear

independence.

Theorem 1.7  Let  be a set of vectors in . The following are equivalent:

1)  is linearly independent and spans .

2) For every vector , there is a  set of vectors  in ,unique

along with a  set of scalars  in , for whichunique

3)  is a , that is,  spans  but any proper subset of minimal spanning set

does not span .

4)  is a , that is,  is linearlymaximal linearly independent set

independent, but any proper superset of  is not linearly independent.

Proof. We leave it to the reader to show that 1) and 2) are equivalent. Now

suppose 1) holds. Then  is a spanning set. If some proper subset  of  also
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spanned  then any vector in  would be a linear combination of the

vectors in , contradicting the fact that the vectors in  are linearly

independent. Hence 1) implies 3).

Conversely, if  is a minimal spanning set then it must be linearly independent.

For if not, some vector  would be a linear combination of the other vectors

in  and so  would be a proper spanning subset of , which is not

possible. Hence 3) implies 1).

Suppose again that 1) holds. If  were not maximal, there would be a vector

 for which the set  is linearly independent. But then  is not

in the span of , contradicting the fact that  is a spanning set. Hence,  is a

maximal linearly independent set and so 1) implies 4).

Conversely, if  is a maximal linearly independent set then  must span , for

if not, we could find a vector  that is not a linear combination of the

vectors in . Hence,  would be a linearly independent proper superset of

, which is a contradiction. Thus, 4) implies 1). 

Definition A set of vectors in  that satisfies any (and hence all) of the

equivalent conditions in Theorem 1.7 is called a  for . basis

Corollary 1.8 A finite set  of vectors in  is a basis for  if

and only if

Example 1.6 The th  in  is the vector  that has s in allstandard vector

coordinate positions except the th, where it has a . Thus,

The set  is called the  for . standard basis

The proof that every nontrivial vector space has a basis is a classic example of

the use of Zorn's lemma.

Theorem 1.9  Let  be a nonzero vector space. Let  be a linearly independent

set in  and let  be a spanning set in  containing . Then there is a basis 

for  for which . In particular,

1) Any vector space, except the zero space , has a basis.

2) Any linearly independent set in  is contained in a basis.

3) Any spanning set in  contains a basis.

Proof. Consider the collection  of all linearly independent subsets of 

containing  and contained in . This collection is not empty, since .

Now, if
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is a chain in  then the union

is linearly independent and satisfies , that is, . Hence, every

chain in  has an upper bound in  and according to Zorn's lemma,  must

contain a maximal element , which is linearly independent.

Now,  is a basis for the vector space , for if any  is not a linear

combination of the elements of  then  is linearly independent,

contradicting the maximality of . Hence  and so . 

The reader can now show, using Theorem 1.9, that any subspace of a vector

space has a complement.

The Dimension of a Vector Space

The next result, with its classical elegant proof, says that if a vector space  has

a  spanning set  then the size of any linearly independent set cannotfinite

exceed the size of .

Theorem 1.10  Let  be a vector space and assume that the vectors 

are linearly independent and the vectors  span . Then .

Proof. First, we list the two sets of vectors: the spanning set followed by the

linearly independent set

Then we move the first vector  to the front of the first list

Since  span ,  is a linear combination of the 's. This implies that

we may remove one of the 's, which by reindexing if necessary can be ,

from the first list and still have a spanning set

Note that the first set of vectors still spans  and the second set is still linearly

independent.

Now we repeat the process, moving  from the second list to the first list

As before, the vectors in the first list are linearly dependent, since they spanned

 before the inclusion of . However, since the 's are linearly independent,

any nontrivial linear combination of the vectors in the first list that equals 
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must involve at least one of the 's. Hence, we may remove that vector, which

again by reindexing if necessary may be taken to be  and still have a spanning

set

Once again, the first set of vectors spans  and the second set is still linearly

independent.

Now, if , then this process will eventually exhaust the 's and lead to the

list

where  span , which is clearly not possible since  is not in the

span of . Hence, . 

Corollary 1.11 If  has a  spanning set then any two bases of  have thefinite

same size. 

Now let us prove Corollary 1.11 for arbitrary vector spaces.

Theorem 1.12  If  is a vector space then any two bases for  have the same

cardinality.

Proof. We may assume that all bases for  are infinite sets, for if any basis is

finite then  has a finite spanning set and so Corollary 1.11 applies.

Let  be a basis for  and let  be another basis for . Then any

vector  can be written as a finite linear combination of the vectors in ,

where all of the coefficients are nonzero, say

But because  is a basis, we must have

for if the vectors in  can be expressed as finite linear combinations of the

vectors in a  subset  of  then  spans , which is not the case.proper

Since  for all , Theorem 0.16 implies that

But we may also reverse the roles of  and , to conclude that  and so

 by the Schröder–Bernstein theorem. 

Theorem 1.12 allows us to make the following definition.
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Definition A vector space  is  if it is the zero space , orfinite-dimensional

if it has a finite basis. All other vector spaces are . infinite-dimensional The

dimension dimension of the zero space is  and the  of any nonzero vector

space  is the cardinality of any basis for . If a vector space  has a basis of

cardinality , we say that  is  and write . -dimensional dim

It is easy to see that if  is a subspace of  then . If indim dim

addition,  then .dim dim

Theorem 1.13  Let  be a vector space.

1) If  is a basis for  and if  and  then

2) Let . If  is a basis for  and  is a basis for  then

 and  is a basis for . 

Theorem 1.14  Let  and  be subspaces of a vector space . Then

dim dim dim dim

In particular, if  is any complement of  in  then

dim dim dim

that is,

dim dim dim

Proof. Suppose that  is a basis for . Extend this to a basis

 for  where  is disjoint from . Also, extend  to a

basis  for  where  is disjoint from . We claim that

 is a basis for . It is clear that .

To see that  is linearly independent, suppose to the contrary that

where  and  for all . There must be vectors  in this

expression from both  and , since  and  are linearly independent.

Isolating the terms involving the vectors from  on one side of the equality

shows that there is a nonzero vector in . But then 

and so , which implies that , a contradiction. Hence,

 is linearly independent and a basis for .
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Now,

dim dim

dim

dim dim

as desired. 

It is worth emphasizing that while the equation

dim dim dim dim

holds for all vector spaces, we cannot write

dim dim dim dim

unless  is finite-dimensional.

Ordered Bases and Coordinate Matrices

It will be convenient to consider bases that have an order imposed upon their

members.

Definition Let  be a vector space of dimension . An  for  isordered basis

an ordered -tuple  of vectors for which the set  is a

basis for . 

If  is an ordered basis for  then for each  there is a

unique ordered -tuple  of scalars for which

Accordingly, we can define the   bycoordinate map

(1.3)

where the column matrix  is known as the  of  withcoordinate matrix

respect to the ordered basis . Clearly, knowing  is equivalent to knowing 

(assuming knowledge of ).

Furthermore, it is easy to see that the coordinate map  is bijective and

preserves the vector space operations, that is,

or equivalently
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Functions from one vector space to another that preserve the vector space

operations are called  and form the objects of study in thelinear transformations

next chapter.

The Row and Column Spaces of a Matrix

Let  be an  matrix over . The rows of  span a subspace of  known

as the  of  and the columns of  span a subspace of  known asrow space

the  of . The dimensions of these spaces are called the column space row rank

and , respectively. We denote the row space and row rank bycolumn rank

rs rrk cs crk and  and the column space and column rank by  and .

It is a remarkable and useful fact that the row rank of a matrix is always equal to

its column rank, despite the fact that if , the row space and column space

are not even in the same vector space!

Our proof of this fact hinges upon the following simple observation about

matrices.

Lemma 1.15 Let  be an  matrix. Then elementary column operations do

not affect the row rank of . Similarly, elementary row operations do not affect

the column rank of .

Proof. The second statement follows from the first by taking transposes. As to

the first, the row space of  is

rs

where  are the standard basis vectors in . Performing an elementary

column operation on  is equivalent to multiplying  on the right by an

elementary matrix . Hence the row space of  is

rs

and since  is invertible,

rr rs rs rrdim dim

as desired. 

Theorem 1.16  If  then . This number is called therrk crk

rank of  and is denoted by .rk

Proof. According to the previous lemma, we may reduce  to reduced column

echelon form without affecting the row rank. But this reduction does not affect

the column rank either. Then we may further reduce  to reduced row echelon

form without affecting either rank. The resulting matrix  has the same row

and column ranks as . But  is a matrix with 's followed by 's on the main
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diagonal (entries ) and 's elsewhere. Hence,

rrk rrk crk crk

as desired. 

The Complexification of a Real Vector Space

If  is a complex vector space (that is, a vector space over ), then we can

think of  as a real vector space simply by restricting all scalars to the field .

Let us denote this real vector space by  and call it the  of .real version

On the other hand, to each real vector space , we can associate a complex

vector space . This “complexification” process will play a useful role when

we discuss the structure of linear operators on a real vector space. (Throughout

our discussion  will denote a real vector space.)

Definition If  is a real vector space then the set  of ordered

pairs, with componentwise addition

and scalar multiplication over  defined by

for  is a complex vector space, called the  of . complexification

It is convenient to introduce a notation for vectors in  that resembles

complex numbers. In particular, we denote  by  and so

Addition now looks like ordinary addition of complex numbers

and scalar multiplication looks like ordinary multiplication of complex numbers

Thus, for example, we immediately have for 

The  of  is  and the  of  is .real part imaginary part

The essence of the fact that  is really an ordered pair is that  is

 if and only if its real and imaginary parts are both .
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We can define the   bycomplexification map cpx

cpx

Let us refer to  as the , or  of .complexification complex version

Note that this map is a group homomorphism, that is,

cpx cpx cpx cpxand

and it is injective

cpx cpx

Also, it preserves multiplication by  scalarsreal

cpx cpx

for . However, the complexification map is not surjective, since it gives

only “real” vectors in .

The complexification map is an injective linear transformation from the real

vector space  to the real version  of the complexification , that is, to

the complex vector space  provided that scalars are restricted to real

numbers. In this way, we see that  contains an embedded copy of .

The Dimension of 

The vector-space dimensions of  and  are the same. This should not

necessarily come as a surprise because although  may seem “bigger” than ,

the field of scalars is also “bigger.”

Theorem 1.17 If  is a basis for  over  then the

complexification of 

cpx

is a basis for the vector space  over . Hence,

dim dim

Proof. To see that  spans  over , let . Then cpx

and so there exist real numbers  and  (some of which may be ) for which
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To see that  is linearly independent, ifcpx

then the previous computations show that

 and 

The independence of  then implies that  and  for all . 

If  and  is a basis for  then we may write

for . Since the coefficients are real, we have

and so the coordinate matrices are equal

cpx

Exercises

1. Let  be a vector space over . Prove that  and  for all 

and . Describe the different 's in these equations. Prove that if

 then  or . Prove that  implies that  or .

2. Prove Theorem 1.3.

3. a) Find an abelian group  and a field  for which  is a vector space

over  in at least two different ways, that is, there are two different

definitions of scalar multiplication making  a vector space over .
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 b) Find a vector space  over  and a subset  of  that is (1) a

subspace of  and (2) a vector space using operations that differ from

those of .

4. Suppose that  is a vector space with basis  and  is a

subspace of . Let  be a partition of . Then is it true that

What if  for all ?

5. Prove Corollary 1.8.

6. Let . Show that if  then

This is called the  for the lattice .modular law

7. For what vector spaces does the distributive law of subspaces

hold?

8. A vector  is called  if  for allstrongly positive

.

 a) Suppose that  is strongly positive. Show that any vector that is “close

enough” to  is also strongly positive. (Formulate carefully what “close

enough” should mean.)

 b) Prove that if a subspace  of  contains a strongly positive vector,

then  has a basis of strongly positive vectors.

9. Let  be an  matrix whose rows are linearly independent. Suppose

that the  columns  of  span the column space of . Let  be

the matrix obtained from  by deleting all columns except .

Show that the rows of  are also linearly independent.

10. Prove that the first two statements in Theorem 1.7 are equivalent.

11. Show that if  is a subspace of a vector space  then .dim dim

Furthermore, if  then . Give an example todim dim

show that the finiteness is required in the second statement.

12. Let  and suppose that . What can youdim

say about the relationship between  and ? What can you say if

?

13. What is the relationship between  and ? Is the direct sum

operation commutative? Formulate and prove a similar statement

concerning associativity. Is there an “identity” for direct sum? What about

“negatives”?

14. Let  be a finite-dimensional vector space over an infinite field . Prove

that if  are subspaces of  of equal dimension then there is a

subspace  of  for which  for all . In other words,

 is a common complement of the subspaces .



Vector Spaces 53

15. Prove that the vector space  of all continuous functions from  to  is

infinite-dimensional.

16. Show that Theorem 1.2 need not hold if the base field  is finite.

17. Let  be a subspace of . The set  is called an

affine subspace of .

 a) Under what conditions is an affine subspace of  a subspace of ?

 b) Show that any two affine subspaces of the form  and  are

either equal or disjoint.

18. If  and  are vector spaces over  for which  then does it

follow that ?dim dim

19. Let  be an -dimensional real vector space and suppose that  is a

subspace of  with . Define an equivalence relation ondim

the set  by  if the “line segment”

has the property that . Prove that  is an equivalence

relation and that it has exactly two equivalence classes.

20. Let  be a field. A  of  is a subset  of  that is a field in itssubfield

own right using the same operations as defined on .

 a) Show that  is a vector space over any subfield  of .

 b) Suppose that  is an -dimensional vector space over a subfield  of

. If  is an -dimensional vector space over , show that  is also a

vector space over . What is the dimension of  as a vector space

over ?

21. Let  be a finite field of size  and let  be an -dimensional vector space

over . The purpose of this exercise is to show that the number of

subspaces of  of dimension  is

The expressions  are called  and have propertiesGaussian coefficients

similar to those of the binomial coefficients. Let  be the number of

-dimensional subspaces of .

 a) Let  be the number of -tuples of linearly independent vectors

 in . Show that

 b) Now, each of the -tuples in a) can be obtained by first choosing a

subspace of  of dimension  and then selecting the vectors from this

subspace. Show that for any -dimensional subspace of , the number

of -tuples of independent vectors in this subspace is
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 c) Show that

How does this complete the proof?

22. Prove that any subspace  of  is a closed set or, equivalently, that its set

complement  is open, that is, for any  there is an open

ball  centered at  with radius  for which .

23. Let  and  be bases for a vector space .

Let . Show that there is a permutation  of  such

that

and

are both bases for .

24. Let  and suppose that  are subspaces of  withdim

dim . Prove that there is a subspace  of  of dimension

 for which  for all .

25. What is the dimension of the complexification  thought of as a real

vector space?

26. (When is a subspace of a complex vector space a complexification?) Let 

be a real vector space with complexification  and let  be a subspace of

. Prove that there is a subspace  of  for which

if and only if  is closed under complex conjugation  defined

by .



Chapter 2

Linear Transformations

Linear Transformations

Loosely speaking, a linear transformation is a function from one vector space to

another that  the vector space operations. Let us be more precise.preserves

Definition Let  and  be vector spaces over a field . A function 

is a  iflinear transformation

for all scalars  and vectors , . A linear transformation 

is called a  on . The set of all linear transformations from linear operator

to  is denoted by  and the set of all linear operators on  is denoted

by . 

We should mention that some authors use the term linear operator for any linear

transformation from  to .

Definition The following terms are also employed:

1)  for linear transformationhomomorphism

2)  for linear operatorendomorphism

3)  (or ) for injective linear transformationmonomorphism embedding

4)  for surjective linear transformationepimorphism

5)  for bijective linear transformation.isomorphism

6)  for bijective linear operator. automorphism

Example 2.1

1) The derivative  is a linear operator on the vector space  of all

infinitely differentiable functions on .
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2) The integral operator  defined by

is a linear operator on .

3) Let  be an  matrix over . The function  defined by

, where all vectors are written as column vectors, is a linear

transformation from  to . This function is just multiplication by .

4) The coordinate map  of an -dimensional vector space is a

linear transformation from  to . 

The set  is a vector space in its own right and  has the structure of

an algebra, as defined in Chapter 0.

Theorem 2.1

1) The set  is a vector space under ordinary addition of functions

and scalar multiplication of functions by elements of .

2) If  and  then the composition  is in .

3) If  is bijective then .

4) The vector space  is an algebra, where multiplication is composition

of functions. The identity map  is the multiplicative identity and

the zero map  is the additive identity.

Proof. We prove only part 3). Let  be a bijective linear

transformation. Then  is a well-defined function and since any two

vectors  and  in  have the form  and , we have

which shows that  is linear. 

One of the easiest ways to define a linear transformation is to give its values on

a basis. The following theorem says that we may assign these values arbitrarily

and obtain a unique linear transformation by linear extension to the entire

domain.

Theorem 2.2  Let  and  be vector spaces and let  be a

basis for . Then we can define a linear transformation  by

specifying the values of   for all  and extending thearbitrarily

domain of  to  using linearity, that is,
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This process  defines a linear transformation, that is, ifuniquely

 satisfy  for all  then .

Proof. The crucial point is that the extension by linearity is well-defined, since

each vector in  has a unique representation as a linear combination of a finite

number of vectors in . We leave the details to the reader. 

Note that if  and if  is a subspace of , then the restriction  of

 to  is a linear transformation from  to .

The Kernel and Image of a Linear Transformation

There are two very important vector spaces associated with a linear

transformation  from  to .

Definition Let . The subspace

ker

is called the  of  and the subspacekernel

im

is called the  of . The dimension of  is called the  of  and isimage nullityker

denoted by . The dimension of  is called the  of  and isnull im rank

denoted by . rk

It is routine to show that  is a subspace of  and  is a subspace ofker im

. Moreover, we have the following.

Theorem 2.3  Let . Then

1)  is surjective if and only if im

2)  is injective if and only if ker

Proof. The first statement is merely a restatement of the definition of

surjectivity. To see the validity of the second statement, observe that

ker

Hence, if  then , which shows that  isker

injective. Conversely, if  is injective and  then  and soker

. This shows that . ker

Isomorphisms

Definition A bijective linear transformation  is called an

isomorphism from  to . When an isomorphism from  to  exists, we say

that  and  are  and write . isomorphic

Example 2.2 Let . For any ordered basis  of , the coordinatedim

map  that sends each vector  to its coordinate matrix
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 is an isomorphism. Hence, any -dimensional vector space over  is

isomorphic to . 

Isomorphic vector spaces share many properties, as the next theorem shows. If

 and  we write

Theorem 2.4  Let  be an isomorphism. Let . Then

1)  spans  if and only if  spans .

2)  is linearly independent in  if and only if  is linearly independent in

.

3)  is a basis for  if and only if  is a basis for . 

An isomorphism can be characterized as a linear transformation  that

maps a basis for  to a basis for .

Theorem 2.5  A linear transformation  is an isomorphism if and

only if there is a basis  of  for which  is a basis of . In this case, 

maps any basis of  to a basis of . 

The following theorem says that, up to isomorphism, there is only one vector

space of any given dimension.

Theorem 2.6  Let  and  be vector spaces over . Then  if and only

if . dim dim

In Example 2.2, we saw that any -dimensional vector space is isomorphic to

. Now suppose that  is a set of cardinality  and let  be the vector

space of all functions from  to  with finite support. We leave it to the reader

to show that the functions  defined for all , by

if

if

form a basis for , called the . Hence, .standard basis dim

It follows that for any cardinal number , there is a vector space of dimension .

Also, any vector space of dimension  is isomorphic to .

Theorem 2.7  If  is a natural number then any -dimensional vector space

over  is isomorphic to . If  is any cardinal number and if  is a set of

cardinality  then any -dimensional vector space over  is isomorphic to the

vector space  of all functions from  to  with finite support. 
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The Rank Plus Nullity Theorem

Let . Since any subspace of  has a complement, we can write

ker ker

where  is a complement of  in . It follows thatker ker

dim dim ker dim ker

Now, the restriction of  to ker

ker

is injective, since

ker ker ker

Also, . For the reverse inclusion, if  then sinceim im im

 for  and , we haveker ker

im

Thus . It follows thatim im

ker im

From this, we deduce the following theorem.

Theorem 2.8  Let .

1) Any complement of  is isomorphic to ker im

2) ( )The rank plus nullity theorem

dim ker dim dimim

or, in other notation,

rk null dim

Theorem 2.8 has an important corollary.

Corollary 2.9 Let , where . Then  isdim dim

injective if and only if it is surjective. 

Note that this result fails if the vector spaces are not finite-dimensional.

Linear Transformations from  to 

Recall that for any  matrix  over  the multiplication map
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is a linear transformation. In fact, any linear transformation  has

this form, that is,  is just multiplication by a matrix, for we have

and so  where

Theorem 2.10

1) If  is an  matrix over  then .

2) If  then  where

The matrix  is called the  of . matrix

Example 2.3 Consider the linear transformation  defined by

Then we have, in column form

and so the standard matrix of  is

If  then since the image of  is the column space of , we have

dim ker dimrk

This gives the following useful result.

Theorem 2.11  Let  be an  matrix over .

1)  is injective if and only if n.rk

2)  is surjective if and only if m. rk

Change of Basis Matrices

Suppose that  and  are ordered bases for a

vector space . It is natural to ask how the coordinate matrices  and  are

related. The map that takes  to  is  and is called the change

of basis operator change of coordinates operator (or ). Since  is an

operator on , it has the form  where
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We denote  by  and call it the  from  to ., change of basis matrix

Theorem 2.12  Let  and  be ordered bases for a vector space

. Then the change of basis operator  is an automorphism of ,

whose standard matrix is

,

Hence

and . ,

Consider the equation

or equivalently,

Then given any two of  (an invertible  matrix)  (an ordered basis for

) and  (an order basis for ), the third component is uniquely determined

by this equation. This is clear if  and  are given or if  and  are given. If 

and  are given then there is a unique  for which  and so there is a

unique  for which .

Theorem 2.13 If we are given any two of the following:

1) An invertible  matrix .

2) An ordered basis  for .

3) An ordered basis  for .

then the third is uniquely determined by the equation

The Matrix of a Linear Transformation

Let  be a linear transformation, where  anddim

dim  and let  be an ordered basis for  and  an

ordered basis for . Then the map

is a  of  as a linear transformation from  to , in the senserepresentation
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that knowing  (along with  and , of course) is equivalent to knowing . Of

course, this representation depends on the choice of ordered bases  and .

Since  is a linear transformation from  to , it is just multiplication by an

 matrix , that is

Indeed, since , we get the columns of  as follows:

Theorem 2.14  Let  and let  and  be ordered

bases for  and , respectively. Then  can be represented with respect to 

and  as matrix multiplication, that is

,

where

,

is called the     and . When  andmatrix of with respect to the bases

, we denote  by  and so,

Example 2.4 Let  be the derivative operator, defined on the vector

space of all polynomials of degree at most . Let . Then

,

and so

Hence, for example, if  then

and so . 

The following result shows that we may work equally well with linear

transformations or with the matrices that represent them (with respect to fixed
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ordered bases  and ). This applies not only to addition and scalar

multiplication, but also to matrix multiplication.

Theorem 2.15  Let  and  be vector spaces over , with ordered bases

 and , respectively.

1) The map  defined by

,

is an isomorphism and so .

2) If  and  and if ,  and  are ordered bases for

,  and , respectively then

, , ,

Thus, the matrix of the product (composition)  is the product of the

matrices of  and . In fact, this is the primary motivation for the definition

of matrix multiplication.

Proof. To see that  is linear, observe that for all 

and since  is a standard basis vector, we conclude that

and so  is linear. If , we define  by the condition ,

whence  and  is surjective. Since ,dim dim

the map  is an isomorphism. To prove part 2), we have

,

Change of Bases for Linear Transformations

Since the matrix  that represents  depends on the ordered bases  and , it,

is natural to wonder how to choose these bases in order to make this matrix as

simple as possible. For instance, can we always choose the bases so that  is

represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,

we will take up the general question of how best to represent a linear operator

by a matrix. For now, let us take the first step and describe the relationship

between the matrices  and  of  with respect to two different pairs

 and  of ordered bases. Multiplication by  sends  to
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. This can be reproduced by first switching from  to , then applying

 and finally switching from  to , that is,

, , ,

Theorem 2.16  Let ,  and let  and  be pairs of ordered

bases of  and , respectively. Then

(2.1)

When  is a linear operator on , it is generally more convenient to

represent  by matrices of the form , where the ordered bases used to

represent vectors in the domain and image are the same. When , Theorem

2.16 takes the following important form.

Corollary  Let  and let  and  be ordered bases for . Then the2.17

matrix of  with respect to  can be expressed in terms of the matrix of  with

respect to  as follows

(2.2)

Equivalence of Matrices

Since the change of basis matrices are precisely the invertible matrices, (2.1) has

the form

where  and  are invertible matrices. This motivates the following definition.

Definition Two matrices  and  are  if there exist invertibleequivalent

matrices  and  for which

We remarked in Chapter 0 that  is equivalent to  if and only if  can be

obtained from  by a series of elementary row and column operations.

Performing the row operations is equivalent to multiplying the matrix  on the

left by  and performing the column operations is equivalent to multiplying 

on the right by .

In terms of (2.1), we see that performing row operations (premultiplying by )

is equivalent to changing the basis used to represent vectors in the image and

performing column operations (postmultiplying by ) is equivalent to

changing the basis used to represent vectors in the domain.
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According to Theorem 2.16, if  and  are matrices that represent  with

respect to possibly different ordered bases then  and  are equivalent. The

converse of this also holds.

Theorem 2.18  Let  and  be vector spaces with  anddim

dim . Then two  matrices  and  are equivalent if and only if

they represent the same linear transformation , but possibly with

respect to different ordered bases. In this case,  and  represent exactly the

same set of linear transformations in .

Proof. If  and  represent , that is, if

, , and 

for ordered bases  and  then Theorem 2.16 shows that  and  are

equivalent. Now suppose that  and  are equivalent, say

where  and  are invertible. Suppose also that  represents a linear

transformation  for some ordered bases  and , that is,

Theorem 2.13 implies that there is a unique ordered basis  for  for which

 and a unique ordered basis  for  for which . Hence

Hence,  also represents . By symmetry, we see that  and  represent the

same set of linear transformations. This completes the proof. 

We remarked in Example 0.3 that every matrix is equivalent to exactly one

matrix of the block form

block

Hence, the set of these matrices is a set of canonical forms for equivalence.

Moreover, the rank is a complete invariant for equivalence. In other words, two

matrices are equivalent if and only if they have the same rank.

Similarity of Matrices

When a linear operator  is represented by a matrix of the form ,

equation (2.2) has the form

where  is an invertible matrix. This motivates the following definition.
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Definition Two matrices  and  are  if there exists an invertiblesimilar

matrix  for which

The equivalence classes associated with similarity are called similarity

classes.

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19  Let  be a vector space of dimension . Then two 

matrices  and  are similar if and only if they represent the same linear

operator , but possibly with respect to different ordered bases. In this

case,  and  represent exactly the same set of linear operators in .

Proof. If  and  represent , that is, if

 and 

for ordered bases  and  then Corollary 2.17 shows that  and  are similar.

Now suppose that  and  are similar, say

Suppose also that  represents a linear operator  for some ordered

basis , that is,

Theorem 2.13 implies that there is a unique ordered basis  for  for which

. Hence

Hence,  also represents . By symmetry, we see that  and  represent the

same set of linear operators. This completes the proof. 

We will devote much effort in Chapter 7 to finding a canonical form for

similarity.

Similarity of Operators

We can also define similarity of operators.

Definition Two linear operators  are  if there exists ansimilar

automorphism  for which

The equivalence classes associated with similarity are called similarity

classes.
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The analog of Theorem 2.19 in this case is the following.

Theorem 2.20  Let  be a vector space of dimension . Then two linear

operators  and  on  are similar if and only if there is a matrix  that

represents both operators (but with respect to possibly different ordered bases).

In this case,  and  are represented by exactly the same set of matrices in .

Proof. If  and  are represented by , that is, if

for ordered bases  and  then

Let  be the automorphism of  defined by , where

 and . Then

and so

from which it follows that  and  are similar. Conversely, suppose that  and 

are similar, say

Suppose also that  is represented by the matrix , that is,

for some ordered basis . Then

If we set  then  is an ordered basis for  and

Hence

It follows that

and so  also represents . By symmetry, we see that  and  are represented

by the same set of matrices. This completes the proof. 
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Invariant Subspaces and Reducing Pairs

The restriction of a linear operator  to a subspace  of is not

necessarily a linear operator on . This prompts the following definition.

Definition Let . A subspace  of  is said to be   orinvariant under

-  if , that is, if  for all . Put another way, invariant

is invariant under  if the restriction  is a linear operator on . 

If

then the fact that  is -invariant does not imply that the complement  is also

-invariant. (The reader may wish to supply a simple example with .)

Definition Let . If  and if both  and  are -invariant,

we say that the pair   . reduces

A reducing pair can be used to decompose a linear operator into a direct sum as

follows.

Definition Let . If  reduces  we write

and call  the  of  and . Thus, the expressiondirect sum

means that there exist subspaces  and  of  for which  reduces  and

  and 

The concept of the direct sum of linear operators will play a key role in the

study of the structure of a linear operator.

Topological Vector Spaces

This section is for readers with some familiarity with point-set topology. The

standard topology open rectangles on  is the topology for which the set of 

's are open intervals in  

is a basis (in the sense of topology), that is, a subset of  is open if and only if

it is a union of sets in . The standard topology is the topology induced by the

Euclidean metric on .
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The standard topology on  has the property that the addition function

and the scalar multiplication function

are continuous. As such,  is a . Also, any lineartopological vector space

functional  is a continuous map.

More generally, any real vector space  endowed with a topology  is called a

topological vector space if the operations of addition  and

scalar multiplication  are continuous under .

Let  be a real vector space of dimension  and fix an ordered basis

 for . Consider the coordinate map

and its inverse

We claim that there is precisely one topology  on  for which 

becomes a topological vector space and for which all linear functionals are

continuous. This is called the  on . In fact, the naturalnatural topology

topology is the topology for which  (and therefore also ) is a

homeomorphism, for any basis . (Recall that a  is a bijectivehomeomorphism

map that is continuous and has a continuous inverse.)

Once this has been established, it will follow that the open sets in  are

precisely the images of the open sets in  under the map . A basis for the

natural topology is given by

's are open intervals in 

's are open intervals in 

First, we show that if  is a topological vector space under a topology  then 

is continuous. Since  where  is defined by

it is sufficient to show that these maps are continuous. (The sum of continuous

maps is continuous.) Let  be an open set in . Then

is open in . We need to show that the set
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is open in , so let . Thus, . It follows that

, which is open, and so there is an open interval  and

an open set  of  for which

Then the open set , where the factor  is in

the th position, has the property that . Thus

and so  is open. Hence, , and therefore also , is continuous.

Next we show that if every linear functional on  is continuous under a

topology  on  then the coordinate map  is continuous. If  denote by

 the th coordinate of . The map  defined by  is a

linear functional and so is continuous by assumption. Hence, for any open

interval  the set

is open. Now, if  are open intervals in  then

is open. Thus,  is continuous.

Thus, if a topology  has the property that  is a topological vector space and

every linear functional is continuous, then  and  are

homeomorphisms. This means that , if it exists, must be unique.

It remains to prove that the topology  on  that makes  a homeomorphism

has the property that  is a topological vector space under  and that any linear

functional  on  continuous.

As to addition, the maps  and  are

homeomorphisms and the map  is continuous and so the map

, being equal to , is also continuous.

As to scalar multiplication, the maps  and

 are homeomorphisms and the map

 is continuous and so the map , being equal

to , is also continuous.

Now let  be a linear functional. Since  is continuous if and only if  is

continuous, we can confine attention to . In this case, if  is the
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standard basis for for any  and , then  we

have

Now, if  then  and so , which implies that 

is continuous.

According to the Riesz representation theorem and the Cauchy–Schwarz

inequality, we have

Hence,  implies  and so by linearity,  implies

 and so  is continuous.

Theorem 2.21  Let  be a real vector space of dimension . There is a unique

topology on , called the  for which  is a topological vectornatural topology

space and for which all linear functionals on  are continuous. This topology is

determined by the fact that the coordinate map  is a

homeomorphism.

Linear Operators on 

A linear operator  on a real vector space  can be extended to a linear operator

 on the complexification  by defining

Here are the basic properties of this  of .complexification

Theorem 2.22 If  then

1) , 

2) 

3) 

4) . 

Let us recall that for any ordered basis  for  and any vector  we have

cpx

Now, if  is a basis for , then the th column of  is

cpx cpx

which is the th column of the coordinate matrix of  with respect to the basis

cpx . Thus we have the following theorem.
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Theorem 2.23 Let  where  is a real vector space. The matrix of 

with respect to the basis  is equal to the matrix of  with respect to thecpx

basis

cpx

Hence, if a real matrix  represents a linear operator  on  then  also

represents the complexification  of  on . 

Exercises

1. Let  have rank . Prove that there are matrices  and

, both of rank , for which . Prove that  has rank  if

and only if it has the form  where  and  are row matrices.

2. Prove Corollary 2.9 and find an example to show that the corollary does not

hold without the finiteness condition.

3. Let . Prove that  is an isomorphism if and only if it carries a

basis for  to a basis for .

4. If  and  we define the external direct sum

 by

Show that  is a linear transformation.

5. Let . Prove that . Thus, internal and external

direct sums are equivalent up to isomorphism.

6. Let  and consider the external direct sum . Define a

map  by . Show that  is linear. What is the

kernel of ? When is  an isomorphism?

7. Let  be a subset of . A subspace  of  is  if  is --invariant

invariant for every . Also,  is  if the only -invariant-irreducible

subspaces of  are  and . Prove the following form of Schur's lemma.

Suppose that  and  and  is -irreducible and 

is -irreducible. Let  satisfy , that is, for any

 there is a  such that . Prove that  or  is an

isomorphism.

8. Let  where . If  show thatdim rk rk

im ker .

9. Let ,  and . Show that

 minrk rk rk

10. Let  and . Show that

null null null

11. Let  where  is invertible. Show that

rk rk rk
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12. Let . Show that

rk rk rk

13. Let  be a subspace of . Show that there is a  for which

ker . Show also that there exists a  for which .im

14. Suppose that .

 a) Show that  for some . if and only if im im

 b) Show that  for some . if and only if ker ker

15. Let . Define linear operators  on  by  for

. These are referred to as . Show thatprojection operators

 1) 

 2) , where  is the identity map on .

 3)  for  where  is the zero map.

 4) im im

16. Let  and suppose that  satisfies . Show thatdim

rk .dim

17. Let  be an  matrix over . What is the relationship between the

linear transformation  and the system of equations ?

Use your knowledge of linear transformations to state and prove various

results concerning the system , especially when .

18. Let  have basis . Suppose that for each  we

define  by

if

if

Prove that the  are invertible and form a basis for .

19. Let . If  is a -invariant subspace of  must there be a subspace

 of  for which  reduces ?

20. Find an example of a vector space  and a proper subspace  of  for

which .

21. Let . If ,  prove that  implies that  and dim

are invertible and that  for some polynomial .

22. Let  where . If  for all  show thatdim

, for some , where  is the identity map.

23. Let . Let  be a field containing . Show that if  and 

are similar over , that is, if  where  then  and

 are also similar over , that is, there exists  for which

. : consider the equation  as aHint

homogeneous system of linear equations with coefficients in . Does it

have a solution? Where?

24. Let  be a continuous function with the property that

Prove that  is a linear functional on .
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25. Prove that any linear functional  is a continuous map.

26. Prove that any subspace  of  is a closed set or, equivalently, that

 is open, that is, for any  there is an open ball 

centered at  with radius  for which .

27. Prove that any linear transformation  is continuous under the

natural topologies of  and .

28. Prove that any surjective linear transformation  from  to  (both finite-

dimensional topological vector spaces under the natural topology) is an

open map, that is,  maps open sets to open sets.

29. Prove that any subspace  of a finite-dimensional vector space  is a

closed set or, equivalently, that  is open, that is, for any  there is

an open ball  centered at  with radius  for which

.

30. Let  be a subspace of  with .dim

 a) Show that the subspace topology on  inherited from  is the natural

topology.

 b) Show that the natural topology on  is the topology for which the

natural projection map  continuous and open.

31. If  is a real vector space then  is a complex vector space. Thinking of

 as a vector space  over , show that  is isomorphic to the

external direct product .

34. (When is a complex linear map a complexification?) Let  be a real vector

space with complexification  and let . Prove that  is a

complexification, that is,  has the form  for some  if and only

if  commutes with the conjugate map  defined by

.

35. Let  be a complex vector space.

 a) Consider replacing the scalar multiplication on  by the operation

where  and . Show that the resulting set with the addition

defined for the vector space  and with this scalar multiplication is a

complex vector space, which we denote by .

 b) Show, without using dimension arguments, that .

36. a) Let  be a linear operator on the real vector space  with the property

that . Define a scalar multiplication on  by complex numbers

as follows

for  and . Prove that under the addition of  and this

scalar multiplication  is a complex vector space, which we denote by

.

 b) What is the relationship between and ? Hint: consider

 and .



Chapter 3

The Isomorphism Theorems

Quotient Spaces

Let  be a subspace of a vector space . It is easy to see that the binary relation

on  defined by

is an equivalence relation. When , we say that  and  are congruent

modulo . The term  is used as a colloquialism for modulo and  ismod

often written

mod

When the subspace in question is clear, we will simply write .

To see what the equivalence classes look like, observe that

 for some 

The set

is called a  of  in  and  is called a  for .coset coset representative

(Thus, any member of a cost is a coset representative.)

The set of all cosets of  in  is denoted by

This is read “  mod ” and is called the   . Ofquotient space of modulo 
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course, the term space is a hint that we intend to define vector space operations

on .

Note that congruence modulo  is preserved under the vector space operations

on , for if  and  then

A natural choice for vector space operations on  is

However, in order to show that these operations are well-defined, it is necessary

to show that they do not depend on the choice of coset representatives, that is, if

 and 

then

The straightforward details of this are left to the reader. Let us summarize.

Theorem 3.1  Let  be a subspace of . The binary relation

is an equivalence relation on , whose equivalence classes are the cosets

of  in . The set  of all cosets of  in , called the  of quotient space

modulo , is a vector space under the well-defined operations

The zero vector in  is the coset . 

The Natural Projection and the Correspondence Theorem

If  is a subspace of  then we can define a map  by sending

each vector to the coset containing it

This map is called the  or  of  ontocanonical projection natural projection

, or simply  . It is easily seen to be linear, for we haveprojection modulo
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(writing  for )

The canonical projection is clearly surjective. To determine the kernel of , note

that

ker

and so

ker

Theorem 3.2  The canonical projection  defined by

is a surjective linear transformation with . ker

If  is a subspace of  then the subspaces of the quotient space  have the

form  for some intermediate subspace  satisfying . In fact, as

shown in Figure 3.1, the projection map  provides a one-to-one

correspondence between intermediate subspaces  and subspaces of

the quotient space . The proof of the following theorem is left as an

exercise.

V

V/S

{0}

S T/S

T

{0}

Figure 3.1: The correspondence theorem

Theorem 3.3 The correspondence theorem( ) Let  be a subspace of . Then

the function that assigns to each intermediate subspace  the

subspace  of  is an order preserving (with respect to set inclusion)

one-to-one correspondence between the set of all subspaces of  containing 

and the set of all subspaces of . 

The Universal Property of Quotients and the First

Isomorphism Theorem

Let  be a subspace of . The pair  has a very special property,

known as the —a term that comes from the world of categoryuniversal property

theory.
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Figure 3.2 shows a linear transformation , along with the

canonical projection  from  to the quotient space .

V W

V/S

s

'

Figure 3.2: The universal property

The universal property states that if  then there is a uniqueker

 for which

Another way to say this is that any such  can be factored through

the canonical projection .

Theorem 3.4  Let  be a subspace of  and let  satisfy

ker . Then, as pictured in Figure 3.2, there is a unique linear

transformation  with the property that

Moreover,  and .ker ker im im

Proof. We have no other choice but to define  by the condition ,

that is,

This function is well-defined if and only if

which is equivalent to each of the following statements:

ker

Thus,  is well-defined. Also,

im im

and
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ker

ker

ker

The uniqueness of  is evident. 

Theorem 3.4 has a very important corollary, which is often called the first

isomorphism theorem and is obtained by taking .ker

Theorem 3.5  ( ) Let  be a linearThe first isomorphism theorem

transformation. Then the linear transformation  defined byker

ker

is injective and

ker
im

According to Theorem 3.5, the image of any linear transformation on  is

isomorphic to a quotient space of . Conversely, any quotient space  of 

is the image of a linear transformation on : the canonical projection . Thus,

up to isomorphism, quotient spaces are equivalent to homomorphic images.

Quotient Spaces, Complements and Codimension

The first isomorphism theorem gives some insight into the relationship between

complements and quotient spaces. Let  be a subspace of  and let  be a

complement of , that is

Since every vector  has the form , for unique vectors  and

, we can define a linear operator  by setting

Because  and  are unique,  is well-defined. It is called  projection onto

along . (Note the word onto, rather than modulo, in the definition; this is not

the same as projection modulo a subspace.) It is clear that

im

and

ker
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Hence, the first isomorphism theorem implies that

Theorem 3.6  Let  be a subspace of . All complements of  in  are

isomorphic to  and hence to each other. 

The previous theorem can be rephrased by writing

On the other hand, quotients and complements do not behave as nicely with

respect to isomorphisms as one might casually think. We leave it to the reader to

show the following:

1) It is possible that

with  but . Hence,  does  imply that a complementnot

of  is isomorphic to a complement of .

2) It is possible that  and

 and 

but . Hence,  does  imply that . (However,not

according to the previous theorem, if    then .)equals

Corollary 3.7 Let  be a subspace of a vector space . Then

dim dim dim

Definition If  is a subspace of  then  is called the  ofdim codimension

 in  and is denoted by  or . codim codim

Thus, the codimension of  in  is the dimension of any complement of  in 

and when  is , we havefinite-dimensional

codim dim dim

(This makes no sense, in general, if  is not finite-dimensional, since infinite

cardinal numbers cannot be subtracted.)

Additional Isomorphism Theorems

There are several other isomorphism theorems that are consequences of the first

isomorphism theorem. As we have seen, if  then . This can

be written
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This applies to nondirect sums as well.

Theorem 3.8  ( ) Let  be a vector spaceThe second isomorphism theorem

and let  and  be subspaces of . Then

Proof. Let  be defined by

We leave it to the reader to show that  is a well-defined surjective linear

transformation, with kernel . An application of the first isomorphism theorem

then completes the proof. 

The following theorem demonstrates one way in which the expression 

behaves like a fraction.

Theorem 3.9  ( ) Let  be a vector space andThe third isomorphism theorem

suppose that  are subspaces of . Then

Proof. Let  be defined by . We leave it to the

reader to show that  is a well-defined surjective linear transformation whose

kernel is . The rest follows from the first isomorphism theorem. 

The following theorem demonstrates one way in which the expression 

does not behave like a fraction.

Theorem 3.10  Let  be a vector space and let  be a subspace of . Suppose

that  and  with . Then

Proof. Let  be defined by

This map is well-defined, since the sum  is direct. We leave it to

the reader to show that  is a surjective linear transformation, whose kernel is

. The rest follows from the first isomorphism theorem. 
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Linear Functionals

Linear transformations from  to the base field  (thought of as a vector space

over itself) are extremely important.

Definition Let  be a vector space over . A linear transformation

, whose values lie in the base field  is called a linear functional

(or simply ) on . (Some authors use the term .) Thefunctional linear function

vector space of all linear functionals on  is denoted by  and is called the*

algebraic dual space of . 

The adjective  is needed here, since there is another type of dual spacealgebraic

that is defined on general normed vector spaces, where continuity of linear

transformations makes sense. We will discuss the so-called continuous dual

space briefly in Chapter 13. However, until then, the term “dual space” will

refer to the algebraic dual space.

To help distinguish linear functionals from other types of linear transformations,

we will usually denote linear functionals by lower case italic letters, such as , 

and .

Example 3.1 The map , defined by  is a linear

functional, known as  . evaluation at

Example 3.2 Let  denote the vector space of all continuous functions on

. Let  be defined by

Then . 

For any , the rank plus nullity theorem is*

dim ker dim dimim

But since , we have either , in which case  is the zeroim im

linear functional, or , in which case  is surjective. In other words, aim

nonzero linear functional is surjective. Moreover, if  then

codim ker dim
ker

and if  thendim

dim ker dim
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Thus, in dimensional terms, the kernel of a linear functional is a very “large”

subspace of the domain .

The following theorem will prove very useful.

Theorem 3.11

1) For any nonzero vector , there exists a linear functional  for*

which .

2) A vector  is zero if and only if  for all .*

3) Let . If  then

ker

4) Two nonzero linear functionals  have the same kernel if and only

if there is a nonzero scalar  such that .

Proof. For part 3), if  then  and  forker

, whence , which is false. Hence,  andker

the direct sum  exists. Also, for any  we haveker

ker

and so .ker

For part 4), if  for  then . Conversely, ifker ker

ker ker  then for  we have by part 3),

Of course,  for any . Therefore, if , it follows that

 and hence . 

Dual Bases

Let  be a vector space with basis . For each , we can

define a linear functional , by the orthogonality condition*

where  is the , defined byKronecker delta function

if

if

Then the set  is linearly independent, since applying the

equation

to the basis vector  gives
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for all .

Theorem 3.12  Let  be a vector space with basis .

1) The set  is linearly independent.

2) If  is finite-dimensional then  is a basis for , called the  ofdual basis

.

Proof. For part 2), for any , we have

and so  is in the span of . Hence,  is a basis for . *

Corollary 3.13 If  then . dim dim dim

The next example shows that Corollary 3.13 does not hold without the finiteness

condition.

Example 3.3 Let  be an infinite-dimensional vector space over the field

, with basis . Since the only coefficients in  are  and , a

finite linear combination over  is just a finite sum. Hence,  is the set of all

finite sums of vectors in  and so according to Theorem 0.11,

On the other hand, each linear functional  is uniquely defined by

specifying its values on the basis . Since these values must be either  or ,

specifying a linear functional is equivalent to specifying the subset of  on

which  takes the value . In other words, there is a one-to-one correspondence

between linear functionals on  and all subsets of . Hence,

This shows that  cannot be isomorphic to , nor to any proper subset of .

Hence, . dim dim

Reflexivity

If  is a vector space then so is the dual space . Hence, we may form the

double (algebraic) dual space , which consists of all linear functionals

. In other words, an element  of  is a linear map that assigns a**

scalar to each linear functional on .
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With this firmly in mind, there is one rather obvious way to obtain an element of

. Namely, if , consider the map  defined by

which sends the linear functional  to the scalar . The map  is called

evaluation at . To see that , if  and  then

and so  is indeed linear.

We can now define a map  by

This is called the  (or the ) from  to . Thiscanonical map natural map

map is injective and hence in the finite-dimensional case, it is also surjective.

Theorem 3.14  The canonical map  defined by , where  is

evaluation at , is a monomorphism. If  is finite-dimensional then  is an

isomorphism.

Proof. The map  is linear since

for all . To determine the kernel of , observe that

 for all 

 for all 

by Theorem 3.11 and so .ker

In the finite-dimensional case, since , it followsdim dim dim

that  is also surjective, hence an isomorphism. 

Note that if  then since the dimensions of  and  are the same,dim

we deduce immediately that . This is not the point of Theorem 3.14.

The point is that the   is an isomorphism. Because of this, natural map

is said to be . Thus, Theorem 3.14 implies that all finite-algebraically reflexive

dimensional vector spaces are algebraically reflexive.

If  is finite-dimensional, it is customary to identify the double dual space 

with  and to think of the elements of  simply as vectors in . Let us

consider an example of a vector space that is not algebraically reflexive.
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Example 3.4 Let  be the vector space over  with basis

where the  is in the th position. Thus,  is the set of all infinite binary

sequences with a finite number of 's. Define the   of any  to beorder

the largest coordinate of  with value . Then  for all .

Consider the dual vectors , defined (as usual) by

For any , the evaluation functional  has the property that

 if 

However, since the dual vectors  are linearly independent, there is a linear

functional  for which

for all . Hence,  does not have the form  for any . This shows that

the canonical map is not surjective and so  is not algebraically reflexive. 

Annihilators

The functions  are defined on vectors in , but we may also define  on

subsets  of  by letting

Definition Let  be a nonempty subset of a vector space . The annihilator

 of  is

The term annihilator is quite descriptive, since  consists of all linear

functionals that  (send to ) every vector in . It is not hard to seeannihilate

that  is a subspace of , even when  is not a subspace of .

The basic properties of annihilators are contained in the following theorem,

whose proof is left to the reader.

Theorem 3.15

1)  For any subsets  and  of ,( )Order-reversing
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2) If  then we havedim

span

under the natural map. In particular, if  is a subspace of  then .

3) If  and  and  are subspaces of  thendim

 and 

Consider a direct sum decomposition

Then any linear functional  can be extended to a linear functional  on 

by setting . Let us call this  . Clearly,  and it isextension by

easy to see that the extension by  map  is an isomorphism from  to

, whose inverse is restriction to .

Theorem 3.16  Let .

a) The extension by  map is an isomorphism from  to  and so

b) If  is finite-dimensional then

dim dim dimcodim

Example 3.5 Part b) of Theorem 3.16 may fail in the infinite-dimensional case,

since it may easily happen that . As an example, let  be the vector

space over  with a countably infinite ordered basis . Let

 and . It is easy to see that  and that

dim dim .

The annihilator provides a way to describe the dual space of a direct sum.

Theorem 3.17  A linear functional on the direct sum  can be written

as a direct sum of a linear functional that annihilates  and a linear functional

that annihilates , that is,

Proof.  Clearly , since any functional that annihilates both  and

 must annihilate . Hence, the sum  is direct. If 

then we can write

and so . 
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Operator Adjoints

If  then we may define a map  by*

for . (We will write composition as juxtaposition.) Thus, for any *

The map  is called the  of  and can be described by theoperator adjoint

phrase “apply  first.”

Theorem 3.18 (Properties of the Operator Adjoint)

1) For  and 

2) For  and 

3) For any invertible 

Proof. Proof of part 1) is left for the reader. For part 2), we have for all 

Part 3) follows from part 2) and

and in the same way, . Hence . 

If  then ( ) and so . Of course,

 is not equal to . However, in the finite-dimensional case, if we use the

natural maps to identify  with  and  with  then we can think of 

as being in . Using these identifications, we do have equality in the

finite-dimensional case.

Theorem 3.19  Let  and  be finite-dimensional and let . If we

identify  with  and  with  using the natural maps then  is

identified with .

Proof. For any  let the corresponding element of  be denoted by  and

similarly for . Then before making any identifications, we have for 

for all  and so*
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Therefore, using the canonical identifications for both  and  we have

for all . 

The next result describes the kernel and image of the operator adjoint.

Theorem 3.20  Let . Then

1) ker im

2) im ker

Proof. For part 1),

ker

im

im

For part 2), if  then  and soim ker ker

ker .

For the reverse inclusion, let . On , there is noker ker

problem since  and  agree on  for any . Let  be a

complement of . Then  maps a basis  for  to a linearlyker

independent set

in  and so we can define  any way we want on . In particular, let

 be defined by setting

and extending in any manner to all of . Then  on  and

therefore on . Thus, . im

Corollary 3.21 Let , where  and  are finite-dimensional.

Then . rk rk

In the finite-dimensional case,  and  can both be represented by matrices.

Let

 and 

be ordered bases for  and , respectively and let
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 and 

be the corresponding dual bases. Then

and

Comparing the last two expressions we see that they are the same except that the

roles of  and  are reversed. Hence, the matrices in question are transposes.

Theorem 3.22  Let , where  and  are finite-dimensional. If 

and  are ordered bases for  and , respectively and  and  are the

corresponding dual bases then

In words, the matrices of  and its operator adjoint  are transposes of one

another.

Exercises

1. If  is infinite-dimensional and  is an infinite-dimensional subspace, must

the dimension of  be finite? Explain.

2. Prove the correspondence theorem.

3. Prove the first isomorphism theorem.

4. Complete the proof of Theorem 3.10.

5. Let  be a subspace of . Starting with a basis  for  how

would you find a basis for ?

6. Use the first isomorphism theorem to prove the rank-plus-nullity theorem

rk null dim

for .

7. Let  and suppose that  is a subspace of . Define a map

 by

When is  well-defined? If  is well-defined, is it a linear transformation?

What are  and ?im ker

8. Show that for any nonzero vector , there exists a linear functional

 for which .

9. Show that a vector  is zero if and only if  for all .

10. Let  be a proper subspace of a finite-dimensional vector space  and let

. Show that there is a linear functional  for which

 and  for all .
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11. Find a vector space  and decompositions

with  but . Hence,  does  imply that .not

12. Find isomorphic vectors spaces  and  with

 and 

but . Hence,  does  imply that .not

13. Let  be a vector space with

Prove that if  and  have finite codimension in  then so does 

and

codim dim dim

14. Let  be a vector space with

Suppose that  and  have finite codimension. Hence, by the previous

exercise, so does . Find a direct sum decomposition 

for which (1)  has finite codimension, (2)  and (3)

.

15. Let  be a basis for an infinite-dimensional vector space  and define, for

all , the map  by  if  and  otherwise. Does

 form a basis for ? What do you conclude about the concept

of a dual basis?

16. Prove that .

17. Prove that  and  where  is the zero linear operator and  is

the identity.

18. Let  be a subspace of . Prove that .

19. Verify that

 a)  for .

 b)  for any  and 

20. Let , where  and  are finite-dimensional. Prove that

rk rk .

21. Prove that if  has the property that

im ker  and im

then  is projection on  along .im ker

22. a) Let  be projection onto a subspace  of  along a subspace

 of . Show that  is , that is .idempotent

 b) Prove that if  is idempotent then it is a projection.

 c) Is the adjoint of a projection also a projection?



Chapter 4

Modules I: Basic Properties

Motivation

Let  be a vector space over a field  and let . Then for any

polynomial , the operator  is well-defined. For instance, if

 then

where  is the identity operator and  is the threefold composition .

Thus, using the operator  we can define the product of a polynomial

 and a vector  by

(4.1)

This product satisfies the usual properties of scalar multiplication, namely, for

all   and ,

Thus, for a fixed , we can think of  as being endowed with the

operations of (the usual) addition along with multiplication of an element of 

by a  in . However, since  is not a field, these twopolynomial

operations do not make  into a vector space. Nevertheless, the situation in

which the scalars form a ring but not a field is extremely important, not only in

our context but in many others.

Modules

Definition Let  be a commutative ring with identity, whose elements are

called . An  (or a ) is a nonempty set ,scalars -module module over 
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together with two operations. The first operation, called  and denotedaddition

by , assigns to each pair , an element . The

second operation, denoted by juxtaposition, assigns to each pair

, an element . Furthermore, the following properties

must hold:

1)  is an abelian group under addition.

2) For all  and 

The ring  is called the  of . base ring

Note that vector spaces are just special types of modules: a vector space is a

module over a field.

When we turn in a later chapter to the study of the structure of a linear

transformation , we will think of  as having the structure of a vector

space over  as well as a module over . Put another way,  is an abelian

group under addition, with two scalar multiplications—one whose scalars are

elements of  and one whose scalars are polynomials over . This viewpoint

will be of tremendous benefit for the study of . For now, we concentrate only

on modules.

Example 4.1

1) If  is a ring, the set  of all ordered -tuples, whose components lie in

, is an -module, with addition and scalar multiplication defined

componentwise (just as in ),

and

for ,  . For example,  is the -module of all ordered -tuples

of integers.

2) If  is a ring, the set  of all matrices of size , is an -

module, under the usual operations of matrix addition and scalar

multiplication over . Since  is a ring, we can also take the product of

matrices in . One important example is , whence

 is the -module of all  matrices whose entries are

polynomials.

3) Any commutative ring  with identity is a module over itself, that is,  is

an -module. In this case, scalar multiplication is just multiplication by
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elements of , that is, scalar multiplication is the ring multiplication. The

defining properties of a ring imply that the defining properties of an -

module are satisfied. We shall use this example many times in the sequel.

Importance of the Base Ring

Our definition of a module requires that the ring  of scalars be commutative.

Modules over noncommutative rings can exhibit quite a bit more unusual

behavior than modules over commutative rings. Indeed, as one would expect,

the general behavior of -modules improves as we impose more structure on

the base ring . If we impose the very strict structure of a field, the result is the

very well-behaved vector space structure.

To illustrate, if we allow the base ring  to be noncommutative then, as we will

see, it is possible for an -module to have bases of different sizes! Since

modules over noncommutative rings will not be needed for the sequel, we

require commutativity in the definition of module.

As another example, if the base ring is an integral domain then whenever

 are linearly independent over  so are  for any nonzero

. This fails when  is not an integral domain.

We will also consider the property on the base ring  that all of its ideals are

finitely generated. In this case, any finitely generated -module  has the

desirable property that all of its submodules are also finitely generated. This

property of -modules fails if  does not have the stated property.

When  is a principal ideal domain (such as  or ), not only are all of its

ideals finitely generated, but each is generated by a single element. In this case,

the -modules are “reasonably” well behaved. For instance, in general a module

may have a basis but one or more of its submodules may not. However, if  is a

principal ideal domain, this cannot happen.

Nevertheless, even when  is a principal ideal domain, -modules are less well

behaved than vector spaces. For example, there are modules over a principal

ideal domain that do not have any linearly independent elements. Of course,

such modules cannot have a basis.

Many of the basic concepts that we defined for vector spaces can also be

defined for modules, although their properties are often quite different. We

begin with submodules.

Submodules

The definition of submodule parallels that of subspace.
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Definition A  of an -module  is a nonempty subset  of  thatsubmodule

is an -module in its own right, under the operations obtained by restricting the

operations of  to . 

Theorem 4.1  A nonempty subset  of an -module  is a submodule if and

only if it is closed under the taking of linear combinations, that is,

Theorem 4.2  If  and  are submodules of  then  and  are also

submodules of . 

We have remarked that a commutative ring  with identity is a module over

itself. As we will see, this type of module provides some good examples of non-

vector space like behavior.

When we think of a ring  as an -module rather than as a ring, multiplication

is treated as  multiplication. This has some important implications. Inscalar

particular, if  is a submodule of  then it is closed under scalar multiplication,

which means that it is closed under multiplication by  elements of the ring .all

In other words,  is an ideal of the ring . Conversely, if  is an ideal of the

ring  then  is also a submodule of the module . Hence, the submodules of

the -module  are precisely the ideals of the ring .

Spanning Sets

The concept of spanning set carries over to modules as well.

Definition The  (or ) by a subset  of a modulesubmodule spanned generated

 is the set of all  of elements of :linear combinations

span

A subset  is said to   or   ifspan generate

span

One very important point to note is that if a nontrivial linear combination of the

elements  in an -module  is ,

where not all of the coefficients are  then we  conclude, as we could in acannot

vector space, that one of the elements  is a linear combination of the others.

After all, this involves dividing by one of the coefficients, which may not be

possible in a ring. For instance, for the -module  we have

but neither  nor  is an integer multiple of the other.
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The following simple submodules play a special role in the theory.

Definition Let  be an -module. A submodule of the form

for  is called the  generated by . cyclic submodule

Of course, any finite-dimensional vector space is the direct sum of cyclic

submodules, that is, one-dimensional subspaces. One of our main goals is to

show that a finitely generated module over a principal ideal domain has this

property as well.

For reasons that will become clear soon, we need the following definition.

Definition An -module  is said to be  if it contains afinitely generated

finite set that generates . 

Of course, a vector space is finitely generated if and only if it has a finite basis,

that is, if and only if it is finite-dimensional. For modules, life is more

complicated. The following is an example of a finitely generated module that

has a submodule that is not finitely generated.

Example 4.2 Let  be the ring  of all polynomials in infinitely

many variables over a field . It will be convenient to use  to denote

 and write a polynomial in  in the form . (Each polynomial in

, being a finite sum, involves only finitely many variables, however.) Then 

is an -module and as such, is finitely generated by the identity element

.

Now, consider the submodule  of all polynomials with zero constant term.

This module is generated by the variables themselves,

However,  is not finitely generated. To see this, suppose that 

is a finite generating set for . Choose a variable  that does not appear in any

of the polynomials in . Then no linear combination of the polynomials in 

can be equal to . For if
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then let  where  does not involve . This gives

The last sum does not involve  and so it must equal . Hence, the first sum

must equal , which is not possible since  has no constant term. 

Linear Independence

The concept of linear independence also carries over to modules.

Definition A subset  of a module  is  if for anylinearly independent

 and , we have

 for all 

A set  that is not linearly independent is . linearly dependent

It is clear from the definition that any subset of a linearly independent set is

linearly independent.

Recall that, in a vector space, a set  of vectors is linearly dependent if and only

if some vector in  is a linear combination of the other vectors in . For

arbitrary modules, this is not true.

Example 4.3 Consider  as a -module. The elements  are linearly

dependent, since

but neither one is a linear combination (i.e., integer multiple) of the other. 

The problem in the previous example (as noted earlier) is that

implies that

but, in general, we cannot divide both sides by , since it may not have a

multiplicative inverse in the ring .
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Torsion Elements

In a vector space  over a field , singleton sets  where  are linearly

independent. Put another way,  and  imply . However, in a

module, this need not be the case.

Example 4.4 The abelian group  is a -module, with

scalar multiplication defined by , for all  and .mod

However, since  for all , no singleton set  is linearly

independent. Indeed,  has no linearly independent sets. 

This example motivates the following definition.

Definition Let  be an -module. A nonzero element  for which 

for some nonzero  is called a  of . A module that has notorsion element

nonzero torsion elements is said to be . If all elements of  aretorsion-free

torsion elements then  is a . The set of all torsion elements oftorsion module

, together with the zero element, is denoted by . tor

If  is a module over an , it is not hard to see that  is aintegral domain tor

submodule of  and that  is torsion-free. (We will define quotienttor

modules shortly: they are defined in the same way as for vector spaces.)

Annihilators

Closely associated with the notion of a torsion element is that of an annihilator.

Definition Let  be an -module. The  of an element  isannihilator

ann

and the  of a submodule  of  isannihilator

ann

where . Annihilators are also called . order ideals

It is easy to see that  and  are ideals of . Clearly,  is aann ann

torsion element if and only if .ann

Let  be a finitely generated  over an integraltorsion module

domain . Then for each  there is a nonzero . Hence, the nonzeroann

product  annihilates each generator of  and therefore every

element of , that is, . This shows that .ann ann

Free Modules

The definition of a basis for a module parallels that of a basis for a vector space.



100 Advanced Linear Algebra

Definition Let  be an -module. A subset  of  is a  if  is linearlybasis

independent and spans . An -module  is said to be  if  or iffree

 has a basis. If  is a basis for , we say that  is  . free on

Theorem 4.3  A subset  of a module  is a basis if and only if for every

, there are  elements  and  scalarsunique unique

 for which

In a vector space, a set of vectors is a basis if and only if it is a minimal

spanning set, or equivalently, a maximal linearly independent set. For modules,

the following is the best we can do in general. We leave proof to the reader.

Theorem 4.4  Let  be a basis for an -module . Then

1)  is a minimal spanning set.

2)  is a maximal linearly independent set. 

The -module  has no basis since it has no linearly independent sets. But

since the entire module is a spanning set, we deduce that a minimal spanning set

need not be a basis. In the exercises, the reader is asked to give an example of a

module  that has a finite basis, but with the property that not every spanning

set in  contains a basis and not every linearly independent set in  is

contained in a basis. It follows in this case that a maximal linearly independent

set need not be a basis.

The next example shows that even free modules are not very much like vector

spaces. It is an example of a free module that has a submodule that is not free.

Example 4.5 The set  is a free module over itself, using componentwise

scalar multiplication

with basis . But the submodule  is not free since it has no

linearly independent elements and hence no basis. 

Homomorphisms

The term  is special to vector spaces. However, thelinear transformation

concept applies to most algebraic structures.

Definition Let  and  be -modules. A function  is an -

homomorphism if it preserves the module operations, that is,

for all  and . The set of all -homomorphisms from  to  is

denoted by . The following terms are also employed:hom



Modules I: Basic Properties 101

1) An -  is an -homomorphism from  to itself.endomorphism

2) A -  or -  is an injective -homomorphism.monomorphism embedding

3) An -  is a surjective -homomorphism.epimorphism

4) An -  is a bijective -homomorphism. isomorphism

It is easy to see that  is itself an -module under addition ofhom

functions and scalar multiplication defined by

Theorem 4.5  Let . The kernel and image of , defined as forhom

linear transformations by

ker

and

im

are submodules of  and , respectively. Moreover,  is a monomorphism if

and only if . ker

If  is a submodule of the -module  then the map  defined by

 is evidently an -monomorphism, called  of  into .injection

Quotient Modules

The procedure for defining quotient modules is the same as that for defining

quotient vector spaces. We summarize in the following theorem.

Theorem 4.6 Let  be a submodule of an -module . The binary relation

is an equivalence relation on , whose equivalence classes are the cosets

of  in . The set  of all cosets of  in , called the  ofquotient module

  , is an -module under the well-defined operationsmodulo

The zero element in  is the coset . 

One question that immediately comes to mind is whether a quotient space of a

free module need be free. As the next example shows, the answer is no.

Example 4.6 As a module over itself,  is free on the set . For any ,

the set  is a free cyclic submodule of , but the quotient -



102 Advanced Linear Algebra

module  is isomorphic to  via the map

mod

and since  is not free as a -module, neither is . 

The Correspondence and Isomorphism Theorems

The correspondence and isomorphism theorems for vector spaces have analogs

for modules.

Theorem 4.7 The correspondence theorem( ) Let  be a submodule of .

Then the function that assigns to each intermediate submodule  the

quotient submodule  of  is an order-preserving (with respect to set

inclusion) one-to-one correspondence between submodules of  containing 

and all submodules of . 

Theorem 4.8 ( ) Let  be an -The first isomorphism theorem

homomorphism. Then the map  defined byker

ker

is an -embedding and so

ker
im

Theorem 4.9 ( ) Let  be an -module andThe second isomorphism theorem

let  and  be submodules of . Then

Theorem 4.10 ( ) Let  be an -module andThe third isomorphism theorem

suppose that  are submodules of . Then

Direct Sums and Direct Summands

The definition of direct sum is the same for modules as for vector spaces. We

will confine our attention to the direct sum of a finite number of modules.

Definition An -module  is the  of the submodules ,direct sum

written

if every  can be written, in a  (except for order), as a sum ofunique way
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one element from each of the submodules , that is, there are unique 

for which

In this case, each  is called a  of . If  then  isdirect summand

said to be  and  is called a  of  in . complemented complement

Note that a sum is direct if and only if whenever  where

 then  for all , that is, if and only if  has a unique representation

as a sum of vectors from distinct submodules.

As with vector spaces, we have the following useful characterization of direct

sums.

Theorem 4.11  A module  is the direct sum of submodules  if and

only if

1) 

2) For each 

In the case of vector spaces, every subspace is a direct summand, that is, every

subspace has a complement. However, as the next example shows, this is not

true for modules.

Example 4.7 The set  of integers is a -module. Since the submodules of 

are precisely the ideals of the ring  and since  is a principal ideal domain, the

submodules of  are the sets

Hence, any two nonzero proper submodules of  have nonzero intersection, for

if  then

where . It follows that the only complemented submodules of lcm

are  and . 

In the case of vector spaces, there is an intimate connection between subspaces

and quotient spaces, as we saw in Theorem 3.6. The problem we face in

generalizing this to modules in general is that not all submodules have a

complement. However, this is the only problem.

Theorem 4.12 Let  be a complemented submodule of . All complements of

 are isomorphic to  and hence to each other.
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Proof. For any complement  of , the first isomorphism theorem applied to

the projection  onto  along  gives . 

Direct Summands and One-Sided Invertibility

The next theorem characterizes direct summands, but first a definition.

Definition A submodule  of an -module  is a  of   an -retract by

homomorphism  if  fixes each element of , that is,  for all

.

Note that the homomorphism  in the definition of a retract is similar to a

projection map onto , in that both types of maps are the identity when

restricted to . In fact, if  is complemented and  is a complement of  then 

is a retract of  by the projection onto  along . Indeed, more can be said.

Theorem 4.13 A submodule  of the -module  is complemented if and only

if it is a retract of . In this case, if  is a retract of  by  then  is

projection onto  along  and soker

ker kerim

Proof. If  then  is a retract of  by the projection map

. Conversely, if  is an -homomorphism that fixes  then

clearly  is surjective and . Also,im

ker

and for any  we have

ker

Hence, . ker

Definition Let  be a module homomorphism. Then a  of left inverse

is a module homomorphism  for which . A  ofright inverse

 is a module homomorphism  for which . 

It is easy to see that in order for  to have a left inverse , it must be injective

since

and in order for  to have a right inverse , it must be surjective, since if 

then .im

Now, if we were dealing with functions between sets, then the converses of

these statements would hold:  is left-invertible if and only if it is injective and
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 is right-invertible if and only if it is surjective. However, for modules things

are more complicated.

Theorem 4.14

1) An -homomorphism  has a left inverse  if and only if it is

injective and  is a direct summand of , in which caseim

im imker ker

2) An -homomorphism  has a right inverse  if and only if it is

surjective and   is a direct summand of , in which caseker

ker kerim im

Proof. For part 1), suppose first that . Then  is injective since

applying  to the expression  gives . Also,

im ker  implies that  and

and so . Hence, the direct sum   exists. For any , weim ker

can write

where  and  and so .im imker ker

Conversely, if  is injective and  for some submodule  thenim

let

im

where  is projection onto . This is well-defined since im im im

is an isomorphism. Then

im

and so  is a left-inverse of . It is clear that  and sinceker

im im im im is injective, .

For part 2), if  has a right inverse  then  has a left inverse  and so 

must be injective and

im imker ker

Conversely, suppose that . Since the elements of differentker

cosets of  are mapped to different elements of , it is natural to defineker

 by taking  to be a particular element in the coset ker

that is sent to  by . However, in general we cannot pick just any element of
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the coset and expect to get a module morphism. (We get a right inverse but only

as a set function.)

However, the condition  is precisely what we need, because itker

says that the elements of the   form a set of distinct cosetsubmodule

representatives; that is, each  belongs to exactly one coset and each coset

contains exactly one element of .

In addition, if  and  for  then

Thus, we can define  as follows. For any  there is a unique  for

which . Let . Then we have

and so . Also,

and so  is a module morphism. Thus  is right-invertible. 

The last part of the previous theorem is worth further comment. Recall that if

 is a linear transformation on vector spaces then

ker im

This does not hold in general for modules, but it does hold if  is a directker

summand.

Modules Are Not As Nice As Vector Spaces

Here is a list of some of the properties of modules (over commutative rings with

identity) that emphasize the differences between modules and vector spaces.

1) A submodule of a module need not have a complement.

2) A submodule of a finitely generated module need not be finitely generated.

3) There exist modules with no linearly independent elements and hence with

no basis.

4) A minimal spanning set or maximal linearly independent set is not

necessarily a basis.

5) There exist free modules with submodules that are not free.

6) There exist free modules with linearly independent sets that are not

contained in a basis and spanning sets that do not contain a basis.

Recall also that a module over a  ring may have bases ofnoncommutative

different sizes. However, all bases for a free module over a commutative ring

with identity have the same size, as we will prove in the next chapter.
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Exercises

1. Give the details to show that any commutative ring with identity is a

module over itself.

2. Let  be a subset of a module . Prove that  is the

smallest submodule of  containing . First you will need to formulate

precisely what it means to be the smallest submodule of  containing .

3. Let  be an -module and let  be an ideal in . Let  be the set of all

finite sums of the form

where  and . Is  a submodule of ?

4. Show that if  and  are submodules of  then (with respect to set

inclusion)

glb lub and 

5. Let  be an ascending sequence of submodules of an -

module . Prove that the union  is a submodule of .

6. Give an example of a module  that has a finite basis but with the property

that not every spanning set in  contains a basis and not every linearly

independent set in  is contained in a basis.

7. Show that, just as in the case of vector spaces, an -homomorphism can be

defined by assigning arbitrary values on the elements of a basis and

extending by linearity.

8. Let  be an -isomorphism. If  is a basis for , provehom

that  is a basis for .

9. Let  be an -module and let  be an -endomorphism.hom

If  is , that is, if  show thatidempotent

ker im

Does the converse hold?

10. Consider the ring  of polynomials in two variables. Show that

the set  consisting of all polynomials in  that have zero constant term is

an -module. Show that  is not a free -module.

11. Prove that  is an integral domain if and only if all -modules  have the

following property: If  is linearly independent over  then so is

 for any nonzero .

12. Prove that if a commutative ring  with identity has the property that every

finitely generated -module is free then  is a field.

13. Let  and  be -modules. If  is a submodule of  and  is a

submodule of  show that
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14. If  is a commutative ring with identity and  is an ideal of  then  is an

-module. What is the maximum size of a linearly independent set in ?

Under what conditions is  free?

15. a)  the set  of allShow that for any module  over an integral domain tor

torsion elements in a module  is a submodule of .

 b) Find an example of a ring  with the property that for some -module

 the set  is not a submodule.tor

 c) Show that for any module  over an integral domain, the quotient

module  is torsion-free.tor

16. Fix a prime  and let

Show that  is a -module and that the set  is a

minimal spanning set for . Is the set  linearly independent?

17. Let  be an abelian group together with a scalar multiplication over a ring

 that satisfies all of the properties of an -module except that  does not

necessarily equal  for all . Show that  can be written as a direct

sum of an -module  and another “pseudo -module” .

18. Prove that  is an -module under addition of functions andhom

scalar multiplication defined by

19. Prove that any -module  is isomorphic to the -module .hom

20. Let  and  be commutative rings with identity and let  be a ring

homomorphism. Show that any -module is also an -module under the

scalar multiplication

21. Prove that  where .hom gcd

22. Suppose that  is a commutative ring with identity. If  and  are ideals of

 for which  as -modules then prove that . Is the

result true if  as rings?



Chapter 5

Modules II: Free and Noetherian Modules

The Rank of a Free Module

Since all bases for a vector space  have the same cardinality, the concept of

vector space dimension is well-defined. A similar statement holds for free -

modules when the base ring is commutative (but not otherwise).

Theorem 5.1 Let  be a free module over a commutative ring  with identity.

1) Then any two bases of  have the same cardinality.

2) The cardinality of a spanning set is greater than or equal to that of a basis.

Proof. The plan is to find a vector space  with the property that, for any basis

for , there is a basis of the same cardinality for . Then we can appeal to the

corresponding result for vector spaces.

Let  be a maximal ideal of , which exists by Theorem 0.22. Then  is a

field. Our first thought might be that  is a vector space over  but that is

not the case. In fact, scalar multiplication using the field 

is not even well-defined, since this would require that . On the other

hand, we can fix precisely this problem by factoring out the submodule

Indeed,  is a vector space over , with scalar multiplication defined

by

To see that this is well-defined, we must show that the conditions

imply
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But this follows from the fact that

Hence, scalar multiplication is well-defined. We leave it to the reader to show

that  is a vector space over .

Consider now a set  and the corresponding set

If  spans  over  then  spans  over . To see this, note

that any  has the form   for  and so

which shows that  spans .

Now suppose that  is a basis for  over . We claim that

 is a basis for  over . We have seen that  spans

. Also, if

then  and so

where . From the linear independence of  we deduce that  for all 

and so . Hence  is linearly independent and therefore a

basis, as desired.

To see that , note that if  then

where . If  then , which is not possible since  is a

maximal ideal. Hence, .

Thus, if  is a basis for  over  then

dim
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and so all bases for  over  have the same cardinality, which proves part 1).

Moreover, if  spans  over  then  spans  and so

dim

Thus,  has cardinality at least as great as that of any basis for  over . 

The previous theorem allows us to define the  of a free module. (The termrank

dimension is not used for modules in general.)

Definition Let  be a commutative ring with identity. The   of arank rk

nonzero free -module  is the cardinality of any basis for . The rank of the

trivial module  is . 

Theorem 5.1 fails if the underlying ring of scalars is not commutative. The next

example describes a module over a noncommutative ring that has the

remarkable property of possessing a basis of size  for any positive integer .

Example 5.1 Let  be a vector space over  with a countably infinite basis

. Let  be the ring of linear operators on . Observe that

 is not commutative, since composition of functions is not commutative.

The ring  is an -module and as such, the identity map  forms a basis

for . However, we can also construct a basis for  of any desired finite

size . To understand the idea, consider the case  and define the operators

 and  by

and

These operators are linearly independent essentially because they are surjective

and their supports are disjoint. In particular, if

then

and

which shows that  and . Moreover, if  then we define 

and  by
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from which it follows easily that

which shows that  is a basis for .

More generally, we begin by partitioning  into  blocks. For each

, let

mod

Now we define elements  by

where  and where  is the Kronecker delta function. These functions

are surjective and have disjoint support. It follows that  is0

linearly independent. For if  and

then, applying this to  gives

for all . Hence, .

Also,  spans , for if , we define  by

+

to get

+ + +

and so

Thus,  is a basis for  of size . 0

We have spoken about the cardinality of minimal spanning sets. Let us now

speak about the cardinality of maximal linearly independent sets.

Theorem 5.2 Let  be an integral domain and let  be a free -module of

finite rank . Then all linearly independent sets have size at most .rk
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Proof. Since  if we prove the result for  it will hold for . Let 

be the field of quotients of . Then  is a subset of the vector space 

and

1)  is a subgroup of  under addition

2) scalar multiplication by elements of  is defined and  is an -module,

3) scalar multiplication by elements of  is defined but  is not closed

under this scalar multiplication.

Now, if  is linearly dependent over  then  is clearly

linearly dependent over . Conversely, suppose that  is linearly independent

over  and

where  for all  and  for some . Multiplying by 

produces a nontrivial linear dependency over 

which implies that  for all . Thus  is linearly dependent over  if and

only if it is linearly dependent over . Of course, in the vector space  all

sets of size  or larger are linearly dependent over  and hence all subsets

of  of size  or larger are linearly dependent over . 

Recall that if  is a basis for a vector space  over  then  is isomorphic to

the vector space  of all functions from  to  that have finite support. A

similar result holds for free -modules. We begin with the fact that  is a

free -module. The simple proof is left to the reader.

Theorem 5.3  Let  be any set and let  be a ring. The set  of all

functions from  to  that have finite support is a free -module of rank 

with basis  where

if

if

This basis is referred to as the  for . standard basis

Theorem 5.4  Let  be an -module. If  is a basis for  then  is

isomorphic to .

Proof. Consider the map  defined by setting

where  is defined in Theorem 5.3 and extending this to all of  by linearity,
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that is,

Since  maps a basis for  to a basis  for , it follows that  is

an isomorphism from  to . 

Theorem 5.5  Two free -modules (over a commutative ring) are isomorphic if

and only if they have the same rank.

Proof. If  then any isomorphism  from  to  maps a basis for  to

a basis for . Since  is a bijection, we have . Conversely,rk rk

suppose that . Let  be a basis for  and let  be a basis for .rk rk

Since , there is a bijective map . This map can be extended by

linearity to an isomorphism of  onto  and so . 

Free Modules and Epimorphisms

Homomorphic images that are free have some behavior reminiscent of vector

spaces.

Theorem 5.6

1) If  is a surjective -homomorphism and  is free then  isker

complemented and

ker ker

where .

2) If  is a submodule of  and if  is free then  is complemented and  

If in addition,  and  are free then

rk rk rk

and if the ranks are all finite then

rk rk rk

Proof. For part 1), we prove that  is right-invertible. Let  be a

basis for . Define  by setting  equal to any member of the

nonempty set  and extending  to an -homomorphism. Then  is a

right inverse of  and so Theorem 4.14 implies that  is a direct summandker

of  and . Part 2) follows from part 1), where  isker

projection onto . 
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Noetherian Modules

One of the most desirable properties of a finitely generated -module  is that

all of its submodules be finitely generated. Example 4.2 shows that this is not

always the case and leads us to search for conditions on the ring  that will

guarantee that all submodules of a finitely generated module are themselves

finitely generated.

Definition An -module  is said to satisfy the  onascending chain condition

submodules if any ascending sequence of submodules(abbreviated a.c.c.) 

of  is eventually constant, that is, there exists an index  for which

k

Modules with the ascending chain condition on submodules are also called

noetherian modules  (after Emmy Noether, one of the pioneers of module

theory). 

Theorem 5.7 An -module  is noetherian if and only if every submodule of

 is finitely generated.

Proof. Suppose that all submodules of  are finitely generated and that 

contains an infinite ascending sequence

3 (5.1)

of submodules. Then the union

is easily seen to be a submodule of . Hence,  is finitely generated, say

. Since , there exists an index  such that .

Therefore, if , we havemax

and so

which shows that the chain (5.1) is eventually constant.

For the converse, suppose that  satisfies the a.c.c on submodules and let  be

a submodule of . Pick  and consider the submodule 

generated by . If  then  is finitely generated. If  then there is a

. Now let , . If  then  is finitely generated. If

 then pick  and consider the submodule , , .3 3 3
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Continuing in this way, we get an ascending chain of submodules

If none of these submodules is equal to , we would have an infinite ascending

chain of submodules, each properly contained in the next, which contradicts the

fact that  satisfies the a.c.c. on submodules. Hence, , for

some  and so  is finitely generated. 

Since a ring  is a module over itself and since the submodules of the module 

are precisely the ideals of the ring , the preceding discussion may be

formulated for rings as follows.

Definition A ring  is said to satisfy the  on ideals ifascending chain condition

any ascending sequence

of ideals of  is eventually constant, that is, there exists an index  for which

2

A ring that satisfies the ascending chain condition on ideals is called a

noetherian ring.

Theorem 5.8 A ring  is noetherian if and only if every ideal of  is finitely

generated.

Note that a ring  is noetherian  if and only if it is noetherian as a ring as a

module over itself. More generally, a ring  is noetherian if and only if every

finitely generated -module is noetherian.

Theorem 5.9 Let  be a commutative ring with identity.

1)  is noetherian if and only if every finitely generated -module is

noetherian.

2) If, in addition,  is a principal ideal domain then if  is generated by 

elements any submodule of  is generated by at most  elements.

Proof.  For part 1), one direction is evident. Assume that  is noetherian and let

 be a finitely generated -module. Consider the epimorphism

 defined by

Let  be a submodule of . Then

is a submodule of  and . If every submodule of  is finitely

generated, then  is finitely generated and so . Then
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 is finitely generated by . Hence, it is sufficient to show that

every submodule  of  is finitely generated. We proceed by induction on .

If , then  is an ideal of  and is thus finitely generated by assumption.

Assume that every submodule of  is finitely generated for all  and

let  be a submodule of .

If , we can extract from  something that is isomorphic to an ideal of 

and so will be finitely generated. In particular, let  be the “last coordinates” in

, specifically, let

 for some 

The set  is isomorphic to an ideal of  and is therefore finitely generated, say

, where  is a finite subset of .

Also, let

 for some 

be the set of all elements of  that have last coordinate equal to . Note that 

is a nonempty submodule of  and is isomorphic to a submodule of .

Hence, the inductive hypothesis implies that  is finitely generated, say

, where  is a finite subset of .

By definition of , each  has the form

for  where there is a  of the form

Let . We claim that  is generated by the finite set .

To see this, let . Then  and so

for . Consider now the sum

The last coordinate of this sum is
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and so the difference  has last coordinate  and is thus in .

Hence

as desired.

For part 2), we leave it to the reader to review the proof and make the necessary

changes. The key fact is that  is isomorphic to an ideal of , which is

principal. Hence,  is generated by a single element of . 

The Hilbert Basis Theorem

Theorem 5.9 naturally leads us to ask which familiar rings are noetherian. The

following famous theorem describes one very important case.

Theorem 5.10 Hilbert basis theorem( ) If a ring  is noetherian then so is the

polynomial ring .

Proof. We wish to show that any ideal  in  is finitely generated. Let 

denote the set of all leading coefficients of polynomials in , together with the 

element of . Then  is an ideal of .

To see this, observe that if  is the leading coefficient of  and if

 then either  or else  is the leading coefficient of . In

either case, . Similarly, suppose that  is the leading coefficient of

. We may assume that  and , with . Thendeg deg

 is in , has leading coefficient  and has the same degree as

. Hence,  is either  or it is the leading coefficient of

. In either case .

Since  is an ideal of the noetherian ring , it must be finitely generated, say

. Since , there exist polynomials  with leading

coefficient . By multiplying each  by a suitable power of , we may

assume that

deg max deg

for all .

Now for  let  be the set of all leading coefficients of

polynomials in  of degree , together with the  element of . A similar

argument shows that  is an ideal of  and so  is also finitely generated.

Hence, we can find polynomials  in  whose

leading coefficients constitute a generating set for .
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Consider now the finite set

If  is the ideal generated by  then . An induction argument can be

used to show that . If  has degree  then it is a linear

combination of the elements of  (which are constants) and is thus in .

Assume that any polynomial in  of degree less than  is in  and let 

have degree .

If  then some linear combination  over  of the polynomials in 

has the same leading coefficient as  and if  then some linear

combination  of the polynomials

has the same leading coefficient as . In either case, there is a polynomial

 that has the same leading coefficient as . Since 

has degree strictly smaller than that of  the induction hypothesis implies that

and so

This completes the induction and shows that  is finitely generated. 

Exercises

1. If  is a free -module and  is an epimorphism then must 

also be free?

2. Let  be an ideal of . Prove that if  is a free -module then  is the

zero ideal.

3. Prove that the union of an ascending chain of submodules is a submodule.

4. Let  be a submodule of an -module . Show that if  is finitely

generated, so is the quotient module .

5. Let  be a submodule of an -module. Show that if both  and  are

finitely generated then so is .

6. Show that an -module  satisfies the a.c.c. for submodules if and only if

the following condition holds. Every nonempty collection  of submodules

of  has a maximal element. That is, for every nonempty collection  of

submodules of  there is an  with the property that

.

7. Let  be an -homomorphism.

 a) Show that if  is finitely generated then so is .im
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 b) Show that if  and  are finitely generated thenker im

ker  where  is a finitely generated submodule of .

Hence,  is finitely generated.

8. If  is noetherian and  is an ideal of  show that  is also noetherian.

9. Prove that if  is noetherian then so is .

10. Find an example of a commutative ring with identity that does not satisfy

the ascending chain condition.

11. a) Prove that an -module  is cyclic if and only if it is isomorphic to

 where  is an ideal of .

 b) Prove that an -module  is  (  and  has no propersimple

nonzero submodules) if and only if it is isomorphic to  where  is

a maximal ideal of .

 c) Prove that for any nonzero commutative ring  with identity, a simple

-module exists.

12. Prove that the condition that  be a principal ideal domain in part 2) of

Theorem 5.9 is required.

13. Prove Theorem 5.9 in the following way.

 a) Show that if  are submodules of  and if  and  are

finitely generated then so is .

 b) The proof is again by induction. Assuming it true for any module

generated by  elements, let  and let

. Then let  in part a).

14. Prove that any -module  is isomorphic to the quotient of a free module

. If  is finitely generated then  can also be taken to be finitely

generated.

15. Prove that if  and  are isomorphic submodules of a module  it does

not necessarily follow that the quotient modules  and  are

isomorphic. Prove also that if  as modules it does not

necessarily follow that . Prove that these statements do hold if all

modules are free and have finite rank.



Chapter 6

Modules over a Principal Ideal Domain

We remind the reader of a few of the basic properties of principal ideal

domains.

Theorem 6.1  Let  be a principal ideal domain.

1) An element  is irreducible if and only if the ideal  is maximal.

2) An element in  is prime if and only if it is irreducible.

3)  is a unique factorization domain.

4)  satisfies the ascending chain condition on ideals. Hence, so does any

finitely generated -module . Moreover, if  is generated by  elements

any submodule of  is generated by at most  elements.

Annihilators and Orders

When  is a principal ideal domain all annihilators are generated by a single

element. This permits the following definition.

Definition Let  be a principal ideal domain and let  be an -module, with

submodule . Any generator of  is called an  of . An  ofann order order

an element  is an order of the submodule . 

Note that any two orders  and  of  (or of an element ) are associates,

since . Hence, an order of  is uniquely determined up to

multiplication by a unit of . For this reason, we may occasionally abuse the

terminology and refer to “the” order of an element or submodule.

Also, if  are submodules of  then  and so anyann ann

order of  divides any order of . Thus, just as with finite groups, the order of

an element/submodule divides the order of the module.
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Cyclic Modules

The simplest type of nonzero module is clearly a cyclic module. Despite their

simplicity, cyclic modules are extremely important and so we want to explore

some of their basic properties.

Theorem 6.2 Let  be a principal ideal domain.

1) If  is a cyclic -module with  then the map ann

defined by  is a surjective -homomorphism with kernel .

Hence

In other words, cyclic -modules are isomorphic to quotient modules of the

base ring . If  is a prime then  is a maximal ideal in  and so 

is a field.

2) Any submodule of a cyclic -module is cyclic.

3) Let  be a cyclic submodule of  of order . Then  has order

gcd . Hence, if  and  are relatively prime then  also has

order .

4) If  are nonzero elements of M with orders  that are

pairwise relatively prime, then the sum

has order . Consequently, if  is an -module and

where the submodules  have orders  that are pairwise relatively prime,

then the sum is direct.

Proof. We leave proof of part 1) as an exercise. Part 2) follows from part 2) of

Theorem 5.9. For part 3), we first consider the two extremes: when  is

relatively prime to  and when . As to the first, let  and  be relatively

prime. If  then . Hence,  implies that  and so

gcd  is an order of .

Next, if  then  and so any order  of  divides . But if

 properly divides  then  properly divides  and yet annihilates ,

which contradicts the fact that  is an order of . Hence  and  are

associates and so  is an order of .gcd

Now we can combine these two extremes to finish the proof. Write 

where  divides  and  is relatively prime to . Using thegcd

previous results, we find that  has order  and so  has

order .
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For part 4), since  annihilates , the order of  divides . If the order of  is a

proper divisor of  then for some index , there is a prime  dividing  for

which  annihilates . But  annihilates each  for  and so

However,  and  are relatively prime and so the order of  is

equal to the order of , which contradicts the equation above. Hence, the order

of  is . Finally, to see that the sum above is direct, note that if

where  then each  must be , for otherwise the order of the sum on the

left would be different from . 

Free Modules over a Principal Ideal Domain

Example 4.5 showed that a submodule of a free module need not be free. (The

submodule  of  is not free.) However, if  is a principal ideal

domain this cannot happen.

Theorem 6.3 Let  be a free module over a principal ideal domain . Then

any submodule  of  is also free and .rk rk

Proof. We will give the proof only for modules of finite rank, although the

theorem is true for all free modules. Thus, since  where  werk

may in fact assume that . Our plan is to proceed by induction on .

For , we have  and any submodule  of  is just an ideal of . If

 then  is free by definition. Otherwise,  for some . But

since  is an integral domain, we have  for all  and so  is a

basis for . Thus,  is free and .rk rk

Now assume that if  then any submodule  of  is free and .rk

Let  be a submodule of . Let

 for some 

and

 for some 

Note that  and  are nonempty.

Since  is isomorphic to a submodule of , the inductive hypothesis

implies that  is free. Let  be a basis for  with . If 

then take .
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Now,  is isomorphic to a submodule (ideal) of  and is therefore also free of

rank at most . If  then all elements of  have zero final coordinate,

which means that , which is free with rank at most , as desired. So

assume that  is not trivial and let  be a basis for  where

for . Let  satisfy

We claim that  is a basis for . To see that  generates  let

. Then  and so

for . Thus  and

Hence the difference  is in . We then have

and so  generates . Finally, to see that  is linearly independent,

note that if  and if

then comparing th coefficients gives . Since  is an integral domain

and  we deduce that . It follows that  for all . Thus  is

a basis for  and the proof is complete. 

If  is a vector space of dimension  then any set of  linearly independent

vectors in  is a basis for . This fails for modules. For example,  is a -

module of rank  but the independent set  is not a basis. On the other hand,

the fact that a spanning set of size  is a basis does hold for modules over a

principal ideal domain, as we now show.

Theorem 6.4 Let  be a free -module of rank , where  is a principal ideal

domain. Let  be a spanning set for . Then  is a basis for

.

Proof. Let  be a basis for  and define the map  by

 and extending to a surjective -homomorphism. Since  is free,

Theorem 5.6 implies that

ker kerim

Since  is a submodule of the free module and since  is a principal idealker

domain, we know that  is free of rank at most . It follows thatker
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rk rk rkker

and so , that is, , which implies that  is an -rk ker ker

isomorphism and so  is a basis. 

In general, a basis for a submodule of a free module over a principal ideal

domain cannot be extended to a basis for the entire module. For example, the set

 is a basis for the submodule  of the -module , but this set cannot be

extended to a basis for  itself. We state without proof the following result

along these lines.

Theorem 6.5 Let  be a free -module of rank , where  is a principal ideal

domain. Let  be a submodule of  that is free of rank . Then there is a

basis  for  that contains a subset  for which

 is a basis for , for some nonzero elements  of . 

Torsion-Free and Free Modules

Let us explore the relationship between the concepts of torsion-free and free. It

is not hard to see that any free module over an integral domain is torsion-free.

The converse does not hold, unless we strengthen the hypotheses by requiring

that the module be finitely generated.

Theorem 6.6 Let  be a torsion-free finitely generated module over a

principal ideal domain . Then  is free. Thus, a finitely generated module

over a principal ideal domain is free if and only if it is torsion free.

Proof. Let  be a generating set for . Consider first the case

, whence . Then  is a basis for  since singleton sets are

linearly independent in a torson-free module. Hence,  is free.

Now suppose that  is a generating set with . If  is linearly

independent, we are done. If not, then there exist nonzero  for which

. It follows that  and so  is a submodule of a

free module and is therefore free by Theorem 6.3. But the map 

defined by  is an isomorphism because  is torsion-free. Thus  is

also free.

Now we can do the general case. Write

where  is a maximal linearly independent subset of . (Note

that  is nonempty because singleton sets are linearly independent.)

For each , the set  is linearly dependent and so there exist

 and  for which
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If  then

and since the latter is a free module, so is , and therefore so is . 

Prelude to Decomposition: Cyclic Modules

The following result shows how cyclic modules can be composed and

decomposed.

Theorem 6.7 Let  be an -module.

1) If  are nonzero elements of M with orders  that are

pairwise relatively prime, then

2) If  has order  where  are pairwise relatively

prime, then  can be written in the form

where  has order . Moreover,

Proof. According to Theorem 6.2, the order of  is  and the sum on the right is

direct. It is clear that . For the reverse

inclusion, since  and  are relatively prime, there exist  for which

Hence

Similarly,  for all  and so we get the reverse inclusion.

For part 2), the scalars  are relatively prime and so there exist 

for which

Hence,

Since the order of  divides , these orders are pairwise relatively prime.
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Hence, the order of the sum on the right is the product of the orders of the terms

and so  must have order . The second statement follows from part 1). 

The First Decomposition

The first step in the decomposition of a finitely generated module  over a

principal ideal domain  is an easy one.

Theorem 6.8 Any finitely generated module  over a principal ideal domain 

is the direct sum of a free -module and a torsion -module

free tor

As to uniqueness, the torsion part  is unique (it must be the set of all torsiontor

elements of ) whereas the free part  is not unique. However, all possiblefree

free summands are isomorphic and thus have the same rank.

Proof. As to existence, the set of all torsion elements is easily seen to be ator

submodule of . Since  is finitely generated, so is the torsion-free quotient

module . Hence, according to Theorem 6.6,  is free. Considertor tor

now the canonical projection  onto Since  istor tor. tor

free, Theorem 5.6 implies that

tor

where  is free.tor

As to uniqueness, suppose that  where  is torsion and  is free.

Then . But if  and  where  and  thentor tor

 and  for some nonzero  and so , which implies

that , that is, . Thus, .tor

For the free part, since , the submodules  and tor tor

are both complements of  and hence are isomorphic. Hence, all freetor

summands are isomorphic and therefore have the same rank. 

Note that if  is a basis for  we can writefree

tor

where each cyclic submodule  has zero annihilator. This is a partial

decomposition of  into a direct sum of cyclic submodules.

A Look Ahead

So now we turn our attention to the decomposition of finitely generated torsion

modules over a principal ideal domain. We will develop two

decompositions. One decomposition has the form
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where the annihilators of the cyclic submodules form an ascending chain

ann ann

This decomposition is called an  of .invariant factor decomposition

Although we will not approach it in quite this manner, the second

decomposition can be obtained by further decomposing each cyclic submodule

in the invariant factor decomposition into cyclic submodules whose annihilators

have the form  where  is a prime. Submodules with annihilators of this

form are called  and so the second decomposition isprimary submodules

referred to as a .primary cyclic decomposition

Our plan will be to derive the primary cyclic decomposition first and then obtain

the invariant factor decomposition from the primary cyclic decomposition by a

piecing-together process, as described in Theorem 6.7.

As we will see, while neither of these decompositions is unique, the sequences

of annihilators are unique, that is, these sequences are completely determined by

the module .

The Primary Decomposition

The first step in the primary cyclic decomposition is to decompose the torsion

module into a direct sum of primary submodules.

Definition Let  be a prime in . A -  (or just ) module is aprimary primary

module whose order is a power of . 

Note that a -primary module  with order  must have an element of order

.

Theorem 6.9 The primary decomposition theorem( ) Let  be a nonzero

torsion module over a principal ideal domain , with order

where the 's are distinct nonassociate primes in .

1) Then  is the direct sum

where
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is a primary submodule with order  and annihilator

ann

2) This decomposition of  into primary submodules is unique up to order of

the summands. That is, if

where  is primary of order  and  are distinct nonassociate

primes then  and after a suitable reindexing of the summands we

have . Hence,  and  are associates and  (and so

 is also a prime factorization of ).

Proof. For part 1), let us write . We claim that

Since  is annihilated by , we have . On the other hand, since

 and  are relatively prime, there exist  for which

and so if  then

Hence .

Now, since , there exist scalars  for whichgcd

and so for any 

Moreover, since the order of  divides  and the 's are pairwise

relatively prime, it follows that the sum of the submodules  is direct, that is,

As to the annihilators, it is clear that . For the reverseann

inclusion, if  then  and so , that is, ann ann

and so . Thus .ann

As to uniqueness, we claim that  is an order of . This follows

from the fact that  contains an element  of order  and so the sum

 has order . Hence,  divides . But  divides  and so  and

 are associates.
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Unique factorization in  now implies that  and, after a suitable

reindexing, that  and  and  are associates. Hence,  is primary of

order . For convenience, we can write  as . Hence,

But if

and  for all , we must have  for all . 

The Cyclic Decomposition of a Primary Module

The next step in the decomposition process is to show that a primary module

can be decomposed into a direct sum of cyclic submodules. While this

decomposition is not unique (see the exercises), the set of annihilator ideals is

unique, as we will see. To establish this uniqueness, we use the following result.

Lemma 6.10 Let  be a module over a principal ideal domain  and let

 be a prime.

1) If  then  is a vector space over the field  with scalar

multiplication defined by

for all .

2) For any submodule  of  the set

is also a submodule of  and if  then

Proof. For part 1), since  is prime, the ideal  is maximal and so  is a

field. We leave the proof that  is a vector space over  to the reader. For

part 2), it is straightforward to show that  is a submodule of . Since

 and  we see that . Also, if  then

. But  for some  and  and so .

Since   and  we deduce that , whence .

Thus,  and since the reverse inequality is manifest, the result

is proved. 

Theorem 6.11 The cyclic decomposition theorem of a primary module( ) Let

 be a nonzero primary finitely generated torsion module over a principal

ideal domain , with order .
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1) Then  is the direct sum

(6.1)

of cyclic submodules with annihilators  that can beann

arranged in ascending order

ann ann

or equivalently

2) As to uniqueness, suppose that  is also the direct sum

of cyclic submodules with annihilators  arranged inann

ascending order

ann ann

or equivalently

Then the two chains of annihilators are identical, that is

ann ann

for all . Thus, ,  and  are associates and  for all .

Proof. Note first that if (6.1) holds then . Hence, the order of  divides

 and so must have the form  for . To prove (6.1), let  be an

element with order equal to the order of , that is

ann ann

(We remarked earlier that such an element must exist.)

If we show that  is complemented, that is,  for some submodule

 then since  is also a finitely generated primary torsion module over , we

can repeat the process to get

where . We can continue this decomposition as long asann

. But the ascending sequence of submodules

must terminate since  is noetherian and so eventually we must have

, giving (6.1).
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Now, the direct sum  clearly exists. Suppose that the direct sum

exists. We claim that if  then it is possible to find a submodule 

that properly contains  for which the direct sum  exists.

Once this claim is established, then since  is finitely generated, this process

must stop after a finite number of steps, leading to  for some

submodule , as desired.

If  then there is a . We claim that for some scalar ,

we can take , which is a proper superset of  since

.

Thus, we must show that there is an  for which

Now, there exist scalars  and  for which

What can we say about the scalars  and ?

First, although , we do have

So let us consider the ideal of all such scalars

Since  and  is principal, we have

for some . Moreover,  is not  since that would imply that  and so

, contrary to assumption.

Since , we have  for some . Then

and since , it follows that . Hence  for some

 and

Since , we have  and so
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Thus,

Now it appears that  would be a good choice, since then

and since  we get . This completes the proof of (6.1).

For uniqueness, note first that  has orders  and  and so  and  are

associates and . Next we show that . According to part 2) of

Lemma 6.10,

and

where all summands are nonzero. Since , it follows from part 1) of

Lemma 6.10 that  is a vector space over  and so each of the

preceding decompositions expresses  as a direct sum of one-dimensional

vector subspaces. Hence, .dim

Finally, we show that the exponents  and  are equal using induction on . If

 then  for all  and since , we also have  for all .

Suppose the result is true whenever  and let . Suppose that

and

Then

and

But  is a cyclic submodule of  with annihilator  and so

by the induction hypothesis

 and 

which concludes the proof of uniqueness. 
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The Primary Cyclic Decomposition Theorem

Now we can combine the various decompositions.

Theorem 6.12 The primary cyclic decomposition theorem( ) Let  be a

nonzero finitely generated module over a principal ideal domain .

1) Then

free tor

where  is free and  is a torsion module. If  has orderfree tor tor

where the 's are distinct nonassociate primes in  then  can betor

uniquely decomposed (up to the order of the summands) into the direct sum

where

tor

is a primary submodule with annihilator . Finally, each primary

submodule  can be written as a direct sum of cyclic submodules, so that

free

where  and the terms in each cyclic decomposition canann

be arranged so that, for each ,

ann ann

or, equivalently,

2) As for uniqueness, suppose that

free

is a decomposition of  into the direct sum of a free module  andfree

primary cyclic submodules . Then

 a) rk rkfree free

 b) The number of summands is the same in both decompositions, that is

 c) The summands in this decomposition can be reordered to get

free n

where the primary submodules are the same
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for  and the annihilator chains are the same, that is,

ann ann

for all .

 In summary, the free rank, primary submodules and annihilator chain are

uniquely determined by the module .

Proof. We need only prove the uniqueness. We have seen that  and free free

are isomorphic and thus have the same rank. Let us look at the torsion part.

Since the order of each primary cyclic submodule  must divide the order of

, this order is a power of one of the primes . Let us group the

summands by like primes  to get

free

primary of order primary of order 

Then each group  is a primary submodule of  with order . The

uniqueness of primary decompositions of  implies that . Then thetor

uniqueness of cyclic decompositions implies that the annihilator chains for the

decompositions of  and  are the same. 

We have seen that in a primary cyclic decomposition

free

the chain of annihilators

ann

is unique except for order. The sequence  of generators is uniquely

determined up to order and multiplication by units. This sequence is called the

sequence of  of . Note that the elementary divisors areelementary divisors

not quite as unique as the annihilators: the multiset of annihilators is unique but

the multiset of generators is not since if  is a generator then so is  for

any unit  in .

The Invariant Factor Decomposition

According to Theorem 6.7, if  and  are cyclic submodules with relatively

prime orders, then  is a cyclic submodule whose order is the product of

the orders of  and . Accordingly, in the primary cyclic decomposition of 

free
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with elementary divisors  satisfying

(6.4)

we can feel free to regroup and combine cyclic summands with relatively prime

orders. One judicious way to do this is to take the leftmost (highest order) cyclic

submodules from each group to get

and repeat the process

Of course, some summands may be missing here since the primary modules 

do not necessarily have the same number of summands. In any case, the result

of this regrouping and combining is a decomposition of the form

free

which is called an  of .invariant factor decomposition

For example, suppose that

free

Then the resulting regrouping and combining gives

free

As to the orders of the summands, referring to (6.4), if  has order  then

since the highest powers of each prime  are taken for , the second–highest

for  and so on, we conclude that

(6.5)

or equivalently,

ann ann

The numbers  are called  of the decomposition.invariant factors

For instance, in the example above suppose that the elementary divisors are

Then the invariant factors are
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The process described above that passes from a sequence  of elementary

divisors in order (6.4) to a sequence of invariant factors in order (6.5) is

reversible. The inverse process takes a sequence  satisfying (6.5),

factors each  into a product of distinct nonassociate prime powers with the

primes in the same order and then “peels off” like prime powers from the left.

(The reader may wish to try it on the example above.)

This fact, together with Theorem 6.7, implies that primary cyclic

decompositions and invariant factor decompositions are essentially equivalent.

In particular, given a primary cyclic decomposition of  we can produce an

invariant factor decomposition of  whose invariant factors are products of the

elementary divisors and for which each elementary divisor appears in exactly

one invariant factor. Conversely, given an invariant factor decomposition of 

we can obtain a primary cyclic decomposition of  whose elementary divisors

are precisely the multiset of prime power factors of the invariant factors.

It follows that since the elementary divisors of  are unique up to

multiplication by units, the invariant factors of  are also unique up to

multiplication by units.

Theorem 6.13 The invariant factor decomposition theorem( ) Let  be a

finitely generated module over a principal ideal domain . Then

free

where  is a free submodule and D  is a cyclic submodule of , with orderfree

, where

This decomposition is called an  of  and theinvariant factor decomposition

scalars , are called the  of . The invariant factors areinvariant factors

uniquely determined, up to multiplication by a unit, by the module . Also, the

rank of  is uniquely determined by . free

The annihilators of an invariant factor decomposition are called the invariant

ideals of . The chain of invariant ideals is unique, as is the chain of

annihilators in the primary cyclic decomposition. Note that  is an order of ,

that is

ann

Note also that the product
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of the invariant factors of  has some nice properties. For example,  is the

product of all the elementary divisors of . We will see in a later chapter that

in the context of a linear operator  on a vector space,  is the characteristic

polynomial of .

Exercises

1. Show that any free module over an integral domain is torsion-free.

2. Let  be a principal ideal domain and  the field of quotients. Then  is

an -module. Prove that any nonzero finitely generated submodule of 

is a free module of rank .

3. Let  be a principal ideal domain. Let  be a finitely generated torson-free

-module. Suppose that  is a submodule of  for which  is a free -

module of rank  and  is a torsion module. Prove that  is a free -

module of rank . : Use the results of the previous exercise.Hint

4. Show that the primary cyclic decomposition of a torsion module over a

principal ideal domain is not unique (even though the elementary divisors

are).

5. Show that if  is a finitely generated -module where  is a principal

ideal domain, then the free summand in the decomposition tor

need not be unique.

6. If  is a cyclic -module or order  show that the map 

defined by  is a surjective -homomorphism with kernel  and

so

7. If  is a ring with the property that all submodules of cyclic -modules are

cyclic, show that  is a principal ideal domain.

8. Suppose that  is a finite field and let  be the set of all nonzero elements

of .

 a) Show that  is an abelian group under multiplication.

 b) Show that  is a nonconstant polynomial over  and if

 is a root of  then  is a factor of .

 c) Prove that a nonconstant polynomial  of degree  can have

at most  distinct roots in .

 d) Use the invariant factor or primary cyclic decomposition of a finite -

module to prove that  is cyclic.

9. Let  be a principal ideal domain. Let  be a cyclic -module with

order . We have seen that any submodule of  is cyclic. Prove that for

each  such that  there is a unique submodule of  of order .

10. Suppose that  is a free module of finite rank over a principal ideal

domain . Let  be a submodule of . If  is torsion, prove that

rk rk .
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11. Let  be the ring of polynomials over a field  and let  be the ring

of all polynomials in  that have coefficient of  equal to . Then 

is an -module. Show that  is finitely generated and torsion-free

but not free. Is  a principal ideal domain?

12. Show that the rational numbers  form a torsion-free -module that is not

free.

More on Complemented Submodules

13. Let  be a principal ideal domain and let  be a free -module.

 a) Prove that a submodule  of  is complemented if and only if 

is free.

 b) If  is also finitely generated, prove that  is complemented if and

only if  is torsion-free.

14. Let  be a free module of finite rank over a principal ideal domain .

 a) Prove that if  is a complemented submodule of  then

rk rk  if and only if .

 b) Show that this need not hold if  is not complemented.

 c) Prove that  is complemented if and only if any basis for  can be

extended to a basis for .

15. Let  and  be free modules of finite rank over a principal ideal domain

. Let  be an -homomorphism.

 a) Prove that  is complemented.ker

 b) What about ?im

 c) Prove that

rk rk rk im rk rkker ker
ker

 d) If  is surjective then  is an isomorphism if and only if

rk rk .

 e) If  is free then

rk rk rk

16. A submodule  of a module  is said to be   if wheneverpure in

 then  for all nonzero .

 a) Show that  is pure if and only if  and  for  implies

.

 b) Show that  is pure if and only if  is torsion-free.

 c) If  is a principal ideal domain and  is finitely generated, prove that

 is pure if and only if  is free.

 d) If  and  are pure submodules of  then so are  and .

What about ?

 e) If  is pure in  then show that  is pure in  for any

submodule  of .
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17. Let  be a free module of finite rank over a principal ideal domain . Let

 and  be submodules of  with  complemented in . Prove that

rk rk rk rk



Chapter 7

The Structure of a Linear Operator

In this chapter, we study the structure of a linear operator on a finite-

dimensional vector space, using the powerful module decomposition theorems

of the previous chapter. Unless otherwise noted, all vector spaces will be

assumed to be finite-dimensional.

A Brief Review

We have seen that any linear operator on a finite-dimensional vector space can

be represented by matrix multiplication. Let us restate Theorem 2.14 for linear

operators.

Theorem 7.1 Let  and let  be an ordered basis for .

Then  can be represented by matrix multiplication

where

Since the matrix  depends on the ordered basis , it is natural to wonder

how to choose this basis in order to make the matrix  as simple as possible.

That is the subject of this chapter.

Let us also restate the relationship between the matrices of  with respect to

different ordered bases.

Theorem 7.2 Let  and let  and  be ordered bases for . Then the

matrix of  with respect to  can be expressed in terms of the matrix of  with

respect to  as follows



142 Advanced Linear Algebra

where

,

Finally, we recall the definition of similarity and its relevance to the current

discussion.

Definition Two matrices  and  are  if there exists an invertiblesimilar

matrix  for which

The equivalence classes associated with similarity are called similarity

classes.

Theorem  Let  be a vector space of dimension . Then two  matrices7.3

 and  are similar if and only if they represent the same linear operator

, but possibly with respect to different ordered bases. In this case, 

and  represent exactly the same set of linear operators in . 

According to Theorem 7.3, the matrices that represent a given linear operator

 are precisely the matrices that lie in one particular similarity class.

Hence, in order to uniquely represent all linear operators on  we would like to

find a simple representative of each similarity class, that is, a set of simple

canonical forms for similarity.

The simplest type of useful matrices is the diagonal matrices. However, not all

linear operators can be represented by diagonal matrices, that is, the set of

diagonal matrices does not form a set of canonical forms for similarity.

This gives rise to two different directions for further study. First, we can search

for a characterization of those linear operators that can be represented by

diagonal matrices. Such operators are called . Second, we candiagonalizable

search for a different type of “simple” matrix that does provide a set of

canonical forms for similarity. We will pursue both of these directions at the

same time.

The Module Associated with a Linear Operator

Throughout this chapter, we fix a nonzero linear operator  and think

of  not only as a vector space over a field  but also as a module over ,

with scalar multiplication defined by

We call  the -module   and write  to indicate thedefined by

dependence on  (when necessary). Thus,  and  are modules over the same

ring , although the scalar multiplication is different if .



The Structure of a Linear Operator 143

Our plan is to interpret the concepts of the previous chapter for the

module/vector space . First, since  is a finite-dimensional vector space, so is

. It follows that  is a torsion module. To see this, note that since

dim , the  vectors

are linearly dependent in , which implies that  for some

polynomial . Hence, , which shows that

ann .

Also, since  is finitely generated as a vector space, it is, a fortiori, finitely

generated as an -module defined by . Thus,  is a finitely generated

torsion module over a principal ideal domain  and so we may apply the

decomposition theorems of the previous chapter.

Next we take a look at the connection between module isomorphisms and vector

space isomorphisms. This also describes the connection with similarity.

Theorem 7.4 Let  and  be linear operators on . Then  and  are

isomorphic as -modules if and only if  and  are similar as linear

operators. In particular, a function  is a module isomorphism if and

only if it is a vector space automorphism of  satisfying

Proof. Suppose that  is a module isomorphism. Then for 

which is equivalent to

and since  is bijective this is equivalent to

that is, . Since a module isomorphism from  to  is a vector space

isomorphism as well, the result follows.

For the converse, suppose that  for a vector space automorphism 

on . This condition is equivalent to  and so

and by the -linearity of , for any polynomial  we have
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which shows that  is a module isomorphism from  to . 

Submodules and Invariant Subspaces

There is a simple connection between the submodules of the -module 

and the subspaces of the vector space . Recall that a subspace  of  is -

invariant if .

Theorem 7.5 A subset  of  is a submodule of the -module  if and only

if it is a -  subspace of the vector space . invariant

Orders and the Minimal Polynomial

We have seen that since  is finite-dimensional, the annihilator

ann

of  is a nonzero ideal of  and since  is a principal ideal domain, this

ideal is principal, say

ann

Since all orders of  are associates and since the units of  are precisely the

nonzero elements of , there is a unique  order of .monic

Definition Let  be an -module defined by . The unique monic order of

, that is, the unique monic polynomial that generates  is called theann

minimal polynomial for  and is denoted by  or . Thus,min

ann

and

In treatments of linear algebra that do not emphasize the role of the  module

the minimal polynomial of a linear operator  is simply defined as the unique

monic polynomial  of  for which . It is not hardsmallest degree

to see that this definition is equivalent to the previous definition.

The concept of minimal polynomial is also defined for matrices. If  is a square

matrix over  the   of  is defined as the uniqueminimal polynomial A

monic polynomial  of smallest degree for which . We

leave it to the reader to verify that this concept is well-defined and that the

following holds.
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Theorem 7.6

1) If  and  are similar matrices then . Thus, the minimal

polynomial is an invariant under similarity.

2) The minimal polynomial of  is the same as the minimal

polynomial of any matrix that represents . 

Cyclic Submodules and Cyclic Subspaces

For an -module , consider the cyclic submodule

We would like to characterize these simple but important submodules in terms

of vector space notions.

As we have seen,  is a -invariant subspace of , but more can be said. Let

 be the minimal polynomial of  and suppose that . Anydeg

element of  has the form . Dividing  by  gives

where   . Since , we havedeg deg

Thus,

deg

Put another way, the ordered set

spans  . But it is also the case that  is linearlyas a vector space over 

independent over , for if

then  where

has degree less than . Hence, , that is,  for all .

Thus,  is an ordered basis for .

To determine the matrix of  with respect to , write . Then

for  and so  simply “shifts” each basis vector in , except the

last one, to the next basis vector in . For the last vector , if
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then since  we have

and so

Hence, the matrix of  with respect to  is

2

This is known as the  for the polynomial . Note thatcompanion matrix

companion matrices are defined only for  polynomials.monic

Definition Let . A subspace  of  is -  if there exists a vectorcyclic

 for which the set

is a basis for . 

Theorem 7.7 Let  be an -module defined by .

1)  A subset  is a cyclic( )Characterization of cyclic submodules

submodule of  if and only if it is a -cyclic subspace of the vector space

.

2) Suppose that  is a cyclic submodule of . If the monic order of  is

then

is an ordered basis for  and the matrix  is the companion matrix

 of . Hence,

dim deg
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Summary

The following table summarizes the connection between the module concepts

and the vector space concepts that we have discussed.

-  -  

Scalar multiplication: Action of : 

Submodule of -Invariant subspace of 

Annihil

Module Vector Space

ator: Annihilator:

Monic order  of : Minimal polynomial of :

ann ann

ann  has smallest deg with 

Cyclic submodule of : -cyclic subspace of :

deg deg span

The Decomposition of 

We are now ready to translate the cyclic decomposition theorem into the

language of . First, we define the  and elementary divisors invariant factors

of an operator  to be the elementary divisors and invariant factors, respectively,

of the module . Also, the  and  of aelementary divisors invariant factors

matrix  are defined to be the elementary divisors and invariant factors,

respectively, of the operator .

We will soon see that the multiset of elementary divisors and the multiset of

invariant factors are complete invariants under similarity and so the multiset of

elementary divisors (or invariant factors) of an operator  is the same as the

multiset of elementary divisors (or invariant factors) of any matrix that

represents .

Theorem 7.8 (   Let  be a linearThe cyclic decomposition theorem for

operator on a finite-dimensional vector space . Let

be the minimal polynomial of , where the monic polynomials  are distinct

and irreducible.

1)  The -module  is the direct sum( )Primary decomposition

where

is a primary submodule of  of order . In vector space terms,  is a
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-invariant subspace of  and the minimal polynomial of  is

min

2)  Each primary summand  can be decomposed( )Cyclic decomposition

into a direct sum

of cyclic submodules  of order  with

In vector space terms,  is a -cyclic subspace of  and the minimal

polynomial of  is

min

3)  This yields the decomposition of  into a( )The complete decomposition

direct sum of -cyclic subspaces

4)  The multiset of elementary divisors( )Elementary divisors and dimensions

 of  is uniquely determined by . If  then thedeg

-cyclic subspace  has basis

and so . Hence,dim deg

dim deg

The Rational Canonical Form

The cyclic decomposition theorem can be used to determine a set of canonical

forms for similarity. Recall that if  and if both  and  are invariant

under , the pair  is said to  . Put another way,  reduces reduce

if the restrictions  and  are linear operators on  and , respectively.

Recall also that we write  if there exist subspaces  and  of  for

which  reduces  and

 and 

If  then any matrix representations of  and  can be used to construct

a matrix representation of .
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Theorem 7.9 Suppose that  has a reducing pair . Let

be an ordered basis for , where  is an ordered basis for  and

 is an ordered basis for . Then the matrix  has the block

diagonal form

block

Of course, this theorem may be extended to apply to multiple direct summands

and this is especially relevant to our situation, since according to Theorem 7.8

In particular, if  is an ordered basis for the cyclic submodule  and if

denotes the ordered basis for  obtained from these ordered bases (as we did in

Theorem 7.9) then

block

where .

According to Theorem 7.8, the cyclic submodule  has ordered basis

where . Hence, we arrive at the matrix representation of deg

described in the following theorem.

Theorem 7.10 The rational canonical form  ( ) Let  and supposedim

that  has minimal polynomial

where the monic polynomials  are distinct and irreducible. Then  has an

ordered basis  under which
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block

where the polynomials  are the elementary divisors of . We also write

this in the form

diag

This block diagonal matrix is said to be in  and isrational canonical form

called a  . Except for the order of the blocks in therational canonical form of

matrix, the rational canonical form is a canonical form for similarity, that is, up

to order of the blocks, each similarity class contains exactly one matrix in

rational canonical form. Put another way, the multiset of elementary divisors is

a complete invariant for similarity.

Proof. It remains to prove that if two matrices in rational canonical form are

similar, then they must be equal, up to order of the blocks. Let  be the matrix

 above. The ordered basis  clearly gives a decomposition of  into a

direct sum of primary cyclic submodules for which the elementary divisors are

the polynomials .

Now suppose that  is another matrix in rational canonical form

diag

If  is similar to  then we get another primary cyclic decomposition of  for

which the elementary divisors are the polynomials . It follows that the

two sets of elementary divisors are the same and so  and  are the same up to

the order of their blocks. 

Corollary 7.11

1) Any square matrix  is similar to a unique (except for the order of the

blocks on the diagonal) matrix that is in rational canonical form. Any such

matrix is called a  of .rational canonical form

2) Two square matrices over the same field  are similar if and only if they

have the same multiset of elementary divisors. 

Here are some examples of rational canonical forms.
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Example 7.1 Let  be a linear operator on the vector space  and suppose that7

 has minimal polynomial

Noting that  and  are elementary divisors and that the sum of the

degrees of all elementary divisors must equal , we have two possibilities

1)  1  

2)    1

These correspond to the following rational canonical forms

1)

2)

Exercises

1. We have seen that any  can be used to make  into an -

module. Does every module  over  come from some ?

Explain.

2. Show that if  and  are block diagonal matrices with the same blocks, but

in possibly different order, then  and  are similar.

3. Let  be a square matrix over a field . Let  be the smallest subfield of

 containing the entries of . Prove that any rational canonical form for 

has coefficients in the field . This means that the coefficients of any

rational canonical form for  are “rational” expressions in the coefficients

of , hence the origin of the term “rational canonical form.” Given an

operator  what is the smallest field  for which any rational

canonical form must have entries in ?

4. Let  be a subfield of . Prove that two matrices  are

similar over  if and only if they are similar over , that is 
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for some  if and only if  for some .

Hint: Use the results of the previous exercise.

5. Prove that the minimal polynomial of  is the least common

multiple of its elementary divisors.

6. Let  be the field of rational numbers. Consider the linear operator

 defined by  .

 a) Find the minimal polynomial for  and show that the rational canonical

form for  is

What are the elementary divisors of ?

 b) Now consider the map  defined by the same rules as ,

namely,  . Find the minimal polynomial for 

and the rational canonical form for . What are the elementary divisors

of ?

 c) The invariant factors of  are defined using the elementary divisors of

 in the same way as we did at the end of Chapter 6, for a module .

Describe the invariant factors for the operators in parts a) and b).

7. Find all rational canonical forms up to the order of the blocks on the

diagonal) for a linear operator on  having minimal polynomial6

1 1 .

8. How many possible rational canonical forms (up to order of blocks) are

there for linear operators on  with minimal polynomial 1 1 ?6

9. Prove that if  is the companion matrix of  then  and  has

minimal polynomial .

10. Let  be a linear operator on  with minimal polynomial

1 2 . Find the rational canonical form for  if

,  or .

11. Suppose that the minimal polynomial of  is irreducible. What can

you say about the dimension of ?



Chapter 8

Eigenvalues and Eigenvectors

Unless otherwise noted, we will assume throughout this chapter that all vector

spaces are finite-dimensional.

The Characteristic Polynomial of an Operator

It is clear from our discussion of the rational canonical form that elementary

divisors and their companion matrices are important. Let  be the

companion matrix of a monic polynomial

By way of motivation, note that when , we can write the polynomial 

as follows

which looks suspiciously like a determinant, namely,

det

det

det

So, let us define



154 Advanced Linear Algebra

where  is an independent variable. The determinant of this matrix is a

polynomial in  whose degree equals the number of parameters .

We have just seen that

det

and this is also true for . As a basis for induction, suppose that

det

Then, expanding along the first row gives

det

det det

det

We have proved the following.

Lemma 8.1 If  is the companion matrix of the polynomial , then

det

Since the determinant of a block diagonal matrix is the product of the

determinants of the blocks on the diagonal, if  is a matrix in rational canonical

form then

det

is the product of the elementary divisors of . Moreover, if  is similar to ,

say  then

det det

det

det det det

det

and so  is the product of the elementary divisors of . The polynomial

det  is known as the  of . Sincecharacteristic polynomial

the characteristic polynomial is an invariant under similarity, we have the

following.
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Theorem 8.2 Let  be a linear operator on a finite-dimensional vector space .

The   of  is defined to be the product of thecharacteristic polynomial

elementary divisors of . If  is any matrix that represents , then

det

Note that the characteristic polynomial is not a  invariant undercomplete

similarity. For example, the matrices

 and 

have the same characteristic polynomial but are not similar. (The reader might

wish to provide an example of two nonsimilar matrices with the same

characteristic and minimal polynomials.)

We shall have several occasions to use the fact that the minimal polynomial

and characteristic polynomial

of a linear operator  have the same set of prime factors. This implies,

for example, that these two polynomials have the same  of roots (not countingset

multiplicity).

Eigenvalues and Eigenvectors

Let  and let  be a matrix that represents . A scalar  is a root

of the characteristic polynomial  of  if and only if

det (8.1)

that is, if and only if the matrix  is singular. In particular, if

dim  then (8.1) holds if and only if there exists a nonzero vector 

for which

or, equivalently

If  and , then this is equivalent to

or, in operator language
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This prompts the following definition.

Definition Let  be a vector space over .

1) A scalar  is an  (or ) of an operatoreigenvalue characteristic value

 if there exists a  vector  for whichnonzero

In this case,  is an  (or ) of  associatedeigenvector characteristic vector

with .

2) A scalar  is an  for a matrix  if there exists a eigenvalue nonzero

column vector  for which

In this case,  is an  (or ) for eigenvector characteristic vector

associated with .

3) The set of all eigenvectors associated with a given eigenvalue , together

with the zero vector, forms a subspace of , called the  of ,eigenspace

denoted by . This applies to both linear operators and matrices.

4) The set of all eigenvalues of an operator or matrix is called the spectrum

of the operator or matrix. 

The following theorem summarizes some key facts.

Theorem 8.3 Let  have minimal polynomial m  and characteristic

polynomial .

1) The polynomials  and  have the same prime factors and hence

the same set of roots, called the spectrum of .

2)  The minimal polynomial divides the( )The Cayley–Hamilton theorem

characteristic polynomial. Another way to say this is that an operator 

satisfies its own characteristic polynomial, that is,

3) The eigenvalues of a matrix are invariants under similarity.

4) If  is an eigenvalue of a matrix  then the eigenspace  is the solution

space to the homogeneous system of equations

One way to compute the eigenvalues of a linear operator  is to first represent 

by a matrix  and then solve the characteristic equation

Unfortunately, it is quite likely that this equation cannot be solved when
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dim . As a result, the art of approximating the eigenvalues of a matrix is

a very important area of applied linear algebra.

The following theorem describes the relationship between eigenspaces and

eigenvectors of distinct eigenvalues.

Theorem 8.4 Suppose that  are distinct eigenvalues of a linear

operator .

1) The eigenspaces meet only in the  vector, that is

 Eigenvectors associated with distinct eigenvalues are linearly independent.

That is, if  then the vectors  are linearly independent.

Proof. We leave the proof of part 1) to the reader. For part 2), assume that the

eigenvectors  are linearly dependent. By renumbering if necessary, we

may also assume that among all nontrivial linear combinations of these vectors

that equal , the equation

(8.2)

has the fewest number of terms. Applying  gives

(8.3)

Now we multiply (8.2) by  and subtract from (8.3), to get

But this equation has fewer terms than (8.2) and so all of the coefficients must

equal . Since the 's are distinct we deduce that  for  and so

 as well. This contradiction implies that the 's are linearly

independent.

Geometric and Algebraic Multiplicities

Eigenvalues have two forms of multiplicity, as described in the next definition.

Definition Let  be an eigenvalue of a linear operator .

1) The  of  is the multiplicity of  as a root of thealgebraic multiplicity

characteristic polynomial .

2) The  of  is the dimension of the eigenspace . geometric multiplicity

Theorem 8.5 The geometric multiplicity of an eigenvalue  of  is less

than or equal to its algebraic multiplicity.

Proof. Suppose that  is an eigenvalue of  with eigenspace . Given any basis

 of  we can extend it to a basis  for . Since  is

invariant under , the matrix of  with respect to  has the block form
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block

where  and  are matrices of the appropriate sizes and so

det

det det

det

(Here  is the dimension of .) Hence, the algebraic multiplicity of  is at least

, which is the geometric multiplicity of . 

The Jordan Canonical Form

One of the virtues of the rational canonical form is that every linear operator 

on a finite-dimensional vector space has a rational canonical form. However, the

rational canonical form may be far from the ideal of simplicity that we had in

mind for a set of simple canonical forms.

We can do better when the minimal polynomial of   over , that is,splits

factors into a product of linear factors

(8.4)

In some sense, the difficulty in the rational canonical form is the basis for the

cyclic submodules . Recall that since  is a -cyclic subspace of  we

have chosen the ordered basis

where . With this basis, all of the complexity comes at the end,deg

when we attempt to express

as a linear combination of the basis vectors.

When the minimal polynomial  has the form (8.4), the elementary

divisors are

In this case, we can choose the ordered basis

for . Denoting the th basis vector in  by , we have for

,
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For , a similar computation, using the fact that

gives

In this case, the complexity is more or less spread out evenly, and the matrix of

 with respect to  is the  matrix

which is called a  associated with the scalar . Note that a JordanJordan block

block has 's on the main diagonal, 's on the subdiagonal and 's elsewhere.

This matrix is, in general, simpler (or at least more aesthetically pleasing) than a

companion matrix.

Now we can state the analog of Theorem 7.10 for this choice of ordered basis.

Theorem 8.6 The Jordan canonical form( ) Let  and suppose thatdim

the minimal polynomial of  splits over the base field , that is,

Then  has an ordered basis  under which

block

where the polynomials  are the elementary divisors of . This block

diagonal matrix is said to be in  and is called theJordan canonical form

Jordan canonical form of .
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If the base field  is algebraically closed, then except for the order of the blocks

in the matrix, Jordan canonical form is a canonical form for similarity, that is,

up to order of the blocks, each similarity class contains  one matrix inexactly

Jordan canonical form.

Proof. As to the uniqueness, suppose that  is a matrix in Jordan canonical

form that represents the operator  with respect to some ordered basis , and

that  has Jordan blocks , where the 's may not be

distinct. Then  is the direct sum of -invariant subspaces, that is, submodules

of , say

Consider a particular submodule . it is easy to see from the matrix

representation that  satisfies the polynomial  on , but no

polynomial of the form  for , and so the order of  is

. In particular, each  is a primary submodule of .

We claim that  is also a cyclic submodule of . To see this, let 

be the ordered basis that gives the Jordan block . Then it is easy to see

by induction that  is a linear combination of , with coefficient of

 equal to  or . Hence, the set

is also a basis for , from which it follows that  is a -cyclic subspace of ,

that is, a cyclic submodule of .

Thus, the Jordan matrix  corresponds to a primary cyclic decomposition of 

with elementary divisors . Since the multiset of elementary divisors is

unique, so is the Jordan matrix representation of , up to order of the blocks. 

Note that if  has Jordan canonical form  then the diagonal elements of  are

precisely the eigenvalues of , each appearing a number of times equal to its

algebraic multiplicity.

Triangularizability and Schur's Lemma

We have now discussed two different canonical forms for similarity: the rational

canonical form, which applies in all cases and the Jordan canonical form, which

applies only when the base field is algebraically closed. Let us now drop the

rather strict requirements of canonical forms and look at two classes of matrices

that are too large to be canonical forms (the upper triangular matrices and the

almost upper triangular matrices) and a class of matrices that is too small to be a

canonical form (the diagonal matrices).

The upper triangular matrices (or lower triangular matrices) have some nice

properties and it is of interest to know when an arbitrary matrix is similar to a
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triangular matrix. We confine our attention to upper triangular matrices, since

there are direct analogs for lower triangular matrices as well.

It will be convenient to make the following, somewhat nonstandard, definition.

Definition A linear operator  on  is  with respect to anupper triangular

ordered basis  if the matrix  is upper triangular, that is, if

for all 

The operator  is  if there is an ordered basis withupper triangularizable

respect to which  is upper triangular. 

As we will see next, when the base field is algebraically closed, all operators are

upper triangularizable. However, since two distinct upper triangular matrices

can be similar, the class of upper triangular matrices is not a canonical form for

similarity. Simply put, there are just too many upper triangular matrices.

Theorem 8.7 (Schur's Lemma) Let  be a finite-dimensional vector space

over a field .

1) If  has the property that its characteristic polynomial  splits

over  then  is upper triangularizable.

2) If  is algebraically closed then all operators are upper triangularizable.

Proof. Part 2) follows from part 1). The proof of part 1) is most easily

accomplished by matrix means, namely, we prove that every square matrix

 whose characteristic polynomial splits over  is similar to an upper

triangular matrix. If  there is nothing to prove, since all  matrices are

upper triangular. Assume the result is true for  and let .

Let  be an eigenvector associated with the eigenvalue  of  and extend

 to an ordered basis for . The matrix of  with respect to 

has the form

block

for some Since  and  are similar, we have.

det det det

Hence, the characteristic polynomial of  also splits over  and, by the

induction hypothesis, there exists an invertible matrix  for which

is upper triangular. Hence, if
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block

then  is invertible and

is upper triangular. This completes the proof. 

When the base field is , not all operators are triangularizable. We can,

however, achieve a form that is close to triangular. For the sake of the

exposition, we make the following  definition (that is, the readernonstandard

should not expect to find this definition in other books).

Definition A matrix  is almost upper triangular if it has the form

where each matrix  either has size  or else has size  with an

irreducible characteristic polynomial. A linear operator  is almost

upper triangularizable if there is an ordered basis  for which  is almost

upper triangular. 

We will prove that every real linear operator is almost  triangularizable. Inupper

the case of a complex vector space , any complex linear operator 

has an eigenvalue and hence  contains a one-dimensional -invariant

subspace. The analog for the real case is that for any real linear operator

, the vector space  contains either a one-dimensional or a

“nonreducible” two-dimensional -invariant subspace.

Theorem 8.8 Let  be a real linear operator. Then  contains at least

one of the following:

1) A one-dimensional -invariant subspace,

2) A two-dimensional -invariant subspace  for which  has the

property that  is an irreducible quadratic. Hence,  is not

the direct sum of two one-dimensional -invariant subspaces.

Proof. The minimal polynomial  of  factors into a product of linear and

quadratic factors over . If there is a linear factor , then  is an eigenvalue

for  and if  then  is the desired one-dimensional -invariant

subspace.



Eigenvalues and Eigenvectors 163

Otherwise, let  be an irreducible quadratic factor of 

and write

Since , we may choose a nonzero vector  such that .

Let

This subspace is -invariant, for we have  and

Hence,  is a linear operator on . Also,

and so  has minimal polynomial dividing . But since  is irreducible

and monic,  is quadratic. It follows that  is two-dimensional,

for if

then  on , which is not the case. Finally, the characteristic

polynomial  has degree  and is divisible by , whence 

 is irreducible. Thus,  satisfies condition 2). 

Now we can prove Schur's lemma for real operators.

Theorem 8.9 ( ) Every real linear operator Schur's lemma: real case

is almost upper triangularizable.

Proof. As with the complex case, it is simpler to proceed using matrices, by

showing that any  real matrix  is similar to an almost upper triangular

matrix. The result is clear for  or if  is the zero matrix.

For , the characteristic polynomial  of  has degree  and is divisible

by the minimal polynomial . If  is linear then  is

diagonal. If  then  is similar to an upper triangular matrix

with diagonal elements  and if  with  then  is

similar to a diagonal matrix with diagonal entries  and . Finally, if

 is irreducible then the result still holds.

Assume for the purposes of induction that any square matrix of size less than

 is almost upper triangularizable. We wish to show that the same is true

for any  matrix . We may assume that .

If  has an eigenvector , then let . If not, then according to

Theorem 8.8, there is a pair of vectors  for which  is
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two-dimensional and -invariant and the characteristic and minimal

polynomials of  are equal and irreducible. Let  be a complement of . If

dim  then let  be an ordered basis for  and if

dim  then let  be an ordered basis for . In

either case,  is similar to a matrix of the form

block

where  has size  or  has size , with irreducible quadratic

minimal polynomial. Also,  has size , where  or .

Hence, the induction hypothesis applies to  and there exists an invertible

matrix  for which

is almost upper triangular. Hence, if

block

then  is invertible and

is almost upper triangular. This completes the proof. 

Unitary Triangularizability

Although we have not yet discussed inner product spaces and orthonormal

bases, the reader is no doubt familiar with these concepts. So let us mention that

when  is a real or complex inner product space, then if an operator  on  can

be triangularized (or almost triangularized) using an ordered basis , it can also

be triangularized (or almost triangularized) using an  ordered basisorthonormal

.

To see this, suppose we apply the Gram–Schmidt orthogonalization process to

. The resulting ordered orthonormal basis  has

the property that

for all . Since  is upper triangular, that is,

for all , it follows that
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and so the matrix  is also upper triangular. (A similar argument holds in the

almost upper triangular case.)

A linear operator  is  if there is an orderedunitarily upper triangularizable

orthonormal basis with respect to which  is upper triangular. Accordingly,

when  is an inner product space, we can replace the term “upper

triangularizable” with “unitarily upper triangularizable” in Schur's lemma. (A

similar statement holds for almost upper triangular matrices.)

Diagonalizable Operators

A linear operator  is  if there is an ordered basis  fordiagonalizable

which  is diagonal. In the case of an algebraically closed field, we have seen

that all operators are upper triangularizable. However, even for such fields, not

all operators are diagonalizable.

Our first characterization of diagonalizability amounts to little more than the

definitions of the concepts involved.

Theorem 8.10 An operator  is diagonalizable if and only if there is a

basis for  that consists entirely of eigenvectors of , that is, if and only if

where  are the  eigenvalues of . distinct

Diagonalizability can also be characterized via minimal polynomials. Suppose

that  is diagonalizable and that  is a basis for  consisting of

eigenvectors of . Let  be a list of the  eigenvalues of . Thendistinct

each basis vector  is an eigenvector for one of these eigenvalues and so

for all basis vectors . Hence, if

then  and so . But every eigenvalue  is a root of the

minimal polynomial of  and so , whence .

Conversely, if the minimal polynomial of  is a product of distinct linear factors,

then the primary decomposition of  looks like

where
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By Theorem 8.10,  is diagonalizable. We have established the following result.

Theorem 8.11 A linear operator  on a finite-dimensional vector space

is diagonalizable if and only if its minimal polynomial is the product of distinct

linear factors. 

Projections

We have met the following type of operator before.

Definition Let . The linear operator  defined by

where  and  is called  on   . projection along

The following theorem describes projection operators.

Theorem 8.12

1) Let  be projection on  along . Then

 a) , im ker

 b) im ker

 c) im

 Note that the last condition says that a vector is in the image of  if and

only if it is  by .fixed

2) Conversely, if  has the property that

im ker  and im

then  is projection on  along . im ker

Projection operators play a major role in the spectral theory of linear operators,

which we will discuss in Chapter 10. Now we turn to some of the basic

properties of these operators.

Theorem 8.13 A linear operator  is a projection if and only if it is

idempotent, that is, if and only if .

Proof. If  is projection on  along  then for any  and ,

and so . Conversely, suppose that  is idempotent. If im ker

then  and so

Hence . Moreover, if  thenim ker
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ker im

and so . Finally,  and so . Hence,ker im im

 is projection on  along . im ker

The Algebra of Projections

If  is projection on  along  then  is idempotent, since

Hence,  is also a projection. Since  and ker im im

ker , it follows that  is projection on  along .

Orthogonal Projections

Definition The projections  are , written , iforthogonal

.

Note that  if and only if

im imker ker and 

The following example shows that it is not enough to have  in the

definition of orthogonality. In fact, it is possible for  and yet  is not

even a projection.

Example 8.1 Let  and let

Thus,  is the diagonal,  is the -axis and  is the -axis in . (The reader

may wish to draw pictures in .  Using the notation  for the projection on

 along , we have

From this we deduce that if  and  are projections, it may happen that both

products  and  are projections, but that they are not equal.

We leave it to the reader to show that  (which is a projection), but

that  is not a projection. Thus, it may also happen that  is a

projection but that  is not a projection. 

If  and  are projections, it does not necessarily follow that ,  or 

is a projection. Let us consider these one by one.
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The Sum of Projections

The sum  is a projection if and only if

or

(8.5)

Of course, this holds if , that is, if . We contend that the

converse is also true, namely, that (8.5) implies that .

Multiplying (8.5) on the left by  and on the right by  gives the pair of

equations

Hence  which together with (8.5) gives . Therefore, if

char  then  and therefore , that is, . We have proven

that  is a projection if and only if  (assuming that  has

characteristic different from ).

Now suppose that  is a projection. To determine , suppose thatker

Applying  and noting that  and , we get . Similarly,

 and so . But the reverse inclusion isker ker ker

obvious and so

ker ker ker

As to the image of , we have

im im im

and so . But  implies that im im im im ker

and so the sum is direct and

im im im

For the reverse inequality, if , where  and  thenim im

and so . Let us summarize.im

Theorem 8.14 Let  be projections where  is a vector space over a

field of characteristic . Then  is a projection if and only if , in

which case  is projection on  along . im im ker ker
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The Difference of Projections

Let  and  be projections. The difference  is a projection if and only if

is a projection. Hence, we may apply the previous theorem to deduce that 

is a projection if and only if

or, equivalently,

Moreover, in this case,  is projection on  along .ker im

Theorem 8.14 also implies that

im im im imker

and

ker ker ker kerim

Theorem 8.15 Let  be projections where  is a vector space over a

field of characteristic 2. Then  is a projection if and only if

in which case  is projection on  along . im imker ker

The Product of Projections

Finally, let us consider the product  of two projections.

Theorem 8.16 Let  be projections. If  and  commute, that is, if

 then  is a projection. In this case,  is projection on

im im  along . (Example 8.1 shows that the converseker ker

may be false.)

Proof. If  then

and so  is a projection. To find the image of , observe that if 

then

and so . Similarly  and soim im

im im im

For the reverse inclusion, if  thenim im
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and so . Hence,im

im im im

Next, we observe that if  then  and so .ker ker

Hence,

ker ker

Moreover, if  thenker ker

and so . Thus,ker

ker ker ker

We should remark that the sum above need not be direct. For example, if 

then . ker ker

Resolutions of the Identity

If  is a projection then

 and 

Let us generalize this to more than two projections.

Definition If  are mutually orthogonal projections, that is,  for

 and if

where  is the identity operator then we refer to this sum as a resolution of the

identity.

There is a connection between the resolutions of the identity map on  and the

decomposition of . In general, if the linear operators  on  satisfy

then for any  we have

im im

and so

im im

However, the sum need not be direct. The next theorem describes when the sum

is direct.
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Theorem 8.17 Resolutions of the identity correspond to direct sum

decompositions of  in the following sense:

1) If  is a resolution of the identity then

im im

and  is projection on  alongim

ker im

2) Conversely, suppose that

If  is projection on  along the direct sum of the other subspaces

then  is a resolution of the identity.

Pro  To prove 1) suppose that  is a resolution of the identity.of.

Then as we have seen

im im

To see that the sum is direct, if

then applying  gives  for all . Hence, the sum is direct.

Finally, we have

im im im ker

which implies that

ker im

To prove part 2), observe that for ,

im ker

and similarly . Hence, . Also, if im ker

where  then

and so  is a resolution of the identity. 



172 Advanced Linear Algebra

Spectral Resolutions

Let us try to do something similar to Theorem 8.17 for an arbitrary linear

operator  on  (rather than just the identity ). Suppose that  can be resolved

as follows

where  is a resolution of the identity and . Then

im im

Moreover, if  then  and soim

Hence, . But the reverse is also true, since the equation im

is

or

But since , we deduce that  for  and soim

im

Thus,  and we can conclude thatim

that is,  is diagonalizable. The converse also holds, for if  is the direct sum of

the eigenspaces of  and if  is projection on  along the direct sum of the

other eigenspaces then

But for any , we have

and so

Theorem 8.18 A linear operator  is diagonalizable if and only if it

can be written in the form

(8.6)

where the 's are distinct and  is a resolution of the identity.

In this case,  is the spectrum of  and the projections  satisfy
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im  and ker

Equation (8.6) is referred to as the  of . spectral resolution

Projections and Invariance

There is a connection between projections and invariant subspaces. Suppose that

 is a -invariant subspace of  and let  be any projection onto  (along any

complement of ). Then for any , we have  and so .

Hence,  is fixed by , that is

Thus . Conversely, if  then for any , we have ,

whence

and so  is fixed by , from which it follows that . In other words, 

is -invariant.

Theorem 8.19 Let . A subspace  of  is -invariant if and only if

for some projection  on . 

We also have the following relationship between projections and reducing pairs.

Theorem 8.20 Let . Then a linear operator  is reduced by

the pair  if and only if , where  is projection on  along .

Proof. Suppose first that , where  is projection on  along . For

 we have

and so  fixes , which implies that . Hence  is invariant under .

Also, for 

and so . Hence,  is invariant under .ker

Conversely, suppose that  reduces . The projection operator  fixes

vectors in  and sends vectors in  to . Hence, for  and  we have

and
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which imply that . 

Exercises

1. Let  be the  matrix all of whose entries are equal to . Find the

minimal polynomial and characteristic polynomial of  and the

eigenvalues.

2. A linear operator  is said to be  if its minimalnonderogatory

polynomial is equal to its characteristic polynomial. Prove that  is

nonderogatory if and only if  is a cyclic module.

3. Prove that the eigenvalues of a matrix do not form a complete set of

invariants under similarity.

4. Show that  is invertible if and only if  is not an eigenvalue of .

5. Let  be an  matrix over a field  that contains all roots of the

characteristic polynomial of . Prove that  is the product of thedet

eigenvalues of , counting multiplicity.

6. Show that if  is an eigenvalue of  then  is an eigenvalue of , for

any polynomial . Also, if  then  is an eigenvalue for .

7. An operator  is  if  for some positive .nilpotent

 a) Show that if  is nilpotent then the spectrum of  is .

 b) Find a nonnilpotent operator  with spectrum .

8. Show that if  then  and  have the same eigenvalues.

9. (Halmos)

 a) Find a linear operator  that is not idempotent but for which

.

 b) Find a linear operator  that is not idempotent but for which

.

 c) Prove that if  then  is idempotent.

10. An  is a linear operator  for which . If  is idempotentinvolution

what can you say about ? Construct a one-to-one correspondence

between the set of idempotents on  and the set of involutions.

11. Let  and suppose that  but

 and . Show that if  commutes with both  and 

then  for some scalar .

12. Suppose that  and  are matrices in Jordan canonical form. Prove that if

 and  are similar then they are the same except for the order of the

Jordan blocks. Hence, Jordan form is a canonical form for similarity (up to

order of the blocks).

13. Fix . Show that any complex matrix is similar to a matrix that looks

just like a Jordan matrix except that the entries that are equal to  are

replaced by entries with value , where  is any complex number. Thus, any

complex matrix is similar to a matrix that is “almost” diagonal. Hint:
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consider the fact that

14. Show that the Jordan canonical form is not very robust in the sense that a

small change in the entries of a matrix  may result in a large jump in the

entries of the Jordan form . : consider the matrixHint

What happens to the Jordan form of  as ?

15. Give an example of a complex nonreal matrix all of whose eigenvalues are

real. Show that any such matrix is similar to a real matrix. What about the

type of the invertible matrices that are used to bring the matrix to Jordan

form?

16. Let  be the Jordan form of a linear operator . For a given

Jordan block of  let  be the subspace of  spanned by the basis

vectors of  associated with that block.

 a) Show that  has a single eigenvalue  with geometric multiplicity .

In other words, there is essentially only one eigenvector (up to scalar

multiple) associated with each Jordan block. Hence, the geometric

multiplicity of  for  is the number of Jordan blocks for . Show that

the algebraic multiplicity is the sum of the dimensions of the Jordan

blocks associated with .

 b) Show that the number of Jordan blocks in  is the maximum number

of linearly independent eigenvectors of .

 c) What can you say about the Jordan blocks if the algebraic multiplicity

of every eigenvalue is equal to its geometric multiplicity?

17. Assume that the base field  is algebraically closed. Then assuming that the

eigenvalues of  are known, it is possible to determine the Jordan form 

of a matrix  by looking at the rank of various matrix powers. A matrix 

is  if  for some . The smallest such exponent isnilpotent

called the .index of nilpotence

 a) Let  be a single Jordan block of size . Show that

 is nilpotent of index . Thus,  is the smallest integer for

which .rk

 Now let  be a matrix in Jordan form but possessing only one eigenvalue

.

 b) Show that  is nilpotent. Let  be its index of nilpotence. Show

that  is the maximum size of the Jordan blocks of  and that

rk  is the number of Jordan blocks in  of maximum size.

 c) Show that  is equal to  times the number of Jordanrk

blocks of maximum size plus the number of Jordan blocks of size one

less than the maximum.
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 d) Show that the sequence  for  uniquelyrk

determines the number and size of all of the Jordan blocks in , that is,

it uniquely determines  up to the order of the blocks.

 e) Now let  be an arbitrary Jordan matrix. If  is an eigenvalue for 

show that the sequence  for  where  is therk

first integer for which  uniquelyrk rk

determines  up to the order of the blocks.

 f) Prove that for any matrix  with spectrum  the sequence

rk  for  and  where  is the first

integer for which  uniquely determinesrk rk

the Jordan matrix  for  up to the order of the blocks.

18. Let .

 a) If all the roots of the characteristic polynomial of  lie in  prove that

 is similar to its transpose . Hint: Let  be the matrix

that has 's on the diagonal that moves up from left to right and 's

elsewhere. Let  be a Jordan block of the same size as . Show that

.

 b) Let . Let  be a field containing . Show that if  and

 are similar over , that is, if  where  then

 and  are also similar over , that is, there exists  for

which . : consider the equation  as aHint

homogeneous system of linear equations with coefficients in . Does it

have a solution? Where?

 c) Show that any matrix is similar to its transpose.

19. Prove Theorem 8.8 using the complexification of .

The Trace of a Matrix

20. Let  be an  matrix over a field . The  of , denoted by tr ,trace

is the sum of the elements on the main diagonal of . Verify the following

statements:

 a) A , for tr tr

 b) tr tr tr

 c) tr tr

 d) Prove that . Find an example totr tr tr

show that  may not equal .tr tr

 e) The trace is an invariant under similarity

 f) If  is algebraically closed then the trace of  is the sum of the

eigenvalues of .

 Formulate a definition of the trace of a linear operator, show that it is well-

defined and relate this concept to the eigenvalues of the operator.
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21. Use the concept of the trace of a matrix, as defined in the previous exercise,

to prove that there are no matrices ,  for which

22. Let  be a function with the following properties. For all

matrices   and ,

 1) A

 2) 

 3) 

 Show that there exists  for which tr , for all

.

Simultaneous Diagonalizability

23. A pair of linear operators  is  ifsimultaneously diagonalizable

there is an ordered basis  for  for which  and  are both diagonal,

that is,  is an ordered basis of eigenvectors for both  and . Prove that

two diagonalizable operators  and  are simultaneously diagonalizable if

and only if they commute, that is, . : If  then theHint

eigenspaces of  are invariant under .

Common Eigenvectors

It is often of interest to know whether a family

of linear operators on  has a , that is, common eigenvector a single vector

 that is an eigenvector for every operator in  (the corresponding

eigenvalues may be different for each operator, however).

A commuting family  of operators is a family in which each pair of operators

commutes, that is,  implies . We say that a subspace  of  is

-invariant if it is -invariant for every .

24. Let . Prove that if  and  commute then every eigenspace of 

is -invariant. Thus, if  is a commuting family then every eigenspace of

any member of  is -invariant.

25. Let  be a family of operators in  with the property that each operator

in  has a full set of eigenvalues in the base field , that is, the

characteristic polynomial splits over . Prove that if  is a commuting

family then  has a common eigenvector .

26. What do the real matrices

 and 

have to do with the issue of common eigenvectors?
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Geršgorin Disks

It is generally impossible to determine precisely the eigenvalues of a given

complex operator or matrix or if  then the characteristic, f

equation has degree  and cannot in general be solved. As a result, the

approximation of eigenvalues is big business. Here we consider one aspect of

this approximation problem, which also has some interesting theoretical

consequences.

Let . Comparing and suppose that  where 

th rows gives

which can also be written in the form

If  has the property that  for all , we have

and thus

(8.7)

The right-hand side is the sum of the absolute values of all entries in the th row

of   the diagonal entry . This sum is the thexcept deleted absolute

row sum of . The inequality (8.7) says that, in the complex plane, the

eigenvalue  lies in the disk centered at the diagonal entry  with radius equal

to . This disk

GR

is called the th row ofGeršgorin row disk for the  . The union of all of the

Geršgorin row disks is called the Geršgorin row region for .

Since there is no way to know in general which is the index  for which

, the best we can say in general is that the eigenvalues of  lie in the

union of all Geršgorin row disks, that is, in the Geršgorin row region of .
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Similar definitions can be made for columns and since a matrix has the same

eigenvalues as its transpose, we can say that the eigenvalues of  lie in the

Geršgorin column region of .   of a matrixThe Geršgorin region

 is the intersection of Geršgorin row region and the Geršgorin the 

column region and we can say that Geršgorinall eigenvalues of  lie in the 

region of . In symbols, .

27. Find and sketch the Geršgorin region and the eigenvalues for the matrix

28. A matrix  is  if for each diagonally dominant

and it is  if strict inequality holds. Prove thatstrictly diagonally dominant

if  is strictly diagonally dominant then it is invertible.

29. Find a matrix  that is diagonally dominant but not invertible.

30. Find a matrix  that is invertible but not strictly diagonally

dominant.



Chapter 9

Real and Complex Inner Product Spaces

We now turn to a discussion of real and complex vector spaces that have an

additional function defined on them, called an , as described in theinner product

upcoming definition. Thus, in this chapter,  will denote either the real or

complex field. If  is a complex number then the complex conjugate of  is

denoted by .

Definition Let  be a vector space over  or . An inner product

on  is a function  with the following properties:

1)  For all , the inner product  is real and( )Positive definiteness

 and 

2) For  : ( )Conjugate symmetry

For : ( )Symmetry

3)  For all  and ( )Linearity in the first coordinate

A real (or complex) vector space , together with an inner product, is called a

real complex inner product space (or ) . 

We will study bilinear forms also called  on vector spaces overinner products

fields other than  or  in Chapter 11. Note that property 1) implies that the

quantity  is always real, even if  is a complex vector space.

Combining properties 2) and 3), we get, in the complex case
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This is referred to as  in the second coordinate. Thus, aconjugate linearity

complex inner product is linear in its first coordinate and conjugate linear in its

second coordinate. This is often described by saying that the inner product is

sesquilinear. (Sesqui means “one and a half times.”  In the real case ( ),

the inner product is linear in both coordinates—a property referred to as

bilinearity.

Example 9.1

) The vector space  is an inner product space under the standard inner

product dot product, or , defined by

The inner product space  is often called -dimensional Euclidean

space.

2) The vector space  is an inner product space under the standard inner

product defined by

This inner product space is often called .-dimensional unitary space

3) The vector space  of all continuous complex-valued functions on the

closed interval  is a complex inner product space under the inner

product

a

b

dx

Example 9.2 One of the most important inner product spaces is the vector space

 of all real (or complex) sequences  with the property that ,

under the inner product

Of course, for this inner product to make sense, the sum on the right must

converge. To see this, note that if  then

and so
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which gives

We leave it to the reader to verify that  is an inner product space. 

The following simple result is quite useful and easy to prove.

Lemma 9.1 If  is an inner product space and  for all 

then . 

Note that a vector subspace  of an inner product space  is also an inner

product space under the restriction of the inner product of  to .

Norm and Distance

If  is an inner product space, the , or  of  is defined bynorm length

(9.1)

A vector  is a  if . Here are the basic properties of the norm.unit vector

Theorem 9.2

1)  and  if and only if .

2)  for all  

3)  For all ,( )The Cauchy-Schwarz inequality

with equality if and only if one of  and  is a scalar multiple of the other.

4)  For all ( )The triangle inequality

with equality if and only if one of  and  is a scalar multiple of the other.

5) For all 

6) For all 

7)  For all ( )The parallelogram law

Proof. We prove only Cauchy-Schwarz and the triangle inequality. For Cauchy-

Schwarz, if either  or  is zero the result follows, so assume that .

Then, for any scalar ,
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Choosing  makes the value in the square brackets equal to 

and so

which is equivalent to the Cauchy-Schwarz inequality. Furthermore, equality

holds if and only if , that is, if and only if , which is

equivalent to  and  being scalar multiples of one another.

To prove the triangle inequality, the Cauchy-Schwarz inequality gives

from which the triangle inequality follows. The proof of the statement

concerning equality is left to the reader. 

Any vector space , together with a function  that satisfies

properties 1), 2) and 4) of Theorem 9.2, is called a . (Andnormed linear space

the function  is called a .  Thus, any inner product space is a normednorm

linear space, under the norm given by (9.1).

It is interesting to observe that the inner product on  can be recovered from the

norm.

Theorem 9.3 ( )The polarization identities

1) If  is a real inner product space, then

2) If  is a complex inner product space, then

The formulas in Theorem 9.3 are known as the .polarization identities

The norm can be used to define the distance between any two vectors in an

inner product space.
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Definition Let  be an inner product space. The   between anydistance

two vectors  and  in  is

(9.2)

Here are the basic properties of distance.

Theorem 9.4

1)  and  if and only if 

2) ( )Symmetry

3) ( )The triangle inequality

Any nonempty set , together with a function  that satisfies the

properties of Theorem 9.4, is called a  and the function  is calledmetric space

a  on . Thus, any inner product space is a metric space under the metricmetric

(9.2).

Before continuing, we should make a few remarks about our goals in this and

the next chapter. The presence of an inner product (and hence a metric) raises a

host of topological issues related to the notion of convergence. We say that a

sequence  of vectors in an inner product space  to  ifconverges

lim

that is, if

lim

Some of the more important concepts related to convergence are closedness and

closures, completeness and the continuity of linear operators and linear

functionals.

In the finite-dimensional case, the situation is very straightforward: all

subspaces are closed, all inner product spaces are complete and all linear

operators and functionals are continuous. However, in the infinite-dimensional

case, things are not as simple.

Our goals in this chapter and the next are to describe some of the basic

properties of inner product spaces—both finite and infinite-dimensional—and

then discuss certain special types of operators (normal, unitary and self-adjoint)

in the finite-dimensional case only. To achieve the latter goal as rapidly as

possible, we will postpone a discussion of topological properties until Chapter
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13. This means that we must state some results only for the finite-dimensional

case in this chapter, deferring the infinite-dimensional case to Chapter 13.

Isometries

An isomorphism of vector spaces preserves the vector space operations. The

corresponding concept for inner product spaces is the following.

Definition Let  and  be inner product spaces and let .

1)  is an  if it preserves the inner product, that is, ifisometry

for all .

2) A bijective isometry is called an . When isometric isomorphism

is a bijective isometry, we say that  and  are isometrically

isomorphic.

It is not hard to show that an isometry is injective and so it is an isometric

isomorphism provided it is also surjective. Moreover, if

dim dim

injectivity implies surjectivity and so the concepts of isometry and isometric

isomorphism are equivalent. On the other hand, the following example shows

that this is not the case for infinite-dimensional inner product spaces.

Example 9.3 Let  be defined by

(This is the .  Then  is an isometry, but it is clearly notright shift operator

surjective.

Theorem 9.5 A linear transformation  is an isometry if and only if

it preserves the norm, that is, if and only if

for all .

Proof. Clearly, an isometry preserves the norm. The converse follows from the

polarization identities. In the real case, we have
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and so  is an isometry. The complex case is similar. 

The next result points out one of the main differences between real and complex

inner product spaces.

Theorem 9.6 Let  be an inner product space and let .

1) If  for all   then .

2) If  is a complex inner product space and  for all  then

.

3) Part 2  does not hold in general for real inner product spaces.

Proof. Part 1) follows directly from Lemma 9.1. As for part 2), let ,

for  and . Then

Setting  gives

and setting  gives

These two equations imply that  for all  and so  by

part 1). As for part 3), rotation by  in the real plane  has the property that

 for all , yet  is not zero. 

Orthogonality

The presence of an inner product allows us to define the concept of

orthogonality.

Definition Let  be an inner product space.

1) Two vectors  are , written , if .orthogonal

2) Two subsets  are , written , if  for allorthogonal

 and .
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3) The  of a subset  is the setorthogonal complement

The following result is easily proved.

Theorem 9.7 Let  be an inner product space.

1) The orthogonal complement  of any subset  is a subspace of .

2) For any subspace  of , . 

Orthogonal and Orthonormal Sets

Definition A nonempty set  of vectors in an inner product

space is said to be an  if  for all . If, inorthogonal set

addition, each vector  is a unit vector, the set  is an . Thus,orthonormal set

a set is orthonormal if

for all , where  is the Kronecker delta function. 

Of course, given any nonzero vector , we may obtain a unit vector  by

multiplying  by the reciprocal of its norm

Thus, it is a simple matter to construct an orthonormal set from an orthogonal

set of nonzero vectors.

Note that if  then

and the converse holds if .

Theorem 9.8 Any orthogonal set of nonzero vectors in  is linearly

independent.

Proof. Let  be an orthogonal set of nonzero vectors and

suppose that

Then, for any ,

and so , for all . Hence,  is linearly independent. 
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Definition A  in an inner product space  is called amaximal orthonormal set

Hilbert basis for . 

Zorn's lemma can be used to show that any nontrivial inner product space has a

Hilbert basis. We leave the details to the reader.

Extreme care must be taken here not to confuse the concepts of a basis for a

vector space and a Hilbert basis for an inner product space. To avoid confusion,

a vector space basis, that is, a maximal linearly independent set of vectors, is

referred to as a . An orthonormal  basis will be called anHamel basis Hamel

orthonormal basis, to distinguish it from a Hilbert basis.

The following example shows that, in general, the two concepts of basis are not

the same.

Example 9.4 Let  and let  be the set of all vectors of the form

where  has a  in the th coordinate and 's elsewhere. Clearly,  is an

orthonormal set. Moreover, it is maximal. For if  has the property

that  then

for all  and so . Hence, no nonzero vector  is orthogonal to .

This shows that  is a Hilbert basis for the inner product space .

On the other hand, the vector space span of  is the subspace  of all

sequences in  that have finite support, that is, have only a finite number of

nonzero terms and since , we see that  is not a Hamelspan

basis for the vector space . 

We will show in Chapter 13 that all Hilbert bases for an inner product space

have the same cardinality and so we can define the  of anHilbert dimension

inner product space to be that cardinality. Once again, to avoid confusion, the

cardinality of any Hamel basis for  is referred to as the  ofHamel dimension

. The Hamel dimension is, in general, not equal to the Hilbert dimension.

However, as we will now show, they are equal when either dimension is finite.

Theorem 9.9 Let  be an inner product space.

1)  If  is a linearly( )Gram–Schmidt orthogonalization

independent sequence in , then there is an orthogonal sequence

 in  for which

span span

for all .
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2) If  is finite then  has a Hilbert basis of size  and all Hilbertdim

bases for  have size  .

3) If  has a finite Hilbert basis of size , then .dim

Proof. To prove part 1), first let . Once the orthogonal set 

of nonzero vectors has been chosen so that

span span

the next vector  is chosen by setting

and requiring that  be orthogonal to each  for , that is,

or, finally,

for all .

For part 2), applying the Gram–Schmidt orthogonalization process to a Hamel

basis gives a Hilbert basis of the same size . Moreover, if  has a Hilbert basis

of size greater than , it must also have a Hamel basis of size greater than ,

which is not possible. Finally, if  has a Hilbert basis  of size less than  then

 can be extended to a proper superset  that is also linearly independent. The

Gram–Schmidt process applied to  gives a proper superset of  that is

orthonormal, which is not possible. Hence, all Hilbert bases have size .

For part 3), suppose that . Since a Hilbert basis  of size  isdim

linearly independent, we can adjoin a new vector to  to get a linearly

independent set of size . Applying the Gram–Schmidt process to this set

gives an orthonormal set that properly contains , which is not possible. 

For reference, let us state the Gram–Schmidt orthogonalization process

separately and give an example of its use.

Theorem 9.10 The Gram–Schmidt orthogonalization process( ) If

 is a sequence of linearly independent vectors in an inner

product space , then the sequence  defined by
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is an orthogonal sequence in  with the property that

span span

for all . 

Of course, from the orthogonal sequence , we get the orthonormal sequence

, where .

Example 9.5 Consider the inner product space  of real polynomials, with

inner product defined by

Applying the Gram–Schmidt process to the sequence 

gives

3

4
3

3

and so on. The polynomials in this sequence are (at least up to multiplicative

constants) the . Legendre polynomials

Orthonormal bases have a great advantage over arbitrary bases. From a

computational point of view, if  is a basis for  then each

 has the form

In general, however, determining the coordinates  requires solving a system of

linear equations of size .

On the other hand, if  is an orthonormal basis for and

then the coefficients are quite easily computed:
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Even if  is not a basis (but just an orthonormal set), we can

still consider the expansion

Proof of the following characterization of orthonormal (Hamel) bases is left to

the reader.

Theorem 9.11 Let  be an orthonormal set of vectors in a

finite-dimensional inner product space . For any , the Fourier

expansion with respect to of    is

In this case,  holds for all , that isBessel's inequality

Moreover, the following are equivalent:

1) The set  is an orthonormal basis for .

2) Every vector is equal to its Fourier expansion, that is, for all 

3)  holds for all , that isBessel's identity

4)  holds for all , that isParseval's identity

The Projection Theorem and Best Approximations

We have seen that if  is a subspace of an inner product space  then

. This raises the question of whether or not the orthogonal

complement  is a vector space complement of , that is, whether or not

.

If  is a finite-dimensional subspace of , the answer is yes, but for infinite-

dimensional subspaces,  must have the topological property of being .complete

Hence, in accordance with our goals in this chapter, we will postpone a

discussion of the general case to Chapter 13, contenting ourselves here with an

example to show that, in general, .

Example 9.6 As in Example 9.4, let  and let  be the subspace of all

sequences of finite support, that is,  is spanned by the vectors

where  has a  in the th coordinate and s elsewhere. If  then
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 for all  and so . Therefore, . However,

As the next theorem shows, in the finite-dimensional case, orthogonal

complements are also vector space complements. This theorem is often called

the , for reasons that will become apparent when we discussprojection theorem

projection operators. (We will discuss the projection theorem in the infinite-

dimensional case in Chapter 13.

Theorem 9.12 The projection theorem( ) If  is a finite-dimensional subspace

of an inner product space  (which need not be finite-dimensional) then

Proof. Let  be an orthonormal basis for . For each ,

consider the Fourier expansion

with respect to . We may write

where . Moreover, , since

Hence . We have already observed that  and so

.

According to the proof of the projection theorem, the component of  that lies in

 is just the Fourier expansion of  with respect to any orthonormal basis  for

.

Best Approximations

The projection theorem implies that if  where  and 

then  is the element of  that is  to , that is,  is the closest best

approximation to  from within . For if  then since  we have

 and so

It follows that  is smallest when . Also, note that  is the unique

vector in  for which . Thus, we can say that the best approximation

to  from within  is the unique vector  for which  and that

this vector is the Fourier expansion  of .
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Orthogonal Direct Sums

Definition Let  be an inner product space and let  be subspaces of

. Then  is the  of , writtenorthogonal direct sum

if

1) 

2)  for 

In general, to say that the orthogonal direct sum  of subspaces

exists is to say that the direct sum  exists and that 2) holds. 

Theorem 9.12 states that , for any finite-dimensional subspace  of

a vector space . The following simple result is very useful.

Theorem 9.13 Let  be an inner product space. The following are equivalent.

1) 

2)  and 

3)  and 

Proof. Suppose 1) holds. Then  and , which implies that

. But if  then  for   and so

Hence  and , which implies that . Hence, , which

gives 2). Of course, 2) implies 3). Finally, if 3) holds then , which

implies that  and so 1) holds. 

Theorem 9.14 Let  be an inner product space.

1) If  and  is a subspace of  thendim

dim dim dim

2) If  is a finite-dimensional subspace of  then

3) If  is a  of  and  thensubset dim span

span

Proof. Since , we have , whichdim dim dim

proves part 1). As for part 2), it is clear that . On the other hand, if

 then by the projection theorem
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where  and . But  implies that  and so

, showing that . Therefore,  and . We leave the

proof of part 3) as an exercise. 

The Riesz Representation Theorem

If  is a vector in an inner product space  then the function 

defined by

is easily seen to be a linear functional on . The following theorem shows that

all linear functionals on a finite-dimensional inner product space  have this

form. (We will see in Chapter 13 that, in the infinite-dimensional case, all

continuous linear functionals on  have this form.

Theorem 9.15 The Riesz representation theorem( ) Let  be a finite-

dimensional inner product space and let  be a linear functional on .

Then there exists a unique vector  for which

(9.3)

for all . Let us call  the  for  and denote it by . (ThisRiesz vector

term and notation are not standard.)

Proof. If  is the zero functional, we may take , so let us assume that

. Then  has codimension  and soker

for . If  for some , then (9.3) holds if and only if

and since any  has the form  for  and , this is

equivalent to

or

Hence, we may take  and

Proof of uniqueness is left as an exercise. 

If , then it is easy to see that  where

 is the standard basis for .
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Using the Riesz representation theorem, we can define a map  by

setting , where  is the Riesz vector for . Since

for all , we have

and so  is . Since  is bijective, the map  is aconjugate linear

“conjugate isomorphism.”

Exercises

1. Verify the statement concerning equality in the triangle inequality.

2. Prove the parallelogram law.

3. Prove the Appolonius identity

4. Let  be an inner product space with basis . Show that the inner product

is uniquely defined by the values , for all .

5. Prove that two vectors  and  in a real inner product space  are

orthogonal if and only if

6. Show that an isometry is injective.

7. Use Zorn's lemma to show that any nontrivial inner product space has a

Hilbert basis.

8. Prove Bessel's inequality.

9. Prove that an orthonormal set  is a basis for  if and only if  , for all

.

10. Prove that an orthonormal set  is a basis for  if and only if Bessel's

identity holds for all , that is, if and only if

for all .

11. Prove that an orthonormal set  is a basis for  if and only if Parseval's

identity holds for all , that is, if and only if

for all .
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12. Let  and  be in . The Cauchy-Schwarz

inequality states that

Prove that we can do better:

13. Let  be a finite-dimensional inner product space. Prove that for any subset

 of , we have .span

14. Let  be the inner product of all polynomials of degree at most 3, under3

the inner product

Apply the Gram–Schmidt process to the basis , thereby

computing the first four  (at least up to aHermite polynomials

multiplicative constant).

15. Verify uniqueness in the Riesz representation theorem.

16. Let  be a complex inner product space and let  be a subspace of .

Suppose that  is a vector for which  for all

. Prove that .

17. If  and  are inner product spaces, consider the function on 

defined by

Is this an inner product on ?

18. A  over  or  is a vector space (over  or )normed vector space

together with a function  for which for all  and scalars 

we have

 a) 

 b) 

 c)  if and only if 

 If  is a real normed space (over ) and if the norm satisfies the

parallelogram law

prove that the polarization identity

defines an inner product on .

19. Let  be a subspace of an inner product space . Prove that each coset in

 contains exactly one vector that is orthogonal to .
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Extensions of Linear Functionals

20. Let  be a linear functional on a subspace  of a finite-dimensional inner

product space . Let . Suppose that  is an extension

of , that is, . What is the relationship between the Riesz vectors 

and ?

21. Let  be a linear functional on a subspace  of a finite-dimensional inner

product space  and let . Show that if  is an extensionker

of  then . Moreover, for each vector  there is

exactly one scalar  for which the linear functional  is an

extension of .

Positive Linear Functionals on 

A vector  in  is  (also called ), writtennonnegative positive

, if  for all . The vector  is , written , if  isstrictly positive

nonnegative but not . The set  of all strictly positive vectors in  is called

the  in  The vector  is , writtennonnegative orthant strongly positive

, if  for all . The set , of all strongly positive vectors in  is

the  in strongly positive orthant

Let  be a linear functional on a subspace  of . Then  is

nonnegative (also called ), written , ifpositive

for all  and  is , written , ifstrictly positive

for all 

22. Prove that a linear functional  on  is positive if and only if  and

strictly positive if and only if . If  is a subspace of  is it true

that a linear functional  on  is nonnegative if and only if ?

23. Let  be a strictly positive linear functional on a subspace  of .

Prove that  has a strictly positive extension to . Use the fact that if

, where

 all 

and  is a subspace of  then  contains a strongly positive vector.

24. If  is a real inner product space, then we can define an inner product on its

complexification  as follows (this is the same formula as for the ordinary

inner product on a complex vector space)

Show that
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where the norm on the left is induced by the inner product on  and the

norm on the right is induced by the inner product on .



Chapter 10

Structure Theory for Normal Operators

Throughout this chapter, all vector spaces are assumed to be finite-dimensional

unless otherwise noted.

The Adjoint of a Linear Operator

The purpose of this chapter is to study the structure of certain special types of

linear operators on finite-dimensional inner product spaces. In order to define

these operators, we introduce another type of adjoint (different from the

operator adjoint of Chapter 3).

Theorem 10.1 Let  and  be finite-dimensional inner product spaces over 

and let . Then there is a unique function , defined by

the condition

for all  and . This function is in  and is called the adjoint

of .

Proof.  For a fixed , consider the function  defined by

It is easy to verify that  is a linear functional on  and so, by the Riesz

representation theorem, there exists a unique vector  for which

for all . Hence, if  then

for all . This establishes the existence and uniqueness of . To show that

 is linear, observe that
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for all  and so

Hence . 

Here are some of the basic properties of the adjoint. Proof is left to the reader.

Theorem 10.2 Let and  be finite-dimensional inner product spaces. For

every  and 

1) 

2) 

3) 

4) If  then 

5) If  is invertible then 

6) If  and  then . 

Now let us relate the kernel and image of a linear transformation to those of its

adjoint.

Theorem 10.3 Let  where and  are finite-dimensional inner

product spaces. Then

1) ker im

2) im ker

3)  is injective if and only if  is surjective.

4)  is surjective if and only if  is injective.

5) ker ker

6) ker ker

7) im im

8) im im

9) If  is projection onto  along  then  is projection ontoim ker

ker  along .im

Proof. For part 1),

ker

 for all 

 for all 

im

Part 2) follows from part 1) by replacing  by  and taking orthogonal
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complements. Parts 3) and 4) follow from parts 1) and 2). For part 5), it is clear

that  implies that . For the converse, we have

Part 6) follows from part 5) by replacing  with . We leave parts 7)–9) for the

reader.

The Operator Adjoint and the Hilbert Space Adjoint

We should make some remarks about the relationship between the operator

adjoint  of , as defined in Chapter 3 and the adjoint  that we have just

defined, which is sometimes called the . In the first place,Hilbert space adjoint

if  then  and  have different domains and ranges

but

These maps are shown in Figure 10.1, where  and  are

the conjugate linear maps defined by the conditions

for all  and  and

for all  and , and whose existence is guaranteed by the Riesz

representation theorem.

V
*

W

V W
x

* *

Figure 10.1

The map  defined by
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is linear. Moreover, for all  and 

and so . Hence, the relationship between  and  is

The functions  are like “change of variables” functions from linear functionals

to vectors, and we can say, loosely speaking, that  does to Riesz vectors what

 does to the corresponding linear functional.

In Chapter 3, we showed that the matrix of the operator adjoint  is the

transpose of the matrix of the map . For Hilbert space adjoints, the situation is

slightly different (due to the conjugate linearity of the inner product). Suppose

that  is an ordered orthonormal basis for  and

 is an ordered orthonormal basis for . Then

and so  and  are conjugate transposes. If  is a matrix over

, let us write the conjugate transpose as

Theorem 10.4 Let , where  and  are finite-dimensional inner

product spaces.

1) The operator adjoint  and the Hilbert space adjoint  are related by

where  maps a linear functional  to its Riesz vector .

2) If  and  are ordered  for  and , respectively, thenorthonormal bases

In words, the matrix of the adjoint  is the conjugate transpose of the

matrix of . 

Unitary Diagonalizability

Recall that a linear operator  on a finite-dimensional vector space  is

diagonalizable if and only if  has a basis consisting entirely of eigenvectors of

, or equivalently,  can be written as a direct sum of the eigenspaces of 
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Of course, each eigenspace  has an orthonormal basis , but the union of

these bases, while certainly a basis for , need not be orthonormal.

Definition Let  be a finite-dimensional inner product space and let .

If there is an orthonormal basis  for  for which  is a diagonal matrix, we

say that  is  when  is complex and unitarily diagonalizable orthogonally

diagonalizable when  is real. 

For simplicity in exposition, we will tend to use the term unitarily

diagonalizable for both cases. It is clear that the following statements are

equivalent:

1)  is unitarily diagonalizable

2) There is an orthonormal basis for  consisting entirely of eigenvectors of 

3)  can be written as an orthogonal direct sum of eigenspaces

Since unitarily diagonalizable operators are so well behaved, it is natural to seek

a characterization of such operators. Remarkably, there is a simple one.

Let us first suppose that  is unitarily diagonalizable and that  is an ordered

orthonormal basis of eigenvectors for . Then the matrix  is diagonal

diag

and so

diag

Clearly,  and  commute. Hence,  and  also commute, that is

It is a surprising fact that the converse also holds on a  inner productcomplex

space, that is, if  and  commute then  is unitarily diagonalizable.

(Something similar holds for real inner product spaces, as we will see.)

Normal Operators

It is clear from the preceding discussion that the following concept is key.

Definition A linear operator  on an inner product space  is  if itnormal

commutes with its adjoint

Normal operators have some very nice properties.
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Theorem 10.5 Let  be the set of normal operators on a finite-dimensional

inner product space . Then  satisfies the following properties:

1) ( )Closure under linear combinations

2) ( )Closure under multiplication, under a commutivity requirement

3) ( )Closure under inverses

,  invertible

4) ( )Closure under polynomials

 for any 

Moreover, if  then

5) 

6) 

7) The minimal polynomial of  is a product of distinct irreducible monic

polynomials.

8) 

9) Let  and  be submodules of , whose orders are relatively prime real

polynomials. Then .

10) If  and  are distinct eigenvalues of  then .

Proof. We leave parts 1)–4) for the reader. Normality implies that

and so part 5) follows. For part 6) let . Then  has the property that

and so . (We will discuss this property of being  in detailself-adjoint

later.) Now we can easily prove part 6) for . For if  for  then

and so . Continuing in this way gives . Now, if 

for , then the normality of  implies that

and so . Hence

and so .
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For part 7), suppose that

where  are distinct, irreducible and monic. If  then for

any

where . Hence, since  is also normal, part 6)

implies that

for all  and so , which is false since the polynomial

 has degree less than that of . Hence,  for all .

For part 8), using part 5) we have

For part 9), let  and . Then there are realann ann

polynomials  and  for which . If  and

 then since  implies that , we have

Hence, . For part 10), we have for  and 

and since  we get . 

Special Types of Normal Operators

Before discussing the structure of normal operators, we want to introduce some

special types of normal operators that will play an important role in the theory.

Definition Let  be an inner product space and let .

1)  is  (also called  in the complex case andself-adjoint Hermitian

symmetric in the real case), if
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2)  is called  in the complex case and  inskew-Hermitian skew-symmetric

the real case, if

3)  is called  in the complex case and  in the real case if unitary orthogonal

is invertible and

There are also matrix versions of these definitions, obtained simply by replacing

the operator  by a matrix . In the finite-dimensional case, we have seen that

for any ordered orthonormal basis  of  and so if  is normal then

which implies that the matrix  of  is normal. The converse holds as well. In

fact, we can say that  is normal (respectively: Hermitian, symmetric, skew-

Hermitian, unitary, orthogonal) if and only if any matrix that represents , with

respect to an ordered  basis , is normal (respectively: Hermitian,orthonormal

symmetric, skew-Hermitian, unitary, orthogonal).

In some sense, square complex matrices are a generalization of complex

numbers. Also, the adjoint (conjugate transpose) of a matrix seems to be a

generalization of the complex conjugate. In looking for a tighter analogy—one

that will lead to some useful mnemonics, we could consider just the diagonal

matrices, but this is a bit too tight. The next logical choice is the normal

operators.

Among the complex numbers, there are some special subsets: the real numbers,

the positive numbers and the numbers on the unit circle. We will soon see that a

normal operator is self-adjoint if and only if its complex eigenvalues are all real.

This would suggest that the analog of the set of real numbers is the set of self-

adjoint operators. Also, we will see that a normal operator is unitary if and only

if all of its eigenvalues have norm , so numbers on the unit circle seem to

correspond to the set of unitary operators. Of course, this is just an analogy.

Self-Adjoint Operators

Let us consider some properties of self-adjoint operators. The quadratic form

associated with the linear operator  is the function  defined by

We have seen that in a  inner product space  if and only if complex

but this does not hold, in general, for real inner product spaces. However, it

does hold for symmetric operators on a real inner product space.
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Theorem 10.6 Let  be the set of self-adjoint operators on a finite-dimensional

inner product space . Then  satisfies the following properties:

1) ( )Closure under addition

2) ( )Closure under real scalar multiplication

3) ( )Closure under multiplication if the factors commute

4) ( )Closure under inverses

,  invertible

5) ( )Closure under real polynomials

 for any 

6) A complex operator  is Hermitian if and only if  is real for all

.

7) If  or if  and  is symmetric then  if and only if 

8) If  is self-adjoint, then the characteristic polynomial of  splits over  and

so all complex eigenvalues are real.

Proof. For part 6), if  is Hermitian then

and so  is real. Conversely, if  then

and so  for all , whence , which shows

that  is Hermitian.

As for part 7), the first case ( ) is just Theorem 9.6 so we need only

consider the real case, for which

and so .
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For part 8), if  is Hermitian ( ) and  then

is real by part 5) and so  must be real. If  is symmetric ( ) , we must be

a bit careful, since if  is a complex root of , it does not follow that

 for some . However, we can proceed as follows. Let  be

represented by the matrix , with respect to some ordered basis for . Then

. Now,  is a real symmetric matrix, but can be thought of as a

complex Hermitian matrix that happens to have real entries. As such, it

represents a Hermitian linear operator on the complex space  and so, by what

we have just shown, all (complex) roots of its characteristic polynomial are real.

But the characteristic polynomial of  is the same, whether we think of  as a

real or a complex matrix and so the result follows. 

Unitary Operators and Isometries

We now turn to the basic properties of unitary operators. These are the

workhorse operators, in that a unitary operator is precisely a normal operator

that maps orthonormal bases to orthonormal bases.

Note that  is unitary if and only if

for all .

Theorem 10.7 Let  be the set of unitary operators on a finite-dimensional

inner product space . Then  satisfies the following properties:

1) ( )Closure under scalar multiplication by complex numbers of norm 

 and 

2) ( )Closure under multiplication

3) ( )Closure under inverses

4)  is unitary/orthogonal if and only it is an isometric isomorphism.

5)  is unitary/orthogonal if and only if it takes an orthonormal basis to an

orthonormal basis.

6) If  is unitary/orthogonal then the eigenvalues of  have absolute value .

Proof. We leave the proofs of 1)–3) to the reader. For part 4), a

unitary/orthogonal map is injective and since the range and domain have the

same finite dimension, it is also surjective. Moreover, for a bijective linear map

, we have
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 is an isometry  for all 

 for all 

 for all 

 is unitary/orthogonal

For part 5), suppose that  is unitary/orthogonal and that  is an

orthonormal basis for . Then

and so  is an orthonormal basis for . Conversely, suppose that  and

 are orthonormal bases for . Then

Using the conjugate linearity/bilinearity of the inner product, we get

 and so  is unitary/orthogonal.

For part 6), if  is unitary and  then

and so , which implies that . 

We also have the following theorem concerning unitary (and orthogonal)

matrices.

Theorem 10.8 Let  be an  matrix.

1) The following are equivalent:

 a)  is unitary

 b) The columns of  form an orthonormal set in .

 c) The rows of  form an orthonormal set in .

2) If  is unitary then . In particular, if  is orthogonal thendet

det .

Proof. The matrix  is unitary if and only if , which is equivalent to

saying that the rows of  are orthonormal. Similarly,  is unitary if and only if

, which is equivalent to saying that the columns of  are orthonormal.

As for part 2), we have

det det det det

from which the result follows. 

Unitary/orthogonal matrices play the role of change of basis matrices when we

restrict attention to orthonormal bases. Let us first note that if 



212 Advanced Linear Algebra

is an ordered orthonormal basis and

then

and so  if and only if .

We can now state the analog of Theorem 2.13.

Theorem 10.9 If we are given any two of the following:

1) A unitary/orthogonal  matrix .

2) An ordered orthonormal basis  for .

3) An ordered orthonormal basis  for .

then the third is uniquely determined by the equation

Unitary Similarity

We have seen that the change of basis formula for operators is given by

where  is an invertible matrix. What happens when the bases are orthonormal?

Definition Two complex matrices  and  are  (also calledunitarily similar

unitarily equivalent) if there exists a unitary matrix  for which

The equivalence classes associated with unitary similarity are called unitary

similarity classes orthogonally. Similarly, two real matrices  and  are 

similar orthogonally equivalent (also called ) if there exists an orthogonal

matrix  for which

The equivalence classes associated with orthogonal similarity are called

orthogonal similarity classes.

The analog of Theorem 2.19 is the following.

Theorem .10  Let  be an inner product space of dimension . Then two10

 matrices  and  are unitarily/orthogonally similar if and only if they

represent the same linear operator , but possibly with respect to

different ordered orthonormal bases. In this case,  and  represent exactly the
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same set of linear operators in , when we restrict attention to orthonormal

bases.

Proof. If  and  represent , that is, if

 and 

for ordered orthonormal bases  and  then

and according to Theorem 10.9,  is unitary/orthogonal. Hence,  and  are

unitarily/orthogonally similar.

Now suppose that  and  are unitarily/orthogonally similar, say

where  is unitary/orthogonal. Suppose also that  represents a linear operator

 for some ordered orthonormal basis , that is,

Theorem 10.9 implies that there is a unique ordered orthonormal basis  for 

for which . Hence

Hence,  also represents . By symmetry, we see that  and  represent the

same set of linear operators, under all possible ordered orthonormal bases. 

Unfortunately, canonical forms for unitary similarity are rather complicated and

not well discussed. We have shown in Chapter 8 that any complex matrix  is

unitarily similar to an upper triangular matrix, that is, that  is unitarily upper

triangularizable. (This is Schur's lemma.) However, just as in the nonunitary

case, upper triangular matrices do not form a canonical form for unitary

similarity. We will soon show that every complex normal matrix is unitarily

diagonalizable. However, we will not discuss canonical forms for unitary

similarity in this book, but instead refer the reader to the survey article [Sh].

Reflections

The following defines a very special type of unitary operator.

Definition For a nonzero , the unique operator  for which

is called a  or a . reflection Householder transformation



214 Advanced Linear Algebra

It is easy to verify that

Note also that if  is a reflection then  if and only if . For if

 and  then we can write  where  and so

which implies that , whence .

If  is reflection and we extend  to an ordered orthonormal basis  for  then

 is the matrix obtained from the identity matrix by replacing the 

entry by . Thus, we see that a reflection is unitary, Hermitian and idempotent

( ).

Theorem 10.11 Let  with . Then  is the unique

reflection sending  to , that is, .

Proof. If  then  and so

from which it follows that . As to uniqueness, suppose  is a

reflection for which . Since , we have  and so

which implies that .

Reflections can be used to characterize unitary operators.

Theorem 10.12 An operator  on a finite-dimensional inner product space  is

unitary (for ) or orthogonal (for ) if and only if it is a product of

reflections.

Proof. Since reflections are unitary (orthogonal) and the product of unitary

(orthogonal) operators is unitary, one direction is easy.

For the converse, let  be unitary. Let  be an orthonormal basis

for . Hence  is also an orthonormal basis for . We make repeated use of

the fact that . For example, if

then

and so Next, if is the identity on . 
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then

Also, we claim that . Since , it follows that

Hence

and so  is the identity on . Now let us generalize.

Assume that for , we have found reflections  for which

 is the identity on u . If

then

Also, we claim that  for all . Since  it

follows that

Hence

and so  is the identity on .

Thus, for  we have  and so . , as desired

The Structure of Normal Operators

We are now ready to consider the structure of a normal operator  on a finite-

dimensional inner product space. According to Theorem 10.5, the minimal
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polynomial of  has the form

where the 's are distinct monic irreducible polynomials.

If , then each  is linear. Theorem 8.11 then implies that  is

diagonalizable and

where  are the  eigenvalues of . Theorem 10.5 also tells usdistinct

that if  then  and so

This is equivalent to saying that  has an orthonormal basis of eigenvectors of

.

The converse is also true, that is, if  is an ordered orthonormal

basis of eigenvectors of  then

and so . It follows that

and so  is normal.

Theorem 10.13 (The structure theorem for normal operators: complex

case) Let  be a finite-dimensional complex inner product space. Then a linear

operator  on  is normal if and only if  has an orthonormal basis 

consisting entirely of eigenvectors of , that is

where  is the spectrum of . Put another way,  is normal if and

only if it is unitarily diagonalizable. 

Now let us consider the real case, which is more complex than the complex

case. However, we can take advantage of the corresponding result for ,

by using the complexification process (which we will review in a moment).

First, let us observe that when , the minimal polynomial of  is a product

of distinct real linear and real quadratic factors, say

where the 's are distinct and the 's are distinct real irreducible quadratics.
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Hence, according to part 9) of Theorem 10.5, the primary decomposition of 

has the form

where  is the spectrum of  and where

are -invariant subspaces. Accordingly, we can focus on the subspace

, upon which  is normal, with a minimal polynomial that

is the product of distinct irreducible quadratic factors.

Let us briefly review the complexification process. Recall that if  is a real

vector space, then the set

is a complex vector space under addition and scalar multiplication “borrowed”

from the field of complex numbers, that is,

Recall also that the complexification map  defined bycpx

cpx

is an injective linear transformation from the real vector space  to the real

version  of the complexification .

If  is a basis for  over , then the complexification of 

cpx

is a basis for the vector space  over  and so

dim dim

For any linear operator  on , we can define a linear operator  on  by

Note that

Also, if  is a real polynomial then .



218 Advanced Linear Algebra

For any ordered basis  of , we have

cpx

Hence, if a real matrix  represents a linear operator  on  then  also

represents the complexification of  on . In particular, the polynomial

det  is the characteristic polynomial of both  and 

If  is a real inner product space, then we can define an inner product on the

complexification  as follows (this is the same formula as for the ordinary

inner product on a complex vector space)

From this, it follows that if  then

and, in particular,  in  if and only if  in .

Next, we have , since

It follows that  is normal if and only if  is normal.

Now consider a normal linear operator  on a real vector space  and suppose

that the minimal polynomial  of  is the product of distinct irreducible

quadratic factors

Hence,  has distinct roots, all of which are nonreal, say

and since the characteristic polynomial  of  and  is a multiple of ,

these scalars are characteristic roots of .

Also, since  is real, it follows that
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and so . However, the eigenvalues  of  are roots of

 and so . Thus, .

Since  is the product of distinct  factors over , we deducelinear

immediately that  is diagonalizable. Hence,  has a basis of eigenvectors of

, that is,

Note also that since  is normal, these eigenspaces are orthogonal under the

inner product on .

Let us consider a particular eigenvalue pair  and  and the subspace .

(For convenience, we have dropped the subscript.) Suppose that  and

that

is an ordered orthonormal basis for . Then for any ,

and so

It follows that

which shows that  is an eigenvector for  associated with  and so

But the set  is easily seen to be linearly independent and so

dim dim . Using the same argument with  replaced by , we see that

this inequality is an equality. Hence  is an ordered orthonormal basis for .

It follows that

where

span
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is two-dimensional, because the eigenvectors  and  are

associated with distinct eigenvalues and are therefore linearly independent.

Hence,  is the orthogonal direct sum of -invariant two-dimensional

subspaces

where  and where each subspace  has the propertydim dim

that

and where the scalars  range over the distinct eigenvalues

of .

Now we wish to drop down to . For each , let span

be the subspace of  spanned by the real and imaginary parts of the

eigenvectors  and  that span . To see that  is two-

dimensional, consider its complexification

Since , we have

dim dim dim

(This can also be seen directly by applying  to the equation 

and solving the resulting pair of equations in  and .)

Next, we observe that if  and  with , then since  and

, we have  and so . Thus, .

In summary, if , then the subspaces  are two-dimensional, -

invariant and pairwise orthogonal, with matrix

It follows that  but since the dimensions of both sides are

equal, we have equality

Theorem 10.14 ( ) LetThe structure theorem for normal operators: real case

 be a finite-dimensional real inner product space. A linear operator  on  is

normal if and only if
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where  is the spectrum of  and each  is a two-dimensional -

invariant subspace for which there exists an ordered basis  for

which

for .

Proof. We need only show that if  has such a decomposition, then  is normal.

But since , it is clear that  is real normal. it

follows easily that  is real normal. 

The following theorem includes the structure theorems stated above for the real

and complex cases, along with some further refinements related to self-adjoint

and unitary/orthogonal operators.

Theorem 10.15 ( )The structure theorem for normal operators

1)  Let  be a finite-dimensional complex inner product( )Complex case

space. Then

 a) An operator  on  is normal if and only if  has an orthonormal

basis  consisting entirely of eigenvectors of , that is

where  is the spectrum of . Put another way,  is normal

if and only if it is unitarily diagonalizable.

 b) Among the normal operators, the Hermitian operators are precisely

those for which all complex eigenvalues are real.

 c) Among the normal operators, the unitary operators are precisely those

for which all eigenvalues have norm .

2)  Let  be a finite-dimensional real inner product space. Then( )Real case

 a) A linear operator  on  is normal if and only if

where  is the spectrum of  and each  is a two-

dimensional -invariant subspace for which there exists an ordered

basis  for which

for .

 b) Among the real normal operators, the symmetric operators are

precisely those for which there are no subspaces  in the
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decomposition of part 2b). Hence, an operator is symmetric if and only

if it is orthogonally diagonalizable.

 c) Among the real normal operators, the orthogonal operators are

precisely those for which the eigenvalues are equal to  and the

matrices  described in part 2a) have rows (and columns) of norm

, that is,

sin cos

cos sin

for some .

Proof. We have proved part 1a). As to part 1b), it is only necessary to look at

the matrix  of  with respect to a basis  consisting of eigenvectors for . This

matrix is diagonal and so it is Hermitian ( ) if and only if the diagonal

entries are real. Similarly,  is unitary ( ) if and only if the diagonal

entries have absolute value equal to .

We have proved part 2a). Parts 2b) and 2c) are seen to be true by looking at the

matrix , which is symmetric ( ) if and only if  is diagonal and

 is orthogonal if and only if  and the matrices  have orthonormal

rows.

Matrix Versions

We can formulate matrix versions of the structure theorem for normal operators.

Theorem 10.16 ( )The structure theorem for normal matrices

1) ( )Complex case

 a) A complex matrix  is normal if and only if there is a unitary matrix 

for which

diag

where  is the spectrum of . Put another way,  is normal

if and only if it is unitarily diagonalizable .

 b) A complex matrix  is Hermitian if and only if 1a) holds where all

eigenvalues  are real.

 c) A complex matrix  is unitary if and only if 1a) holds where all

eigenvalues  have norm .

2) ( )Real case

 a) A real matrix  is real normal if and only if there is an orthogonal

matrix  for which  has the block diagonal form

diag

 b) A real matrix  is symmetric if and only if there is an orthogonal

matrix  for which  has the block diagonal form
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diag

That is, a real matrix  is symmetric if and only if it is orthogonally

diagonalizable.

 c) A real matrix  is orthogonal if and only if there is an orthogonal

matrix  for which  has the block diagonal form

diag
sin cos sin cos

cos sin cos sin

for some . 

Orthogonal Projections

We now wish to characterize unitary diagonalizability in terms of projection

operators.

Definition Let . The projection map  on  along  is

called  onto . Put another way, a projection map  isorthogonal projection

an orthogonal projection if . im ker

Note that some care must be taken to avoid confusion between the term

orthogonal projection and the concept of projections that are orthogonal to each

other, that is, for which .

We saw in Chapter 8 that an operator  is a projection operator if and only if it

is idempotent. Here is the analogous characterization of orthogonal projections.

Theorem 10.17 Let  be a finite-dimensional inner product space. The

following are equivalent for an operator  on :

1)  is an orthogonal projection

2)  is idempotent and self-adjoint

3)  is idempotent and does not expand lengths, that is

for all .

Proof.  To see that 1) and 2) are equivalent, we have

im im

im im

im

 and 

 and 

ker ker

ker ker

ker

To prove that 1) implies 3), note that  where  and sinceker

 we have
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from which the result follows.

Now suppose that 3) holds. We know that  and wish toim ker

show that this sum is orthogonal. According to Theorem 9.13, it is sufficient to

show that . Let . Then since ,im imker ker ker

we have , where  and  and soker ker

Hence

which implies that  and hence that . Thus,  andker

so , as desired. im ker

Note that for an orthogonal projection , we have

Next we give some additional properties of orthogonal projections.

Theorem 10.18 Let  be an inner product space over a field of

characteristic . Let ,  and  be projections, each of which is

orthogonal. Then

1)  if and only if .

2)  is an orthogonal projection if and only if , in which case 

is projection on  along  .im im ker ker

3)  is an orthogonal projection if and only if  for all

.

4)  is an orthogonal projection if and only if

in which case  is projection on  along .im imker ker

5) If  then  is an orthogonal projection. In this case,  is

projection on  along .im im ker ker

6) a)  is orthogonal projection onto  along ker im

 b)  is orthogonal projection onto  along ker ker

 c)  is orthogonal projection onto  along im im

Proof. We prove only part 3). If the 's are orthogonal projections and if

 for all  then  for all  and so it is straightforward to

check that  and that . Hence,  is an orthogonal projection.

Conversely, suppose that  is an orthogonal projection and that  for aim

fixed . Then  and so
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which implies that  for . In other words,

im imker

Therefore,

for all , which shows that , that is, . 

For orthogonal projections  and , we can define a partial order by defining

 to be . it is easy to verify that this is a reflexive,im im

antisymmetric, transitive relation on the set of all orthogonal projections.

Furthermore, we have the following characterizations.

Theorem 10.19 The following statements are equivalent for orthogonal

projections  and :

1) 

2) 

3) 

4)  for all .

5) , for all .

Proof.  First, we show that 2) and 3) are equivalent. If 2) holds then

and so 3) holds. Similarly, 3) implies 2). Next, note that 4) and 5) are

equivalent, since

Now, 2) is equivalent to the statement that  fixes each element of , whichim

is equivalent to the statement that , which is 1). Hence, 1)–3) areim im

equivalent.

Finally, if 2) holds, then 3) also holds and so by Theorem 10.18, the difference

 is an orthogonal projection, from which it follows that

which is 5). Also, if 4) holds, then for any im , we have , where
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im  and . Then,ker

and so , that is, im . Hence, 1) holds. 

Orthogonal Resolutions of the Identity

Recall that resolutions of the identity

correspond to direct sum decompositions of the space . It is the mutual

orthogonality of the projections that gives the directness of the sum. If, in

addition, the projections are themselves orthogonal, then the direct sum is an

orthogonal sum.

Definition If  is a resolution of the identity and if each  is

orthogonal, then we say that  is an orthogonal resolution of

the identity.

The following theorem displays a correspondence between orthogonal direct

sum decompositions of  and orthogonal resolutions of the identity.

Theorem 10.20

1) If  is an orthogonal resolution of the identity then

im im

2) Conversely, if  and  is projection on  along

, where the hat ^ means that the corresponding

term is missing from the direct sum, then

is an orthogonal resolution of the identity.

Proof. To prove 1) suppose that  is an orthogonal resolution of

the identity. According to Theorem 8.17, we have

im im

However, since the 's are orthogonal, they are self-adjoint and so for ,

Hence

im im

For the converse, we know from Theorem 8.17 that  is a

resolution of the identity and we need only show that each  is an orthogonal
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projection. But this follows from the fact that

im im im im im ker

The Spectral Theorem

We can now characterize the normal (unitarily diagonalizable) operators on a

finite-dimensional complex inner product space using projections.

Theorem 10.21 The spectral theorem for normal operators( ) Let  be an

operator on a finite-dimensional complex inner product space . The following

statements are equivalent:

1)  is normal

2)  is unitarily diagonalizable, that is,

3)  has the orthogonal spectral resolution

(10.1)

where  and where  is an orthogonal resolution of

the identity.

Moreover, if  has the form (10.1), where the 's are distinct and the 's are

nonzero then the 's are the eigenvalues of  and  is the eigenspaceim

associated with .

Proof.  We have seen that 1) and 2) are equivalent. Suppose that  is unitarily

diagonalizable. Let  be orthogonal projection onto . Then any  can be

written as a sum of orthogonal eigenvectors

and so

Hence, 3) holds. Conversely, if (10.1) holds, we have

im im

But Theorem 8.18 implies that im  and so  is unitarily

diagonalizable.

In the real case, we have the following.

Theorem 10.22 The spectral theorem for self-adjoint operators( ) Let  be an

operator on a finite-dimensional real inner product space . The following

statements are equivalent:

1)  is self-adjoint
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2)  is orthogonally diagonalizable, that is,

3)  has the orthogonal spectral resolution

(10.2)

where  and  is an orthogonal resolution of the

identity.

Moreover, if  has the form (10.2), where the 's are distinct and the 's are

nonzero then the 's are the eigenvalues of  and  is the eigenspaceim

associated with . 

Spectral Resolutions and Functional Calculus

Let  be a linear operator on a finite-dimensional inner product space , and let

 have spectral resolution

Since  is idempotent, we have  for all . The mutual

orthogonality of the projections means that  for all  and so

More generally, for any polynomial  over , we have

Now, we can extend this further by defining, for  functionany

the linear operator  by setting

For example, we may define    and so on. Notice, however, that

since the spectral resolution of  is a  sum, we gain nothing (butfinite

convenience) by using functions other than polynomials, for we can always find

a polynomial  for which  for  and so

The study of the properties of functions of an operator  is referred to as the

functional calculus of .

According to the spectral theorem, if  is complex and  is normal then  is

a normal operator whose eigenvalues are . Similarly, if  is real and  is

self-adjoint then  is self-adjoint, with eigenvalues . Let us consider

some special cases of this construction.
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If  is a polynomial for which

for , then

and so we see that each projection  in the spectral resolution is a polynomial

function of .

If  is invertible then  for all  and so we may take , giving

as can easily be verified by direct calculation.

If  and if  is normal then each  is self-adjoint and so

Commutativity

The functional calculus can be applied to the study of the commutativity

properties of operators. Here are two simple examples.

Theorem 10.23 Let  be a finite-dimensional complex inner product space.

For , let us write  to denote the fact that  and  commute.

Let  and  have spectral resolutions

Then

1) For any , we have  if and only if   for all .

2)  if and only if , for all .

3) If  and  are injective functions,

then  if and only if .

Proof. The proof is based on the fact that if  and  are operators then 

implies that  for any polynomials  and , and hence

 for any functions  and .

For 1), it is clear that  for all  implies that . The converse follows

from the fact that  is a polynomial in . Part 2) is similar. For part 3), 

clearly implies . For the converse, let . Since  is

injective, the inverse function  is well-defined and
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. Thus,  is a function of . Similarly,  is a function of .

it follows that  implies . 

Theorem 10.24 Let  be a finite-dimensional complex inner product space and

let  and  be normal operators on . Then  and  commute if and only if they

have the form

where  and  are polynomials.

Proof.  If  and  are polynomials in  then they clearly commute. For the

converse, suppose that  and let

and

be the orthogonal spectral resolutions of  and . Then according to Theorem

10.23, . Now, let us choose any polynomial  with the property

that  are distinct. Since each  and  is self-adjoint, we may set

 and deduce (after some algebra) that

We also choose  and  so that  for all  and  for

all . Then

and similarly, . 

Positive Operators

One of the most important cases of the functional calculus is when .

First, we need some definitions. Recall that the quadratic form associated with a

linear operator  is

Definition A self-adjoint linear operator  is

1)  if  for all positive

2)  if  for all . positive definite

Theorem 10.25 A self-adjoint operator  on a finite-dimensional inner product

space is
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1) positive if and only if all of its eigenvalues are nonnegative

2) positive definite if and only if all of its eigenvalues are positive.

Proof. If  and  then

and so . Conversely, if all eigenvalues of  are nonnegative then we have

and since ,

and so  is positive. Part 2) is proved similarly. 

If  is a positive operator, with spectral resolution

then we may take the  of ,positive square root

where  is the nonnegative square root of .

It is clear that

and it is not hard to see that  is the only positive operator whose square is .

In other words, every positive operator has a unique positive square root.

Conversely, if  has a positive square root, that is, if , for some positive

operator  then  is positive. Hence, an operator  is positive if and only if it

has a positive square root.

If  is positive then  is self-adjoint and so

Conversely, if  for some operator  then  is positive, since it is clearly

self-adjoint and

Thus,  is positive if and only if it has the form  for some operator .

Here is an application of square roots.
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Theorem 10.26 If  and  are positive operators and  then  is

positive.

Proof.  Since  is a positive operator, it has a positive square root , which is

a polynomial in . A similar statement holds for . Therefore, since  and 

commute, so do  and . Hence,

Since  and  are self-adjoint and commute, their product is self-adjoint

and so  is positive. 

The Polar Decomposition of an Operator

It is well known that any nonzero complex number  can be written in the polar

form , where  is a positive number and  is real. We can do the same

for any nonzero linear operator  on a finite-dimensional complex inner product

space.

Theorem 10.27 Let  be a nonzero linear operator on a finite-dimensional

complex inner product space . Then

1) There exists a positive operator  and a unitary operator  for which

. Moreover,  is unique and if  is invertible then  is also unique.

2) There exists a positive operator  and a unitary operator  for which

. Moreover,  is unique and if  is invertible then  is also unique.

Proof.  Let us suppose for a moment that . Then

and so

Also, if  then

These equations give us a clue as to how to define  and .

Let us define  to be the unique positive square root of the positive operator

. Then

(10.3)

Let us define  on  byim

(10.4)

for all . Equation (10.3) shows that  implies that 

and so this definition of  on  is well-defined.im
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Moreover,  is an isometry on , since (10.3) givesim

Thus, if  is an orthonormal basis for , thenim

 is an orthonormal basis for .im im

Finally, we may extend both orthonormal bases to orthonormal bases for  and

then extend the definition of  to an isometry on , for which .

As for the uniqueness, we have seen that  must satisfy  and since 

has a unique positive square root, we deduce that  is uniquely defined. Finally,

if  is invertible then so is  since . Hence,  isker ker

uniquely determined by .

Part 2) can be proved by applying the previous theorem to the map , to get

where  is unitary. 

We leave it as an exercise to show that any unitary operator  has the form

, where  is a self-adjoint operator. This gives the following corollary.

Corollary 10.27 ( ) Let  be a nonzero linear operator on aPolar decomposition

finite-dimensional complex inner product space. Then there is a positive

operator  and a self-adjoint operator  for which  has the polar

decomposition

Moreover,  is unique and if  is invertible then  is also unique. 

Normal operators can be characterized using the polar decomposition.

Theorem 10.28 Let  be a polar decomposition of a nonzero linear

operator . Then  is normal if and only if .

Proof. Since

and

we see that  is normal if and only if
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or equivalently,

(10.5)

Now,  is a polynomial in  and  is a polynomial in  and so (10.5) holds if

and only if . 

Exercises

1. Let . If  is surjective, find a formula for the right inverse of 

in terms of . If  is injective, find a formula for the left inverse of  in

terms of . : Consider  and .Hint ker ker

2. Let  where  is a complex vector space and let

 and 

Show that  and  are self-adjoint and that

 and 

What can you say about the uniqueness of these representations of  and

?

3. Prove that all of the roots of the characteristic polynomial of a skew-

Hermitian matrix are pure imaginary.

4. Give an example of a normal operator that is neither self-adjoint nor

unitary.

5. Prove that if  for all , where  is complex then  is

normal.

6. a) Show that if  is a normal operator on a finite-dimensional inner

product space then , for some polynomial .

 b) Show that if  is normal and  then . In other words,

 commutes with all operators that commute with .

7. Show that a linear operator  on a finite-dimensional complex inner product

space  is normal if and only if whenever  is an invariant subspace under

, so is .

8. Let  be a finite-dimensional inner product space and let  be a normal

operator on .

 a) Prove that if  is idempotent then it is also self-adjoint.

 b) Prove that if  is nilpotent then .

 c) Prove that if  then  is idempotent.

9. Show that if  is a normal operator on a finite-dimensional complex inner

product space then the algebraic multiplicity is equal to the geometric

multiplicity for all eigenvalues of .

10. Show that two orthogonal projections  and  are orthogonal to each other

if and only if .im im

11. Let  be a normal operator and let  be any operator on . If the

eigenspaces of  are -invariant, show that  and  commute.
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12. Prove that if  and  are normal operators on a finite-dimensional inner

complex product space and if  for some operator  then .

13. Prove that if two normal  complex matrices are similar then they are

unitarily similar, that is, similar via a unitary matrix.

14. If  is a unitary operator on a complex inner product space, show that there

exists a self-adjoint operator  for which .

15. Show that a positive operator has a unique positive square root.

16. Let ,  be complex numbers, for . Construct a polynomial

 for which  for all .

17. Prove that if  has a square root, that is, if , for some positive

operator  then  is positive.

18. Prove that if  and if  is a positive operator that commutes with both

 and  then .

19. Does every self-adjoint operator on a finite-dimensional real inner product

space have a square root?

20. Let  be a linear operator on  and let  be the eigenvalues of ,

each one written a number of times equal to its algebraic multiplicity. Show

that

tr

where  is the trace. Show also that equality holds if and only if  istr

normal.

21. If  where  is a real inner product space, show that the Hilbert

space adjoint satisfies .



Part II—Topics



Chapter 11

Metric Vector Spaces: The Theory of

Bilinear Forms

In this chapter, we study vector spaces over arbitrary fields that have a bilinear

form defined upon them.

Unless otherwise mentioned, all vector spaces are assumed to be finite-

dimensional. The symbol  denotes an arbitrary field and  denotes a finite

field of size .

Symmetric, Skew-Symmetric and Alternate Forms

We begin with the basic definition.

Definition Let  be a vector space over . A mapping  is

called a  if it is a linear function of each coordinate, that is, ifbilinear form

and

A bilinear form is

1) ifsymmetric

for all  .

2)  (or ) ifskew-symmetric antisymmetric

for all .
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3)  (or ) ifalternate alternating

for all .

A bilinear form that is either symmetric, skew-symmetric, or alternate is

referred to as an  and a pair , where  is a vector spaceinner product

and  is an inner product on , is called a  or metric vector space inner

product space. If  is symmetric then  (or just ) is called an

orthogonal geometry over  and if  is alternate then  (or just ) is

called a  over . symplectic geometry

As an aside, the term , from the Greek for “intertwined” wassymplectic

introduced in 1939 by the famous mathematician Hermann Weyl in his book

The Classical Groups complex, as a substitute for the term . According to the

dictionary, symplectic means “relating to or being an intergrowth of two

different minerals.” An example is , which is marble spotted withophicalcite

green serpentine.

Example 11.1   is the four-dimensional real orthogonalMinkowski space 4

geometry  with inner product defined by

3 3

4 4

 for 

where  is the standard basis for . 4

As is traditional, when the inner product is understood, we will use the phrase

“let  be a metric vector space.”

The real inner products discussed in Chapter 9 are inner products in the present

sense and have the additional property of being —a notion thatpositive definite

does not even make sense if the base field is not ordered. Thus, a real inner

product space is an orthogonal geometry. On the other hand, the complex inner

products of Chapter 9, being sesquilinear, are not inner products in the present

sense. For this reason, we prefer to use the term  rather thanmetric vector space

inner product space.

If  is a vector subspace of a metric vector space  then  inherits the metric

structure from . With this structure, we refer to  as a  of .subspace

The concepts of being symmetric, skew-symmetric and alternate are not

independent. However, their relationship depends on the characteristic of the

base field , as do many other properties of metric vector spaces. In fact, the

next theorem tells us that we do not need to consider skew-symmetric forms per
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se, since skew-symmetry is always equivalent to either symmetry or

alternateness.

Theorem 11.1 Let  be a vector space over a field .

1) If  thenchar

symmetric skew-symmetric

alternate skew-symmetric

2) If  thenchar

alternate skew-symmetric

Also, the only form that is both alternate and symmetric is the zero form:

 for all .

Proof. First note that for any base field, if  is alternate then

Thus,

or

which shows that  is skew-symmetric. Thus, alternate always implies skew-

symmetric.

If  then  and so the definitions of symmetric and skew-char

symmetric are equivalent. This proves 1). If  and  is skew-char

symmetric, then for any , we have  or , which

implies that . Hence,  is alternate. Finally, if the form is alternate

and symmetric, then it is also skew-symmetric and so  for all

 and so  for all . 

Example 11.2 The standard inner product on , defined by

is symmetric, but not alternate, since
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The Matrix of a Bilinear Form

If  is an ordered basis for a metric vector space  then the form

 is completely determined by the  matrix of values

This is referred to as the   with respect to the orderedmatrix of the form

basis . We also refer to  as the   with respect to  and writematrix of

 when the space needs emphasis.

Observe that multiplication of the coordinate matrix of a vector by  produces

a vector of inner products, to wit, if  then

and

It follows that if  then

and this uniquely defines the matrix , that is, if  then

.

Notice also that a form is symmetric if and only if the matrix  is symmetric,

skew-symmetric if and only if  is skew-symmetric and alternate if and only

if  is skew-symmetric and has 's on the main diagonal. The latter type of

matrix is referred to as .alternate

Now let us see how the matrix of a form behaves with respect to a change of

basis. Let  be an ordered basis for . Recall from Chapter 2 that

the change of basis matrix , whose th column is , satisfies

Hence,
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and so

This prompts the following definition.

Definition Two matrices  are said to be  if therecongruent

exists an invertible matrix  for which

The equivalence classes under congruence are called . congruence classes

Let us summarize.

Theorem 11.2 If the matrix of a bilinear form on  with respect to an ordered

basis  is

then

Furthermore, if  is an ordered basis for  then

where  is the change of basis matrix from  to . 

We have shown that if two matrices represent the same bilinear form on , they

must be congruent. Conversely, congruent matrices represent the same bilinear

form on . For suppose that  represents a bilinear form on , with

respect to the ordered basis  and that

where  is nonsingular. We saw in Chapter 2 that there is an ordered basis  for

 with the property that

and so

Thus,  represents the same form with respect to .

Theorem 11.3 Two matrices  and  represent a bilinear form  on  if and

only if they are congruent, in which case they represent the same set of bilinear

forms on . 
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In view of the fact that congruent matrices have the same rank, we may define

the  of a bilinear form (or of ) to be the rank of any matrix that representsrank

that form.

The Discriminant of a Form

If  and  are congruent matrices then

det det det det

and so  and  differ by a square factor. The  of adet det discriminant

bilinear form is the set of all determinants of the matrices that represent the form

under all choices of ordered bases. Thus, if  for some matrix det

representing the form then the discriminant of the form is the set

Quadratic Forms

There is a close link between symmetric bilinear forms and another important

type of function defined on a vector space.

Definition A  on a vector space  is a map  with thequadratic form

following properties:

1) For all  

2) The map

is a (symmetric) bilinear form. 

Thus, every quadratic form  defines a symmetric bilinear form . On the

other hand, if  and if  is a symmetric bilinear form on  then wechar

can define a quadratic form  by

We leave it to the reader to verify that this is indeed a quadratic form. Moreover,

if  is defined from a bilinear form in this way then the bilinear form associated

with  is



Metric Vector Spaces: The Theory of Bilinear Forms 245

which is the original bilinear form. In other words, the maps  and

 are inverses and so there is a one-to-one correspondence between

symmetric bilinear forms on  and quadratic forms on . Put another way,

knowing the quadratic form is equivalent to knowing the corresponding bilinear

form.

Again assuming that , if  is an ordered basis for anchar

orthogonal geometry  and if the matrix of the symmetric form on  is

 then for ,

and so  is a homogeneous polynomial of degree 2 in the coordinates .

(The term “form” means —hence the term quadratichomogeneous polynomial

form.)

Orthogonality

As we will see, not all metric vector spaces behave as nicely as real inner

product spaces and this necessitates the introduction of a new set of terminology

to cover various types of behavior. (The base field  is the culprit, of course.)

The most striking differences stem from the possibility that  for a

nonzero vector .

The following terminology should be familiar.

Definition A vector  is  to a vector , written , if .orthogonal

A vector  is  to a subset  of , written , if orthogonal

for all . A subset  of  is  to a subset  of , written ,orthogonal

if  for all  and . The  of a subsetorthogonal complement

 of a metric vector space , denoted by , is the subspace

Note that regardless of whether the form is symmetric or alternate (and hence

skew-symmetric), orthogonality is a symmetric relation, that is,  implies

. Indeed, this is precisely why we restrict attention to these two types of

bilinear forms. We will have more to say about this issue momentarily.
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There are two types of degenerate behaviors that a vector may possess: It may

be orthogonal to itself or, worse yet, it may be orthogonal to  vector in .every

With respect to the former, we have the following terminology.

Definition Let  be a metric vector space.

1) A nonzero  is  (or ) if ; otherwise it isisotropic null

nonisotropic.

2)  is  (also called ) if it contains no isotropicnonisotropic anisotropic

vectors.

3)  is  if it contains at least one isotropic vector.isotropic

4)  is  (that is, symplectic) if all vectors in  aretotally isotropic

isotropic.

With respect to the latter (and more severe) form of degeneracy, we have the

following terminology.

Definition Let  be a metric vector space.

1) The set  of all degenerate vectors is called the  of  and writtenradical

rad

2)  is , or , if .nonsingular nondegenerate rad

3)  is , or , if .singular degenerate rad

4)  is  or  if . totally singular totally degenerate rad

Let us make a few remarks about these terms. Some of the above terminology is

not entirely standard, so care should be exercised in reading the literature. Also,

it is not hard to see that a metric vector space  is nonsingular if and only if the

matrix  is nonsingular, for any ordered basis .

If  is an isotropic vector then so is  for all . This can be expressed by

saying that the set  of isotropic vectors in  is a  in .cone

With respect to subspaces, to say that a subspace  of  is totally degenerate,

for example, means that  is totally degenerate as a metric vector space in its

own right and so each vector in  is orthogonal  , notto all other vectors in

necessarily in . In fact, we have

rad

where the symbols  and  refer to the orthogonal complements with

respect to  and , respectively.
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Example 11.3 Recall that  is the set of all ordered -tuples, whose

components come from the finite field . It is easy to see that the subspace

of  has the property that . Note also that  is nonsingular

and yet the subspace  is  singular. totally

The following result explains why we restrict attention to symmetric or alternate

forms (which includes skew-symmetric forms).

Theorem 11.4 Let  be a bilinear form on . Then orthogonality is a

symmetric relation, that is,

(11.1)

if and only if  is either symmetric or alternate, that is, if and only if  is a

metric vector space.

Proof. It is clear that (11.1) holds if  is symmetric. If  is alternate then it is

skew-symmetric and so (11.1) also holds. For the converse, assume that (11.1)

holds.

Let us introduce the notation  to mean that  and the notation

 to mean that  for all . For , let

Then  and so by (11.1) we have , that is,

From this we deduce that

 or  for all 

It follows that

 or  and (11.2)

Of course,  and so for all 

 or (11.3)

Now we can show that if  is not symmetric, it must be alternate. If  is not

symmetric, there exist  for which . Thus,  and ,

which implies by (11.3) that  and  are both isotropic. We wish to show that all

vectors in  are isotropic.
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According to (11.3), if , then  is isotropic. On the other hand, if 

then to see that  is also isotropic, we use the fact that if  and  are orthogonal

isotropic vectors, then  is also isotropic.

In particular, consider the vectors  and . We have seen that  is isotropic.

The fact that  implies  and  and so (11.2) gives  and

. Hence, . To see that  is isotropic, note that

and so . Hence, (11.3) implies that  is isotropic. Thus,  and

 are orthogonal isotropic vectors, and so  is also

isotropic.

Linear Functionals

Recall that the Riesz representation theorem says that for any linear functional 

on a finite-dimensional real or complex inner product space , there is a vector

, which we called the  for , that represents , in the senseRiesz vector

that

for all . A similar result holds for  metric vector spaces.nonsingular

Let  be a metric vector space over . Let  and consider the “inner

product on the right” map  defined by

This is easily seen to be a linear functional and so we can define a function

 by

The bilinearity of the form insures that  is linear and the kernel of  is

ker  for all 

Hence, if  is nonsingular then  and so  is injective.ker

Moreover, since , it follows that  is surjective and so  isdim dim

an isomorphism from  onto . This implies that every linear functional on 

has the form , for a unique . We have proved the Riesz representation

theorem for finite-dimensional nonsingular metric vector spaces.

Theorem 11.5 The Riesz representation theorem( ) Let  be a finite-

dimensional nonsingular metric vector space. The linear functional 

defined by
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where  for all , is an isomorphism from  to . It follows

that for each  there exists a unique vector  for which , that

is,

for all . 

The requirement that  be nonsingular is necessary. As a simple example, if 

is totally singular, then no nonzero linear functional could possibly be

represented by an inner product.

We would like to extend the Riesz representation theorem to the case of

subspaces of a metric vector space. The Riesz representation theorem applies to

nonsingular metric vector spaces. Thus, if  is a nonsingular subspace of , the

Riesz representation theorem applies to  and so all linear functionals on 

have the form of an inner product by a (unique) element of . This is nothing

new.

As long as  is nonsingular, even if  is singular, we can still say something

very useful. The reason is that any linear functional  can be extended to a

linear functional  on  (perhaps in many ways) and since  is nonsingular, the

extension  has the form of inner product by a vector in , that is,

for some . Hence,  also has this form, where its “Riesz vector” is an

element of , not necessarily . Here is the formal statement.

Theorem 11.6 Let  be a metric vector space and let  be a subspace of . If

either  or  is nonsingular, the linear transformation  defined by

where , is surjective. Hence, for any linear functional 

there is a (not necessarily unique) vector  for which .

Moreover, if  is nonsingular then  can be taken from , in which case it is

unique.

Orthogonal Complements and Orthogonal Direct Sums

If  is a subspace of a real inner product space, then the projection theorem says

that the orthogonal complement  of  is a true vector space complement of

, that is,

Hence, the term orthogonal  is justified. However, in general metriccomplement

vector spaces, an orthogonal complement may not be a vector space
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complement. In fact, Example 11.3 shows that we may have the opposite

extreme, that is, . As we will see, the orthogonal complement of  is a

true complement if and only if  is nonsingular.

Definition A metric vector space  is the  of theorthogonal direct sum

subspaces  and , written

if  and . 

In a real inner product space, if  then . However, in a metric

vector space in general, we may have a proper inclusion . (In fact, 

may be all of .)

Many nice properties of orthogonality in real inner product spaces do carry over

to  metric vector spaces. The next result shows that the restriction tononsingular

nonsingular spaces is not that severe.

Theorem 11.7 Let  be a metric vector space. Then

rad

where  is nonsingular and  is totally singular.rad

Proof. Ignoring the metric structure for a moment, we know that all subspaces

of a vector space, including , have a complement, say .rad rad

But  and so . To see that  is nonsingular, ifrad rad

rad  then  and so , which implies that

rad rad, that is, . Hence,  and  is

nonsingular.

Under the assumption of nonsingularity of , we get many nice properties, just

short of the projection theorem. The first property in the next theorem is key: It

says that if  is a subspace of a  space , then the orthogonalnonsingular

complement of  always has the “correct” dimension, even if it is not well

behaved with respect to its intersection with , that is,

dim dim dim

just as in the case of a real inner product space.

Theorem 11.8 Let  be a nonsingular metric vector space  and let  be any

subspace of . Then

1) dim dim dim

2) if  then 

3) 

4) rad rad

5)  is nonsingular if and only if  is nonsingular



Metric Vector Spaces: The Theory of Bilinear Forms 251

Proof. For part 1), the map  of Theorem 11.6 is surjective and

ker  for all 

Thus, the rank-plus-nullity theorem implies that

dim dim dim

However,  and so part 1) follows.dim dim

For part 2), we have using part 1)

dim dim

dim dim dim

dim dim

and so .

For part 3), part 1) implies that

dim dim dim

and

dim dim dim

and so . But  and so equality holds.dim dim

For part 4), we have

rad rad

and part 5) follows from part 4). 

The previous theorem cannot in general be strengthened. Consider the two-

dimensional metric vector space span  where

Let . Then . Now,  is nonsingular but  is singularspan span

and so 5) does not hold. Also,  and  and so 4) fails.rad rad

Finally,  and so 3) fails.

On the other hand, we should note that if  is singular, then so is , regardless

of whether  is singular or nonsingular. To see this, note that if  is singular

then there is a nonzero . Hence, rad  and so

rad , which implies that  is singular.

Now let us state the projection theorem for arbitrary metric vector spaces.
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Theorem 11.9 Let  be a subspace of a finite-dimensional metric vector space

. Then

if and only if  is nonsingular, that is, if and only if .

Proof. If  then by definition of orthogonal direct sum, we have

rad

and so  is nonsingular. Conversely, if  is nonsingular, then 

and so  exists. Now, the same proof used in part 1) of the previous

theorem works if  is nonsingular (even if  is singular). To wit, the map

 of Theorem 11.6 is surjective and

ker  for all 

Thus, the rank-plus-nullity theorem gives

dim dim dim

But  and sodim dim

dim dim dim dim

It follows that . 

Isometries

We now turn to a discussion of structure-preserving maps on metric vector

spaces.

Definition Let  and  be metric vector spaces. We use the same notation 

for the bilinear form on each space. A  linear map  is calledbijective

an  ifisometry

for all vectors  and  in . If an isometry exists from  to , we say that 

and  are  and write . It is evident that the set of allisometric

isometries from  to  forms a group under composition.

If  is a nonsingular orthogonal geometry, an isometry of  is called an

orthogonal transformation. The set  of all orthogonal transformations

on  is a group under composition, known as the  of .orthogonal group

If  is a nonsingular symplectic geometry, an isometry of  is called a

symplectic transformation. The set  of all symplectic transformations onSp

 is a group under composition, known as the  of . symplectic group
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Here are a few of the basic properties of isometries.

Theorem 11.10 Let  be a linear transformation between finite-

dimensional metric vector spaces  and .

1) Let  be a basis for . Then  is an isometry if and only if 

is bijective and

for all .

2) If  is orthogonal and  then  is an isometry if and only if it ischar

bijective and

for all .

3) Suppose that  is an isometry and  and . If

 then . In particular, if  is an isometry and

 then if  is -invariant, so is .

Proof. We prove part 3) only. To see that , if  and 

then since , we can write  for some  and so

whence . But since , we deduce thatdim dim

.

Hyperbolic Spaces

A special type of two-dimensional metric vector space plays an important role in

the structure theory of metric vector spaces.

Definition Let  be a metric vector space. If  have the property that

the ordered pair  is called a . Note that  if  ishyperbolic pair

an orthogonal geometry and  if  is symplectic. In either case, the

subspace  is called a  and any space of thespan hyperbolic plane

form

where each  is a hyperbolic plane, is called a . If  is ahyperbolic space

hyperbolic pair for  then we refer to the basis  for  as a

hyperbolic basis symplectic basis. (In the symplectic case, the usual term is .)

Note that any hyperbolic space  is nonsingular.
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In the orthogonal case, hyperbolic planes can be characterized by their degree of

isotropy, so-to-speak. (In the symplectic case, all spaces are totally isotropic by

definition.) Indeed, we leave it as an exercise to prove that a two-dimensional

nonsingular orthogonal geometry  is a hyperbolic plane if and only if 

contains exactly two one-dimensional totally isotropic (equivalently: totally

degenerate) subspaces. Put another way, the cone of isotropic vectors is the

union of two one-dimensional subspaces of .

Nonsingular Completions of a Subspace

Let  be a subspace of a nonsingular metric vector space . If  is singular, it

is of interest to find a  nonsingular extension of , that is, minimalminimal

nonsingular subspace of  containing . Such extensions of  are called

nonsingular completions of .

Theorem 11.11 ( ) Let  be a nonsingularNonsingular extension theorem

metric vector space over . We assume that  when  ischar

orthogonal.

1) Let  be a subspace of . For each isotropic vector , there is a

hyperbolic plane  contained in . Hence,  is anspan

extension of  containing .

2) Let  be a subspace of  and write  where  israd

nonsingular and  is a basis for . Then there is arad

hyperbolic space  with hyperbolic basis 

for which

is a nonsingular extension of , called a  of .nonsingular completion

Proof. For part 1), the nonsingularity of  implies that  and so 

is equivalent to . Hence, there is a vector  for which .

If  is symplectic then we can take . If  is orthogonal, let

. The conditions defining  as a hyperbolic pair are (since  is

isotropic)

and

Since , the first of these equations can be solved for  and since

char , the second can then be solved for . Thus, in either case, a vector

 exists for which  is a hyperbolic pair and .span

For part 2), we proceed by indution on . If  then  isdim rad

isotropic and . Hence, part 1) applied to  implies that there
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is a hyperbolic plane  for which  is an extension of span

containing . Hence, part 2) holds when .span rad

Let us assume that the result is true when  and assume thatdim rad

dim rad . Let

span

Then  is (still) isotropic and . Hence, we may apply part 1) to

the subspace  to deduce the existence of a hyperbolic plane

span  contained in .

Now, since  is nonsingular, we have

Since , it follows that . Thus, we may apply the

induction hypothesis to  as a subspace of the nonsingular , giving a space

containing . It follows that  is the desired extension

of . 

Note that if  is a nonsingular extension of  then

dim dim dim rad

Theorem 11.12 Let  be a nonsingular metric vector space and let  be a

subspace of . The following are equivalent:

1)  is a nonsingular completion of 

2)  is a minimal nonsingular extension of 

3)  is a nonsingular extension of  and

dim dim dim rad

Moreover, any two nonsingular completions of  are isomorphic.

Proof. If 1) holds and if  where  is nonsingular, then we may

apply the nonsingular extension theorem to  as a subspace of , to obtain a

nonsingular extension  of  for which

But  and  have the same dimension and so must be equal. Hence, .

Thus  is a minimal nonsingular extention of  and 2) holds. If 2) holds then

we have  where  is a nonsingular completion of . But the

minimality of  implies that  and so 3) holds. If 3) holds then again we

have . But  and so  is a nonsingulardim dim

completion of  and 1) holds.
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If  and  are nonsingular completions of

rad  then  and  are hyperbolic spaces of the same dimension

and are therefore isometric. It follows that  and  are isometric. 

Extending Isometries to Nonsingular Completions

Let  and  be isometric nonsingular metric vector spaces and let

rad  be a subspace of , with nonsingular completion . If

 is an isometry, then it is a simple matter to extend  to an

isometry  from  onto a nonsingular completion of . To see this, let

where  is nonsingular and  is a hyperbolic basis for .

Since  is a basis for , it follows that  is arad

basis for .rad

Now we complete  to getrad

where  has hyperbolic basis . To extend , simply

set  for all .

Theorem 11.13 Let  and  be isometric nonsingular metric vector spaces

and let   be a subspace of , with nonsingular completion . Any isometry

 can be extended to an isometry from  onto a nonsingular

completion of . 

The Witt Theorems: A Preview

There are two important theorems that are quite easy to prove in the case of real

inner product spaces, but require more work in the case of metric vector spaces

in general. Let  and  be nonsingular isometric metric vector spaces over a

field . We assume that  if  is orthogonal.char

The  says that if  is a subspace of  andWitt extension theorem

is an isometry, then  can be extended to an isometry from  to . The Witt

cancellation theorem says that if

and

then
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We will prove these theorems in both the orthogonal and symplectic cases later

in the chapter. For now, we simply want to show that it is easy to prove one

Witt theorem from the other.

Suppose that the Witt extension theorem holds and assume that

and

and . Then any isometry  can be extended to an isometry  from

 to . According to Theorem 11.10, we have  and so .

Hence, the Witt cancellation theorem holds.

Conversely, suppose that the Witt cancellation theorem holds and let

 be an isometry. Then we may extend  to a nonsingular

completion of . Hence, we may assume that  is nonsingular. Then

Since  is an isometry,  is also nonsingular and we can write

Since , Witt's cancellation theorem implies that . If

 is an isometry then the map  defined by

for  and  is an isometry that extends . Hence Witt's extension

theorem holds.

The Classification Problem for Metric Vector Spaces

The  for a class of metric vector spaces (such as theclassification problem

orthogonal or symplectic spaces) is the problem of determining when two metric

vector spaces in the class are isometric. The classification problem is considered

“solved,” at least in a theoretical sense, by finding a set of canonical forms or a

complete set of invariants for matrices under congruence.

To see why, suppose that  is an isometry and  is an

ordered basis for . Then  is an ordered basis for  and

Thus, the congruence class of matrices representing  is identical to the

congruence class of matrices representing .

Conversely, suppose that  and  are metric vector spaces with the same

congruence class of representing matrices. Then if  is an

ordered basis for , there is an ordered basis  for  for which
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Hence, the map  defined by  is an isometry from  to .

We have shown that two metric vector spaces are isometric if and only if they

have the same congruence class of representing matrices. Thus, we can

determine whether any two metric vector spaces are isometric by representing

each space with a matrix and determining if these matrices are congruent, using

a set of canonical forms or a set of complete invariants.

Symplectic Geometry

We now turn to a study of the structure of orthogonal and symplectic geometries

and their isometries. Since the study of the structure (and the structure itself) of

symplectic geometries is simpler than that of orthogonal geometries, we begin

with the symplectic case. The reader who is interested only in the orthogonal

case may omit this section.

Throughout this section, let  be a nonsingular symplectic geometry.

The Classification of Symplectic Geometries

Among the simplest types of metric vector spaces are those that possess an

orthogonal basis, that is, a basis  for which  when

. For in this case, we may write  as an orthogonal direct sum of one-

dimensional subspaces

span span

However, it is easy to see that a symplectic geometry  has an orthogonal basis

if and only if it is totally degenerate. For if  is an orthogonal basis for  then

 for  since the form is alternate and for  since the basis is

orthogonal. It follows that  is totally degenerate. Thus, no “interesting”

symplectic geometries have orthogonal bases.

Thus, in searching for an orthogonal decomposition of , we must look not at

one-dimensional subspaces, but at two-dimensional subspaces. Given a nonzero

, the nonsingularity of  implies that there must exist a vector  for

which . Replacing  by , we have

and

and so  is a hyperbolic plane and the matrix of  with respect tospan

the hyperbolic pair  is

Since  is nonsingular, we can write
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where  is also nonsingular. Hence, we may repeat the preceding

decomposition in , eventually obtaining an orthogonal decomposition of 

of the form

where each  is a hyperbolic plane. This proves the following structure

theorem for symplectic geometries.

Theorem 11.14

1) A symplectic geometry has an orthogonal basis if and only if it is totally

degenerate.

2) Any nonsingular symplectic geometry  is a hyperbolic space, that is,

where each  is a hyperbolic plane. Thus, there is a basis for  for which

the matrix of the form is

In particular, the dimenison of  is even.

3) Any symplectic geometry  has the form

rad

where  is a hyperbolic space and  is a totally degenerate space.rad

The rank of the form is  and  is uniquely determined up todim

isometry by its rank and its dimension. Put another way, up to isometry,

there is precisely one symplectic geometry of each rank and dimension. 

Symplectic forms are represented by alternate matrices, that is, skew-symmetric

matrices with zero diagonal. Moreover, according to Theorem 11.14, each

 alternate matrix is congruent to a matrix of the form

block

Since the rank of  is , no two such matrices are congruent.
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Theorem 11.15 The set of  matrices of the form  is a set of

canonical forms for alternate matrices under congruence. 

The previous theorems solve the classification problem for symplectic

geometries by stating that the rank and dimension of  form a complete set of

invariants under congruence and that the set of all matrices of the form 

is a set of canonical forms.

Witt's Extension and Cancellation Theorems

We now prove the Witt theorems for symplectic geometries.

Theorem 11.16 Witt's extension theorem( ) Let  and  be nonsingular

isometric symplectic geometries over a field . Suppose that  is a subspace of

 and

is an isometry. Then  can be extended to an isometry from  to .

Proof. According to Theorem 11.13, we can extend  to a nonsingular

completion of , so we may simply assume that  and  are nonsingular.

Hence,

and

To complete the extension of  to , we need only choose a hyperbolic basis

for  and a hyperbolic basis

for  and define the extension by setting  and . 

As a corollary to Witt's extension theorem, we have Witt's cancellation theorem.

Theorem 11.17 Witt's cancellation theorem( ) Let  and  be isometric

nonsingular symplectic geometries over a field . If

and

then
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The Structure of the Symplectic Group: Symplectic Transvections

To understand the nature of symplectic transformations on a nonsingular

symplectic geometry , we begin with the following definition.

Definition Let  be a nonsingular symplectic geometry over . Let  be

nonzero and let . The map  defined by

is called the  determined by  and . symplectic transvection

The first thing to notice about a symplectic transvection  is that if  then

 is the identity and if  then  is the identity precisely on the subspace

span , which is very large, in the sense of having codimension . Thus,

despite the name, symplectic transvections are not highly complex maps. On the

other hand, we should point out that since  is isotropic, the subspace  isspan

singular and . Hence,  is  a vectorspan span span span not

space complement of the space  upon which  is the identity. In otherspan

words, while we can write

span

where  and , we cannot say that .dim span span

Here are the basic properties of symplectic transvections.

Theorem 11.18 Let  be a symplectic transvection on . Then

1)  is a symplectic transformation.

2)  if and only if .

3) If  then . For ,  if and only if 

4) 

5) 

6) For any symplectic transformation ,

7) For ,

Note that if  is a subspace of  and if  is a symplectic transvection on 

then, by definition, . However, the map  can also be thought of as a

symplectic transvection on , defined by the same formula



262 Advanced Linear Algebra

where  can be any vector in . Moreover, for any  we have 

and so  is the identity on .

We now wish to prove that any symplectic transformation on a nonsingular

symplectic geometry  is the product of symplectic transvections. The proof is

not difficult, but it is a bit lengthy, so we break it up into parts. Our first goal is

to show that we can get from any hyperbolic pair to any other hyperbolic pair

using a product of symplectic transvections.

Let us say that two   and  are  if there is ahyperbolic pairs connected

product  of symplectic transvections that carries  to  and  to  and write

or just . It is clear that connectedness is an equivalence relation

on the set of hyperbolic pairs.

Theorem 11.19 Let  be a nonsingular symplectic geometry.

1) For every hyperbolic pair  and nonzero vector , there is a

vector  for which .

2) Any two hyperbolic pairs  and  with the same first coordinate

are connected.

3) Every pair  and  of hyperbolic pairs is connected.

Proof. For part 1), all we need to do is find a product  of symplectic

transvections for which , because an isometry maps hyperbolic pairs

to hyperbolic pairs and so we can simply set .

If  then  and

Taking  gives , as desired.

Now suppose that . If there is a vector  that is  orthogonal tonot

either  or , then by what we have just proved, there is a vector  such that

 and a vector  for which . Then transitivity

implies that .

But there is a nonzero vector  that is  orthogonal to either  or  sincenot

there is a linear functional  on  for which  and . But the

Riesz representation theorem implies that there is a nonzero vector  such that

 for all .

For part 2), suppose first that . Then  and since ,

we know that . Also,
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Taking  gives , as desired. If , then

 implies that  and  implies that

. It follows by transitivity that .

For part 3), parts 1) and 2) imply that there is a vector  for which

as desired. 

We can now show that the symplectic transvections generate the symplectic

group.

Theorem 11.20 Every symplectic transformation on a nonsingular symplectic

geometry  is the product of symplectic transvections.

Proof. Let  be a symplectic transformation on . We proceed by induction on

dim , which must be even.

If  then  is a hyperbolic plane and by the previousspan

theorem, there is a product  of symplectic transvections on  for which

Hence . This proves the result if . Assume that the result holds for

all dimensions less than  and let .dim

Let  be a hyperbolic plane in  and writespan

where  is a nonsingular symplectic geometry of degree less than .

Since  is a hyperbolic pair, we again have a product  of symplectic

transvections on  for which

Thus  on the subspace . Also, since  is invariant under , so is

.

If we restrict  to , we may apply the induction hypotheses to get a

product  of symplectic transvections on  for which  on .

Hence,  on  and  on . But since the vectors that define the

symplectic transvections making up  belong to , we may extend  to  and

 on . Thus,  on  as well, and we have  on .
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The Structure of Orthogonal Geometries: Orthogonal Bases

We have seen that no interesting (not totally degenerate) symplectic geometries

have orthgonal bases. In contradistinction to the symplectic case, almost all

interesting orthogonal geometries  have orthogonal bases. The only problem

arises when  is also symplectic and .char

In particular, if  is orthogonal and symplectic, then it cannot possess an

orthogonal basis unless it is totally degenerate. When , the onlychar

orthogonal, symplectic geometries are the totally degenerate ones, since the

matrix of  with respect to any basis is both symmetric and skew-symmetric,

with zeros on the main diagonal and so must be the zero matrix. However, when

char , such a nonzero matrix exists, for example

Thus, there are orthogonal, symplectic geometries that are not totally degenerate

when . These geometries do not have orthogonal bases and we willchar

not consider them further.

Once we have an orthogonal basis for , the natural question is: “How close

can we come to obtaining an orthonormal basis?” Clearly, this is possible only if

 is nonsingular. As we will see, the answer to this question depends on the

nature of the base field, and is different for algebraically closed fields, the real

field and finite fields—the three cases that we will consider in this book.

We should mention that, even when  has an orthogonal basis, the Gram–

Schmidt orthogonalization process may not apply, because even nonsingular

orthogonal geometries may have isotropic vectors, and so division by  is

problematic.

For example, consider an orthogonal hyperbolic plane  andspan

assume that . Thus,  and  are isotropic and .char

The vector  cannot be extended to an orthogonal basis, as would be possible

for a real inner product space, using the Gram–Schmidt process, for it is easy to

see that the set  cannot be an orthogonal basis for any .

However,  has an orthogonal basis, namely, .

Orthogonal Bases

Let  be an orthogonal geometry. If  is also symplectic, then  has an

orthogonal basis if and only if it is totally degenerate. Moreover, when

char , these are the only types of orthogonal, symplectic geometries.
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Now, let  be an orthogonal geometry that is not symplectic. Hence,  contains

a nonisotropic vector , the subspace  is nonsingular andspan

span

where . If  is not symplectic, then we may decompose  tospan

get

span span

This process may be continued until we reach a decomposition

span span

where  is symplectic as well as orthogonal. (This includes the case .)

If , then  is totally degenerate. Thus, if  and  ischar

any basis for , the union  is an orthogonal basis for . Hence, when

char , any orthogonal geometry has an orthogonal basis.

When , we must work a bit harder. Since  is symplectic, it has thechar

form  where  is a hyperbolic space and sorad

span span

where  is totally degenerate and the  are nonisotropic. If 

and  is a hyperbolic basis for  and 

is an ordered basis for  then the union

is an ordered basis for . However, we can do better.

The following lemma says that, when , a pair of isotropic basischar

vectors (such as  can be replaced by a pair of nonisotropic basis vectors,

in the presence of a nonisotropic basis vector (such as ).

Lemma 11.21 Suppose that . Let  be a three-dimensionalchar

orthogonal geometry with ordered basis  for which the matrix of

the form with respect to  is

where . Then the vectors
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form an orthogonal basis of consisting of nonisotropic vectors.

Proof. It is straightforward to check that the vectors  and  are linearly

independent and mutually orthogonal. Details are left to the reader. 

Using the previous lemma, we can replace the vectors  with the

nonisotropic vectors  and still have an ordered basis

for . The replacement process can be repeated until the isotropic vectors are

absorbed, leaving an orthogonal basis of nonisotropic vectors.

Let us summarize.

Theorem 11.22 Let  be an orthogonal geometry.

1) If  is also symplectic, then  has an orthogonal basis if and only if it is

totally degenerate. (When , these are the only types ofchar

orthogonal, symplectic geometries. When , orthogonal,char

symplectic geometries that are not totally degenerate do exist.)

2) If  is not symplectic, then  has an ordered orthogonal basis

 for which  and .

Hence,  has the diagonal form

with  nonzero entries and  zeros on the diagonal. rk

As a corollary, we get a nice theorem about symmetric matrices.

Corollary 11.23 Let  be a symmetric matrix that is not alternate if

char . Then  is congruent to a diagonal matrix. 

The Classification of Orthogonal Geometries: Canonical

Forms

We now want to consider the question of improving upon Theorem 11.22. The

diagonal matrices of this theorem do not form a set of canonical forms for

congruence. In fact, if  are nonzero scalars, then the matrix of  with
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respect to the basis  is

(11.5)

Hence,  and  are congruent diagonal matrices, and by a simple change of

basis, we can multiply any diagonal entry by a nonzero square in .

The determination of a set of canonical forms for symmetric (nonalternate when

char ) matrices under congruence depends on the properties of the base

field. Our plan is to consider three types of base fields: algebraically closed

fields, the real field  and finite fields. Here is a preview of the forthcoming

results.

1) When the base field  is algebraically closed, there is an ordered basis 

for which

If  is nonsingular, then  is an identity matrix and  has an

orthonormal basis.

2) Over the real base field, there is an ordered basis  for which

Z
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3) If  is a finite field, there is an ordered basis  for which

Z

where  is unique up to multiplication by a square and if  thenchar

we can take .

Now let us turn to the details.

Algebraically Closed Fields

If  is algebraically closed then for every , the polynomial  has a

root in , that is, every element of  has a square root in . Therefore, we may

choose   in (11.5), which leads to the following result.

Theorem 11.24 Let  be an orthogonal geometry over an algebraically closed

field . Provided that  is not symplectic as well when , then char

has an ordered orthogonal basis  for which

 and . Hence,  has the diagonal form

with  ones and  zeros on the diagonal. In particular, if  is nonsingular then

 has an orthonormal basis. 

The matrix version of Theorem 11.24 follows.

Theorem 11.25 Let  be the set of all  symmetric matrices over an

algebraically closed field . If , we restrict  to the set of allchar

symmetric matrices with at least one nonzero entry on the main diagonal.

1) Any matrix  in  is congruent to a unique matrix of the form Z , in

fact,  and .rk rk

2) The set of all matrices of the form Z  for , is a set of canonical

forms for congruence on .

3) The rank of a matrix is a complete invariant for congruence on . 
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The Real Field 

If , we can choose , so that all nonzero diagonal elements in

(11.5) will be either ,  or .

Theorem 11.26 Sylvester's law of inertia( ) Any orthogonal geometry  over

the real field  has an ordered orthogonal basis

for which ,  and . Hence, the matrix  has

the diagonal form

Z

with  ones,  negative ones and  zeros on the diagonal. 

Here is the matrix version of Theorem 11.26.

Theorem 11.27 Let  be the set of all  symmetric matrices over the real

field .

1) Any matrix in  is congruent to a unique matrix of the form Z  for

some   and .

2) The set of all matrices of the form Z  for  is a set of

canonical forms for congruence on .

3) Let  and let  be congruent to . The number  is the

rank of , the number  is the  of  and the triplesignature

 is the  of . The pair , or equivalently the pairinertia

, is a complete invariant under congruence on .

Proof. We need only prove the uniqueness statement in part 1). Let

and

be ordered bases for which the matrices  and  have the form shown in

Theorem 11.26. Since the rank of these matrices must be equal, we have

 and so .
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If  and  thenspan

On the other hand, if  and  thenspan

Hence, if  then . It follows thatspan

span span

and so

that is, . By symmetry,  and so . Finally, since , it

follows that . 

Finite Fields

To deal with the case of finite fields, we must know something about the

distribution of squares in finite fields, as well as the possible values of the

scalars .

Theorem 11.28 Let  be a finite field with  elements.

1) If  then every element of  is a square.char

2) If  then exactly half of the nonzero elements of  are squares,char

that is, there are  nonzero squares in . Moreover, if  is any

nonsquare in  then all nonsquares have the form , for some .

Proof. Write , let  be the subgroup of all nonzero elements in  and

let

be the subgroup of all nonzero squares in . The Frobenius map

 defined by  is a surjective group homomorphism, with

kernel

ker

If , then  and so  is bijective and ,char ker

which proves part 1). If , then  and so ,char ker

which proves the first part of part 2). We leave proof of the last statement to the

reader.
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Definition A bilinear form on  is  if for any nonzero  thereuniversal

exists a vector  for which . 

Theorem 11.29 Let  be an orthogonal geometry over a finite field  with

char  and assume that  has a nonsingular subspace of dimension at

least . Then the bilinear form of  is universal.

Proof. Theorem 11.22 implies that  contains two linearly independent vectors

 and  for which

Given any , we want to find  and  for which

or

If  then , since there are  nonzero

squares  and also we must consider . Also, if 

then for the same reasons . It follows that  cannot be the

empty set and so there are  and  for which , as desired. 

Now we can proceed with the business at hand.

Theorem 11.30 Let  be an orthogonal geometry over a finite field  and

assume that  is not symplectic if . If  then let  be achar char

fixed nonsquare in . For any nonzero , write

where .rk

1) If  then there is an ordered basis  for which .char

2) If , then there is an ordered basis  for which  equalschar

 or .

Proof. We can dispose of the case  quite easily: Referring to (11.5),char

since every element of  has a square root, we may take .

If , then Theorem 11.22 implies that there is an ordered orthogonalchar

basis
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for which  and . Hence,  has the diagonal form

Now, consider the nonsingular orthogonal geometry .span

According to Theorem 11.29, the form is universal when restricted to .

Hence, there exists a  for which .

Now,  for  not both , and we may swap  and  if

necessary to ensure that . Hence,

is an ordered basis for  for which the matrix  is diagonal and has a  in the

upper left entry. We can repeat the process with the subspace .span

Continuing in this way, we can find an ordered basis

for which  for some nonzero . Now, if  is a square in 

then we can replace  by  to get a basis  for which . If

 is not a square in , then  for some  and so replacing  by

 gives a basis  for which . 

Theorem 11.31 Let  be the set of all  symmetric matrices over a finite

field . If , we restrict  to the set of all symmetric matrices withchar

at least one nonzero entry on the main diagonal.

1) If  then any matrix in  is congruent to a unique matrix of thechar

form  and the matrices  form a set of

canonical forms for  under congruence. Also, the rank is a complete

invariant.

2) If , let  be a fixed nonsquare in . Then any matrix  ischar

congruent to a unique matrix of the form  or . The set

 is a set of canonical forms for congruence

on . (Thus, there are exactly two congruence classes for each rank .)

The Orthogonal Group

Having “settled” the classification question for orthogonal geometries over

certain types of fields, let us turn to a discussion of the structure-preserving

maps, that is, the isometries.
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Rotations and Reflections

We have seen that if  is an ordered basis for , then for any 

Now, for any , we have

and so  is an isometry if and only if

Taking determinants gives

det det det

Therefore, if  is nonsingular then

det

Since the determinant is an invariant under similarity, we can make the

following definition.

Definition Let  be an isometry on a nonsingular orthogonal geometry . The

determinant of  is the determinant of any matrix  representing . If

det det then  is called a  and if  then  is called arotation

reflection.

The set  of rotations forms a subgroup of the orthogonal group 

and the surjective determinant map  has kernel .det

Hence, if , then  is a normal subgroup of  of index .char

Symmetries

Recall that for a real (or complex) inner product space , we defined a

reflection to be a linear map  for which

The term  is often used in the context of general orthogonalsymmetry

geometries.

In particular, suppose that  is a nonsingular orthogonal geometry over ,

where  and let  be nonisotropic. Writechar

span span

Then there is a unique isometry  with the properties
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1)

2)  for all span

We can also write , that is

for all  and . It is easy to see thatspan span

The map  is called the  determined by .symmetry

Note that the requirement that  be nonisotropic is required, since otherwise we

would have  and so , which implies that .span

(Thus, symplectic geometries do not have symmetries.)

In the context of real inner product spaces, Theorem 10.11 says that if

, then  is the unique reflection sending  to , that is,

. In the present context, we must be careful, since symmetries are

defined for nonisotropic vectors only. Here is what we can say.

Theorem 11.32 Let  be a nonsingular orthogonal geometry over a field ,

with . If  have the same nonzero “length,” that is, ifchar

then there exists a symmetry  for which

or

Proof. In general, if  and  are orthogonal isotropic vectors, then  and

 are also isotropic. Hence, since  and  are not isotropic, it follows that

one of  and  must be nonisotropic. If  is nonisotropic, then

and

Combining these two gives . On the other hand, if  is

nonisotropic, then

and
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These equations give . 

Recall that an operator on a real inner product space is unitary if and only if it is

a product of reflections. Here is the generalization to nonsingular orthogonal

geometries.

Theorem 11.33 Let  be a nonsingular orthogonal geometry over a field 

with . A linear transformation  on  is an orthogonalchar

transformation (an isometry) if and only if  is the product of symmetries on .

Proof. We proceed by induction on . If  then dim span

where . Let  where . Since  is unitary

and so . If  then  is the identity, which is equal to . On the

other hand, if  then . In either case,  is a product of symmetries.

Assume now that the theorem is true for dimensions less than  and let

dim . Let  be nonisotropic. Since ,

Theorem 11.32 implies the existence of a symmetry  on  for which

where . Thus,  on . Since Theorem 11.15 implies thatspan

span  is -invariant, we may apply the induction hypothesis to  on

span  to get

span

where  and  is a symmetry on . But each  can bespan span

extended to a symmetry on  by setting . Assume that  is the

extension of  to , where  on . Hence,  on  andspan span

 on span .

If  then  on  and so , which completes the proof. If

 then  on  since  is the identity on andspan span

 on  on  and so  on span . Hence, . 

The Witt's Theorems for Orthogonal Geometries

We are now ready to consider the Witt theorems for orthogonal geometries.

Theorem 11.34 Witt's cancellation theorem( ) Let  and  be isometric

nonsingular orthogonal geometries over a field  with . Supposechar

that

and
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Then

Proof. First, we prove that it is sufficient to consider the case . Suppose

that the result holds when  and that  is an isometry. Then

Furthermore, . We can therefore apply the theorem to  to get

as desired.

To prove the theorem when , assume that

where  and  are nonsingular and . Let  be an isometry. We

proceed by induction on .dim

Suppose first that  and that . Sincedim span

Theorem 11.32 implies that there is a symmetry  for which 

where . Hence,  is an isometry of  for which  and

Theorem 11.10 implies that . Thus,  is the desired isometry.

Now suppose the theorem is true for  and let . Letdim dim

 be an isometry. Since  is nonsingular, we can choose a nonisotropic

vector  and write , where  is nonsingular. It followsspan

that

span

and

span

Now we may apply the one-dimensional case to deduce that

If  is an isometry then

But  and since , the inductiondim dim

hypothesis implies that . 
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As we have seen, Witt's extension theorem is a corollary of Witt's cancellation

theorem.

Theorem 11.35 Witt's extension theorem( ) Let  and  be isometric

nonsingular orthogonal geometries over a field , with . Supposechar

that  is a subspace of  and

is an isometry. Then  can be extended to an isometry from  to . 

Maximal Hyperbolic Subspaces of an Orthogonal Geometry

We have seen that any orthogonal geometry  can be written in the form

rad

where  is nonsingular. Nonsingular spaces are better behaved than singular

ones, but they can still possess isotropic vectors.

We can improve upon the preceding decomposition by noticing that if  is

isotropic, then  is totally degenerate and so it can be “captured” in aspan

hyperbolic plane , namely, the nonsingular extension ofspan

span . Then we can write

rad

where  is the orthogonal complement of  in  and has “one fewer”

isotropic vector.

In order to generalize this process, we first discuss maximal totally degenerate

subspaces.

Maximal Totally Degenerate Subspaces

Let  be a nonsingular orthogonal geometry over a field , with .char

Suppose that  and  are maximal totally degenerate subspaces of . We

claim that . For if , then there is a vectordim dim dim dim

space isomorphism , which is also an isometry, since  and

 are totally degenerate. Thus, Witt's extension theorem implies the existence

of an isometry  that extends . In particular,  is a totally

degenerate space that contains  and so , which shows that

dim dim .

We have proved the following.

Theorem 11.36 Let  be a nonsingular orthogonal geometry over a field ,

with .char
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1) All maximal totally degenerate subspaces of  have the same dimension,

which is called the  of  and is denoted by .Witt index

2) Any totally degenerate subspace of  of dimension  is maximal. 

Maximal Hyperbolic Subspaces

We can prove by a similar argument that all maximal hyperbolic subspaces of 

have the same dimension. Let

and

be maximal hyperbolic subspaces of  and suppose that  andspan

span . We may assume that .dim dim

The linear map  defined by

is clearly an isometry from  to . Thus, Witt's extension theorem implies

the existence of an isometry  that extends . In particular,  is a

hyperbolic space that contains  and so . It follows that dim

dim .

It is not hard to see that the maximum dimension  of a hyperbolic subspace

of  is , where  is the Witt index of . First, the nonsingular

extension of a maximal totally degenerate subspace  of  is a hyperbolic

space of dimension  and so . On the other hand, there is a

totally degenerate subspace  contained in any hyperbolic space  and so

, that is, . Hence  and sodim

.

Theorem 11.37 Let  be a nonsingular orthogonal geometry over a field ,

with .char

1) All maximal hyperbolic subspaces of  have dimension .

2) Any hyperbolic subspace of dimenison  must be maximal.

3) The Witt index of a hyperbolic space  is . 

The Anisotropic Decomposition of an Orthogonal Geometry

If  is a maximal hyperbolic subspace of  then

Since  is maximal,  is anisotropic, for if  is isotropic then the

nonsingular extension of  would be a hyperbolic space strictlyspan

larger than .
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Thus, we arrive at the following decomposition theorem for orthogonal

geometries.

Theorem 11.38 The anisotropic decomposition of an orthogonal geometry( )

Let  be an orthogonal geometry over , with . Letrad char

 be a maximal hyperbolic subspace of , where  if  has no

isotropic vectors. Then

rad

where  is anisotropic,  is hyperbolic of dimension  and  israd

totally degenerate. 

Exercises

1. Let  be subspaces of a metric vector space . Show that

 a) 

 b) 

 c) 

2. Let  be subspaces of a metric vector space . Show that

 a) 

 b) 

3. Prove that the following are equivalent:

 a)  is nonsingular

 b)  for all  implies 

4. Show that a metric vector space  is nonsingular if and only if the matrix

 of the form is nonsingular, for every ordered basis .

5. Let  be a finite-dimensional vector space with a bilinear form . We do

not assume that the form is symmetric or alternate. Show that the following

are equivalent:

 a)  for all 

 b)  for all 

 : Consider the singularity of the matrix of the form.Hint

6. Find a diagonal matrix congruent to

7. Prove that the matrices

 and   

are congruent over the base field  of rational numbers. Find an

invertible matrix  such that .



280 Advanced Linear Algebra

8. Let  be an orthogonal geometry over a field  with . Wechar

wish to construct an orthogonal basis  for , starting with

any generating set . Justify the following steps, essentially

due to Lagrange. We may assume that  is not totally degenerate.

 a) If  for some  then let . Otherwise, there are indices

 for which . Let .

 b) Assume we have found an ordered set of vectors 

that form an orthogonal basis for a subspace  of  and that none of

the 's are isotropic. Then .

 c) For each , let

Then the vectors  span . If  is totally degenerate, take any

basis for  and append it to . Otherwise, repeat step a) on  to

get another vector  and let . Eventually, we

arrive at an orthogonal basis  for .

9. Prove that orthogonal hyperbolic planes may be characterized as two-

dimensional nonsingular orthogonal geometries that have exactly two one-

dimensional totally isotropic (equivalently: totally degenerate) subspaces.

10. Prove that a two-dimensional nonsingular orthogonal geometry is a

hyperbolic plane if and only if its discriminant is .

11. Does Minkowski space contain any isotropic vectors? If so, find them.

12. Is Minkowski space isometric to Euclidean space ?

13. If  is a symmetric bilinear form on  and , show thatchar

 is a quadratic form.

14. Let  be a vector space over a field , with ordered basis .

Let  be a  polynomial of degree  over , that is,homogeneous

a polynomial each of whose terms has degree . The  defined by -form

is the function from  to  defined as follows. If  then

(We use the same notation for the form and the polynomial.) Prove that -

forms are the same as quadratic forms.

15. Show that  is an isometry on  if and only if  where  is

the quadratic form associated with the bilinear form on . (Assume that

char .

16. Show that a quadratic form  on  satisfies the parallelogram law:

17. Show that if  is a nonsingular orthogonal geometry over a field , with

char  then any totally isotropic subspace of  is also a totally

degenerate space.

18. Is it true that ?rad rad
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19. Let  be a nonsingular symplectic geometry and let  be a symplectic

transvection. Prove that

 a) 

 b) For any symplectic transformation ,

 c) For ,

 d) For a fixed , the map  is an isomorphism from the

additive group of  onto the group Sp .

20. Prove that if  is any nonsquare in a finite field  then all nonsquares have

the form , for some . Hence, the product of any two nonsquares in

 is a square.

21. Formulate Sylvester's law of inertia in terms of quadratic forms on .

22. Show that a two-dimensional space is a hyperbolic plane if and only if it is

nonsingular and contains an isotropic vector. Assume that .char

23. Prove directly that a hyperbolic plane in an orthogonal geometry cannot

have an orthogonal basis when .char

24. a) Let  be a subspace of . Show that the inner product

 on the quotient space  is well-defined if

and only if .rad

 b) If , when is  nonsingular?rad

25. Let , where  is a totally degenerate space.

 a) Prove that  if and only if  is nonsingular.rad

 b) If  is nonsingular, prove that .rad

26. Let . Prove that  impliesdim dim rad rad

.

27. Let . Prove that

 a) rad rad rad

 b) rad rad rad

 c) dim dim dimrad rad rad

 d)  is nonsingular if and only if  and  are both nonsingular.

28. Let  be a nonsingular metric vector space. Because the Riesz

representation theorem is valid in , we can define the adjoint  of a linear

map  exactly as in the case of real inner product spaces. Prove

that  is an isometry if and only if it is bijective and unitary (that is,

).

29. If , prove that  is an isometry if and only if it ischar

bijective and  for all .

30. Let  be a basis for . Prove that  is an

isometry if and only if it is bijective and  for all .

31. Let  be a linear operator on a metric vector space . Let 

be an ordered basis for  and let  be the matrix of the form relative to
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. Prove that  is an isometry if and only if

32. Let  be a nonsingular orthogonal geometry and let  be an

isometry.

 a) Show that .dim ker dim im

 b) Show that . How would you describeker im

ker  in words?

 c) If  is a symmetry, what is ?dim ker

 d) Can you characterize symmetries by means of ?dim ker

33. A linear transformation  is called  if  is nilpotent.unipotent

Suppose that  is a nonisotropic metric vector space and that  is unipotent

and isometric. Show that .

34. Let  be a hyperbolic space of dimension  and let  be a hyperbolic

subspace of  of dimension . Show that for each , there is a

hyperbolic subspace  of  for which .

35. Let . Prove that if  is a totally degenerate subspace of anchar

orthgonal geometry  then .dim dim

36. Prove that an orthogonal geometry  of dimension  is a hyperbolic space

if and only if  is nonsingular,  is even and  contains a totally

degenerate subspace of dimension .

37. Prove that a symplectic transformation has determinant equal to .



Chapter 12

Metric Spaces

The Definition

In Chapter 9, we studied the basic properties of real and complex inner product

spaces. Much of what we did does not depend on whether the space in question

is finite or infinite-dimensional. However, as we discussed in Chapter 9, the

presence of an inner product and hence a metric, on a vector space, raises a host

of new issues related to convergence. In this chapter, we discuss briefly the

concept of a metric space. This will enable us to study the convergence

properties of real and complex inner product spaces.

A metric space is not an algebraic structure. Rather it is designed to model the

abstract properties of distance.

Definition A  is a pair , where  is a nonempty set andmetric space

 is a real-valued function, called a  on , with themetric

following properties. The expression  is read “the distance from  to .”

1)  For all ,( )Positive definiteness

and  if and only if .

2)  For all ,( )Symmetry

3)  For all ,( )Triangle inequality

As is customary, when there is no cause for confusion, we simply say “let  be

a metric space.”
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Example 12.1 Any nonempty set  is a metric space under the discrete

metric, defined by

if

if

Example 12.2

1) The set  is a metric space, under the metric defined for 

and  by

This is called the  on . We note that  is also a metricEuclidean metric

space under the metric

Of course,  and  are different metric spaces.

2) The set  is a metric space under the unitary metric

where  and  are in . 

Example 12.3

1) The set  of all real-valued (or complex-valued) continuous functions

on  is a metric space, under the metric

sup

We refer to this metric as the .sup metric

2) The set  of all real-valued or complex-valued) continuous functions

on  is a metric space, under the metric

a

 dx

Example 12.4 Many important sequence spaces are metric spaces. We will

often use boldface roman letters to denote sequences, as in  and

.

1) The set  of all bounded sequences of real numbers is a metric space

under the metric defined by

sup

The set  of all bounded complex sequences, with the same metric, is also

a metric space. As is customary, we will usually denote both of these spaces

by .
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2) For , let  be the set of all sequences  of real or complex)

numbers for which

We define the  of  by-norm

Then  is a metric space, under the metric

The fact that  is a metric follows from some rather famous results about

sequences of real or complex numbers, whose proofs we leave as (well-

hinted) exercises.

  Let  and . If  and  thenHolder's inequality¨

the product sequence  is in  and

that is,

A special case of this (with 2) is the Cauchy-Schwarz inequality

Minkowski's inequality For , if  then the sum 

 is in  and

that is,
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If  is a metric space under a metric  then any nonempty subset  of  is

also a metric under the restriction of  to . The metric space  thus

obtained is called a  of .subspace

Open and Closed Sets

Definition Let  be a metric space. Let  and let  be a positive real

number.

1) The  centered at , with radius , isopen ball

2) The  centered at , with radius , isclosed ball

3) The  centered at , with radius , issphere

Definition A subset  of a metric space  is said to be  if each point of open

is the center of an open ball that is contained completely in . More

specifically,  is open if for all , there exists an  such that

. Note that the empty set is open. A set  is  if itsclosed

complement  in  is open. 

It is easy to show that an open ball is an open set and a closed ball is a closed

set. If , we refer to any open set  containing  as an open

neighborhood of . It is also easy to see that a set is open if and only if it

contains an open neighborhood of each of its points.

The next example shows that it is possible for a set to be both open and closed,

or neither open nor closed.

Example 12.5 In the metric space  with the usual Euclidean metric, the open

balls are just the open intervals

and the closed balls are the closed intervals

Consider the half-open interval , for a . This set is not open, since

it contains no open ball centered at  and it is not closed, since its

complement  is not open, since it contains no open ball

about .
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Observe also that the empty set is both open and closed, as is the entire space .

(Although we will not do so, it is possible to show that these are the only two

sets that are both open and closed in .  

It is not our intention to enter into a detailed discussion of open and closed sets,

the subject of which belongs to the branch of mathematics known as .topology

In order to put these concepts in perspective, however, we have the following

result, whose proof is left to the reader.

Theorem 12.1 The collection  of all open subsets of a metric space  has the

following properties:

1) , 

2) If ,  then 

3) If  is any collection of open sets then . 

These three properties form the basis for an axiom system that is designed to

generalize notions such as convergence and continuity and leads to the

following definition.

Definition Let  be a nonempty set. A collection  of subsets of  is called a

topology for  if it has the following properties:

1)  

2) If   then 

3) If  is any collection of sets in  then .

We refer to subsets in  as  and the pair  as a open sets topological

space.

According to Theorem 12.1, the open sets (as we defined them earlier) in a

metric space  form a topology for , called the topology  by theinduced

metric.

Topological spaces are the most general setting in which we can define concepts

such as convergence and continuity, which is why these concepts are called

topological concepts. However, since the topologies with which we will be

dealing are induced by a metric, we will generally phrase the definitions of the

topological properties that we will need directly in terms of the metric.

Convergence in a Metric Space

Convergence of sequences in a metric space is defined as follows.

Definition A sequence  in a metric space   to , writtenconverges

, if

lim

Equivalently,  if for any , there exists an  such that
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or, equivalently

In this case,  is called the  of the sequence .limit

If  is a metric space and  is a subset of , by a  , we mean asequence in

sequence whose terms all lie in . We next characterize closed sets and

therefore also open sets, using convergence.

Theorem 12.2 Let  be a metric space. A subset  is closed if and only if

whenever  is a sequence in  and  then . In loose terms, a

subset  is closed if it is closed under the taking of sequential limits.

Proof. Suppose that  is closed and let , where  for all .

Suppose that . Then since  and  is open, there exists an  for

which . But this implies that

which contradicts the fact that . Hence, .

Conversely, suppose that  is closed under the taking of limits. We show that

 is open. Let  and suppose to the contrary that no open ball about  is

contained in . Consider the open balls , for all . Since none of

these balls is contained in , for each , there is an . It is

clear that  and so . But  cannot be in both  and . This

contradiction implies that  is open. Thus,  is closed. 

The Closure of a Set

Definition Let  be any subset of a metric space . The  of , denotedclosure

by , is the smallest closed set containing . cl

We should hasten to add that, since the entire space  is closed and since the

intersection of any collection of closed sets is closed (exercise), the closure of

any set  does exist and is the intersection of all closed sets containing . The

following definition will allow us to characterize the closure in another way.

Definition Let  be a nonempty subset of a metric space . An element 

is said to be a , or  of  if every open balllimit point accumulation point

centered at  meets  at a point other than  itself. Let us denote the set of all

limit points of  by . 

Here are some key facts concerning limit points and closures.
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Theorem 12.3 Let  be a nonempty subset of a metric space .

1)  if and only if there is a sequence  in  for which  for

all  and .

2)  is closed if and only if . In words,  is closed if and only if it

contains all of its limit points.

3) .cl

4)  if and only if there is a sequence  in  for which .cl

Proof. For part 1), assume first that . For each , there exists a point

 such that . Thus, we have

and so . For the converse, suppose that , where .

If  is any ball centered at  then there is some  such that 

implies . Hence, for any ball  centered at , there is a point

, such that . Thus,  is a limit point of .

As for part 2), if  is closed then by part 1), any  is the limit of a

sequence  in  and so must be in . Hence, . Conversely, if

 then  is closed. For if  is any sequence in  and  then

there are two possibilities. First, we might have  for some , in which

case . Second, we might have  for all , in which case

 implies that . In either case,  and so  is closed

under the taking of limits, which implies that  is closed.

For part 3), let . Clearly, . To show that  is closed, we

show that it contains all of its limit points. So let . Hence, there is a

sequence  for which  and . Of course, each  is

either in , or is a limit point of . We must show that , that is, that  is

either in  or is a limit point of .

Suppose for the purposes of contradiction that  and . Then there

is a ball  for which . However, since , there

must be an . Since  cannot be in , it must be a limit point of .

Referring to Figure 12.1, if  then consider the ball

. This ball is completely contained in  and must contain

an element  of , since its center  is a limit point of . But then

, a contradiction. Hence,  or . In either case,

 and so  is closed.

Thus,  is closed and contains  and so . On the other hand,cl

cl cl and so .
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Figure 12.1

For part 4), if  then there are two possibilities. If  then thecl

constant sequence , with  for all , is a sequence in  that converges

to . If  then  and so there is a sequence  in  for which

 and . In either case, there is a sequence in  converging to .

Conversely, if there is a sequence  in  for which  then either

 for some , in which case , or else  for all , incl

which case . cl

Dense Subsets

The following concept is meant to convey the idea of a subset  being

“arbitrarily close” to every point in .

Definition A subset  of a metric space  is  in  if . Adense cl

metric space is said to be  if it contains a  dense subset. separable countable

Thus, a subset  of  is dense if every open ball about any point 

contains at least one point of .

Certainly, any metric space contains a dense subset, namely, the space itself.

However, as the next examples show, not every metric space contains a

countable dense subset.

Example 12.6

1) The real line  is separable, since the rational numbers  form a countable

dense subset. Similarly,  is separable, since the set  is countable and

dense.

2) The complex plane  is separable, as is  for all .

3) A discrete metric space is separable if and only if it is countable. We leave

proof of this as an exercise. 
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Example 12.7 The space  is not separable. Recall that  is the set of all

bounded sequences of real numbers (or complex numbers), with metric

sup

To see that this space is not separable, consider the set  of all binary sequences

 or  for all 

This set is in one-to-one correspondence with the set of all subsets of  and so

is uncountable. (It has cardinality 2 .  Now, each sequence in  is

certainly bounded and so lies in . Moreover, if  then the two

sequences must differ in at least one position and so .

In other words, we have a subset  of  that is uncountable and for which the

distance between any two distinct elements is . This implies that the

uncountable collection of balls )  is mutually disjoint. Hence,

no countable set can meet every ball, which implies that no countable set can be

dense in . 

Example 12.8 The metric spaces  are separable, for . The set  of all

sequences of the form

for all , where the 's are rational, is a countable set. Let us show that it is

dense in . Any  satisfies

Hence, for any , there exists an  such that

Since the rational numbers are dense in , we can find rational numbers  for

which

for all . Hence, if  then

which shows that there is an element of  arbitrarily close to any element of .

Thus,  is dense in  and so  is separable. 
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Continuity

Continuity plays a central role in the study of linear operators on infinite-

dimensional inner product spaces.

Definition Let  be a function from the metric space  to the

metric space . We say that  is   if for any ,continuous at

there exists a  such that

or, equivalently,

(See Figure 12.2.  A function is  if it is continuous at everycontinuous

.

Figure 12.2

We can use the notion of convergence to characterize continuity for functions

between metric spaces.

Theorem 12.4 A function  is continuous if and only if whenever

 is a sequence in  that converges to  then the sequence 

converges to , in short,

Proof. Suppose first that  is continuous at  and let . Then, given

, the continuity of  implies the existence of a  such that

Since , there exists an  such that  for  and

so

Thus, .

Conversely, suppose that  implies . Suppose, for the

purposes of contradiction, that  is not continuous at . Then there exists an
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 such that, for all 

Thus, for all ,

and so we may construct a sequence  by choosing each term  with the

property that

, but 

Hence, , but  does not converge to . This contradiction

implies that  must be continuous at . 

The next theorem says that the distance function is a continuous function in both

variables.

Theorem 12.5 Let  be a metric space. If  and  then

.

Proof. We leave it as an exercise to show that

But the right side tends to  as  and so . 

Completeness

The reader who has studied analysis will recognize the following definitions.

Definition A sequence  in a metric space  is a  if, forCauchy sequence

any , there exists an  for which

We leave it to the reader to show that any convergent sequence is a Cauchy

sequence. When the converse holds, the space is said to be .complete

Definition Let  be a metric space.

1)  is said to be  if every Cauchy sequence in  converges in .complete

2) A subspace  of  is  if it is complete as a metric space. Thus, complete

is complete if every Cauchy sequence  in  converges to an element in

.

Before considering examples, we prove a very useful result about completeness

of subspaces.
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Theorem 12.6 Let  be a metric space.

1) Any complete subspace of  is closed.

2) If  is complete then a subspace  of  is complete if and only if it is

closed.

Proof. To prove 1), assume that  is a complete subspace of . Let  be a

sequence in  for which . Then  is a Cauchy sequence in 

and since  is complete,  must converge to an element of . Since limits of

sequences are unique, we have . Hence,  is closed.

To prove part 2), first assume that  is complete. Then part 1) shows that  is

closed. Conversely, suppose that  is closed and let  be a Cauchy sequence

in . Since  is also a Cauchy sequence in the complete space , it must

converge to some . But since  is closed, we have . Hence,

 is complete. 

Now let us consider some examples of complete (and incomplete) metric spaces.

Example 12.9 It is well known that the metric space  is complete. (However, a

proof of this fact would lead us outside the scope of this book.  Similarly, the

complex numbers  are complete. 

Example 12.10 The Euclidean space  and the unitary space  are complete.

Let us prove this for . Suppose that  is a Cauchy sequence in , where

Thus,

 as 

and so, for each coordinate position ,

which shows that the sequence  of th coordinates is a Cauchy2

sequence in . Since  is complete, we must have

 as 

If  then

 as 

and so . This proves that  is complete. 
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Example 12.11 The metric space  of all real-valued (or complex-

valued) continuous functions on , with metric

sup

is complete. To see this, we first observe that the limit with respect to  is the

uniform limit on , that is  if and only if for any , there is

an  for which

  for all 

Now, let  be a Cauchy sequence in . Thus, for any , there is

an  for which

 for all (12.1)

This implies that, for each , the sequence  is a Cauchy sequence

of real (or complex) numbers and so it converges. We can therefore define a

function  on  by

lim

Letting  in (12.1), we get

 for all 

Thus,  converges to  uniformly. It is well known that the uniform

limit of continuous functions is continuous and so . Thus,

 and so  is complete. 

Example 12.12 The metric space  of all real-valued (or complex-

valued) continuous functions on , with metric

a

is not complete. For convenience, we take  and leave the general

case for the reader. Consider the sequence of functions  whose graphs are

shown in Figure 12.3. (The definition of  should be clear from the graph.
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Figure 12.3

We leave it to the reader to show that the sequence  is Cauchy, but does

not converge in . (The sequence converges to a function that is not

continuous.)

Example 12.13 The metric space  is complete. To see this, suppose that 

is a Cauchy sequence in , where

2

Then, for each coordinate position , we have

sup  as (12.2)

Hence, for each , the sequence  of th coordinates is a Cauchy sequence in

 (or ). Since  (or ) is complete, we have

 as 

for each coordinate position . We want to show that  and that

.

Letting  in 12.2) gives

sup  as (12.3)

and so, for some ,

 for all 

and so

 for all 

But since , it is a bounded sequence and therefore so is . That is,

. Since 12.3) implies that , we see that  is

complete. 
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Example 12.14 The metric space  is complete. To prove this, let  be a

Cauchy sequence in , where

2

Then, for each coordinate position ,

which shows that the sequence  of th coordinates is a Cauchy sequence in

 (or ). Since  (or ) is complete, we have

 as 

We want to show that  and that .

To this end, observe that for any , there is an  for which

for all . Now, we let , to get

for all . Letting , we get, for any ,

which implies that  and so   and in

addition, . 

As we will see in the next chapter, the property of completeness plays a major

role in the theory of inner product spaces. Inner product spaces for which the

induced metric space is complete are called .Hilbert spaces

Isometries

A function between two metric spaces that preserves distance is called an

isometry. Here is the formal definition.

Definition Let  and  be metric spaces. A function  is

called an  ifisometry
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for all . If  is a bijective isometry from  to , we say

that  and  are  and write . isometric

Theorem 12.7 Let  be an isometry. Then

1)  is injective

2)  is continuous

3)  is also an isometry and hence also continuous.

Proof. To prove 1), we observe that

To prove 2), let  in  then

 as 

and so , which proves that  is continuous. Finally, we have

and so  is an isometry. 

The Completion of a Metric Space

While not all metric spaces are complete, any metric space can be embedded in

a complete metric space. To be more specific, we have the following important

theorem.

Theorem 12.8 Let  be any metric space. Then there is a complete metric

space  and an isometry  for which  is dense

in . The metric space  is called a  of . Moreover,completion

 is unique, up to bijective isometry.

Proof. The proof is a bit lengthy, so we divide it into various parts. We can

simplify the notation considerably by thinking of sequences  in  as

functions , where .

Cauchy Sequences in 

The basic idea is to let the elements of  be equivalence classes of Cauchy

sequences in . So let  denote the set of all Cauchy sequences in . IfCS

CS  then, intuitively speaking, the terms  get closer together as

 and so do the terms . Therefore, it seems reasonable that

 should approach a finite limit as . Indeed, since

as  it follows that  is a Cauchy sequence of real

numbers, which implies that
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lim (12.4)

(That is, the limit exists and is finite.

Equivalence Classes of Cauchy Sequences in 

We would like to define a metric  on the set  byCS

lim

However, it is possible that

lim

for distinct sequences  and , so this does not define a metric. Thus, we are led

to define an equivalence relation on  byCS

lim

Let  be the set of all equivalence classes of Cauchy sequences andCS

define, for  CS

lim (12.5)

where  and .

To see that  is well-defined, suppose that  and . Then since

 and , we have

as . Thus,

 and lim lim

which shows that  is well-defined. To see that  is a metric, we verify the

triangle inequality, leaving the rest to the reader. If  and  are Cauchy

sequences then

Taking limits gives

lim lim lim
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and so

Embedding  in 

For each , consider the constant Cauchy sequence , where 

for all . The map  defined by

is an isometry, since

lim

Moreover,  is dense in . This follows from the fact that we can

approximate any Cauchy sequence in  by a constant sequence. In particular,

let . Since  is a Cauchy sequence, for any , there exists an 

such that

Now, for the constant sequence  we have

lim

and so  is dense in .

 Is Complete

Suppose that

3

is a Cauchy sequence in . We wish to find a Cauchy sequence  in  for

which

lim  as 

Since  and since  is dense in , there is a constant sequence

for which
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We can think of  as a constant approximation to , with error at most .

Let  be the sequence of these constant approximations

This is a Cauchy sequence in . Intuitively speaking, since the 's get closer

to each other as , so do the constant approximations. In particular, we

have

as . To see that  converges to , observe that

lim

lim

Now, since  is a Cauchy sequence, for any , there is an  such that

In particular,

lim

and so

which implies that , as desired.

Uniqueness

Finally, we must show that if  and  are both completions of

 then . Note that we have bijective isometries

 and 

Hence, the map

is a bijective isometry from  onto , where  is dense in .

See Figure 12.4.
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Figure 12.4

Our goal is to show that  can be extended to a bijective isometry  from  to

.

Let . Then there is a sequence  in  for which . Since

 is a Cauchy sequence in ,  is a Cauchy sequence in

 and since  is complete, we have  for some

. Let us define .

To see that  is well-defined, suppose that  and , where both

sequences lie in . Then

 as 

and so  and  converge to the same element of , which implies

that  does not depend on the choice of sequence in  converging to .

Thus,  is well-defined. Moreover, if  then the constant sequence 

converges to  and so lim , which shows that  is an

extension of .

To see that  is an isometry, suppose that  and . Then

 and  and since  is continuous, we have

lim lim

Thus, we need only show that  is surjective. Note first that

im im im. Thus, if  is closed, we can deduce from the fact

that  is dense in  that . So, suppose that  is aim

sequence in  and . Then  is a Cauchy sequence andim

therefore so is . Thus, . But  is continuous and so

, which implies that  and so . Hence,  isim

surjective and . 
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Exercises

1. Prove the generalized triangle inequality

3

2. a) Use the triangle inequality to prove that

 b) Prove that

3. Let  be the subspace of all binary sequences (sequences of 's and

's). Describe the metric on .

4. Let  be the set of all binary -tuples. Define a function

 by letting  be the number of positions in which  and

 differ. For example, . Prove that  is a metric. (It

is called the  and plays an important role inHamming distance function

the theory of error-correcting codes.

5. Let .

 a) If  show that 

 b) Find a sequence that converges to  but is not an element of any  for

.

6. a) Show that if  then  for all .

 b) Find a sequence  that is in  for , but is not in .

7. Show that a subset  of a metric space  is open if and only if  contains

an open neighborhood of each of its points.

8. Show that the intersection of any collection of closed sets in a metric space

is closed.

9. Let  be a metric space. The  of a nonempty subset diameter

is

sup

A set  is  if .bounded

 a) Prove that  is bounded if and only if there is some  and 

for which .

 b) Prove that  if and only if  consists of a single point.

 c) Prove that  implies .

 d) If  and  are bounded, show that  is also bounded.

10. Let  be a metric space. Let  be the function defined by
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 a) Show that  is a metric space and that  is bounded under this

metric, even if it is not bounded under the metric .

 b) Show that the metric spaces  and  have the same open

sets.

11. If  and  are subsets of a metric space , we define the distance

between  and  by

 inf

 a) Is it true that  if and only if ? Is  a metric?

 b) Show that  if and only if .cl

12. Prove that  is a limit point of  if and only if every

neighborhood of  meets  in a point other than  itself.

13. Prove that  is a limit point of  if and only if every open ball

 contains infinitely many points of .

14. Prove that limits are unique, that is, ,  implies that

.

15. Let  be a subset of a metric space . Prove that  if and only ifcl

there exists a sequence  in  that converges to .

16. Prove that the closure has the following properties:

 a)  cl

 b) cl cl

 c)  cl cl cl

 d) cl cl cl

 Can the last part be strengthened to equality?

17. a) Prove that the closed ball  is always a closed subset.

 b) Find an example of a metric space in which the closure of an open ball

 is not equal to the closed ball .

18. Provide the details to show that  is separable.

19. Prove that  is separable.

20. Prove that a discrete metric space is separable if and only if it is countable.

21. Prove that the metric space  of all bounded functions on , with

metric

sup

is not separable.

22. Show that a function  is continuous if and only if the

inverse image of any open set is open, that is, if and only if

 is open in  whenever  is an open set

in .

23. Repeat the previous exercise, replacing the word open by the word closed.

24. Give an example to show that if  is a continuous

function and  is an open set in , it need not be the case that  is

open in .
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25. Show that any convergent sequence is a Cauchy sequence.

26. If  in a metric space , show that any subsequence  of 

also converges to .

27. Suppose that  is a Cauchy sequence in a metric space  and that some

subsequence  of  converges. Prove that  converges to the

same limit as the subsequence.

28. Prove that if  is a Cauchy sequence then the set  is bounded. What

about the converse? Is a bounded sequence necessarily a Cauchy sequence?

29. Let  and  be Cauchy sequences in a metric space . Prove that the

sequence  converges.

30. Show that the space of all convergent sequences of real numbers or

complex numbers) is complete as a subspace of .

31. Let  denote the metric space of all polynomials over , with metric

sup

Is  complete?

32. Let  be the subspace of all sequences with finite support (that is,

with a finite number of nonzero terms). Is  complete?

33. Prove that the metric space  of all integers, with metric

, is complete.

34. Show that the subspace  of the metric space  (under the sup metric)

consisting of all functions  for which  is complete.

35. If  and  is complete, show that  is also complete.

36. Show that the metric spaces  and , under the sup metric, are

isometric.

37. Prove Hölder's inequality

    

as follows.

 a) Show that 

 b) Let  and  be positive real numbers and consider the rectangle  in

 with corners , ,  and , with area . Argue

geometrically (that is, draw a picture) to show that

and so

 c) Now let  and . Apply the results of

part b), to



306 Advanced Linear Algebra

and then sum on  to deduce Hölder's inequality.

38. Prove Minkowski's inequality

   

as follows.

 a) Prove it for  first.

 b) Assume . Show that

 c) Sum this from  to  and apply Hölder's inequality to each sum on

the right, to get

 Divide both sides of this by the last factor on the right and let  to

deduce Minkowski's inequality.

39. Prove that  is a metric space.



Chapter 13

Hilbert Spaces

Now that we have the necessary background on the topological properties of

metric spaces, we can resume our study of inner product spaces without

qualification as to dimension. As in Chapter 9, we restrict attention to real and

complex inner product spaces. Hence  will denote either  or .

A Brief Review

Let us begin by reviewing some of the results from Chapter 9. Recall that an

inner product space  over  is a vector space , together with an inner

product . If  then the inner product is bilinear and if

, the inner product is sesquilinear.

An inner product induces a norm on , defined by

We recall in particular the following properties of the norm.

Theorem 13.1

1)  For all ,( )The Cauchy-Schwarz inequality

with equality if and only if  for some .

2)  For all ,( )The triangle inequality

with equality if and only if  for some .

3) ( )The parallelogram law

We have seen that the inner product can be recovered from the norm, as follows.



308 Advanced Linear Algebra

Theorem 13.2

1) If  is a real inner product space then

2) If  is a complex inner product space then

The inner product also induces a metric on  defined by

Thus, any inner product space is a metric space.

Definition Let  and  be inner product spaces and let .

1)  is an  if it preserves the inner product, that is, ifisometry

for all .

2) A bijective isometry is called an . When isometric isomorphism

is an isometric isomorphism, we say that  and  are isometrically

isomorphic.

It is easy to see that an isometry is always injective but need not be surjective,

even if . (See Example 10.3.

Theorem 13.3 A linear transformation  is an isometry if and only

if it preserves the norm, that is, if and only if

for all . 

The following result points out one of the main differences between real and

complex inner product spaces.

Theorem 13.4 Let  be an inner product space and let .

1) If  for all   then .

2) If  is a complex inner product space and  for all

 then .

3) Part 2) does not hold in general for real inner product spaces. 

Hilbert Spaces

Since an inner product space is a metric space, all that we learned about metric

spaces applies to inner product spaces. In particular, if  is a sequence of
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vectors in an inner product space  then

 if and only if  as 

The fact that the inner product is continuous as a function of either of its

coordinates is extremely useful.

Theorem 13.5 Let  be an inner product space. Then

1)  

2) 

Complete inner product spaces play an especially important role in both theory

and practice.

Definition An inner product space that is complete under the metric induced by

the inner product is said to be a . Hilbert space

Example 13.1 One of the most important examples of a Hilbert space is the

space  of Example 10.2. Recall that the inner product is defined by

(In the real case, the conjugate is unnecessary.  The metric induced by this inner

product is

2

which agrees with the definition of the metric space  given in Chapter 12. In

other words, the metric in Chapter 12 is induced by this inner product. As we

saw in Chapter 12, this inner product space is complete and so it is a Hilbert

space. (In fact, it is the prototype of all Hilbert spaces, introduced by David

Hilbert in 1912, even before the axiomatic definition of Hilbert space was given

by John von Neumann in 1927.  

The previous example raises the question of whether or not the other metric

spaces  ), with distance given by

 (13.1)

are complete inner product spaces. The fact is that they are not even inner

product spaces! More specifically, there is no inner product whose induced

metric is given by (13.1). To see this, observe that, according to Theorem 13.1,
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any norm that comes from an inner product must satisfy the parallelogram law

But the norm in (13.1) does not satisfy this law. To see this, take

 and . Then

and

Thus, the left side of the parallelogram law is  and the right side is ,2

which equals  if and only if .

Just as any metric space has a completion, so does any inner product space.

Theorem 13.6 Let  be an inner product space. Then there exists a Hilbert

space  and an isometry  for which  is dense in . Moreover,

 is unique up to isometric isomorphism.

Proof. We know that the metric space , where  is induced by the inner

product, has a unique completion , which consists of equivalence classes

of Cauchy sequences in . If  and  then we

set

and

lim

It is easy to see that, since  and  are Cauchy sequences, so are

 and . In addition, these definitions are well-defined, that is, they

are independent of the choice of representative from each equivalence class. For

instance, if  then

lim

and so

(The Cauchy sequence  is bounded.  Hence,

lim lim

We leave it to the reader to show that  is an inner product space under these

operations.



Hilbert Spaces 311

Moreover, the inner product on  induces the metric , since

lim

lim

Hence, the metric space isometry  is an isometry of inner product

spaces, since

Thus,  is a complete inner product space and  is a dense subspace of 

that is isometrically isomorphic to . We leave the issue of uniqueness to the

reader.

The next result concerns subspaces of inner product spaces.

Theorem 13.7

1) Any complete subspace of an inner product space is closed.

2) A subspace of a Hilbert space is a Hilbert space if and only if it is closed.

3) Any finite-dimensional subspace of an inner product space is closed and

complete.

Proof. Parts 1) and 2) follow from Theorem 12.6. Let us prove that a finite-

dimensional subspace  of an inner product space  is closed. Suppose that

 is a sequence in ,  and . Let  be an

orthonormal Hamel basis for . The Fourier expansion

in  has the property that  but

Thus, if we write  and , the sequence , which is

in , converges to a vector  that is orthogonal to . But this is impossible,

because  implies that

This proves that  is closed.

To see that any finite-dimensional subspace  of an inner product space is

complete, let us embed  (as an inner product space in its own right) in its

completion . Then  (or rather an isometric copy of ) is a finite-dimensional
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subspace of a complete inner product space  and as such it is closed.

However,  is dense in  and so , which shows that  is complete. 

Infinite Series

Since an inner product space allows both addition of vectors and convergence of

sequences, we can define the concept of infinite sums, or infinite series.

Definition Let  be an inner product space. The  of theth partial sum

sequence  in  is

If the sequence  of partial sums converges to a vector , that is, if

 as 

then we say that the series  to  and writeconverges

We can also define absolute convergence.

Definition A series  is said to be  if the seriesabsolutely convergent

converges.

The key relationship between convergence and absolute convergence is given in

the next theorem. Note that completeness is required to guarantee that absolute

convergence implies convergence.

Theorem 13.8 Let  be an inner product space. Then  is complete if and only

if absolute convergence of a series implies convergence.

Proof. Suppose that  is complete and that . Then the sequence 

of partial sums is a Cauchy sequence, for if , we have

Hence, the sequence  converges, that is, the series  converges.

Conversely, suppose that absolute convergence implies convergence and let

 be a Cauchy sequence in . We wish to show that this sequence

converges. Since  is a Cauchy sequence, for each , there exists an 
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with the property that

Clearly, we can choose , in which case

and so

Thus, according to hypothesis, the series

converges. But this is a telescoping series, whose th partial sum is

and so the subsequence  converges. Since any Cauchy sequence that has a

convergent subsequence must itself converge, the sequence  converges and

so  is complete. 

An Approximation Problem

Suppose that  is an inner product space and that  is a subset of . It is of

considerable interest to be able to find, for any , a vector in  that is

closest to  in the metric induced by the inner product, should such a vector

exist. This is the  for .approximation problem

Suppose that  and let

inf

Then there is a sequence  for which

as shown in Figure 13.1.
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Figure 13.1

Let us see what we can learn about this sequence. First, if we let 

then according to the parallelogram law

or

(13.2)

Now, if the set  is , that is, ifconvex

 for all 

(in words  contains the line segment between any two of its points) then

 and so

Thus, (13.2) gives

as . Hence, if  is convex then the sequence  is a

Cauchy sequence and therefore so is .

If we also require that  be complete then the Cauchy sequence  converges

to a vector  and by the continuity of the norm, we must have .

Let us summarize and add a remark about uniqueness.

Theorem 13.9 Let  be an inner product space and let  be a complete convex

subset of . Then for any , there exists a unique  for which

inf

The vector  is called the  to  in .best approximation
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Proof. Only the uniqueness remains to be established. Suppose that

Then, by the parallelogram law,

2

and so . 

Since any subspace  of an inner product space  is convex, Theorem 13.9

applies to complete subspaces. However, in this case, we can say more.

Theorem 13.10 Let  be an inner product space and let  be a complete

subspace of . Then for any , the best approximation to  in  is the

unique vector  for which .

Proof. Suppose that , where . Then for any , we have

 and so

Hence  is the best approximation to  in . Now we need only show that

, where  is the best approximation to  in . For any , a little

computation reminiscent of completing the square gives

2

Now, this is smallest when
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in which case

Replacing  by  gives

But  is the best approximation to  in  and since  we must have

Hence,

or, equivalently,

Hence, . 

According to Theorem 13.10, if  is a complete subspace of an inner product

space  then for any , we may write

where  and . Hence,  and since ,

we also have . This is the projection theorem for arbitrary inner

product spaces.

Theorem 13.11 The projection theorem( ) If  is a complete subspace of an

inner product space  then

In particular, if  is a closed subspace of a Hilbert space  then

Theorem 13.12 Let ,  and  be subspaces of an inner product space .

1) If  then .

2) If  then .

Proof. If  then  by definition of orthogonal direct sum. On

the other hand, if  then , for some  and . Hence,
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and so , implying that . Thus, . Part 2) follows from part

1).

Let us denote the closure of the span of a set  of vectors by .cspan

Theorem 13.13 Let  be a Hilbert space.

1) If  is a subset of  then

cspan

2) If  is a subspace of  then

cl

3) If  is a closed subspace of  then

Proof. We leave it as an exercise to show that . Hencecspan

cspan cspan cspan

But since  is closed, we also have

and so by Theorem 13.12, . The rest follows easily from partcspan

1).

In the exercises, we provide an example of a closed subspace  of an inner

product space  for which . Hence, we cannot drop the requirement

that  be a Hilbert space in Theorem 13.13.

Corollary 13.14 If  is a  of a Hilbert space  then  is dense insubset span

 if and only if .

Proof. As in the previous proof,

cspan

and so  if and only if . cspan

Hilbert Bases

We recall the following definition from Chapter 9.

Definition A maximal orthonormal set in a Hilbert space  is called a Hilbert

basis for . 

Zorn's lemma can be used to show that any nontrivial Hilbert space has a Hilbert

basis. Again, we should mention that the concepts of Hilbert basis and Hamel

basis (a maximal linearly independent set) are quite different. We will show



318 Advanced Linear Algebra

later in this chapter that any two Hilbert bases for a Hilbert space have the same

cardinality.

Since an orthonormal set  is maximal if and only if , Corollary

13.14 gives the following characterization of Hilbert bases.

Theorem 13.15 Let  be an orthonormal subset of a Hilbert space . The

following are equivalent:

1)  is a Hilbert basis

2) 

3)  is a  of , that is, . total subset cspan

Part 3) of this theorem says that a subset of a Hilbert space is a Hilbert basis if

and only if it is a total orthonormal set.

Fourier Expansions

We now want to take a closer look at best approximations. Our goal is to find an

explicit expression for the best approximation to any vector  from within a

closed subspace  of a Hilbert space . We will find it convenient to consider

three cases, depending on whether  has finite, countably infinite, or

uncountable dimension.

The Finite-Dimensional Case

Suppose that  is an orthonormal set in a Hilbert space .

Recall that the Fourier expansion of any , with respect to , is given by

where  is the Fourier coefficient of  with respect to . Observe that

and so . Thus, according to Theorem 13.10, the Fourierspan

expansion  is the best approximation to  in . Moreover, sincespan

, we have

and so

with equality if and only if , which happens if and only if .span

Let us summarize.
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Theorem 13.16 Let  be a finite orthonormal set in a Hilbert

space . For any , the Fourier expansion  of  is the best

approximation to  in . We also have span Bessel's inequality

or, equivalently

(13.3)

with equality if and only if . span

The Countably Infinite-Dimensional Case

In the countably infinite case, we will be dealing with infinite sums and so

questions of convergence will arise. Thus, we begin with the following.

Theorem 13.17 Let  be a countably infinite orthonormal set in

a Hilbert space . The series

(13.4)

converges in  if and only if the series

(13.5)

converges in . If these series converge then they converge unconditionally

(that is, any series formed by rearranging the order of the terms also

converges). Finally, if the series (13.4) converges then

Proof. Denote the partial sums of the first series by  and the partial sums of

the second series by . Then for 

Hence  is a Cauchy sequence in  if and only if  is a Cauchy sequence

in . Since both  and  are complete,  converges if and only if 

converges.

If the series (13.5) converges then it converges absolutely and hence

unconditionally. (A real series converges unconditionally if and only if it
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converges absolutely.  But if (13.5) converges unconditionally then so does

(13.4). The last part of the theorem follows from the continuity of the norm. 

Now let  be a countably infinite orthonormal set in . The

Fourier expansion of a vector  is defined to be the sum

(13.6)

To see that this sum converges, observe that, for any , (13.3) gives

and so

which shows that the series on the left converges. Hence, according to Theorem

13.17, the Fourier expansion (13.6) converges unconditionally.

Moreover, since the inner product is continuous,

and so . Hence,  is the best approximationspan cspan

to  in . Finally, since , we again havecspan

and so

with equality if and only if , which happens if and only if .cspan

Thus, the following analog of Theorem 13.16 holds.

Theorem 13.18 Let  be a countably infinite orthonormal set in

a Hilbert space . For any , the Fourier expansion

of  converges unconditionally and is the best approximation to  in .cspan

We also have Bessel's inequality
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or, equivalently

with equality if and only if . cspan

The Arbitrary Case

To discuss the case of an arbitrary orthonormal set , let us

first define and discuss the concept of the sum of an arbitrary number of terms.

(This is a bit of a digression, since we could proceed without all of the coming

details but they are interesting.

Definition Let  be an arbitrary family of vectors in an inner

product space . The sum

is said to  to a vector  and we writeconverge

(13.7)

if for any , there exists a finite set  for which

  finite

For those readers familiar with the language of convergence of nets, the set

 of all finite subsets of  is a  under inclusion (for everydirected set

 there is a  containing  and ) and the function

is a net in . Convergence of 13.7) is convergence of this net. In any case, we

will refer to the preceding definition as the  of convergence.net definition

It is not hard to verify the following basic properties of net convergence for

arbitrary sums.

Theorem 13.19 Let  be an arbitrary family of vectors in an

inner product space . If

 and  

then
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1) ( )Linearity

for any 

2) ( )Continuity

 and 

The next result gives a useful “Cauchy type” description of convergence.

Theorem 13.20 Let  be an arbitrary family of vectors in an

inner product space .

1) If the sum

converges then for any , there exists a finite set  such that

  finite

2) If  is a Hilbert space then the converse of 1) also holds.

Proof. For part 1), given , let ,  finite, be such that

  finite
2

If ,  finite then

2 2

As for part 2), for each , let  be a finite set for which

  finite

and let



Hilbert Spaces 323

Then  is a Cauchy sequence, since

Since  is assumed complete, we have .

Now, given , there exists an  such that

2

Setting  gives for   finitemax

and so  converges to . 

The following theorem tells us that convergence of an arbitrary sum implies that

only countably many terms can be nonzero so, in some sense, there is no such

thing as a nontrivial  sum.uncountable

Theorem 13.21 Let  be an arbitrary family of vectors in an

inner product space . If the sum

converges then at most a countable number of terms  can be nonzero.

Proof. According to Theorem 13.20, for each , we can let , 

finite, be such that

  finite

Let . Then  is countable and

 for all  for all 
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Here is the analog of Theorem 13.17.

Theorem 13.22 Let  be an arbitrary orthonormal family of

vectors in a Hilbert space . The two series

 and 

converge or diverge together. If these series converge then

Proof. The first series converges if and only if for any , there exists a finite

set  such that

  finite

or, equivalently

  finite

and this is precisely what it means for the second series to converge. We leave

proof of the remaining statement to the reader. 

The following is a useful characterization of arbitrary sums of nonnegative real

terms.

Theorem 13.23 Let  be a collection of nonnegative real numbers.

Then

sup
finite

(13.8)

provided that either of the preceding expressions is finite.

Proof. Suppose that

sup
 finite

Then, for any , there exists a finite set  such that
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Hence, if  is a finite set for which  then since ,

and so

which shows that  converges to . Finally, if the sum on the left of (13.8)

converges then the supremum on the right is finite and so (13.8) holds. 

The reader may have noticed that we have two definitions of convergence for

countably infinite series: the net version and the traditional version involving

the limit of partial sums. Let us write

 and 

for the net version and the partial sum version, respectively. Here is the

relationship between these two definitions.

Theorem 13.24 Let  be a Hilbert space. If  then the following are

equivalent:

1)  converges (net version) to 

2)  converges unconditionally to 

Proof. Assume that 1) holds. Suppose that  is any permutation of . Given

any , there is a finite set  for which

  finite

Let us denote the set of integers  by  and choose a positive integer 

such that . Then for  we have

and so 2) holds.
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Next, assume that 2) holds, but that the series in 1) does not converge. Then

there exists an  such that, for any finite subset , there exists a finite

subset  with  for which

From this, we deduce the existence of a countably infinite sequence  of

mutually disjoint finite subsets of  with the property that

max min

and

Now, we choose any permutation  with the following properties

1)

2) if  then

 1) 1)2

The intention in property 2) is that, for each ,  takes a set of consecutive

integers to the integers in .

For any such permutation , we have

which shows that the sequence of partial sums of the series

is not Cauchy and so this series does not converge. This contradicts 2) and

shows that 2) implies at least that 1) converges. But if 1) converges to 

then since 1) implies 2) and since unconditional limits are unique, we have

. Hence, 2) implies 1). 

Now we can return to the discussion of Fourier expansions. Let

 be an arbitrary orthonormal set in a Hilbert space . Given

any , we may apply Theorem 13.16 to all finite subsets of , to deduce
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that

sup
 finite

and so Theorem 13.23 tells us that the sum

converges. Hence, according to Theorem 13.22, the Fourier expansion

of  also converges and

Note that, according to Theorem 13.21,  is a countably infinite sum of terms of

the form  and so is in .cspan

The continuity of infinite sums with respect to the inner product (Theorem

13.19) implies that

and so . Hence, Theorem 3.10 tells us that span cspan

is the best approximation to  in . Finally, since , we againcspan

have

and so

with equality if and only if , which happens if and only if .cspan

Thus, we arrive at the most general form of a key theorem about Hilbert spaces.

Theorem 13.25 Let  be an orthonormal family of vectors in

a Hilbert space . For any , the Fourier expansion

of  converges in  and is the unique best approximation to  in .cspan

Moreover, we have Bessel's inequality



328 Advanced Linear Algebra

or, equivalently

with equality if and only if . cspan

A Characterization of Hilbert Bases

Recall from Theorem 13.15 that an orthonormal set  in a

Hilbert space  is a Hilbert basis if and only if

cspan

Theorem 13.25 then leads to the following characterization of Hilbert bases.

Theorem 13.26 Let  be an orthonormal family in a Hilbert

space . The following are equivalent:

1)  is a Hilbert basis (a maximal orthonormal set)

2) 

3)  is total (that is, )cspan

4)  for all 

5) Equality holds in Bessel's inequality for all , that is,

for all .

6) Parseval's identity

holds for all , that is,

Proof. Parts 1), 2) and 3) are equivalent by Theorem 13.15. Part 4) implies part

3), since  and 3) implies 4) since the unique best approximation ofcspan

any  is itself and so . Parts 3) and 5) are equivalent bycspan

Theorem 13.25. Parseval's identity follows from part 4) using Theorem 13.19.

Finally, Parseval's identity for  implies that equality holds in Bessel's

inequality.

Hilbert Dimension

We now wish to show that all Hilbert bases for a Hilbert space  have the same

cardinality and so we can define the Hilbert dimension of  to be that

cardinality.
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Theorem 13.27 All Hilbert bases for a Hilbert space  have the same

cardinality. This cardinality is called the  of , which weHilbert dimension

denote by .hdim

Proof. If  has a finite Hilbert basis then that set is also a Hamel basis and so

all finite Hilbert bases have size . Suppose next that dim

and  are infinite Hilbert bases for . Then for each , we have

where  is the countable set . Moreover, since no  can be

orthogonal to every , we have . Thus, since each  is countable,

we have

By symmetry, we also have  and so the Schröder-Bernstein theorem

implies that . 

Theorem 13.28 Two Hilbert spaces are isometrically isomorphic if and only if

they have the same Hilbert dimension.

Proof. Suppose that . Let  be ahdim hdim

Hilbert basis for  and  a Hilbert basis for . We may

define a map  as follows

We leave it as an exercise to verify that  is a bijective isometry. The converse

is also left as an exercise. 

A Characterization of Hilbert Spaces

We have seen that any vector space  is isomorphic to a vector space  of

all functions from  to  that have finite support. There is a corresponding

result for Hilbert spaces. Let  be any nonempty set and let

The functions in  are referred to as . We cansquare summable functions

also define a real version of this set by replacing  by .  We define an inner

product on  by

The proof that  is a Hilbert space is quite similar to the proof that
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 is a Hilbert space and the details are left to the reader. If we define

 by

if

if

then the collection

is a Hilbert basis for , of cardinality . To see this, observe that

and so  is orthonormal. Moreover, if  then  for only a

countable number of , say . If we define  by

then  and  for all , which implies that .cspan

This shows that  and so  is a total orthonormal set, that is, acspan

Hilbert basis for .

Now let  be a Hilbert space, with Hilbert basis . We define

a map  as follows. Since  is a Hilbert basis, any  has the

form

Since the series on the right converges, Theorem 13.22 implies that the series

converges. Hence, another application of Theorem 13.22 implies that the

following series converges

It follows from Theorem 13.19 that  is linear and it is not hard to see that it is

also bijective. Notice that  and so  takes the Hilbert basis  for 

to the Hilbert basis  for .
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Notice also that

and so  is an isometric isomorphism. We have proved the following theorem.

Theorem 13.29 If  is a Hilbert space of Hilbert dimension  and if  is any

set of cardinality  then  is isometrically isomorphic to . 

The Riesz Representation Theorem

We conclude our discussion of Hilbert spaces by discussing the Riesz

representation theorem. As it happens, not all linear functionals on a Hilbert

space have the form “take the inner product with ,” as in the finite-

dimensional case. To see this, observe that if  then the function

is certainly a linear functional on . However, it has a special property. In

particular, the Cauchy-Schwarz inequality gives, for all 

or, for all ,

Noticing that equality holds if , we have

sup

This prompts us to make the following definition, which we do for linear

transformations between Hilbert spaces (this covers the case of linear

functionals).

Definition Let  be a linear transformation from  to . Then  is

said to be  ifbounded

sup

If the supremum on the left is finite, we denote it by  and call it the  ofnorm

.
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Of course, if  is a bounded linear functional on  then

sup

The set of all bounded linear functionals on a Hilbert space  is called the

continuous dual space conjugate space, or , of  and denoted by . Note

that this differs from the algebraic dual of , which is the set of all linear

functionals on . In the finite-dimensional case, however, since all linear

functionals are bounded (exercise), the two concepts agree. (Unfortunately,

there is no universal agreement on the notation for the algebraic dual versus the

continuous dual. Since we will discuss only the continuous dual in this section,

no confusion should arise.

The following theorem gives some simple reformulations of the definition of

norm.

Theorem 13.30 Let  be a bounded linear transformation.

1) sup

2) sup

3)  for all inf

The following theorem explains the importance of bounded linear

transformations.

Theorem 13.31 Let  be a linear transformation. The following are

equivalent:

1)  is bounded

2)  is continuous at any point 

3)  is continuous.

Proof. Suppose that  is bounded. Then

as . Hence,  is continuous at . Thus, 1) implies 2). If 2) holds then for

any , we have

as , since  is continuous at  and  as . Hence, 

is continuous at any  and 3) holds. Finally, suppose that 3) holds. Thus, 

is continuous at  and so there exists a  such that
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In particular,

and so

Thus,  is bounded. 

Now we can state and prove the Riesz representation theorem.

Theorem 13.32 The Riesz representation theorem( ) Let  be a Hilbert

space. For any bounded linear functional  on , there is a unique 

such that

for all . Moreover, .

Proof. If , we may take , so let us assume that . Hence,

ker  and since  is continuous,  is closed. Thus

Now, the first isomorphism theorem, applied to the linear functional ,

implies that  (as vector spaces). In addition, Theorem 3.5 implies that

 and so . In particular, .dim

For any , we have

Since , all we need do is find a  for whichdim

for then  for all , showing that

 for  as well.

But if  then

has this property, as can be easily checked. The fact that  has

already been established. 
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Exercises

1. Prove that the sup metric on the metric space  of continuous

functions on  does not come from an inner product. Hint: let 

and a a  and consider the parallelogram law.

2. Prove that any Cauchy sequence that has a convergent subsequence must

itself converge.

3. Let  be an inner product space and let  and  be subsets of . Show

that

 a) 

 b)  is a closed subspace of 

 c) cspan

4. Let  be an inner product space and . Under what conditions is

?

5. Prove that a subspace  of a Hilbert space  is closed if and only if

.

6. Let  be the subspace of  consisting of all sequences of real numbers,

with the property that each sequence has only a finite number of nonzero

terms. Thus,  is an inner product space. Let  be the subspace of 

consisting of all sequences  in  with the property that

. Show that  is closed, but that . Hint: For the latter,

show that  by considering the sequences ,

where the term  is in the nth coordinate position.

7. Let  be an orthonormal set in . If  converges,

show that

8. Prove that if an infinite series

converges absolutely in a Hilbert space  then it also converges in the

sense of the “net” definition given in this section.

9. Let  be a collection of nonnegative real numbers. If the sum

on the left below converges, show that

sup
 finite

10. Find a countably infinite sum of real numbers that converges in the sense of

partial sums, but not in the sense of nets.

11. Prove that if a Hilbert space  has infinite Hilbert dimension then no

Hilbert basis for  is a Hamel basis.

12. Prove that  is a Hilbert space for any nonempty set .
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13. Prove that any linear transformation between finite-dimensional Hilbert

spaces is bounded.

14. Prove that if  then  is a closed subspace of .ker

15. Prove that a Hilbert space is separable if and only if .hdim

16. Can a Hilbert space have countably infinite Hamel dimension?

17. What is the Hamel dimension of ?

18. Let  and  be bounded linear operators on . Verify the following:

 a) 

 b) 

 c) 

19. Use the Riesz representation theorem to show that  for any Hilbert

space .



Chapter 14

Tensor Products

In the preceding chapters, we have seen several ways to construct new vector

spaces from old ones. Two of the most important such constructions are the

direct sum  and the vector space  of all linear transformations

from  to . In this chapter, we consider another very important construction,

known as the .tensor product

Universality

We begin by describing a general type of  that will help motivate theuniversality

definition of tensor product. Our description is strongly related to the formal

notion of a  in category theory, but weuniversal arrow (or universal element)

will be somewhat less formal to avoid the need to formally define categorical

concepts. Accordingly, the terminology that we shall introduce is not standard

(but does not contradict any standard terminology).

Referring to Figure 14.1, consider a set  and two functions  and , with

domain .

A

g

S

X

f

Figure 14.1

Suppose that this diagram , that is, that there exists a  functioncommutes unique

 for which

What does this say about the relationship between the functions  and ?
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Let us think of the “information” contained in a function  to be the

way in which   elements of  using  from . Thedistinguishes labels

relationship above implies that

This can be phrased by saying that whatever ability  has to distinguish

elements of  is also possessed by . Put another way, except for labeling

differences, any information contained in  is also contained in . This is

sometimes expressed by saying that  can be  .factored through

If  happens to be injective, then the  difference between  and  is theonly

values of the labels. That is, the two functions have equal ability to distinguish

elements of . However, in general,  is not required to be injective and so 

may contain more information than .

Suppose now that for all sets  in some family  of sets that includes  and for

all functions  in some family  of functions that includes , the

diagram in Figure 14.1 commutes. This says that the information contained in

every function in  is also contained in . In other words,  captures and

preserves the information in every member of . In this sense,  is

universal among all functions  in .

Moreover, since  is a member of the family , we can also say that  contains

the information in  . In other words, the information in thebut no more

universal function  is precisely the same as the information in the entire family

. In this way, a single function  (more precisely, a single pair )

can capture a concept, as described by a family of functions, such as the

concepts of basis, quotient space, direct sum and bilinearity (as we will see)!

Let us make a formal definition.

Definition Referring to Figure 14.2, let  be a set and let  be a family of sets.

Let  be a family of functions from  to members of . Let  be a family of

functions on members of . We assume that  has the following structure:

1)  contains the identity function for each member of 

2)  is closed under composition of functions

3) Composition of functions in  is associative.

We also assume that for any  and , the composition  is defined

and is a member of .
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A

S3
f3

S2
f2

S1

f1

3

2
1

Figure 14.2

Let us refer to  as the  and its members as measuring set measuring

functions.

A pair , where  and  has the universal property for

 as universal pair formeasured by , or is a  , if for any  and

any  in , there is a unique  in  for which the diagram in

Figure 14.1 commutes, that is,

Another way to express this is to say that any  can be factored through

, or that any  can be  to a function  on . lifted

Universal pairs are essentially unique, as the following describes.

Theorem 14.1 Let  and  be universal pairs for

. Then there is a  measuring function  for whichbijective

.

Proof. With reference to Figure 14.3, there are unique measuring functions

 and  for which

Hence,

However, referring to the third diagram in Figure 14.3, both  and

the identity map  are members of  that make the diagram commute.

Hence, the uniqueness requirement implies that . Similarly 

and so  and  are inverses of one another, making  the desired

bijection.
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A

g

S

T

f
A

g

S

T

f

A
f

S

S

f

Figure 14.3

Now let us look at some examples of the universal property. Let  denoteVect

the family of all vector spaces over the base field . (We use the term family

informally to represent what in set theory is formally referred to as a class. A

class is a “collection” that is too large to be considered a set. For example,

Vect  is a class.)

Example 14.1 (Bases: the universal property for set functions from a set  into

a vector space, as measured by linearity) Let  be a nonempty set. Let

Vect  and let  be the family of set functions with domain . The

measuring set  is the family of linear transformations.

If  is the vector space with basis , that is, the set of all formal linear

combinations of members of  with coefficients in , then the pair

 where  is the injection map , is universal for .

To see this, note that the condition that  can be factored through 

is equivalent to the statement that  for each basis vector . But

this uniquely defines a linear transformation . Note also that Theorem 14.1

implies that if  is also universal for , then there is a

bijective measuring function from  to , that is,  and  are

isomorphic. 

Example 14.2 (Quotient spaces and canonical projections: the universal

property for linear transformations from  whose kernel contains a particular

subspace  of , as measured by linearity) Let  be a vector space with

subspace . Let . Let  be the family of linear transformationsVect

with domain  whose kernel contains . The measuring set  is the family of

linear transformations. Then Theorem 3.4 says precisely that the pair

, where  is the canonical projection map, has the

universal property for  as measured by . 

Example 14.3 (Direct sums: the universal property for pairs  of linear

maps with the same range, where  has domain  and  has domain , as

measured by linearity) Let  and  be vector spaces and consider the ordered
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pair . Let . A member of  is an ordered pairVect

 of linear transformations, written

for which

The measure set  is the set of all linear transformations. For  and

, we set

We claim that the pair , where

are the canonical injections, has the universal property for .

To see this, observe that for any function , that is, for any

pair of linear transformations  and , the condition

is equivalent to

or

But the condition  does indeed define a unique linear

transformation . (For those familiar with category theory, we

have essentially defined the coproduct of vector spaces, which is equivalent to

the product, or direct sum.)

It should be clear from these examples that the notion of universal property is,

well, universal. In fact, it happens that the most useful definition of tensor

product is through its universal property.

Bilinear Maps

The universality that defines tensor products rests on the notion of a bilinear

map.

Definition Let ,  and  be vector spaces over . Let  be the

cartesian product of  and  . A set functionas sets
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is  if it is linear in both variables separately, that is, ifbilinear

and

The set of all bilinear functions from  to  is denoted by

hom . A bilinear function , with values in the base

field , is called a  on . bilinear form

It is important to emphasize that, in the definition of bilinear function,  is

the , not the direct product of vector spaces. In othercartesian product of sets

words, we do not consider any algebraic structure on  when defining

bilinear functions, so equations like

and

are false.

In fact, if  is a vector space, we have two classes of functions from  to

, the linear maps  where  is the direct product of vector

spaces, and the bilinear maps , where  is just the cartesianhom

product of sets. We leave it as an exercise to show that these two classes have

only the zero map in common. In other words, the only map that is both linear

and bilinear is the zero map.

We made a thorough study of bilinear forms on a finite-dimensional vector

space  in Chapter 11 (although this material is not assumed here). However,

bilinearity is far more important and far reaching than its application to metric

vector spaces, as the following examples show. Indeed, both multiplication and

evaluation are bilinear.

Example 14.4 ( ) If  is an algebra, the product mapMultiplication is bilinear

 defined by

is bilinear. Put another way, multiplication is linear in each position. 

Example 14.5 ( ) If  and  are vector spaces, then theEvaluation is bilinear

evaluation map  defined by
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is bilinear. In particular, the evaluation map  defined by

 is a bilinear form on . 

Example 14.6 If  and  are vector spaces, and  and  then the

product map  defined by

is bilinear. Dually, if  and  then the map  defined

by

is bilinear. 

It is precisely the tensor product that will allow us to generalize the previous

example. In particular, if  and  then we would like to

consider a “product” map  defined by

?

The tensor product is just the thing to replace the question mark, because it

has the desired bilinearity property, as we will see. In fact, the tensor product is

bilinear and nothing else, so it is  what we need!exactly

Tensor Products

Let  and  be vector spaces. Our guide for the definition of the tensor product

 will be the desire to have a universal property for bilinear functions, as

measured by linearity. Put another way, we want  to embody the notion

of bilinearity but nothing more, that is, we want it to be .universal for bilinearity

Referring to Figure 14.4, we seek to define a vector space  and a bilinear map

 so that any bilinear map  with domain  can be factored

through . Intuitively speaking,  is the most “general” or “universal” bilinear

map with domain .

W

f

bilinear

linear

TVU
t

bilinear

Figure 14.4
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Definition Let  be the cartesian product of two vector spaces over . Let

Vect . Let

hom

be the family of all bilinear maps from  to a vector space . The

measuring set  is the family of all linear transformations.

A pair  is  if it is universal foruniversal for bilinearity

, that is, if for every bilinear map , there is a unique

linear transformation  for which

Let us now turn to the question of the existence of a universal pair for

bilinearity.

Existence I: Intuitive but Not Coordinate Free

The universal property for bilinearity captures the essence of bilinearity and

nothing more (as is the intent for all universal properties). To understand better

how this can be done, let  be a basis for  and let

 be a basis for . Then a bilinear map  on  is uniquely

determined by assigning arbitrary values to the “basis” pairs . How can

we do this ?and nothing more

The answer is that we should define  on the pairs  in such a way that the

images   and then extend by bilinearity.do not interact

In particular, for each ordered pair , we invent a new formal symbol, say

 and define  to be the vector space with basis

Then define the map  by setting  and extending by bilinearity.

This uniquely defines a bilinear map  that is as “universal” as possible among

bilinear maps.

Indeed, if  is bilinear, the condition  is equivalent to

which uniquely defines a linear map . Hence,  has the universal

property for bilinearity.
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A typical element of  is a finite linear combination

and if  and  then

Note that, as is customary, we have used the notation  for the image of any

pair  under . Strictly speaking, this is an abuse of the notation  as we

have defined it. While it may seem innocent, it does contribute to the reputation

that tensor products have for being a bit difficult to fathom.

Confusion may arise because while the elements  form a basis for  (by

definition), the larger set of elements of the form  span , but are

definitely not linearly independent. This raises various questions, such as when

a sum of the form  is equal to , or when we can define a map  on 

by specifying the values  arbitrarily. The first question seems more

obviously challenging when we phrase it by asking when a sum of the form

 is , since there is no algebraic structure on the cartesian product

, and so there is nothing “obvious” that we can do with this sum. The

second question is not difficult to answer when we keep in mind that the set

 is not linearly independent.

The notation  is used in yet another way:  is generally denoted by 

and called the  of  and . The elements of  are calledtensor product

tensors decomposable and a tensor of the form  is said to be . For

example, in , the tensor  is decomposable but the tensor

 is not.

It is also worth emphasizing that the tensor product is not a product in the

sense of a binary operation on a set, as is the case in rings and fields, for

example. In fact, even when , the tensor product  is not in , but

rather in . It is wise to remember that the decomposable tensor  is

nothing more than the image of the ordered pair  under the bilinear map ,

as are the basis elements .

Existence II: Coordinate Free

The previous definition of tensor product is about as intuitive as possible, but

has the disadvantage of not being coordinate free. The following customary

approach to defining the tensor product does not require the choice of a basis.

Let  be the vector space over  with basis . Let  be the subspace

of  generated by all vectors of the form
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(14.1)

and

(14.2)

where  and  and  are in the appropriate spaces. Note that these

vectors are  if we replace the ordered pairs by tensors according to our

previous definition.

The quotient space

is also called the  of  and . The elements of  have thetensor product

form

However, since  and , we can absorb

the scalar in either coordinate, that is,

and so the elements of  can be written simply as

It is customary to denote the coset  by  and so any element of

 has the form

as before. Finally, the map  is defined by

The proof that the pair  is universal for bilinearity

is a bit more tedious when  is defined as a quotient space.

Theorem 14.2 Let  and  be vector spaces. The pair

has the universal property for bilinearity, as measured by linearity.

Proof. Consider the diagram in Figure 14.5. Here  is the vector space with

basis .
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F VU

j

W

f

VU VU

t

Figure 14.5

Since , we have

The universal property of vector spaces described in Example 14.1 implies that

there is a unique linear transformation  for which

Note that  sends any of the vectors (14.1) and (14.2) that generate  to the zero

vector and so . For example,ker

and similarly for the second coordinate. Hence, we may apply Theorem 3.4 (the

universal property described in Example 14.2), to deduce the existence of a

unique linear transformation  for which

Hence,

As to uniqueness, if  then  satisfies

The uniqueness of  then implies that , which in turn implies that

and the uniqueness of  implies that . 

We now have two definitions of tensor product that are equivalent, since under

the second definition the tensors
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form a basis for , as we will prove a bit later. Accordingly, we no

longer need to make a distinction between the two definitions.

Bilinearity on  Equals Linearity on 

The universal property for bilinearity says that to each  functionbilinear

, there corresponds a unique  function .linear

This establishes a correspondence

hom

given by . In other words,  is the unique linear

map for which

Observe that  is linear, since if  thenhom

and so the uniqueness part of the universal property implies that

Also,  is surjective, since if  is any linear map then

 is bilinear and by the uniqueness part of the universal

property, we have . Finally,  is injective, for if  then

. We have established the following result.

Theorem 14.3 Let ,  and  be vector spaces over . Then the map

hom , where  is the unique linear map

satisfying , is an isomorphism. Thus,

hom

Armed with the definition and the universal property, we can now discuss some

of the basic properties of tensor products.

When Is a Tensor Product Zero?

Let us consider the question of when a tensor  is zero. The universal

property proves to be very helpful in deciding this question.

First, note that the bilinearity of the tensor product gives

and so . Similarly, .
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Now suppose that

where we may assume that none of the vectors  and  are . According to the

universal property of the tensor product, for any bilinear function

, there is a unique linear transformation  for

which . Hence

The key point is that this holds for  bilinear function . Oneany

possibility for  is to take two linear functionals  and and

multiply them

which is easily seen to be bilinear and gives

If, for example, the vectors  are linearly independent, then we can consider the

dual vectors , for which . Setting  gives

for all linear functionals . This implies that . We have proved the

following useful result.

Theorem 14.4 If  are linearly independent vectors in  and

 are arbitrary vectors in  then

 for all 

In particular,  if and only if  or . 

The next result says that we can get a basis for the tensor product  simply

by “tensoring” any bases for each coordinate space. As promised, this shows

that the two definitions of tensor product are essentially equivalent.

Theorem 14.5 Let  be a basis for  and let 

be a basis for . Then the set

is a basis for .
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Proof. To see that the  is linearly independent, suppose that

This can be written

and so, by Theorem 14.4, we must have

for all  and hence  for all  and . To see that  spans , let

. Then since   and  , we have

Hence, any sum of elements of the form  is a linear combination of the

vectors , as desired. 

Corollary 14.6 For finite-dimensional vector spaces,

dim dim dim

Coordinate Matrices and Rank

If  is a basis for  and  is a basis for , then

any vector  has a unique expression as a sum

where only a finite number of the coefficients  are nonzero. In fact, for a

fixed , we may reindex the bases so that
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where none of the rows or columns of the matrix  consists only of 's.

The matrix  is called a  of  with respect to thecoordinate matrix

bases  and .

Note that a coordinate matrix  is determined only up to the order of its rows

and columns. We could remove this ambiguity by considering ordered bases,

but this is not necessary for our discussion and adds a complication since the

bases may be infinite.

Suppose that  and  are also bases for  and

, respectively and that

where  is a coordinate matrix of  with respect to these bases. We

claim that the coordinate matrices  and  have the same rank, which can then

be defined as the  of the tensor .rank

Each  is a finite linear combination of basis vectors in , perhaps

involving some of  and perhaps involving other vectors in . We can

further reindex  so that each  is a linear combination of the vectors

, where  and set

span

Next, extend  to a basis  for .

(Since we no longer need the rest of the basis , we have commandeered the

symbols , for simplicity.) Hence

 for 

where  is invertible of size .

Now repeat this process on the second coordinate. Reindex the basis  so that

the subspace span  contains  and extend to a basis

 for . Then

 for 

where  is invertible of size .
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Next, write

by setting  for  or . Thus, the  matrix  comes

from  by adding  rows of 's to the bottom and then  columns of

's. In particular,  and  have the same rank.

The expression for  in terms of the basis vectors  and  can

also be extended using  coefficients to

where the  matrix  has the same rank as .

Now at last, we can compute

and so

It follows that . Since  and  are invertible, we deduce that

rk rk rk rk

In block terms

and

and
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and

Then  implies that, for the original coordinate matrices,

where  and .rk rk rk rk

We shall soon have use for the following special case. If

(14.3)

then, in the preceding argument,  and  and

and

Hence, the equation  becomes

and we further have

 for 

where  and

 for 

where .

The Rank of a Decomposable Tensor

Recall that a tensor of the form  is said to be decomposable. If 

is a basis for  and  is a basis for  then any decomposable vector

has the form

Hence, the rank of a decomposable vector is . This implies that the set of

decomposable vectors is quite “small” in , as long as neither vector space

has dimension .



354 Advanced Linear Algebra

Characterizing Vectors in a Tensor Product

There are several very useful representations of the tensors in .

Theorem 14.7 Let  be a basis for  and let  be a basis

for . By a “unique” sum, we mean unique up to order and presence of zero

terms. Then

1) Every  has a unique expression as a finite sum of the form

where .

2) Every  has a unique expression as a finite sum of the form

where .

3) Every  has a unique expression as a finite sum of the form

where .

4) Every nonzero  has an expression of the form

where  and  are linearly independent sets. As to

uniqueness,  is the rank of  and so it is unique. Also, we have

where  and  are linearly independent sets, if and only if

there exist  matrices  and  for which  and

and

for .

Proof. Part 1) merely expresses the fact that  is a basis for .

From part 1), we write
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which is part 2). Uniqueness follows from Theorem 14.4. Part 3) is proved

similarly.  As to part 4), we start with the expression from part 2)

where we may assume that none of the 's are . If the set  is linearly

independent, we are done. If not, then we may suppose (after reindexing if

necessary) that

Then

But the vectors  are linearly independent. This

reduction can be repeated until the second coordinates are linearly independent.

Moreover, the identity matrix  is a coordinate matrix for  and so

rk rk . As to uniqueness, one direction was proved earlier; see

(14.3) and the other direction is left to the reader. 

Defining Linear Transformations on a Tensor Product

One of the simplest and most useful ways to define a linear transformation  on

the tensor product  is through the universal property, for this property

says precisely that a bilinear function  on  gives rise to a unique (and

well-defined) linear transformation on . The proof of the following

theorem illustrates this well. It says that a linear functional on the tensor product

is nothing more or less than a tensor product of linear functionals.

Theorem 14.8 Let  and  be finite-dimensional vector spaces. Then

via the isomorphism  given by

Proof. Informally, for fixed  and , the function  is bilinear

in  and  and so there is a unique linear map  taking  to .
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The function  is bilinear in  and  since, ,as functions

 and so there is a unique linear map  taking  to

.

A bit more formally, for fixed  and , the map  defined by

is bilinear and so the universal property of tensor products implies that there

exists a unique linear functional  on  for which

Next, the map  defined by

is bilinear since, for example,

and so

which shows that  is linear in its first coordinate. Hence, the universal

property implies that there exists a unique linear map

for which

that is,

Finally, we must show that  is bijective. Let  be a basis for , with dual

basis  and let  be a basis for , with dual basis . Then

and so  is the dual basis to the basis  for

. Thus,  takes the basis  for  to the basis 

and is therefore bijective. 
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Combining the isomorphisms of Theorem 14.3 and Theorem 14.8, we have, for

finite-dimensional vector spaces  and ,

hom

The Tensor Product of Linear Transformations

We wish to generalize Theorem 14.8 to arbitrary linear transformations. Let

 and . While the product  does not make

sense, the  product  does and is bilinear in  and tensor

The same informal argument that we used in the proof of Theorem 14.8 will

work here. Namely, the expression  is bilinear in  and 

and so there is a unique linear map, say  for which

Since , we have a function

defined by

But  is bilinear, since

and similarly for the second coordinate. Hence, there is a unique linear

transformation

satisfying

that is,

To see that  is injective, if  then  for all 

and . If  then . If , then there is a  for which

. But  implies that one of the factors is  and so
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 for all , that is, . Hence, . In either case, we see

that  is injective.

Thus,  is an embedding (injective linear transformation) and if all vector spaces

are finite-dimensional, then

dim dim

and so  is also surjective and hence an isomorphism.

The embedding of  into  means that

each  can be thought of as the linear transformation  from  to

, defined by

In fact, the notation  is often used to denote both the tensor product of

vectors (linear transformations) and the linear map , and we will do this as

well. In summary, we can say that the tensor product  of linear

transformations is a linear transformation on tensor products.

Theorem 14.9 The linear transformation

defined by  where

is an embedding (injective linear transformation), and is an isomorphism if all

vector spaces are finite-dimensional. Thus, the tensor product  of linear

transformations is (via this embedding) a linear transformation on tensor

products.

There are several special cases of this result that are of importance.

Corollary 14.10 Let us use the symbol  to denote the fact that there is

an embedding of  into  that is an isomorphism if  and  are finite-

dimensional.

1) Taking  gives

where

for .
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2) Taking  and gives

where

3) Taking  and noting that  and  gives

(letting )

where

4) Taking  and  gives (letting )

where

Change of Base Field

The tensor product gives us a convenient way to extend the base field of a

vector space. (We have already discussed the complexification of a real vector

space.) For convenience, let us refer to a vector space over a field  as an -

space and write . Actually, there are several approaches to “upgrading” the

base field of a vector space. For instance, suppose that  is an extension field of

, that is, . If  is a basis for  then every  has the form

where . We can define an -space  simply by taking all formal linear

combinations of the form

where . Note that the dimension of  as a -space is the same as the

dimension of  as an -space. Also,  is an -space (just restrict the scalars

to ) and as such, the inclusion map  sending  to

, is an -monomorphism.

The approach described in the previous paragraph uses an arbitrarily chosen

basis for  and is therefore not coordinate free. However, we can give a

coordinate–free approach using tensor products as follows. Since  is a vector
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space over , we can consider the tensor product

It is customary to include the subscript  on  to denote the fact that the

tensor product is taken with respect to the base field . (All relevant maps are

-bilinear and -linear.  However, since  is not a -space, the only tensor

product that makes sense in  is the -tensor product and so we will drop

the subscript .

The vector space  is an -space by definition of tensor product, but we may

make it into a -space as follows. For , the temptation is to “absorb” the

scalar  into the first coordinate

But we must be certain that this is well-defined, that is, that

This becomes easy if we turn to the universal property for bilinearity. In

particular, consider the map  defined by

This map is obviously well-defined and since it is also bilinear, the universal

property of tensor products implies that there is a unique (and well-defined!) -

linear map  for which

Note also that since  is -linear, it is additive and so

that is,

which is one of the properties required of a scalar multiplication. Since the other

defining properties of scalar multiplication are satisfied, the set  is

indeed a -space under this operation (and addition), which we denote by .

To be absolutely clear, we have three distinct vector spaces: the -spaces 

and  and the -space , where the tensor product

in both cases is with respect to . The spaces  and  are identical as sets

and as abelian groups. It is only the “permission to multiply by” that is different.

Even though in  we can multiply only by scalars from , we still get the

same  of vectors. Accordingly, we can recover  from  simply byset

restricting scalar multiplication to scalars from .
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It follows that we can speak of “ -linear” maps  from  into , with the

expected meaning, that is,

for all scalars  (not in ).

If the dimension of  as a vector space over  is  then

dim dim dim dim dim

As to the dimension of , it is not hard to see that if  is a basis for 

then  is a basis for . Hence

dim dim

even when  is infinite-dimensional.

The map  defined by  is easily seen to be injective

and -linear and so  contains an isomorphic copy of . We can also think

of  as mapping  into , in which case  is called the  of-extension map

. This map has a universal property of its own, as described in the next

theorem.

Theorem 14.11 The -extension map  has the universal property

for the family of all -linear maps with domain  and range a -space, as

measured by -linear maps. In particular, for any -linear map ,

where  is a -space, there exists a unique -linear map  for

which the diagram in Figure 14.6 commutes, that is,

Proof. If such a map  is to exist then it must satisfy

(14.4)

This shows that if  exists, it is uniquely determined by . As usual, when

searching for a linear map  on a tensor product such as , we

look for a bilinear map. Let  be defined by

Since this is bilinear, there exists a unique -linear map  for which (14.4)

holds. It is easy to see that  is also -linear, since if  then
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Figure 14.6

Theorem 14.11 is the key to describing how to extend an -linear map to a -

linear map. Figure 14.7 shows an -linear map  between -spaces 

and . It also shows the -extensions for both spaces, where  and

 are -spaces.

V W

W

K V

V

K W

Figure 14.7

If there is a unique -linear map  that makes the diagram in Figure 14.7

commute, then this would be the obvious choice for the extension of the -

linear map  to a -linear map.

Consider the -linear map  into the -space

. Theorem 14.11 implies that there is a unique -linear map

 for which

that is,

Now,  satisfies

and so .
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Theorem 14.12 Let  and  be -spaces, with -extension maps  and

, respectively. (See Figure 14.7.  Then for any -linear map , the

map  is the unique -linear map that makes the diagram in Figure

14.7 commute, that is, for which

Multilinear Maps and Iterated Tensor Products

The tensor product operation can easily be extended to more than two vector

spaces. We begin with the extension of the concept of bilinearity.

Definition If  and  are vector spaces over , a function

 is said to be  if it is linear in each variablemultilinear

separately, that is, if

for all . A multilinear function of  variables is also referred to as

an . The set of all -linear functions as defined above will be-linear function

denoted by . A multilinear function from  tohom

the base field  is called a  or . multilinear form -form

Example 14.7

1) If  is an algebra then the product map  defined by

 is -linear.

2) The determinant function  is an -linear form on the columnsdet

of the matrices in . 

We can extend the quotient space definition of the tensor product to -linear

functions as follows.

Let  be a basis for  for . For each ordered -

tuple , we invent a new formal symbol  and

define  to be the vector space with basis

Then define the map  by setting  and

extending by multilinearity. This uniquely defines a multilinear map  that is as

“universal” as possible among multilinear maps.

Indeed, if  is multilinear, the condition  is

equivalent to
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which uniquely defines a linear map . Hence,  has the universal

property for bilinearity.

Alternatively, we may take the coordinate-free quotient space approach as

follows.

Definition Let  be vector spaces over  and let  be the subspace of

the free vector space  on , generated by all vectors of the form

for all ,  and . The quotient space  is

called the  of  and denoted by . tensor product

As before, we denote the coset  by  and so any

element of  is a sum of decomposable tensors, that is,

where the vector space operations are linear in each variable.

Let us formally state the universal property for multilinear functions.

Theorem 14.13 The universal property for multilinear functions as(

measured by linearity) Let  be vector spaces over the field . The

pair , where

is the multilinear map defined by

has the following property. If  is any multilinear function

from  to a vector space  over  then there is a  linearunique

transformation  that makes the diagram in Figure 14.8

commute, that is, for which

Moreover,  is unique in the sense that if a pair  also has this

property then  is isomorphic to . 
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W

f

V1 Vn
tV1 Vn

Figure 14.8

Here are some of the basic properties of multiple tensor products. Proof is left to

the reader.

Theorem 14.14 The tensor product has the following properties. Note that all

vector spaces are over the same field .

1)  There exists an isomorphism( )Associativity

for which

In particular,

2)  Let  be any permutation of the indices . Then( )Commutativity

there is an isomorphism

for which

3) There is an isomorphism  for which

and similarly, there is an isomorphism  for which

Hence, . 

The analog of Theorem 14.3 is the following.

Theorem 14.15 Let  and  be vector spaces over . Then the map

hom , defined by the fact that  is

the unique linear map for which , is an isomorphism. Thus,
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hom

Moreover, if all vector spaces are finite-dimensional then

dim hom dim dim

Theorem 14.9 and its corollary can also be extended.

Theorem 14.16 The linear transformation

defined by

is an embedding, and is an isomorphism if all vector spaces are finite-

dimensional. Thus, the tensor product  of linear transformations is

(via this embedding) a linear transformation on tensor products. Two important

special cases of this are

where

and

where

Tensor Spaces

Let  be a finite-dimensional vector space. For nonnegative integers  and ,

the tensor product

 factors  factors

is called the space of , where  is the tensors of type contravariant type

and  is the . If  then , the base field. Herecovariant type

we use the notation  for the -fold tensor product of  with itself. We will

also write  for the -fold cartesian product of  with itself.
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Since all vector spaces are finite-dimensional,  and  are isomorphic and so

hom

This is the space of all multilinear functionals on

 factors  factors

In fact, tensors of type  are often defined as multilinear functionals in this

way.

Note that

dim dim

Also, the associativity and commutativity of tensor products allows us to write

at least up to isomorphism.

Tensors of type  are called contravariant tensors

 factors

and tensors of type  are called covariant tensors

 factors

Tensors with both contravariant and covariant indices are called .mixed tensors

In general, a tensor can be interpreted in a variety of ways as a multilinear map

on a cartesian product, or a linear map on a tensor product. (The interpretation

we mentioned above that is sometimes used as the definition is only one

possibility.) We simply need to decide how many of the contravariant factors

and how many of the covariant factors should be “active participants” and how

many should be “passive participants.”

More specifically, consider a tensor of type , written

where  and . Here we are choosing the first  vectors and the first

 linear functionals as active participants. This determines the number of

arguments of the map. In fact, we define a map from the cartesian product
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 factors  factors

to the tensor product

 factors  factors

of the remaining factors by

In words, the first group  of (active) vectors interacts with the first

set  of arguments to produce the scalar first. The 

group  of (active) functionals interacts with the second group

 of arguments to produce the scalar . The remaining

(passive) vectors  and functionals  are just

“copied” to the image vector.

It is easy to see that this map is multilinear and so there is a unique linear map

from the tensor product

 factors  factors

to the tensor product

 factors  factors

defined by

(What justifies the notation  for this map?)

Let us look at some special cases. For a contravariant tensor of type 

we get a linear map

 factors  factors

(where  defined by
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For a covariant tensor of type 

we get a linear map from

 factors  factors

(where ) defined by

The special case  gives a linear functional on , that is, each element of

 is a distinct member of , whence the embedding

that we described earlier.

Let us consider some small values of  and . For a mixed tensor  of type

 here are the possibilities. When  and  we get the linear map

 defined by

When  and  we get the linear map  defined by

Finally, when  we get a multilinear form 

defined by

Consider also a tensor  of type . When  we get a

multilinear functional  defined by

This is just a bilinear form on . When  we get a multilinear map

 defined by

Contraction

Covariant and contravariant factors can be “combined” in the following way.

Consider the map
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defined by

This is easily seen to be multilinear and so there is a unique linear map

defined by

This is called the  in the contravariant index  and covariant indexcontraction

. Of course, contraction in other indices (one contravariant and one covariant)

can be defined similarly.

Example 14.8 Consider the tensor space , which is isomorphic to 

via the fact that

For , the contraction takes the form

Now, for , the operator  has kernel equal to , which hasker

codimension  and so there is a nonzero vector  for which

ker .

Now, if  then  andker

and so  is an eigenvector for the nonzero eigenvalue . Hence,

 and so the trace of  is precisely . Since the trace is

linear, we deduce that the trace of any linear operator on  is the contraction of

the corresponding vector in . 

The Tensor Algebra of 

Consider the contravariant tensor spaces

For  we take . The external direct sum

of these tensor spaces is a vector space with the property that
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This is an example of a , where  are the elements of graded algebra grade

. The graded algebra  is called the  over . (We willtensor algebra

formally define graded structures a bit later in the chapter.)

Since

 factors

there is no need to look separately at .

Special Multilinear Maps

The following definitions describe some special types of multilinear maps.

Definition

1) A multilinear map  is  if interchanging any twosymmetric

coordinate positions changes nothing, that is, if

for any .

2) A multilinear map  is  or  ifantisymmetric skew-symmetric

interchanging any two coordinate positions introduces a factor of , that

is, if

for .

3) A multilinear map  is  or  ifalternate alternating

whenever any two of the vectors  are equal. 

As in the case of bilinear forms, we have some relationships between these

concepts. In particular, if  thenchar

alternate symmetric skew-symmetric

and if  thenchar

alternate skew-symmetric

A few remarks about permutations, with which the reader may very well be

familiar, are in order. A  of the set  is a bijectivepermutation

function . We denote the group (under composition) of all such

permutations by . This is the  on  symbols. A  ofsymmetric group cycle
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length  is a permutation of the form , which sends  to   to

3  to  and  to . All other elements of  are left fixed. Every

permutation is the product (composition) of disjoint cycles.

A  is a cycle  of length . Every cycle (and therefore everytransposition

permutation) is the product of transpositions. In general, a permutation can be

expressed as a product of transpositions in many ways. However, no matter how

one represents a given permutation as such a product, the number of

transpositions is either always even or always odd. Therefore, we can define the

parity of a permutation  to be the parity of the number of transpositions

in any decomposition of  as a product of transpositions. The  of asign

permutation is defined by

sg parity

If sg  then  is an  and if sg  then  is an even permutation odd

permutation. The sign of  is often written .

With these facts in mind, it is apparent that  is symmetric if and only if

1)

for all permutations  and that  is alternating if and only if

1)

for all permutations .

Graded Algebras

We need to pause for a few definitions that are useful when discussing tensor

algebra. An algebra  over  is said to be a  if as a vector spacegraded algebra

over ,  can be written in the form

for subspaces  of , and where multiplication behaves nicely, that is,

The elements of  are said to be  . If  is writtenhomogeneous of degree

for , , then  is called the  of  ofhomogeneous component

degree .

The ring of polynomials  provides a prime example of a graded algebra,

since
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where  is the subspace of  consisting of all scalar multiples of .

More generally, the ring  of polynomials in several variables is a

graded algebra, since it is the direct sum of the subspaces of homogeneous

polynomials of degree . (A polynomial is   if eachhomogeneous of degree

term has degree . For example,  is homogeneous of degree

.)

Graded Ideals

A   in a graded algebra  is an ideal  for which, as agraded ideal

subspace of ,

(Note that  is not, in general, an ideal.) For example, the ideal  of 

consisting of all polynomials with zero constant term is graded. However, the

ideal

generated by  is not graded, since  contains only monomials and so

.

Theorem 14.17 Let  be a graded algebra. An ideal  of  is graded if and

only if it is generated by homogeneous elements of .

Proof. If  is graded then it is generated by the elements of the direct summands

, which are homogeneous. Conversely, suppose that 

where each  is homogeneous. Any  has the form

where . Since  is graded, each  and  is a sum of homogeneous

terms and we can expand  into a sum of homogeneous terms of the form

 where  and  (and  are homogeneous. Hence, if

deg deg deg deg

then  and so
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is graded. 

If  is a graded ideal in , then the quotient ring  is also graded, since it is

easy to show that

Moreover, for  and ,

The Symmetric Tensor Algebra

We wish to study tensors in  for  that enjoy a symmetry property.

Let  be the symmetric group on . For each , the multilinear

map  defined by

determines (by universality) a unique linear operator  on  for which

Let  be a basis for . Since the set

is a basis for  and  is a bijection of , it follows that  is an

isomorphism of . A tensor  is  if  for allsymmetric

permutations .

A word of caution is in order with respect to the definition of . The

permutation  permutes the coordinate positions in a decomposable tensor, not

the indices. Suppose, for example, that  and . If  is a basis

for  then

because  permutes the positions, not the indices. Thus, the following is not

true

no

The set of all symmetric tensors
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 for all 

is a subspace of .

To study  in more detail, let  be a basis for . Any tensor

 has the form

where . It will help if we group the terms in such a sum according to

the multiset of indices. Specifically, for each nonempty subset  of indices

 and each multiset  of size  with underlying set ,

let  consist of all possible decomposable tensors

where  is a permutation of . For example, if

 then

Now, ignoring coefficients, the terms in the expression for  can be organized

into the groups . Let us denote the set of terms of  (without coefficients)

that lie in  by . For example, if

then

and

Further, let  denote the sum of the terms in  that belong to 

(including the coefficients). For example,

Thus,

multisets 

Note that each permutation  is a permutation of the elements of , for each

multiset . It follows that  is a symmetric tensor if and only if the following

conditions are satisfied:



376 Advanced Linear Algebra

1) ( ) For each multiset  of size  with underlying setAll or none

, we have

or

2) If , then the coefficients in the sum  are the same and

so

where  is the common coefficient.

Hence, for a symmetric tensor , we have

multisets 

Now, symmetric tensors act as though the tensor product was commutative. Of

course, it is not, but we can deal with this as follows.

Let  be the function from  to the vector space

 of all homogeneous polynomials of degree  in the formal

variables , defined by

In this context, the product in  is often denoted by the symbol ,

so we have

It is clear that  is well-defined, linear and surjective. We want to use  to

explore the properties of symmetric tensors, first as a subspace of  and

then as a quotient space. (The subspace approach is a bit simpler, but works

only when .)char

The Case char

Note that  takes every member of a group  to the same monomial, whose

indices are precisely . Hence, if  is symmetric then

multisets 
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(Here we identify each multiset  with the nondecreasing sequence

 of its members.)

As to the kernel of , if  for  then  for all

multisets  and so, if , we may conclude that  for allchar

multisets , that is, . Hence, if , the restricted map  ischar

injective and so it is an isomorphism. We have proved the following.

Theorem 14.18  Let  be a finite-dimensional vector space over a field  with

char . Then the vector space  of symmetric tensors of degree  is

isomorphic to the vector space of homogeneous polynomials , via

the isomorphism

The vector space  of symmetric tensors of degree  is often called the

symmetric tensor space of degree  for . However, this term is also used for

an isomorphic vector space that we will study next.

The direct sum

is sometimes called the  of , although this term issymmetric tensor algebra

also used for a slightly different (but isomorphic) algebra that we will define

momentarily.

We can use the vector space isomorphisms described in the previous theorem to

move the product from the algebra of polynomials  to the

symmetric tensor space . In other words, if  then  is achar

graded algebra isomorphic to the algebra of polynomials .

The Arbitrary Case

We can define the symmetric tensor space in a different, although perhaps

slightly more complex, manner that holds regardless of the characteristic of the

base field. This is important, since many important fields (such as finite fields)

have nonzero characteristic.

Consider again the kernel of the map , but this time as defined on all of ,

not just . The map  sends elements of different groups  to

different monomials in , and so  if and only ifker

Hence, the  of the coefficients of the elements in  must be .sum
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Conversely, if the  of the coefficients of the elements in  is  for allsum

multisets , then .ker

Suppose that  is a multiset for which

Then each decomposable tensor in  is a permutation of  and so 

may be written in the form

where the sum is over a subset of the symmetric group , corresponding to the

terms that appear in  and where

Substituting for  in the expression for  gives

It follows that  is in the subspace  of  generated by tensors of the form

, that is

and so . Conversely,ker

and so .ker

Theorem 14.19  Let  be a finite-dimensional vector space over a field . For

, the surjective linear map  defined by

has kernel

and so

The vector space  is also referred to as the  ofsymmetric tensor space

degree  of . The ideal of  defined by
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being generated by homogeneous elements, is graded, so that

where . The graded algebra

is also called the  for  and is isomorphic tosymmetric tensor algebra

.

Before proceeding to the universal property, we note that the dimension of the

symmetric tensor space  is equal to the number of monomials of degree

 in the variables  and this is

dim

The Universal Property for Symmetric -Linear Maps

The vector space  of homogeneous polynomials, and therefore

also the isomorphic spaces of symmetric tensors  and , have

the universal property for  -linear maps.symmetric

Theorem 14.20 The universal property for symmetric multilinear maps, as(

measured by linearity) Let  be a finite-dimensional vector space. Then the

pair , where

has the universal property for symmetric -linear maps with domain , as

measured by linearity. That is, for any symmetric -linear map 

where  is a vector space, there is a unique linear map 

for which

for any vectors .

Proof. The universal property requires that

and this does indeed uniquely define a linear transformation , provided that it

is well-defined. However,
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if and only if the multisets  and  are the same, which

implies that , since  is symmetric. 

The Symmetrization Map

When , we can define a linear map , calledchar

the , bysymmetrization map

(Since  we have .)char

Since , we have

and so  is, in fact, symmetric. The reason for the factor  is that if  is a

symmetric tensor, then  and so

that is, the symmetrization map fixes all symmetric tensors.

It follows that for any tensor 

Thus,  is idempotent and is therefore the projection map of  onto

im

The Antisymmetric Tensor Algebra: The Exterior Product

Space

Let us repeat our discussion for antisymmetric tensors. Before beginning

officially, we want to introduce a very useful and very simple concept.

Definition Let  be a set, which we refer to as an . Aalphabet

word string, or  over  of finite length  is a sequence  where

. There is one word of length  over , denoted by  and called the

empty word. Let  be the set of all words over  of length  and let

(E) be the set of all words over  (of finite length).
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Concatenation of words is done by placing one word after another: If

 then . Also, .

If the alphabet  is an ordered set, we say that a word  over  is in

ascending order if each  appears at most once in  and if the order of

the letters in  is that given by the order of . (For example,  is in

ascending order but  and  are not.) The empty word is in ascending

order by definition. Let  be the set of all words in ascending order over 

of length  and let (E) be the set of all words in ascending order over . 

We will assume throughout that . For each , the multilinearchar

map  defined by

where  is the sign of , determines (by universality) a unique linear

operator  on  for which

Note that if  for some , then for , we have

and since , we conclude that .char

Let  be a basis for . Since the set

is a basis for  and  is a bijection of , it follows that  is an

isomorphism of . A tensor  is  ifantisymmetric

 for all permutations .

The set of all antisymmetric tensors

 for all 

is a subspace of .

Let  be a basis for . Any tensor  has the form

where . As before, we define the groups  and the sums
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. Each permutation  sends an element  to another element of

, multiplied by . It follows that  is an antisymmetric tensor if and only

if the following hold:

1) If  is a multiset of size  with underlying set  and if at

least one element of  has multiplicity greater than , that is, if  is not a

set, then .

2) For each   of size   of , we havesubset

or

3) If , then since  is a set, there is a unique member

 of  for which . If  denotes the

permutation in  for which  takes  to , then

sg

where  is the absolute value of the coefficient of .

Hence, for an antisymmetric tensor , we have

sg

Next, we need the counterpart of the polynomials  in which

multiplication acts anticommutatively, that is, . To this end, we

define a map  as follows.

For  , let  if  has any repeated variables. Otherwise, there is

exactly one permutation of positions that will reorder  in ascending order. If the

resulting word in ascending order is , denote this permutation by . Set

sg sg

We can now define our anticommutative “polynomials.”

Definition Let  be a sequence of independent variables. Let

 be the vector space over  generated by all words over  in

ascending order. For , this is , which we identify with . Define a

multiplication on the direct sum

as follows. For monomials  and  set
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and extend by distributivity to . The resulting multiplication makes

 into a (noncommutative) algebra over . 

It is customary to use the notation for the product in . This

product is called the  or . We will not name thewedge product exterior product

algebra , but we will name an isomorphic algebra to be defined soon.

Now we can define a function  by

It is clear that  is well-defined, linear and surjective.

The Case char

Just as with the symmetric tensors, if , we can benefit by restrictingchar

 to the space . Let

and

belong to the same group  and suppose that  is in

ascending order, that is, .

If  is antisymmetric, then

sg

sg sg

Now, if  for  then  for all sets  and so,

if , we may conclude that  for all sets , that is, .char

Hence, if , the restricted map  is injective and so it is anchar

isomorphism. We have proved the following.

Theorem 14.21  Let  be a finite-dimensional vector space over a field  with

char . Then the vector space  of antisymmetric tensors of degree



384 Advanced Linear Algebra

 is isomorphic to the vector space , via the isomorphism

The vector space  of antisymmetric tensors of degree  is called the

antisymmetric tensor space exterior product space of degree  for  or the 

of degree  over .

The direct sum

is called the  of  or the  of .antisymmetric tensor algebra exterior algebra

We can use the vector space isomorphisms described in the previous theorem to

move the product from the algebra  to the antisymmetric tensor

space . In other words, if  then  is a graded algebrachar

isomorphic to the algebra .

The Arbitrary Case

We can define the antisymmetric tensor space in a different manner that holds

regardless of the characteristic of the base field.

Consider the kernel of the map , as defined on all of . Suppose that

ker . Since  sends elements of different groups  to different

monomials in , it follows that  must send each sum  to 

Hence, the  of the coefficients of the elements in  must be .sum

Conversely, if the  of the coefficients of the elements in  is  for allsum

multisets , then .ker

Suppose that  is a set for which

Then

where the sum is over a subset of the symmetric group , corresponding to the

terms that appear in  and where



Tensor Products 385

Substituting for  in the expression for  gives

It follows that  is in the subspace  of  generated by tensors of the form

, that is

and so . Conversely,ker

and so .ker

Theorem 14.22  Let  be a finite-dimensional vector space over a field . For

, the surjective linear map  defined by

has kernel

and so

The vector space  is also referred to as the antisymmetric tensor

space exterior algebra of degree  of  or the  of degree  of . The ideal of

 defined by

being generated by homogeneous elements, is graded, so that

where . The graded algebra
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is also called the  of  or the  ofantisymmetric tensor space exterior algebra

 and is isomorphic to . 

The isomorphic exterior spaces  and  are usually denoted by

 and the isomorphic exterior algebras  and  are usually

denoted by .

Before proceding to the universal property, we note that the dimension of the

exterior tensor space  is equal to the number of words of length  in

ascending order over the alphabet  and this is

dim

The Universal Property for Antisymmetric -Linear Maps

The vector space  and therefore also the isomorphic spaces of

antisymmetric tensors  and , have the universal property for

symmetric -linear maps.

Theorem 14.23 The universal property for antisymmetric multilinear(

maps, as measured by linearity) Let  be a finite-dimensional vector space

over a field . Then the pair

where

has the universal property for antisymmetric -linear maps with domain ,

as measured by linearity. That is, for any antisymmetric -linear map

 where  is a vector space, there is a unique linear map

 for which

for any vectors .

Proof. Since  is antisymmetric, it is completely determined by the fact that it is

alternate and by its values on ascending words , where

. Accordingly, we can define  by

and this does indeed uniquely define a well-defined linear transformation . 
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The Determinant

The universal property for antisymmetric multilinear maps has the following

corollary.

Corollary 14.24 Let  be a vector space of dimension  over a field . Let

 be an ordered basis for . Then there is a unique

antisymmetric -linear form  for which

Proof. According to the universal property for antisymmetric -linear forms, for

every such form , there is a unique linear map  for

which

But the dimension of  is  and  is a basis for .

Hence, there is only one linear map  with . It

follows that if  and  are two such forms, then

and the antisymmetry of  and  imply that  and  agree on every permutation

of . Since  and  are multilinear, we must have . 

We now wish to construct the unique antisymmetric form  guaranteed by the

previous result. For any , write  for the th coordinate of the

coordinate matrix . Thus,

For clarity, and since we will not change the basis, let us write  for .

Consider the map  defined by

( ) ( )

Then  is multilinear since
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( ) ( )

( ) ( )

( )

( )

and similarily for any coordinate position.

The map  is alternating, and therefore antisymmetric since . Tochar

see this, suppose for instance that . For any permutation , let

 and . Then the permutation  satisfies

1) For  and , 

2)

3) .

Hence,  and it is easy to check that . It follows that if the sets

 and  intersect, then they are identical. In other words, the distinct

sets  form a partition of .

Hence,

( ) ( ) ( )

pairs

( ) ( ) ( )

( ) ( ) ( )

But

( ) ( ) ( ) ( )

and since , the sum of the two terms involving the pair 

is . Hence, . A similar argument holds for any coordinate

pair.
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Finally, we have

( ) ( )

Thus, the map  is indeed the unique antisymmetric -linear form on  for

which .

Given the ordered basis , we can view  as the space  of

coordinate vectors and view  as the space  of  matrices, via the

isomorphism

where all coordinate matrices are with respect to .

With this viewpoint,  becomes an antisymmetric -form on the columns of a

matrix  given by

This is called the  of the matrix .determinant

Properties of the Determinant

Let us explore some of the properties of the determinant function.

Theorem 14.25 If  then .

Proof. We know that

which can be written in the form

But we can reorder the factors in each term so that the second indices are in

ascending order, giving
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as desired. 

Theorem 14.26 If  then .

Proof. Consider the map  defined by

We can consider  as a function on the columns of  and write

Now, this map is multilinear since multiplication by  is distributive and the

determinant is multilinear. For example, let  and let  come from  by

replacing the first column by . Then

The map  is also alternating since  is alternating and interchanging two

coordinates in  is equivalent to interchanging the corresponding

columns of .

Thus,  is an antisymmetric -linear form and so must be a scalar multiple of

the determinant function, say . Then

Setting  gives  and so

as desired. 

If  is invertible, then  and so

which shows that  and .
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But any matrix  is equivalent to a diagonal matrix

where  and  are invertible and  is diagonal with 's and 's on the main

diagonal. Hence,

and so if  then . But this can happen only if , whence

 is invertible. We have proved the following.

Theorem 14.27 A matrix  is invertible if and only if  . 

Exercises

1. Show that if  is a linear map and  is bilinear then

 is bilinear.

2. Show that the only map that is both linear and -linear (for ) is the

zero map.

3. Find an example of a bilinear map  whose image

im  is not a subspace of .

4. Prove that the universal property of tensor products defines the tensor

product up to isomorphism only. That is, if a pair  has

the universal property then  is isomorphic to .

5. Prove that the following property of a pair  with 

bilinear characterizes the tensor product  up

to isomorphism, and thus could have been used as the definition of tensor

product: For a pair  with  bilinear if  is a basis

for  and  is a basis for  then  is a basis for .

6. Prove that .

7. Let  and  be nonempty sets. Use the universal property of tensor

products to prove that .

8. Let  and . Assuming that , show that

 if and only if  and , for .

9. Let  be a basis for  and  be a basis for . Show that any

function  can be extended to a linear function

. Deduce that the function  can be extended in a unique

way to a bilinear map . Show that all bilinear maps are

obtained in this way.

10. Let  be subspaces of . Show that

11. Let  and  be subspaces of vector spaces  and ,

respectively. Show that
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12. Let  and  be subspaces of  and , respectively.

Show that

13. Find an example of two vector spaces  and  and a nonzero vector

 that has at least two distinct (not including order of the terms)

representations of the form

where the 's are linearly independent and so are the 's.

14. Let  denote the identity operator on a vector space . Prove that

.

15. Suppose that   and  .

Prove that

16. Connect the two approaches to extending the base field of an -space  to

 (at least in the finite-dimensional case) by showing that

.

17. Prove that in a tensor product  for which  not all vectorsdim

have the form  for some . : Suppose that  areHint

linearly independent and consider .

18. Prove that for the block matrix

block

we have .

19. Let . Prove that if either  or  is invertible, then the

matrices  are invertible except for a finite number of 's.

The Tensor Product of Matrices

20. Let  be the matrix of a linear operator  with respect to

the ordered basis . Let  be the matrix of a linear

operator  with respect to the ordered basis .

Consider the ordered basis  ordered by lexicographic order,

that is  if  or  and . Show that the matrix

of  with respect to  is

block
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This matrix is called the ,  or tensor product Kronecker product direct

product of the matrix  with the matrix .

21. Show that the tensor product is not, in general, commutative.

22. Show that the tensor product  is bilinear in both  and .

23. Show that  if and only if  or .

24. Show that

 a) 

 b)  (when )

25. Show that if  then (as row vectors) .

26. Suppose that  and  are matrices of the given sizes.

Prove that

Discuss the case .

27. Prove that if  and  are nonsingular, then so is  and

28. Prove that tr tr tr

29. Suppose that  is algebraically closed. Prove that if  has eigenvalues

 and  has eigenvalues  both lists including

multiplicity then  has eigenvalues , again

counting multiplicity.

30. Prove that .det det det
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Positive Solutions to Linear Systems:

Convexity and Separation

Given a matrix  consider the homogeneous system of linear

equations

It is of obvious interest to determine conditions that guarantee the existence of

positive solutions to this system, in a manner made precise by the following

definition.

Definition Let . Then

1)  is , written  ifnonnegative

 for all 

(Note that the term  is also used in the literature for this property.)positive

The set of all nonnegative vectors in  is the  in nonnegative orthant

2)  is , written  if  is nonnegative but not , that is, ifstrictly positive

 for all  and  for at least one 

The set  of all strictly positive vectors in  is the strictly positive

orthant in 

3)  is , written  ifstrongly positive

 for all 

The set  of all strongly positive vectors in  is the strongly positive

orthant in 

We are interested in conditions under which the system  has strictly

positive or strongly positive solutions. Since the strictly and strongly positive

orthants in  are not subspaces of , it is difficult to use strictly linear
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methods in studying this issue: we must also use geometric methods, in

particular, methods of convexity.

Let us pause briefly to consider an important application of strictly positive

solutions to the system . If  is a strictly positive

solution then so is the vector

which is a . Note that if we replace “strictly” withprobability distribution

“strongly” then the probability distribution has the property that each probability

is positive.

Now, the product  is the expected value of the columns of   with respect to

the probability distribution . Hence,  has a strictly (strongly) positive

solution if and only if there is a strictly (strongly) positive probability

distribution for which the columns of  have expected value . If these columns

represent the payoffs from a game of chance then the game is fair when the

expected value of the columns is . Thus,  has a strictly (strongly)

positive solution if and only if the “game” , where in the strongly positive

case, all outcomes are possible, is fair.

As another (related) example, in discrete option pricing models of mathematical

finance, the absence of arbitrage opportunities in the model is equivalent to the

fact that a certain vector describing the gains in a portfolio does not intersect the

strictly positive orthant in . As we will see in this chapter, this is equivalent

to the existence of a strongly positive solution to a homogeneous system of

equations. This solution, when normalized to a probability distribution, is called

a .martingale measure

Of course, the equation  has a strictly positive solution if and only if

ker  contains a strictly positive vector, that is, if and only if

ker RowSpace

meets the strictly positive orthant in . Thus, we wish to characterize the

subspaces  of  for which  meets the strictly positive orthant in , in

symbols

for these are precisely the row spaces of the matrices  for which  has a

strictly positive solution. A similar statement holds for strongly positive

solutions.

Looking at the real plane , we can divine the answer with a picture. A one-

dimensional subspace  of  has the property that its orthogonal complement
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 meets the strictly positive orthant (quadrant) in  if and only if  is the -

axis, the -axis or a line with negative slope. For the case of the strongly

positive orthant,  must have negative slope. Our task is to generalize this to

.

This will lead us to the following results, which are quite intuitive in  and 

 if and only if (15.1)

and

 if and only if (15.2)

Let us apply this to the matrix equation . If  thenRowSpace

ker  and so we have

ker  if and only if RowSpace

and

ker  if and only if RowSpace

Now,

RowSpace

and

RowSpace

and so these statements become

 has a strongly positive solution if and only if 

and

 has a strictly positive solution if and only if 

We can rephrase these results in the form of a , that is,theorem of the alternative

a theorem that says that exactly one of two conditions holds.

Theorem 15.1 Let .

1) Exactly one of the following holds:

 a)  for some strongly positive 

 b)  for some 

2) Exactly one of the following holds:

 a)  for some strictly positive 

 b)  for some . 

Before proving statements (15.1) and (15.2), we require some background.
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Convex, Closed and Compact Sets

We shall need the following concepts.

Definition

1) Let . Any linear combination of the form

where  is called a  of theconvex combination

vectors .

2) A subset  is  if whenever  then the entire lineconvex

segment between  and  also lies in , in symbols

3) A subset  is  if whenever  is a convergent sequence ofclosed

elements of , then the limit is also in . Simply put, a subset is closed if it

is closed under the taking of limits.

4) A subset  is  if it is both closed and bounded.compact

5) A subset  is a  if  implies that  for all . cone

We will also have need of the following facts from analysis.

1) A continuous function that is defined on a compact set  in  takes on its

maximum and minimum values at some points within the set .

2) A subset  of  is compact if and only if every sequence in  has a

subsequence that converges in .

Theorem 15.2 Let  and  be subsets of . Define

1) If  and  are convex then so is 

2) If  is compact and  is closed then  is closed.

Proof. For 1) let  and  be in . The line segment between

these two points is

where  and so  is convex.

For part 2) let  be a convergent sequence in . Suppose that

. We must show that . Since  is a sequence in the

compact set , it has a convergent subsequence  whose limit  lies in .

Since  and  we can conclude that . Since  is
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closed, we must have  and so , as

desired.

Convex Hulls

We will have use for the notion of convex hull.

Definition The  of a set  of vectors in  is theconvex hull

smallest convex set in  that contains the vectors . We denote the

convex hull of  by . 

Here is a characterization of convex hulls.

Theorem 15.3 Let  be a set of vectors in . Then the convex

hull  is the set  of all convex combinations of vectors in , that is,

Proof. First, we show that  is convex. Let

be convex combinations of  and let . Then

But this is also a convex combination of the vectors in  because

max max

and

Thus,

which says that  is convex. Since , we have . Clearly, if  is

a convex set that contains  then  also contains . Hence . 

Theorem 15.4 The convex hull  of a  set  of vectorsfinite

in  is a compact set.
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Proof. Let

 and 

and define a function  as follows. If  then

To see that  is continuous, let  and let . Formax

, if  then

and so

Finally, since  maps the compact set  onto , we deduce that  is

compact. 

Linear and Affine Hyperplanes

We next discuss hyperplanes in . A  in  is an -linear hyperplane

dimensional subspace of . As such, it is the solution set of a linear equation

of the form

or

where  is nonzero and . Geometrically

speaking, this is the set of all vectors in  that are perpendicular (normal) to

the vector .

An  is a linear hyperplane that has been translated by a(affine) hyperplane

vector. Thus, it is the solution set to an equation of the form

or

or finally
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where  .

Let us write , where  and , to denote the hyperplane

Note that the hyperplane

contains the point , which is the point of  closest to the origin, since

Cauchy's inequality gives

and so  for all .  Moreover, any hyperplane has the

form  for any appropriate vector .

A hyperplane defines two (nondisjoint) closed half-spaces

and two (disjoint) open half-spaces

It is not hard to show that

and that ,  and  are pairwise disjoint and

Definition The subsets  and  of  are  by a hyperplanestrictly separated

 if  lies in one open half-space determined by  and  lies in

the other. Thus, one of the following holds:

1)  for all 

2)  for all . 

Note that 1) holds for  and  if and only if 2) holds for  and , and so we

need only consider one of the conditions to demonstrate that two sets  and 

are  stricctly separated. In particular, suppose that 1) fails for all  and .not

Then the condition
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also fails and so 1) and 2) both fail for all  and  and  and  are not strictly

separated.

The following type of separation is stronger than strict separation.

Definition The subsets  and  of  are  by a hyperplanestrongly separated

 if there is an  for which one of the following holds:

1)  for all 

2)  for all 

Note that, as before, we need only consider one of the conditions to show that

two sets are  strongly separated.not

Separation

Now that we have the preliminaries out of the way, we can get down to some

theorems. The first is a well known  that is the basis forseparation theorem

many other separation theorems. It says that if a closed convex set  in  does

not contain a vector , then  can be strongly separated from  by a hyperplane.

Theorem 15.5 Let  be a closed convex subset of .

1)  contains a  vector  of minimum norm, that is, there is a uniqueunique

vector  for which

for all .

2) If  does not contain the origin then  lies in the closed half-space

where  is the vector in  of minimum norm. Hence,  and  are

strongly separated by the hyperplane .

3) If  then  and  are strongly separated.

Proof. For part 1), we first show that  contains a vector  of minimum norm.

Recall that the Euclidean norm (distance) is a continuous function. Although 

need not be compact, if we choose a real number  such that the closed ball

intersects , then that intersection  is both closed and bounded

and so is compact. The distance function therefore achieves its minimum on ,

say at the point . It is clear that if for some  we have

 then , which is a contradiction to the minimality

of . Hence,  is a vector of minimum norm in . Let us write .
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Suppose now that  is another vector in  with . Since  is

convex, the line segment from  to  must be contained in . In particular, the

vector  is in . Since  cannot be a scalar multiple of , the

Cauchy-Schwarz inequality is strict

Hence

But this contradicts the minimality of  and so . Thus,  has a unique

vector of minimum norm.

For part 2), if there is an  for which

then again setting  we find that  has norm less than ,

which is not possible. Hence,

for all .

For part 3), if  is not the origin, then  is not in the closed convex set

Hence, by part 2), there is a nonzero  for which

for all . But as  ranges over , the vector  ranges

over  so we have

for all . This can be written

for all . Hence
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from which it follows that  and  are strongly separated. 

The next result brings us closer to our goal by replacing the origin with a

subspace  disjoint from . However, we must strengthen the requirements on

 a bit.

Theorem 15.6 Let  be a compact convex subset of  and let  be a subspace

of  such that . Then there exists a nonzero  such that

for all . Hence, the hyperplane  strongly separates  and

.

Proof. Consider the set , which is closed since  is closed and  is

compact. It is also convex since  and  are convex. Furthermore, 

because if  then  would be in .

According to Theorem 15.5, the set  can be strongly separated from the

origin. Hence, there is a nonzero  such that

for all , that is,

for all  and . Now, if  is nonzero for any , we can

replace  by an appropriate scalar multiple of  to make the left side negative,

which is impossible. Hence, we must have  for all . Thus,

 and

for all , as desired. 

We can now prove (15.1) and (15.2).

Theorem 15.7 Let  be a subspace of . Then

1)  if and only if 

2)  if and only if 

Proof. For part 1), it is clear that there cannot exist vectors  and

 that are orthogonal. Hence,  and  cannot both be

nonempty, so if  then . The converse is more

interesting.
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Suppose that . A good candidate for an element of  would

be a normal to a hyperplane that separates  from a subset of . Note that our

theorems do not allow us to separate  from , because it is not compact. So

consider instead the convex hull  of the standard basis vectors  in 

It is clear that  is convex and  and so . Also,   is closed

and bounded and therefore compact. Hence, by Theorem 15.6, there is a

nonzero vector  such that

for all Taking  gives

and so , which is therefore nonempty.

To prove part 2), again we note that there cannot exist vectors  and

 that are orthogonal. Hence,  and  cannot both be

nonempty, so if  then .

To prove that

note first that a subspace contains a strictly positive vector  if and only if it

contains a strictly positive vector whose coordinates sum to .

Let  be a basis for  and consider the matrix

whose columns are the basis vectors in . Let the rows of  be denoted by

. Note that , where .dim

Now,  contains a strictly positive vector  if and only if

for coefficients  satisfying , that is, if and only if  is contained in

the convex hull  of the vectors  in . Hence,

 if and only if 

Thus, we wish to prove that

or, equivalently,
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Now we have something to separate. Since  is closed and convex, it follows

from Theorem 15.5 that there is a nonzero vector  for

which

for all . Consider the vector

The th coordinate of  is

and so  is strongly positive. Hence,  and so this set is nonempty.

This completes the proof. 

Nonhomogeneous Systems

We now turn our attention to nonhomogeneous systems

The following lemma is required.

Lemma 15.8 Let . Then the set

is a closed, convex cone.

Proof. We leave it as an exercise to prove that  is a convex cone and omit the

proof that  is closed. 

Theorem 15.9 ( ) Let  and let  beFarkas's lemma

nonzero. Then exactly one of the following holds:

1) There is a strictly positive solution  to the system .

2) There is a vector  for which  and .

Proof. Suppose first that 1) holds. If 2) also holds, then

However,  and  imply that . This contradiction implies

that 2) cannot hold.

Assume now that 1) fails to hold. By Lemma 15.8, the set

is closed and convex. The fact that 1) fails to hold is equivalent to .
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Hence, there is a hyperplane that strongly separates  and . All we require is

that  and  be strictly separated, that is, for some  and 

 for all 

Since  it follows that  and so . Also, the first inequality is

equivalent to , that is,

for all . We claim that this implies that  cannot have any

positive coordinates and thus . For if the th coordinate  is

positive, then taking  for  we get

which does not hold for large . Thus, 2) holds. 

In the exercises, we ask the reader to show that the previous result cannot be

improved by replacing  in statement 2) with .

Exercises

1. If  is an  matrix prove that the set  is a

convex cone in .

2. If  and  are strictly separated subsets of  and if  is finite, prove that

 and  are strongly separated as well.

3. Let  be a vector space over a field  with . Show that achar

subset  of  is closed under the taking of convex combinations of any

two of its points if and only if  is closed under the taking of arbitrary

convex combinations, that is, for all 

4. Explain why an -dimensional subspace of  is the solution set of a

linear equation of the form .

5  Show that

and that ,  and  are pairwise disjoint and

6. A function  is  if it has the form  foraffine

, where . Prove that if  is convex then so is

.
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7. Find a cone in  that is not convex. Prove that a subset  of  is a

convex cone if and only if  implies that  for all

.

8. Prove that the convex hull of a set  in  is bounded, without

using the fact that it is compact.

9. Suppose that a vector  has two distinct representations as convex

combinations of the vectors . Prove that the vectors

 are linearly dependent.

10. Suppose that  is a nonempty convex subset of  and that  is a

hyperplane disjoint from . Prove that  lies in one of the open half-spaces

determined by .

11. Prove that the conclusion of Theorem 15.6 may fail if we assume only that

 is closed and convex.

12. Find two nonempty convex subsets of  that are strictly separated but not

strongly separated.

13. Prove that  and  are strongly separated by  if and only if

 for all  and  for all 

where  and  and where  is the

closed unit ball.

14. Show that Farkas's lemma cannot be improved by replacing  in

statement 2) with . : A nice counterexample exists forHint

.



Chapter 16

Affine Geometry

In this chapter, we will study the geometry of a finite-dimensional vector space

, along with its structure-preserving maps. Throughout this chapter, all vector

spaces are assumed to be finite-dimensional.

Affine Geometry

The cosets of a quotient space have a special geometric name.

Definition Let  be a subspace of a vector space . The coset

is called a  in  with  . We also refer to  as a  of .flat base translate

The set  of all flats in  is called the  of . Theaffine geometry

dimension  of  is defined to be . dim dim

Here are some simple yet useful observations about flats.

1) A flat  is a subspace if and only if , that is, if and only if

.

2) A subset  is a flat if and only if for any  the translate 

is a subspace.

3) If  is a flat and  then .

Definition Two flats  and  are said to be  ifparallel

 or . This is denoted by . 

We will denote subspaces of  by the letters  and flats in  by

.

Here are some of the basic intersection properties of flats.
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Theorem 16.1 Let  and  be subspaces of  and let  and

 be flats in .

1) The following are equivalent:

 a) 

 ) 

 c) 

2) The following are equivalent:

 a)  for some 

 b)  for some 

 c) 

3) The following are equivalent:

 a)  for some 

 b)  for some 

 c) 

4)  

5)  

6) If  then ,  or 

7)  if and only if some translation of one of these flats is contained in

the other.

Proof. We leave proof of part 1) for the reader. To prove 2), if 2a) holds then

 and so 2b) holds. Conversely, if 2b) holds then

and so 2a) holds. Now, if 2b) holds then  and so

, which is 2c). Finally, if  then just take  to get

2b). Part 3) is proved in a similar manner.

For part 4), we know that  for some . However, if 

then  and so , whence . Part 5) follows

similarly. We leave proof of 6) and 7) to the reader. 

Part 1) of the previous theorem says that, in general, a flat can be represented in

many ways as a translate of the base . If , then  is called a flat

representative coset representative, or  of . Any element of a flat is a flat

representative.

On the other hand, if  then  and the previous

theorem tells us that . Thus, the base of a flat is uniquely determined by

the flat and we can make the following definition.

Definition The  of a flat  is . A flat of dimension  isdimension dim

called a . A -flat is a , a -flat is a  and a 2-flat is a . A flat-flat point line plane

of dimension  is called a . dim hyperplane
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Affine Combinations

If  and  then the linear combination

is referred to as an  of the vectors .affine combination

Our immediate goal is to show that, while the subspaces of  are precisely the

subsets of  that are closed under the taking of linear combinations, the flats of

 are precisely the subsets of  that are closed under the taking of affine

combinations.

First, we need the following.

Theorem 16.2 If , then the following are equivalent for a subset char

of .

1)  is closed under the taking of affine combinations of any two of its points,

that is,

2)  is closed under the taking of arbitrary affine combinations, that is,

Proof. It is clear that 2) implies 1). For the converse, we proceed by induction

on . Part 1) is the case . Assume the result true for  and

consider the affine combination

If one of  or  is different from , say  then we may write

and since the sum of the coefficients inside the large parentheses is , the

induction hypothesis implies that this sum is in . Then 1) shows that .

On the other hand, if  then since 2, we may writechar

3 3

and since 1) implies that , we may again deduce from

the induction hypothesis that . In any case,  and so 2) holds. 

Note that the requirement  is necessary, for if  then thechar

subset
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satisfies condition 1) but not condition 2). We can now characterize flats.

Theorem 16.3

1) A subset  of  is a flat in  if and only if it is closed under the taking of

affine combinations, that is, if and only if

2) If 2, a subset  of  is a flat if and only if  contains the linechar

through any two of its points, that is, if and only if

Proof. Suppose that  is a flat and . Then ,

for  and so if , we have

and so  is closed under affine combinations. Conversely, suppose that  is

closed under the taking of affine combinations. It is sufficient (and necessary) to

show that for a given , the set  is a subspace of . But if

then for any 

Hence,  is a subspace of . Part 2) follows from part 1) and Theorem 16.2. 

Affine Hulls

The following definition gives the analog of the subspace spanned by a

collection of vectors.

Definition Let  be a nonempty set of vectors in . The  of ,affine hull

denoted by , is the smallest flat containing . hull

Theorem 16.4 affine spanThe affine hull of a nonempty subset  of  is the 

of , that is, the set of all affine combinations of vectors in 

hull
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Proof. According to Theorem 16.3, any flat containing  must contain all affine

combinations of vectors in . It remains to show that the set  of all affine

combinations of  is a flat, or equivalently, that for any , the set

is a subspace of . To this end, let

and  2

where  and . Hence, any linear combination of

 and  has the form

2

2

2

1)

1)

But, since , the sum of the coefficients of  is equal

to  and so the sum is an affine sum, which shows that . Hence,  is a

subspace of . 

The affine hull of a finite set of vectors is denoted by . Wehull

leave it as an exercise to show that for any 

hull (16.1)

where  denotes the subspace spanned by the vectors within the brackets. It

follows that

dim hull

The affine hull of a pair of distinct points is the line through those points,

denoted by

The Lattice of Flats

Since flats are subsets of , they are partially ordered by set inclusion.
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Theorem 16.5 The intersection of a nonempty collection 

of flats in  is either empty or is a flat. If the intersection is nonempty, then

for any vector  in the intersection. In other words, the base of the intersection

is the intersection of the bases.

Proof. If

then  for all  and so

Definition The  of a nonempty collection  of flats injoin

 is the smallest flat containing all flats in . We denote the join of the

collection  of flats by , or by

The join of two flats is written . 

Theorem 16.6 Let  be a nonempty collection of flats in

the vector space .

1)  is the intersection of all flats that contain all flats in .

2)  is , where  is the union of all flats in . hull

Theorem 16.7 Let  and  be flats in . Then

1) 

2) If  then

Proof. For part 1), let

for some  and subspace  of . Of course, . But since

, we also have . (Note that  is not necessarily in

.)

Let . Then  and so .

On the other hand
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and

and so . Thus, , as desired.

For part 2), if  then we may take the flat representatives for  and 

to be any element , in which case part 1) gives

and since  we also have . 

We can now describe the dimension of the join of two flats.

Theorem 16.8 Let  and  be flats in .

1) If  then

dim dim dim dim dim

2) If  then

dim dim

Proof. According to Theorem 16.7, if  then

and so by definition of the dimension of a flat

dim dim

On the other hand, if  then

and since , we getdim

dim dim

Finally, we have

dim dim dim dim

Therefore, if  then  and 

and so

dim dim

dim

dim
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Affine Independence

We now discuss the affine counterpart of linear independence.

Theorem 16.9 Let  be a nonempty set of vectors in . The

following are equivalent:

1)  has dimension .hull

2) The set

is linearly independent for all .

3)  for all .hull

4) If r  and s  are affine combinations then

 for all 

A set  of vectors satisfying any (any hence all) of these

conditions is said to be .affinely independent

Proof. The fact that 1) and 2) are equivalent follows directly from (16.1). If 3)

does not hold, we have

hull hull

where by (16.1), the latter has dimension at most 2. Hence, 1) cannot hold

and so 1) implies 3).

Next we show that 3) implies 4). Suppose that 3) holds and that .

Setting  gives

 and 

But if any of the 's are nonzero, say  then dividing by  gives

or

where
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Hence, . This contradiction implies that  for all ,hull

that is,  for all . Thus, 3) implies 4).

Finally, we show that 4) implies 2). For concreteness, let us show that 4) implies

that  is linearly independent. Indeed, if 

and  then

2 2 2

But the latter is an equality between two affine combinations and so

corresponding coefficients must be equal, which implies that  for all

. This shows that 4) implies 2). 

Affinely independent sets enjoy some of the basic properties of linearly

independent sets. For example, a nonempty subset of an affinely independent set

is affinely independent. Also, any nonempty set  contains an affinely

independent set.

Since the affine hull  of an affinely independent set  is not thehull

affine hull of any proper subset of , we deduce that  is a minimal affine

spanning set of its affine hull.

Note that if  where  is affinely independent thenhull

for any , the set

is a basis for the base subspace of . Conversely, if  and

 is a basis for  then

is affinely independent and since  has dimension  and is contained inhull

 we must have . This provides a way to go between “affine bases”

 of a flat and linear bases  of the base subspace of the flat.

Theorem 16.10 If  is a flat of dimension  then there exist  vectors

 for which every vector  has a  expression as an affineunique

combination

The coefficients  are called the  of  with respect tobarycentric coordinates

the vectors . 

Affine Transformations

Now let us discuss some properties of maps that preserve affine structure.
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Definition A function  that preserves affine combinations, that is, for

which

is called an  (or , or ). affine transformation affine map affinity

We should mention that some authors require that  be bijective in order to be

an affine map. The following theorem is the analog of Theorem 16.2.

Theorem 16.11 If  then a function  is an affinechar

transformation if and only if it preserves affine combinations of any two of its

points, that is, if and only if

r

Thus, if  then a map  is an affine transformation if and only if itchar

sends the line through  and  to the line through  and . It is clear that

linear transformations are affine transformations. So are the following maps.

Definition Let . The affine map  defined by

for all , is called  by . translation

It is not hard to see that any map of the form “linear operator followed by

translation,” that is, , where , is affine. Conversely, any affine

map must have this form.

Theorem 16.12 A function  is an affine transformation if and only if

it is a linear operator followed by a translation,

where  and .

Proof. We leave proof that  is an affine transformation to the reader.

Conversely, suppose that  is an affine map. If we expect  to have the form

 then  will equal . So let . We must

show that  is a linear operator on . However, for any 

and so
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Thus,  is linear. 

Corollary 16.13

1) The composition of two affine transformations is an affine transformation.

2) An affine transformation  is bijective if and only if  is bijective.

3) The set  of all bijective affine transformations on  is a group underaff

composition of maps, called the  of . affine group

Let us make a few group-theoretic remarks about . The set  of allaff trans

translations of  is a subgroup of . We can define a functionaff

aff  by

It is not hard to see that  is a well-defined group homomorphism from aff

onto , with kernel . Hence,  is a normal subgroup oftrans trans

aff  and

aff

trans

Projective Geometry

If , the join (affine hull) of any two distinct points in  is a line. Ondim

the other hand, it is not the case that the intersection of any two lines is a point,

since the lines may be parallel. Thus, there is a certain asymmetry between the

concepts of points and lines in . This asymmetry can be removed by

constructing the . Our plan here is to very briefly describe oneprojective plane

possible construction of projective geometries of all dimensions.

By way of motivation, let us consider Figure 16.1.
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Figure 16.1

Note that  is a hyperplane in a 3-dimensional vector space  and that .

Now, the set  of all flats of  that lie in  is an affine geometry of

dimension . (According to our definition of affine geometry,  must be a

vector space in order to define . However, we hereby extend the definition

of affine geometry to include the collection of all flats contained in a flat of .

Figure 16.1 shows a one-dimensional flat  and its linear span , as well as a

zero-dimensional flat  and its span . Note that, for any flat  in , we

have

dim dim

Note also that if  and  are any two distinct lines in , the corresponding

planes  and  have the property that their intersection is a line through the

origin, . We are now ready to define projectiveeven if the lines are parallel

geometries.

Let  be a vector space of any dimension and let  be a hyperplane  in  not

containing the origin. To each flat  in , we associate the subspace  of 

generated by . Thus, the linear span function from  maps

affine subspaces  of  to subspaces  of . The span function is not

surjective: Its image is the set of all subspaces that are  contained in the basenot

subspace  of the flat .

The linear span function is one-to-one and its inverse is intersection with 

for any subspace  not contained in .
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The affine geometry  is, as we have remarked, somewhat incomplete. In

the case  every pair of points determines a line but not every pair ofdim

lines determines a point.

Now, since the linear span function  is injective, we can identify  with

its image , which is the set of all subspaces of  not contained in the

base subspace . This view of  allows us to “complete”  by

including the base subspace . In the three-dimensional case of Figure 16.1, the

base plane, in effect, adds a projective line at infinity. With this inclusion, every

pair of lines intersects, parallel lines intersecting at a point on the line at infinity.

This two-dimensional projective geometry is called the .projective plane

Definition Let  be a vector space. The set  of all subspaces of  is

called the  of . The   ofprojective geometry projective dimension pdim

 is defined as

pdim dim

The  of  is defined to be . Aprojective dimension pdim dim

subspace of projective dimension  is called a  and a subspaceprojective point

of projective dimension  is called a . projective line

Thus, referring to Figure 16.1, a projective point is a line through the origin and,

provided that it is not contained in the base plane , it meets  in an affine

point. Similarly, a projective line is a plane through the origin and, provided that

it is not , it will meet  in an affine line. In short,

span

span

affine point line through the origin projective point

affine line plane through the origin projective line

The linear span function has the following properties.

Theorem 16.14 The linear span function  from the affine

geometry  to the projective geometry  defined by 

satisfies the following properties:

1) The linear span function is injective, with inverse given by

for all subspaces  not contained in the base subspace  of .

2) The image of the span function is the set of all subspaces of  that are not

contained in the base subspace  of .

3)  if and only if 

4) If  are flats in  with nonempty intersection then

span span
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5) For any collection of flats in ,

span span

6) The linear span function preserves dimension, in the sense that

pdim span dim

7)  if and only if one of  and  is contained in the

other.

Proof. To prove part 1), let  be a flat in . Then  and so

, which implies that . Note also that  and

for some ,  and . This implies that , which

implies that either  or . But  implies  and so ,

which implies that . In other words,

Since the reverse inclusion is clear, we have

This establishes 1).

To prove 2), let  be a subspace of  that is not contained in . We wish to

show that  is in the image of the linear span function. Note first that since

 and , we have  and sodim dim

dim dim dim dim dim

Now, let . Then

 for some  

Thus,  for some . Hence, the flat  lies in 

and

dim dim dim

which implies that  lies in  and hasspan

the same dimension as . In other words,

span

We leave proof of the remaining parts of the theorem as exercises. 
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Exercises

1. Show that if  then the set  is a

subspace of .

2. Prove that .hull

3. Prove that the set    in  is closed under the

formation of lines, but not affine hulls.

4. Prove that a flat contains the origin  if and only if it is a subspace.

5. Prove that a flat  is a subspace if and only if for some  we have

 for some .

6. Show that the join of a collection  of flats in  is the

intersection of all flats that contain all flats in .

7. Is the collection of all flats in  a lattice under set inclusion? If not, how

can you “fix” this?

8. Suppose that  and . Prove that if dim dim

and  then .

9. Suppose that  and  are disjoint hyperplanes in .

Show that .

10. (The parallel postulate  Let  be a flat in  and . Show that there is

exactly one flat containing , parallel to  and having the same dimension

as .

11. a) Find an example to show that the join  of two flats may not be

the set of all lines connecting all points in the union of these flats.

 b) Show that if  and  are flats with  then  is the

union of all lines  where  and .

12. Show that if  and  then

dim max dim dim

13. Let . Prove the following:dim

 a) The join of any two distinct points is a line.

 b) The intersection of any two nonparallel lines is a point.

14. Let . Prove the following:dim

 a) The join of any two distinct points is a line.

 b) The intersection of any two nonparallel planes is a line.

 c) The join of any two lines whose intersection is a point is a plane.

 d) The intersection of two coplanar nonparallel lines is a point.

 e) The join of any two distinct parallel lines is a plane.

 f) The join of a line and a point not on that line is a plane.

 g) The intersection of a plane and a line not on that plane is a point.

15. Prove that  is a surjective affine transformation if and only if

 for some  and .

16. Verify the group-theoretic remarks about the group homomorphism

aff trans aff and the subgroup  of .
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Operator Factorizations: QR and Singular

Value

The QR Decomposition

Let  be a finite-dimensional inner product space over , where  or

. Let us recall a definition.

Definition A linear operator  on  is  with respect to anupper triangular

ordered basis  if the matrix  is upper triangular, that is, if

for all 

The operator  is  if there is an ordered basis withupper triangularizable

respect to which  is upper triangular. 

Given any orthonormal basis  for , it is possible to find a unitary operator 

for which  is upper triangular with respect to . In matrix terms, this is

equivalent to the fact that any matrix  can be factored into a product 

where  is unitary (orthogonal) and  is upper triangular. This is the well

known QR factorization of a matrix. Before proving this fact, let us repeat one

more definition.

Definition For a nonzero , the unique operator  for which

is called a  or a . reflection Householder transformation

According to Theorem 10.11, if , then  is the unique

reflection sending  to , that is, .



426 Advanced Linear Algebra

Theorem 17.1 ( ) Let  be a linear operatorQR-Factorization of an operator

on a finite-dimensional real or complex vector space . Then for any ordered

orthonormal basis  for , there is a unitary (orthogonal)

operator  and an operator  that is upper triangular with respect to , that is,

for all , for which

Moreover, if  is invertible, then  can be chosen with positive eigenvalues, in

which case both  and  are unique.

Proof. Let . If  then

where, if  is invertible then  is positive.

Assume for the purposes of induction that, for a given , we have

found reflections  for which, setting 

for all . Assume also that if  is invertible, the coefficient of  in

 is positive.

We seek a reflection  for which

for  and for which, if  is invertible, the coefficient of  in

 is positive.

Note that if  then  is the identity on  and

so, at least for  we have

as desired. But we also want to choose  so that

Let us write

where  and . We can accomplish our goal by

reflecting  onto the subspace . In particular, let .



Operator Factorizations: QR and Singular Value 427

Since , the operator  is the identity on 

and so as noted earlier

, for 

Also

and if  is invertible, then  and so . Thus, we have found 

and by induction,

is upper triangular with respect to , which proves the first part of the theorem.

It remains only to prove the uniqueness statement.

Suppose that  is invertible and that  and that the coefficients

of  in  and  are positive. Then  is both unitary and

upper triangular with respect to  and the coefficient of  in  is positive.

We leave it to the reader to show that  must be the identity and so  and

.

Here is the matrix version of the preceding theorem.

Theorem 17.2 ( ) Any real or complex matrix The QR factorization  can be

written in the form  where  is unitary (orthogonal) and  is upper

triangular. Moreover, if  is nonsingular then the diagonal entries of  may be

taken to be positive, in which case the factorization is unique.

Proof. According to Theorem 17.1, there is a unitary (orthogonal) operator 

for which  is upper triangular. Hence

where  is a unitary (orthogonal) matrix.

The QR decomposition has important applications. For example, a system of

linear equations  can be written in the form

and since , we have

This is an upper triangular system, which is easily solved by back substitution

that is, starting from the bottom and working up.
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Singular Values

Let  and  be finite-dimensional inner product spaces over  or . The

spectral theorem can be of considerable help in understanding the relationship

between a linear transformation  and its adjoint .

This relationship is shown in Figure 17.1. (We assume that  and  are finite-

dimensional.)

u1 v1s1

ur+1 0 vr+1

un 0 vm

im( *)

ker( ) ker( *)

im( )

ur vrsr
ONB of

eigenvectors

for *

ONB of
eigenvectors

for *

Figure 17.1

We begin with a simple observation: If  then  is a

positive Hermitian operator. Hence, if  then has anrk rk

ordered orthonormal basis  of eigenvectors for

, where the corresponding (not necessarily unique) eigenvalues satisfy

The numbers , for  are called the  of singular values

and for  we have

where  for .

It is not hard to show that  is an ordered orthonormal basis for

ker ker and so  is an ordered orthonormal basis for 

im . For if  then
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and so , that is, . On the other hand, if  is inker

ker  then

and so  for  and so .ker

We can achieve some “symmetry” here between  and  by setting

 for each , giving

and

The vectors  are orthonormal, since if  then

Hence,  is an orthonormal basis for , which can beim ker

extended to an orthonormal basis  for , the extension

 being an orthonormal basis for . The vectors  are calledker

the  for  and the vectors  are called the right singular vectors left singular

vectors for .

Moreover, since

the vectors  are eigenvectors for  with the same eigenvalues

 as for . This completes the picture in Figure 17.1.

Theorem 17.3 Let  and  be finite-dimensional inner product spaces over 

or  and let  have rank . Then there is an ordered orthonormal

basis  of  and an ordered orthonormal basis

 of  with the following properties:

1)  is an orthonormal basis for ker im

2)  is an orthonormal basis for ker

3)  is an orthonormal basis for ker im

4)  is an orthonormal basis for ker

5) The operators  and  behave “symmetrically” on  and , specifically,

for ,
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where  are called the  of .singular values

The vectors  are called the  for  and the vectors  areright singular vectors

called the  for . left singular vectors

The matrix version of the previous discussion leads to the well known singular

value decomposition of a matrix. The matrix of  under the ordered

orthonormal bases  and  is

diag

Given any matrix  of rank , let  be multiplication by . Then

 where  and  are the standard bases for  and ,

respectively. By changing orthonormal bases to  and  we get

where  is unitary (orthogonal for ) with th column equal to

 and  is unitary (orthogonal for ) with th column equal

to .

As to uniqueness, if  is a singular value decomposition then

and since , it follows that diag  is an eigenvalue

of . Hence, since , we deduce that the singular values are uniquely

determined by .

We state without proof the following uniqueness facts. For a proof, the reader

may wish to consult reference [HJ1]. If  and if the eigenvalues  are

distinct then  is uniquely determined up to multiplication on the right by a

diagonal matrix of the form diag  with . If  then

 is never uniquely determined. If  then for any given  there is a

unique . Thus, we see that, in general, the singular value decomposition is not

unique.

The Moore–Penrose Generalized Inverse

Singular values lead to a generalization of the inverse of an operator that applies

to all linear transformations. The setup is the same as in Figure 17.1. Referring

to that figure, we are prompted to define a linear transformation  by

for

for
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for then

and

Hence, if  then . The transformation  is called the

Moore–Penrose generalized inverse Moore–Penrose pseudoinverse or  of .

We abbreviate this as .MP inverse

Note that the composition  is the identity on the largest possible subspace of

 upon which any composition of the form  could be the identity, namely,

the orthogonal complement of the kernel of . A similar statement holds for the

composition . Hence,  is as “close” to an inverse for  as is possible.

We have said that if  is invertible then . More is true: If  is injective

then  and so  is a left inverse for . Also, if  is surjective then  is

a right inverse for . Hence the MP inverse  generalizes the one-sided

inverses as well.

Here is a characterization of the MP inverse.

Theorem 17.4 Let . The MP inverse  of  is completely

characterized by the following four properties:

1) 

2) 

3)  is Hermitian

4)  is Hermitian

Proof. We leave it to the reader to show that  does indeed satisfy conditions

1)–4) and prove only the uniqueness. Suppose that  and  satisfy 1)–4) when

substituted for . Then



432 Advanced Linear Algebra

and

which shows that . 

The MP inverse can also be defined for matrices. In particular, if 

then the matrix operator  has an MP inverse . Since this is a linear

transformation from . to , it is just multiplication by a matrix 

This matrix  is the MP inverse for  and is denoted by .

Since  and , the matrix version of Theorem 17.4 implies

that  is completely characterized by the four conditions

1)

2)

3)  is Hermitian

4)  is Hermitian

Moreover, if

is the singular value decomposition of the matrix  then

where  is obtained from  by replacing all nonzero entries by their

multiplicative inverses. This follows from the characterization above and also

from the fact that, for 

and for 
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Least Squares Approximation

Let us now discuss the most important use of the MP inverse. Consider the

system of linear equations

where . (As usual,  or .) Of course, this system has a

solution if and only if . If the system has no solution, then it is ofim

considerable practical importance to be able to solve the system

where  is the unique vector in  that is closest to , as measured by theim

unitary (or Euclidean) distance. This problem is called the linear least squares

problem least squares solution. Any solution to the system  is called a 

to the system . Put another way, a least squares solution to  is a

vector  for which  is minimized.

Suppose that  and  are least squares solutions to . Then

and so . (We will write  for .) Thus, if  is a particular leastker

squares solution, then the set of all least squares solutions is .ker

Among all solutions, the most interesting is the solution of minimum norm.

Note that if there is a least squares solution  that lies in , then for anyker

ker , we have

and so  will be the unique least squares solution of minimum norm.

Before proceeding, we remind the reader of our discussion related to the

projection theorem (Theorem 9.12) to the effect that if  is a subspace of a

finite-dimensional inner product space , then the best approximation to a

vector  from within  is the unique vector  for which .

Now we can see how the MP inverse comes into play.

Theorem 17.5 Let . Among the least squares solutions to the

system

there is a unique solution of minimum norm, given by , where  is the MP

inverse of .

Proof. A vector  is a least squares solution if and only if . Using the

characterization of the best approximation , we see that  is a solution to

 if and only if
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im

Since  this is equivalent toim ker

or

This system of equations is called the  for . Itsnormal equations

solutions are precisely the least squares solutions to the system .

To see that  is a least squares solution, recall that, in the notation of

Figure 17.1

and so

and since  is a basis for  we conclude that  satisfies the

normal equations.

Finally, since , we deduce by the preceding remarks that  isker

the unique least squares solution of minimum norm. 

Exercises

QR-Factorization

1. Suppose that  is unitary and upper triangular with respect to an

orthonormal basis  and that the coefficient of  in  is positive. Show

that  must be the identity.

2. Assume that  is a nonsingular operator on a finite-dimensional inner

product space. Use the Gram–Schmidt process to obtain the QR-

factorization of .

3. Prove that for reflections,  if and only if  is a scalar multiple of .

4. For any nonzero , show that the reflection  is given by

5. Use the QR factorization to show that any matrix that is similar to an upper

triangular matrix is also similar to an upper triangular matrix via a unitary

(orthogonal) matrix.
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6.  and suppose that . Let  be theLet

eigenvalues for  and  be the eigenvalues for . Show that the

eigenvalues of  are

where  is a permutation of . Hence, for commuting

operators,

7. Let  be commuting operators. Let  be the

eigenvalues for  and  be the eigenvalues for . Using the

previous exercise, show that if all of the sums  are nonzero, then

 is invertible.

8. Let  be the matrix

that has 's on the diagonal that moves up from left to right and 's

elsewhere. Find  and . Compare  with . Compare  with .

Compare  with . Show that any upper triangular matrix is unitarily

equivalent to a lower triangular matrix.

9. If  and  is a  basis for which

then find a basis  for which

10. ( ) We have seen that a linear operator  is positiveCholsky decomposition

if and only if it has the form  for some operator . Using the QR-

factorization of , prove the following result, known as the Cholsky

decomposition. A linear operator  is positive if and only if it has

the form  where  is upper triangularizable. Moreover, if  is

invertible then  can be chosen with positive eigenvalues, in which case the

factorization is unique.

Singular Values

11. Let . Show that the singular values of  are the same as those of

.

12. Find the singular values and the singular value decomposition of the matrix
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Find .

13. Find the singular values and the singular value decomposition of the matrix

Find . : is it better to work with  or ?Hint

14. Let  be a column matrix over . Find a singular value

decomposition of .

15. Let  and let  be the square matrix

block

Show that, counting multiplicity, the nonzero eigenvalues of  are

precisely the singular values of  together with their negatives. : LetHint

 be a singular–value decomposition of  and try factoring 

into a product  where  is unitary. Do not read the following second

hint unless you get stuck. : verify the block factorizationSecond Hint

What are the eigenvalues of the middle factor on the right? (Try 

and .)

16. Use the results of the previous exercise to show that a matrix

, its adjoint , its transpose  and its conjugate  all have

the same singular values. Show also that if  and  are unitary then  and

 have the same singular values.

17. Let  be nonsingular. Show that the following procedure

produces a singular-value decomposition  of .

 a) Write  where  and the 's arediag

positive and the columns of  form an orthonormal basis of

eigenvectors for . (We never said that this was a practical procedure.)

 b) Let  where the square roots are nonnegative.diag

Also let  and U .

18. If  is an  matrix then the  of  isFrobenius norm

Show that  is the sum of the squares of the singular values of

.



Chapter 18

The Umbral Calculus

In this chapter, we give a brief introduction to an area called the umbral

calculus. This is a linear-algebraic theory used to study certain types of

polynomial functions that play an important role in applied mathematics. We

give only a brief introduction to the subject, emphasizing the algebraic aspects

rather than the applications. For more on the umbral calculus, may we suggest

The Umbral Calculus, by Roman 1984 ?

One bit of notation: The  are defined bylower factorial numbers

Formal Power Series

We begin with a few remarks concerning formal power series. Let  denote the

algebra of formal power series in the variable , with complex coefficients.

Thus,  is the set of all formal sums of the form

(18.1)

where  (the complex numbers). Addition and multiplication are purely

formal

and

The   of  is the smallest exponent of  that appears with a nonzeroorder

coefficient. The order of the zero series is defined to be . Note that a series
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 has a multiplicative inverse, denoted by , if and only if . We

leave it to the reader to show that

and

 min

If  is a sequence in  with  as  then for any series

we may substitute  for  to get the series

which is well-defined since the coefficient of each power of  is a finite sum. In

particular, if  then  and so the composition

is well-defined. It is easy to see that .

If  then  has a compositional inverse, denoted by  and satisfying

A series  with  is called a .delta series

The sequence of powers  of a delta series  forms a  for , in thepseudobasis

sense that for any , there exists a unique sequence of constants  for

which

Finally, we note that the formal derivative of the series (18.1) is given by

The operator  is a derivation, that is,
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The Umbral Algebra

Let  denote the algebra of polynomials in a single variable  over the

complex field. One of the starting points of the umbral calculus is the fact that

any formal power series in  can play three different roles: as a formal power

series, as a linear functional on  and as a linear operator on . Let us first

explore the connection between formal power series and linear functionals.

Let  denote the vector space of all linear functionals on . Note that  is the

algebraic dual space of , as defined in Chapter 2. It will be convenient to

denote the action of  on  by

(This is the “bra-ket” notation of Paul Dirac.) The vector space operations on 

then take the form

and

Note also that since any linear functional on  is uniquely determined by its

values on a basis for  the functional  is uniquely determined by the

values  for .

Now, any formal series in  can be written in the form

!

and we can use this to define a linear functional  by setting

for . In other words, the linear functional  is defined by

!

where the expression  on the left is just a formal power series. Note in

particular that

!

where  is the Kronecker delta function. This implies that

and so  is the functional “ th derivative at .” Also,  is evaluation at .
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As it happens, any linear functional  on  has the form . To see this, we

simply note that if

!

then

for all  and so as linear functionals, .

Thus, we can define a map  by .

Theorem 18.1 The map  defined by  is a vector space

isomorphism from  onto .

Proof. To see that  is injective, note that

 for all 

Moreover, the map  is surjective, since for any , the linear functional

 has the property that . Finally,

!

! !

From now on, we shall identify the vector space  with the vector space ,

using the isomorphism . Thus, we think of linear functionals on 

simply as formal power series. The advantage of this approach is that  is more

than just a vector space—it is an algebra. Hence, we have automatically defined

a multiplication of linear functionals, namely, the product of formal power

series. The algebra , when thought of as both the algebra of formal power

series and the algebra of linear functionals on , is called the .umbral algebra

Let us consider an example.

Example 18.1 For , the   is defined byevaluation functional
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In particular,  and so the formal power series representation for

this functional is

! !

which is the exponential series. If  is evaluation at  then

and so the product of evaluation at  and evaluation at  is evaluation at

.

When we are thinking of a delta series  as a linear functional, we refer to

it as a . Similarly, an invertible series  is referred to as andelta functional

invertible functional. Here are some simple consequences of the development

so far.

Theorem 18.2

1) For any ,

2) For any ,

3) For any ,

4)  deg

5) If  for all  then

where the sum on the right is a finite one.

6) If  for all  then

 for all 

7) If   for all  thendeg

 for all 
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Proof. We prove only part 3). Let

! !
 and 

Then

!

and applying both sides of this as linear functionals) to  gives

The result now follows from the fact that part 1) implies  and

.

We can now present our first “umbral” result.

Theorem 18.3 For any  and ,

Proof. By linearity, we need only establish this for . But, if

!

then

!

!

Let us consider a few examples of important linear functionals and their power

series representations.

Example 18.2

1) We have already encountered the  , satisfyingevaluation functional
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2) The  is the delta functional ,forward difference functional

satisfying

3) The  is the delta functional e , satisfyingAbel functional

e

4) The invertible functional  satisfies

as can be seen by setting  and expanding the expression

.

5) To determine the linear functional  satisfying

we observe that

!

The inverse  of this functional is associated with the Bernoulli

polynomials, which play a very important role in mathematics and its

applications. In fact, the numbers

are known as the . Bernoulli numbers

Formal Power Series as Linear Operators

We now turn to the connection between formal power series and linear

operators on . Let us denote the th derivative operator on  by . Thus,

We can then extend this to formal series in 

!
(18.2)
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by defining the linear operator  by

! !

the latter sum being a finite one. Note in particular that

(18.3)

With this definition, we see that each formal power series  plays three

roles in the umbral calculus, namely, as a formal power series, as a linear

functional and as a linear operator. The two notations  and

 will make it clear whether we are thinking of  as a functional or as an

operator.

It is important to note that  in  if and only if  as linear functionals,

which holds if and only if  as linear operators. It is also worth noting that

and so we may write  without ambiguity. In addition,

for all  and .

When we are thinking of a delta series  as an operator, we call it a delta

operator. The following theorem describes the key relationship between linear

functionals and linear operators of the form .

Theorem 18.4 If  then

for all polynomials .

Proof. If  has the form (18.2) then by (18.3),

( 18.4)

By linearity, this holds for  replaced by any polynomial . Hence,

applying this to the product  gives

Equation (18.4) shows that applying the linear functional (  is equivalent to

applying the operator  and then following by evaluation at .
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Here are the operator versions of the functionals in Example 18.2.

Example 18.3

1) The operator  satisfies

!

and so

for all . Thus  is a .translation operator

2) The  is the delta operator , whereforward difference operator

)

3) The  is the delta operator e , whereAbel operator

e

4) The invertible operator  satisfies

du

5) The operator )  is easily seen to satisfy

We have seen that all linear functionals on  have the form , for .

However, not all linear operators on  have this form. To see this, observe that

deg deg

but the linear operator  defined by  does not have

this property.

Let us characterize the linear operators of the form . First, we need a lemma.

Lemma 18.5 If  is a linear operator on  and  for some delta

series  then .deg deg

Proof. For any 

deg deg deg

and so
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deg deg

Since  we have the basis for an induction. When deg

we get . Assume that the result is true for . Thendeg

deg deg

Theorem 18.6 The following are equivalent for a linear operator .

1)  has the form , that is, there exists an  for which , as

linear operators.

2)  commutes with the derivative operator, that is, .

3)  commutes with any delta operator , that is, .

4)  commutes with any translation operator, that is, .

Proof. It is clear that 1) implies 2). For the converse, let

!

Then

Now, since  commutes with , we have

and since this holds for all  and  we get . We leave the rest of the

proof as an exercise. 

Sheffer Sequences

We can now define the principal object of study in the umbral calculus. When

referring to a sequence  in , we shall always assume that  deg

for all .

Theorem 18.7 Let  be a delta series, let  be an invertible series and consider

the geometric sequence

in . Then there is a unique sequence  in  satisfying the orthogonality

conditions
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(18.5)

for all .

Proof. The uniqueness follows from Theorem 18.2. For the existence, if we set

and

where  then (18.5) is

Taking  we get

For  we have

and using the fact that  we can solve this for . By

successively taking  we can solve the resulting

equations for the coefficients  of the sequence . 

Definition The sequence  in (18.5) is called the  for theSheffer sequence

ordered pair . We shorten this by saying that  is Sheffer for

.

Two special types of Sheffer sequences deserve explicit mention.

Definition The Sheffer sequence for a pair of the form  is called the

associated sequence for . The Sheffer sequence for a pair of the form

 is called the  for . Appell sequence



448 Advanced Linear Algebra

Note that the sequence  is Sheffer for  if and only if

which is equivalent to

which, in turn, is equivalent to saying that the sequence  is

the associated sequence for .

Theorem 18.8 The sequence  is Sheffer for  if and only if the

sequence  is the associated sequence for . 

Before considering examples, we wish to describe several characterizations of

Sheffer sequences. First, we require a key result.

Theorem 18.9 The expansion theorems( ) Let  be Sheffer for .

1) For any ,

!

2) For any ,

!

Proof. Part 1) follows from Theorem 18.2, since

! !
!

Part 2) follows in a similar way from Theorem 18.2. 

We can now begin our characterization of Sheffer sequences, starting with the

generating function. The idea of a generating function is quite simple. If  is

a sequence of polynomials, we may define a formal power series of the form

!

This is referred to as the ( )  for the sequenceexponential generating function

. (The term exponential refers to the presence of ! in this series. When

this is not present, we have an ordinary generating function.  Since the series is

a formal one, knowing  is equivalent (in theory, if not always in practice)
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to knowing the polynomials . Moreover, a knowledge of the generating

function of a sequence of polynomials can often lead to a deeper understanding

of the sequence itself, that might not be otherwise easily accessible. For this

reason, generating functions are studied quite extensively.

For the proofs of the following characterizations, we refer the reader to Roman

1984 .

Theorem 18.10 Generating function( )

1) The sequence  is the associated sequence for a delta series  if and

only if

!

where  is the compositional inverse of .

2) The sequence  is Sheffer for  if and only if

!

The sum on the right is called the  of .generating function

Proof. Part 1) is a special case of part 2). For part 2), the expression above is

equivalent to

!

which is equivalent to

!

But if  is Sheffer for  then this is just the expansion theorem for

. Conversely, this expression implies that

!

and so , which says that  is Sheffer for

.

We can now give a representation for Sheffer sequences.

Theorem 18.11 Conjugate representation( )
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1) A sequence  is the associated sequence for  if and only if

2) A sequence  is Sheffer for  if and only if

Proof. We need only prove part 2). We know that  is Sheffer for

 if and only if

!

But this is equivalent to

!

Expanding the exponential on the left gives

!

Replacing  by  gives the result. 

Sheffer sequences can also be characterized by means of linear operators.

Theorem 18.12 Operator characterization)

1) A sequence  is the associated sequence for  if and only if

 a) 

 b)  for 

2) A sequence  is Sheffer for , for some invertible series 

if and only if

for all .

Proof. For part 1), if  is associated with  then

and
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and since this holds for all  we get 1b). Conversely, if 1a) and 1b) hold

then

and so  is the associated sequence for .

As for part 2), if  is Sheffer for  then

and so , as desired. Conversely, suppose that

and let  be the associated sequence for . Let  be the invertible linear

operator on  defined by

Then

and so Theorem 18.5 implies that  for some invertible series . Then

and so  is Sheffer for . 

We next give a formula for the action of a linear operator  on a Sheffer

sequence.
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Theorem 18.13 Let  be a Sheffer sequence for  and let 

be associated with . Then for any  we have

Proof. By the expansion theorem

!

we have

!

!

which is the desired formula. 

Theorem 18.14

1)  A sequence  is the associated sequence for a( )The binomial identity

delta series  if and only if it is of , that is, if and only if itbinomial type

satisfies the identity

for all .

2)  A sequence  is Sheffer for , for( )The Sheffer identity

some invertible  if and only if

for all , where  is the associated sequence for .

Proof. To prove part 1), if  is an associated sequence then taking

 in Theorem 18.13 gives the binomial identity. Conversely, suppose

that the sequence  is of binomial type. We will use the operator

characterization to show that  is an associated sequence. Taking

 we have for 

and so . Also,



The Umbral Calculus 453

and so . Assuming that  for  we have

and so . Thus, .

Next, define a linear functional  by

Since  and  we deduce

that  is a delta series. Now, the binomial identity gives

and so

and since this holds for all , we get . Thus,  is the

associated sequence for .

For part 2), if  is a Sheffer sequence then taking  in Theorem

18.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity

holds, where  is the associated sequence for . It suffices to show that

 for some invertible . Define a linear operator  by

Then

and by the Sheffer identity

and the two are equal by part 1). Hence,  commutes with  and is therefore

of the form , as desired. 
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Examples of Sheffer Sequences

We can now give some examples of Sheffer sequences. While it is often a

relatively straightforward matter to verify that a given sequence is Sheffer for a

given pair , it is quite another matter to find the Sheffer sequence for

a given pair. The umbral calculus provides two formulas for this purpose, one of

which is direct, but requires the usually very difficult computation of the series

. The other is a recurrence relation that expresses each  in terms

of previous terms in the Sheffer sequence. Unfortunately, space does not permit

us to discuss these formulas in detail. However, we will discuss the recurrence

formula for associated sequences later in this chapter.

Example 18.4 The sequence  is the associated sequence for the delta

series . The generating function for this sequence is

and the binomial identity is the well known binomial formula

Example 18.5 The lower factorial polynomials

form the associated sequence for the forward difference functional

discussed in Example 18.2. To see this, we simply compute, using Theorem

18.12. Since  is defined to be , we have . Also,

The generating function for the lower factorial polynomials is

log
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which can be rewritten in the more familiar form

Of course, this is a formal identity, so there is no need to make any restrictions

on . The binomial identity in this case is

which can also be written in the form

This is known as the .Vandermonde convolution formula

Example 18.6 The Abel polynomials

form the associated sequence for the Abel functional

e

also discussed in Example 18.2. We leave verification of this to the reader. The

generating function for the Abel polynomials is

Taking the formal derivative of this with respect to  gives

which, for , gives a formula for the compositional inverse of the series

,

Example 18.7 The famous   form the AppellHermite polynomials

sequence for the invertible functional
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We ask the reader to show that  is the Appell sequence for  if and only

if . Using this fact, we get

The generating function for the Hermite polynomials is

and the Sheffer identity is

We should remark that the Hermite polynomials, as defined in the literature,

often differ from our definition by a multiplicative constant. 

Example 18.8 The well known and important  Laguerre polynomials

of order  form the Sheffer sequence for the pair

It is possible to show although we will not do so here  that

The generating function of the Laguerre polynomials is

As with the Hermite polynomials, some definitions of the Laguerre polynomials

differ by a multiplicative constant. 

We presume that the few examples we have given here indicate that the umbral

calculus applies to a significant range of important polynomial sequences. In

Roman 1984 , we discuss approximately 30 different sequences of polynomials

that are (or are closely related to) Sheffer sequences.

Umbral Operators and Umbral Shifts

We have now established the basic framework of the umbral calculus. As we

have seen, the umbral algebra plays three roles: as the algebra of formal power

series in a single variable, as the algebra of all linear functionals on  and as the
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algebra of all linear operators on  that commute with the derivative operator.

Moreover, since  is an algebra, we can consider geometric sequences

in , where  and . We have seen by example that the

orthogonality conditions

define important families of polynomial sequences.

While the machinery that we have developed so far does unify a number of

topics from the classical study of polynomial sequences (for example, special

cases of the expansion theorem include Taylor's expansion, the Euler-

MacLaurin formula and Boole's summation formula), it does not provide much

new insight into their study. Our plan now is to take a brief look at some of the

deeper results in the umbral calculus, which center around the interplay between

operators on  and their adjoints, which are operators on the umbral algebra

.

We begin by defining two important operators on  associated with each

Sheffer sequence.

Definition Let  be Sheffer for . The linear operator

 defined by

is called the  for the pair , or for the sequenceSheffer operator

. If  is the associated sequence for , the Sheffer operator

is called the  for , or for . umbral operator

Definition Let  be Sheffer for . The linear operator

 defined by

is called the  for the pair , or for the sequence . IfSheffer shift

 is the associated sequence for , the Sheffer operator

is called the  for , or for . umbral shift
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It is clear that each Sheffer sequence uniquely determines a Sheffer operator and

vice versa. Hence, knowing the Sheffer operator of a sequence is equivalent to

knowing the sequence.

Continuous Operators on the Umbral Algebra

It is clearly desirable that a linear operator  on the umbral algebra  pass

under infinite sums, that is, that

(18.6)

whenever the sum on the left is defined, which is precisely when 

as . Not all operators on  have this property, which leads to the

following definition.

Definition A linear operator  on the umbral algebra  is  if itcontinuous

satisfies . 18.6)

The term continuous can be justified by defining a topology on . However,

since no additional topological concepts will be needed, we will not do so here.

Note that in order for (18.6) to make sense, we must have . It

turns out that this condition is also sufficient.

Theorem 18.15 A linear operator  on  is continuous if and only if

(18.7)

Proof. The necessity is clear. Suppose that (18.7) holds and that .

For any , we have

(18.8)

Since

(18.7) implies that we may choose  large enough so that

and

 for 
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Hence, (18.8) gives

which implies the desired result. 

Operator Adjoints

If  is a linear operator on  then its (operator) adjoint  is an

operator on  defined by

In the symbolism of the umbral calculus, this is

(We have reduced the number of parentheses used to aid clarity.

Let us recall the basic properties of the adjoint from Chapter 3.

Theorem 18.16 For ,

1) 

2)  for any 

3) 

4)  for any invertible  

Thus, the map  that sends  to its adjoint 

is a linear transformation from  to . Moreover, since  implies

that  for all  and , which in turn implies

that , we deduce that  is injective. The next theorem describes the range

of .

Theorem 18.17 A linear operator  is the adjoint of a linear operator

 if and only if  is continuous.

Proof. First, suppose that  for some  and let . If

 then for all  we have

and so it is only necessary to take  large enough so that  deg

for all , whence
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for all  and so . Thus,  and  is

continuous.

For the converse, assume that  is continuous. If  did have the form  then

and since

we are prompted to   bydefine

This makes sense since  as  and so the sum on the right is a

finite sum. Then

which implies that  for all . Finally, since  and  are both

continuous, we have . 

Umbral Operators and Automorphisms of the Umbral Algebra

Figure 18.1 shows the map , which is an isomorphism from the vector space

 onto the space of all continuous linear operators on . We are interested

in determining the images under this isomorphism of the set of umbral operators

and the set of umbral shifts, as pictured in Figure 18.1.
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Figure 18.1

Let us begin with umbral operators. Suppose that  is the umbral operator for

the associated sequence , with delta series . Then

for all  and . Hence,  and the continuity of  implies that

More generally, for any ,

(18.9)

In words,  is composition by .

From (18.9), we deduce that  is a vector space isomorphism and that

Hence,  is an automorphism of the umbral algebra . It is a pleasant fact that

this characterizes umbral operators. The first step in the proof of this is the

following, whose proof is left as an exercise.

Theorem 18.18 If  is an automorphism of the umbral algebra then 

preserves order, that is, . In particular,  is continuous. 

Theorem 18.19 A linear operator  on  is an umbral operator if and only if

its adjoint is an automorphism of the umbral algebra . Moreover, if  is an

umbral operator then
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for all . In particular, .

Proof. We have already shown that the adjoint of  is an automorphism

satisfying (18.9). For the converse, suppose that  is an automorphism of .

Since  is surjective, there is a unique series  for which .

Moreover, Theorem 18.18 implies that  is a delta series. Thus,

which shows that  is the associated sequence for  and hence that  is an

umbral operator. 

Theorem 18.19 allows us to fill in one of the boxes on the right side of Figure

18.1. Let us see how we might use Theorem 18.19 to advantage in the study of

associated sequences.

We have seen that the isomorphism  maps the set  of umbral operators

on  onto the set  of automorphisms of . But  is a groupaut aut

under composition. So if

 and 

are umbral operators then since

is an automorphism of , it follows that the composition  is an umbral

operator. In fact, since

we deduce that . Also, since

we have .

Thus, the set  of umbral operators is a group under composition with

and

Let us see how this plays out with respect to associated sequences. If the
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associated sequence for  is

then  and so  is the umbral operator for the

associated sequence

This sequence, denoted by

(18.10)

is called the  of  with . The umbral operatorumbral composition

 is the umbral operator for the associated sequence 

where

and so

Let us summarize.

Theorem 18.20

1) The set  of umbral operators on  is a group under composition, with

and

2) The set of associated sequences forms a group under umbral composition

In particular, the umbral composition  is the associated sequence

for the composition , that is

The identity is the sequence  and the inverse of  is the associated

sequence for the compositional inverse .
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3) Let  and . Then as operators

4) Let  and . Then

Proof. We prove 3) as follows. For any  and 

which gives the desired result. Part 4) follows immediately from part 3) since 

is composition by . 

Sheffer Operators

If  is Sheffer for  then the linear operator  defined by

is called a . Sheffer operators are closely related to umbralSheffer operator

operators, since if  is associated with  then

and so

It follows that the Sheffer operators form a group with composition

and inverse

From this, we deduce that the umbral composition of Sheffer sequences is a

Sheffer sequence. In particular, if  is Sheffer for  and

 is Sheffer for  then
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is Sheffer for .

Umbral Shifts and Derivations of the Umbral Algebra

We have seen that an operator on  is an umbral operator if and only if its

adjoint is an automorphism of . Now suppose that  is the umbral

shift for the associated sequence , associated with the delta series

. Then

1)

and so

(18.11)

This implies that

(18.12)

and further, by continuity, that

(18.13)

Let us pause for a definition.

Definition Let  be an algebra. A linear operator  on  is a  ifderivation

b

for all . 

Thus, we have shown that the adjoint of an umbral shift is a derivation of the

umbral algebra . Moreover, the expansion theorem and (18.11) show that 

is surjective. This characterizes umbral shifts. First we need a preliminary result

on surjective derivations.
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Theorem 18.21 Let  be a surjective derivation on the umbral algebra . Then

c  for any   and f , if . Inconstant

particular,  is continuous.

Proof. We begin by noting that

and so  for all constants . Since  is surjective, there must

exist an  for which

Writing , we have

which implies that . Finally, if  then ,

where  and so

Theorem 18.22 A linear operator  on  is an umbral shift if and only if its

adjoint is a surjective derivation of the umbral algebra . Moreover, if  is an

umbral shift then  is derivation with respect to , that is,

for all . In particular, .

Proof. We have already seen that  is derivation with respect to . For the

converse, suppose that  is a surjective derivation. Theorem 18.21 implies that

there is a delta functional  such that . If  is the associated

sequence for  then

1)

Hence, , that is,  is the umbral shift for . 

We have seen that the fact that the set of all automorphisms on  is a group

under composition shows that the set of all associated sequences is a group

under umbral composition. The set of all surjective derivations on  does not

form a group. However, we do have the chain rule for derivations
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Theorem 18.23 The chain rule( ) Let  and  be surjective derivations on .

Then

Proof. This follows from

and so continuity implies the result. 

The chain rule leads to the following umbral result.

Theorem 18.24 If  and  are umbral shifts then

Proof. Taking adjoints in the chain rule gives

We leave it as an exercise to show that . Now, by taking

 in Theorem 18.24 and observing that  and so  is

multiplication by , we get

Applying this to the associated sequence  for  gives the following

important recurrence relation for .

Theorem 18.25 The recurrence formula( ) Let  be the associated

sequence for . Then

1) 

2) 

Proof. The first part is proved. As to the second, using Theorem 18.20 we have

Example 18.9 The recurrence relation can be used to find the associated

sequence for the forward difference functional . Since ,

the recurrence relation is

1)
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Using the fact that , we have

3

and so on, leading easily to the lower factorial polynomials

Example 18.10 Consider the delta functional

log

Since  is the forward difference functional, Theorem 18.20 implies

that the associated sequence  for  is the inverse, under umbral

composition, of the lower factorial polynomials. Thus, if we write

then

The coefficients  in this equation are known as the Stirling numbers of

the second kind and have great combinatorial significance. In fact,  is

the number of partitions of a set of size  into  blocks. The polynomials 

are called the .exponential polynomials

The recurrence relation for the exponential polynomials is

Equating coefficients of  on both sides of this gives the well known formula

for the Stirling numbers

Many other properties of the Stirling numbers can be derived by umbral

means. 

Now we have the analog of part 3) of Theorem 18.20.

Theorem 18.26 Let  be an umbral shift. Then
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Proof. We have

from which the result follows. 

If  then is multiplication by  and  is the derivative with respect to

 and so the previous result becomes

as operators on . The right side of this is called the  ofPincherle derivative

the operator . (See [Pin].)

Sheffer Shifts

Recall that the linear map

where  is Sheffer for  is called a Sheffer shift. If  is

associated with  then  and so

and so

From Theorem 18.26, the recurrence formula and the chain rule, we have

We have proved the following.
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Theorem 18.27 Let  be a Sheffer shift. Then

1) 

2) 

The Transfer Formulas

We conclude with a pair of formulas for the computation of associated

sequences.

Theorem 18.28 (The transfer formulas) Let  be the associated sequence

for . Then

1) 

2) 

Proof. First we show that 1) and 2) are equivalent. Write . Then

To prove 1), we verify the operation conditions for an associated sequence for

the sequence . First, when  the fourth equality

above gives

If  then  and so, in general, we have  as

required.

For the second required condition,

Thus,  is the associated sequence for . 
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A Final Remark

Unfortunately, space does not permit a detailed discussion of examples of

Sheffer sequences nor the application of the umbral calculus to various classical

problems. In [Rom1], one can find a discussion of the following polynomial

sequences:

The lower factorial polynomials and Stirling numbers

The exponential polynomials and Dobinski's formula

The Gould polynomials

The central factorial polynomials

The Abel polynomials

The Mittag–Leffler polynomials

The Bessel polynomials

The Bell polynomials

The Hermite polynomials

The Bernoulli polynomials and the Euler–Maclaurin expansion

The Euler polynomials

The Laguerre polynomials

The Bernoulli polynomials of the second kind

The Poisson–Charlier polynomials

The actuarial polynomials

The Meixner polynomials of the first and second kinds

The Pidduck polynomials

The Narumi polynomials

The Boole polynomials

The Peters polynomials

The squared Hermite polynomials

The Stirling polynomials

The Mahler polynomials

The Mott polynomials

and more. In [Rom1], we also find a discussion of how the umbral calculus can

be used to approach the following types of problems:

The connection constants problem

Duplication formulas

The Lagrange inversion formula

Cross sequences

Steffensen sequences

Operational formulas

Inverse relations

Sheffer sequence solutions to recurrence relations

Binomial convolution
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Finally, it is possible to generalize the classical umbral calculus that we have

described in this chapter to provide a context for studying polynomial sequences

such as those of the name Gegenbauer, Chebyshev and Jacobi. Also, there is a

q-version of the umbral calculus that involves the  (alsoq-binomial coefficients

known as the )Gaussian coefficients

in place of the binomial coefficients. There is also a logarithmic version of the

umbral calculus, which studies the  and sequences ofharmonic logarithms

logarithmic type. For more on these topics, please see [LR], [Rom2] and

[Rom3].

Exercises

1. Prove that , for any .

2. Prove that min , for any .

3. Show that any delta series has a compositional inverse.

4. Show that for any delta series , the sequence  is a pseudobasis.

5. Prove that  is a derivation.

6. Show that  is a delta functional if and only if  and

.

7. Show that  is invertible if and only if .

8. Show that  for any a ,  and

.

9. Show that e a  for any polynomial .

10. Show that  in  if and only if  as linear functionals, which

holds if and only if  as linear operators.

11. Prove that if  is Sheffer for  then .

Hint: Apply the functionals  to both sides.

12. Verify that the Abel polynomials form the associated sequence for the Abel

functional.

13. Show that a sequence  is the Appell sequence for  if and only if

.

14. If  is a delta series, show that the adjoint  of the umbral operator  is a

vector space isomorphism of .

15. Prove that if  is an automorphism of the umbral algebra then  preserves

order, that is, . In particular,  is continuous.

16. Show that an umbral operator maps associated sequences to associated

sequences.

17. Let  and  be associated sequences. Define a linear operator  by

. Show that  is an umbral operator.

18. Prove that if  and  are surjective derivations on  then

.
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