Steven Roman

Advanced Linear
Algebra

@ Springer



Graduate Texts in Mathematics 135

Editorial Board
S. Axler F.W. Gehring K.A. Ribet



O 003

11

12
13

14

15

16
17

19
20
21
22

23
24

25
26
27
28
29
30
31
32

33

Graduate Texts in Mathematics

TAKEUTI/ZARING. Introduction to
Axiomatic Set Theory. 2nd ed.

OxtoBY. Measure and Category. 2nd ed.
ScHAEFER. Topological Vector Spaces.
2nd ed.

HiLTON/STAMMBACH. A Course in
Homological Algebra. 2nd ed.

Mac LANE. Categories for the Working
Mathematician. 2nd ed.

HuUGHES/PIPER. Projective Planes.

J.-P. SERRE. A Course in Arithmetic.
TAKEUTVZARING. Axiomatic Set Theory.
HuMPHREYS. Introduction to Lie Algebras
and Representation Theory.

CoHEN. A Course in Simple Homotopy
Theory.

ConwaAy. Functions of One Complex
Variable I. 2nd ed.

BEeALs. Advanced Mathematical Analysis.
ANDERSON/FULLER. Rings and Categories
of Modules. 2nd ed.
GOLUBITSKY/GUILLEMIN. Stable Mappings
and Their Singularities.

BERBERIAN. Lectures in Functional
Analysis and Operator Theory.

WIINTER. The Structure of Fields.
ROSENBLATT. Random Processes. 2nd ed.
HaLMOS. Measure Theory.

HaALMos. A Hilbert Space Problem Book.
2nd ed.

HUSEMOLLER. Fibre Bundles. 3rd ed.
HUMPHREYS. Linear Algebraic Groups.
BARNES/MACK. An Algebraic Introduction
to Mathematical Logic.

GREUB. Linear Algebra. 4th ed.

HorMEs. Geometric Functional Analysis
and Its Applications.
HEWITT/STROMBERG. Real and Abstract
Analysis.

MANES. Algebraic Theories.

KELLEY. General Topology.
ZARISKY/SAMUEL. Commutative Algebra.
Vol.I

ZARISKY/SAMUEL. Commutative Algebra.
Vol Il.

JACOBSON. Lectures in Abstract Algebra I.
Basic Concepts.

JACOBSON. Lectures in Abstract Algebra II.
Linear Algebra.

JACOBSON. Lectures in Abstract Algebra
IIL. Theory of Fields and Galois Theory.
HirscH. Differential Topology.

34

35

36

37
38

39
40

41

4
43
44
45
46
47
48
49

50
51

52
53
54

55

56

57

58

59
60

61

62

63

SpITZER. Principles of Random Walk.
2nd ed.

ALEXANDER/WERMER. Several Complex
Variables and Banach Algebras. 3rd ed.
KELLEY/NAMIOKA et al. Linear
Topological Spaces.

MonK. Mathematical Logic.
GRAUERT/FRITZSCHE. Several Complex
Variables.

ARVESON. An Invitation to C*-Algebras.
KEMENY/SNELL/KNAPP. Denumerable
Markov Chains. 2nd ed.

APosTOL. Modular Functions and Dirichlet
Series in Number Theory.

2nd ed.

J.-P. SERRE. Linear Representations of
Finite Groups.

GILLMAN/JERISON. Rings of Continuous
Functions.

KENDIG. Elementary Algebraic Geometry.
LoOEVE. Probability Theory 1. 4th ed.
LoEVE. Probability Theory II. 4th ed.
Moise. Geometric Topology in
Dimensions 2 and 3.

SAcHS/Wu. General Relativity for
Mathematicians.

GRUENBERG/WEIR. Linear Geometry.

2nd ed.

EDWARDS. Fermat's Last Theorem.
KLINGENBERG. A Course in Differential
Geometry.

HARTSHORNE. Algebraic Geometry.
MaNIN. A Course in Mathematical Logic.
GRAVER/WATKINS. Combinatorics with
Emphasis on the Theory of Graphs.
BROWN/PEARCY. Introduction to Operator
Theory I: Elements of Functional
Analysis.

Massey. Algebraic Topology: An
Introduction.

CROWELL/FoX. Introduction to Knot
Theory.

KoBLITz. p-adic Numbers, p-adic Analysis,
and Zeta-Functions. 2nd ed.

LANG. Cyclotomic Fields.

ARNOLD. Mathematical Methods in
Classical Mechanics. 2nd ed.
WHITEHEAD. Elements of Homotopy
Theory.

KARGAPOLOV/MERLZIAKOV. Fundamentals
of the Theory of Groups.

BoLLoBAs. Graph Theory.

(continued after index)



Steven Roman

Advanced Linear Algebra

Second Edition

@ Springer



Steven Roman

University of California, Irvine
Irvine, California 92697-3875
USA
sroman@romanpress.com

Editorial Board:

S. Axler FE.W. Gehring K.A. Ribet

Mathematics Department Mathematics Department Mathematics Department

San Francisco State East Hall University of California,
University University of Michigan Berkeley

San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840

USA USA USA

axler@sfsu.edu fgehring@math.lsa.umich.edu ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 15-xx

Library of Congress Cataloging-in-Publication Data
Roman, Steven.
Advanced linear algebra / Steven Roman.—2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-387-24766-1 (acid-free paper)
1. Algebras, Linear. 1. Title.
QA184.2.R66 2005

512".5—dc22 2005040244
ISBN 0-387-24766-1 Printed on acid-free paper.
© 2005 Steven Roman

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Printed in the United States of America.
98765432

springer.com



To Donna
and to my poker buddies
Rachelle, Carol and Dan



Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions. The second edition represents a major change from
the first edition. Indeed, one might say that it is a totally new book, with the
exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and
roughly 20 books worth of experience has enabled me to improve the quality of
my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,
separation and positive solutions to linear systems (Chapter 15) and a chapter on
the QR decomposition, singular values and pseudoinverses (Chapter 17). The
treatments of tensor products and the umbral calculus have been greatly
expanded and I have included discussions of determinants (in the chapter on
tensor products), the complexification of a real vector space, Schur's lemma and
Gersgorin disks.

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or
advanced undergraduate student. Prerequisites are limited to a knowledge of the
basic properties of matrices and determinants. However, since we cover the
basics of vector spaces and linear transformations rather rapidly, a prior course
in linear algebra (even at the sophomore level), along with a certain measure of
“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are
required for the sequel. This chapter should be skimmed quickly and then used
primarily as a reference. Chapters 1-3 contain a discussion of the basic
properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison
between the properties of modules and those of vector spaces. Chapter 5
provides more on modules. The main goals of this chapter are to prove that any
two bases of a free module have the same cardinality and to introduce
noetherian modules. However, the instructor may simply skim over this chapter,
omitting all proofs. Chapter 6 is devoted to the theory of modules over a
principal ideal domain, establishing the cyclic decomposition theorem for
finitely generated modules. This theorem is the key to the structure theorems for
finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis
here is on the finite-dimensional case, in order to arrive as quickly as possible at
the finite-dimensional spectral theorem for normal operators, in Chapter 10.
However, we have endeavored to state as many results as is convenient for
vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with
the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric
vector spaces, where we describe the structure of symplectic and orthogonal
geometries over various base fields. Chapter 12 contains enough material on
metric spaces to allow a unified treatment of topological issues for the basic



x Preface

Hilbert space theory of Chapter 13. The rather lengthy proof that every metric
space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate
the universal property of tensor products, without getting too involved in
categorical terminology, we first treat both free vector spaces and the familiar
direct sum, in a universal way. Chapter 15 [Chapter 16 in the second edition] is
on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the
umbral calculus. This is an algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject — emphasizing the algebraic
aspects, rather than the applications. This is the first time that this subject has
appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text
is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California
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Chapter 0
Preliminaries

In this chapter, we briefly discuss some topics that are needed for the sequel.
This chapter should be skimmed quickly and used primarily as a reference.

Part 1 Preliminaries

Maultisets

The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let S be a nonempty set. A multiset M with underlying set S is a
set of ordered pairs

M= {(Si7ni) | s € Svni S ZJr:Si 7& ijOl”i 7&]}

where T = {1,2,... }. The number n; is referred to as the multiplicity of the
elements s; in M. If the underlying set of a multiset is finite, we say that the
multiset is finite. The size of a finite multiset M is the sum of the multiplicities
of all of its elements. O

For example, M = {(a,2),(b,3),(c,1)} is a multiset with underlying set
S ={a,b,c}. The elements a has multiplicity 2. One often writes out the
elements of a multiset according to multiplicities, as in M = {a, a,b,b,b,c}.

Of course, two mutlisets are equal if their underlying sets are equal and if the
multiplicity of each element in the comon underlying set is the same in both
multisets.

Matrices

The set of m x n matrices with entries in a field F' is denoted by M,,, ,,(F') or
by M, ,, when the field does not require mention. The set M,, ,,(F) is denoted
by M, (F) or M,,. If A € M, the (3, j)-th entry of A will be denoted by A; ;.
The identity matrix of size n x n is denoted by I,,. The elements of the base
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field F' are called scalars. We expect that the reader is familiar with the basic
properties of matrices, including matrix addition and multiplication.

The main diagonal of an m x n matrix A is the sequence of entries

A1,17 A2,23 cee 7Ak,k

where k = min{m, n}.

Definition 7he transpose of A € M., ,, is the matrix A" defined by
(AD)ij = Aj
A matrix A is symmetric if A = A' and skew-symmetric if A’ = —A. O

Theorem 0.1 (Properties of the transpose) Let A, B € M, ,,. Then
D) (A =4

2) (A+B)l=A"+B!

3) (rA)Y =rA'forallr e F

4) (AB)! = B'A' provided that the product AB is defined

5) det(A') = det(A4). O

Partitioning and Matrix Multiplication

Let M be a matrix of size m x n. If B C {1,...,m} and C C {1,...,n} then
the submatrix M[B, (] is the matrix obtained from M by keeping only the
rows with index in B and the columns with index in C'. Thus, all other rows and
columns are discarded and M [B, C] has size |B| x |C].

Suppose that M € M, , and N € M,, ;.. Let

1) P={B,...,B,}beapartitionof {1,...,m}
2) Q={C,...,C,} be apartition of {1,...,n}
3) R={D,...,D,} beapartition of {1, ..., k}

(Partitions are defined formally later in this chapter.) Then it is a very useful fact
that matrix multiplication can be performed at the block level as well as at the
entry level. In particular, we have

[MN][Bi, D;) = ) M[B;, Ci)N[Cy, D}]
CLeQ

When the partitions in question contain only single-element blocks, this is

precisely the usual formula for matrix multiplication

m

[MN);; = ZMi,hthj
h=1
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Block Matrices

It will be convenient to introduce the notational device of a block matrix. If B; ;
are matrices of the appropriate sizes then by the block matrix

By By - By,
M = : : :

Bm,l Bm,2 e Bm,n block

we mean the matrix whose upper left submatrix is B; 1, and so on. Thus, the
B, ;'s are submatrices of M and not entries. A square matrix of the form

B, 0 - 0
AR
M=1. "%
0 --- 0 B,

block

where each B; is square and 0 is a zero submatrix, is said to be a block
diagonal matrix.

Elementary Row Operations

Recall that there are three types of elementary row operations. Type 1
operations consist of multiplying a row of A by a nonzero scalar. Type 2
operations consist of interchanging two rows of A. Type 3 operations consist of
adding a scalar multiple of one row of A to another row of A.

If we perform an elementary operation of type k to an identity matrix I,,, the
result is called an elementary matrix of type k. It is easy to see that all
elementary matrices are invertible.

In order to perform an elementary row operation on A € M, ,, we can perform
that operation on the identity 7,,, to obtain an elementary matrix E and then take
the product F'A. Note that multiplying on the right by E has the effect of
performing column operations.

Definition 4 matrix R is said to be in reduced row echelon form if

1) All rows consisting only of 0's appear at the bottom of the matrix.

2) In any nonzero row, the first nonzero entry is a 1. This entry is called a
leading entry.

3) For any two consecutive rows, the leading entry of the lower row is to the
right of the leading entry of the upper row.

4) Any column that contains a leading entry has 0's in all other positions. ]

Here are the basic facts concerning reduced row echelon form.
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Theorem 0.2 Matrices A, B € M,, , are row equivalent, denoted by A ~ B,
if either one can be obtained from the other by a series of elementary row

operations.
1) Row equivalence is an equivalence relation. That is,
a A~A

b)) A~B=B~A
¢ A~B B~(C=A~C.

2) A matrix A is row equivalent to one and only one matrix R that is in
reduced row echelon form. The matrix R is called the reduced row
echelon form of A. Furthermore,

A=FE;---E,R

where E; are the elementary matrices required to reduce A to reduced row
echelon form.

3) A is invertible if and only if its reduced row echelon form is an identity
matrix. Hence, a matrix is invertible if and only if it is the product of
elementary matrices. O

The following definition is probably well known to the reader.

Definition A square matrix is upper triangular if all of its entries below the
main diagonal are 0. Similarly, a square matrix is lower triangular if all of its
entries above the main diagonal are 0. A square matrix is diagonal if all of its
entries off the main diagonal are 0. O

Determinants
We assume that the reader is familiar with the following basic properties of
determinants.
Theorem 0.3 Let A € M,, ,,(F'). Then det(A) is an element of F. Furthermore,
1) Forany B € M, (F),

det(AB) = det(A)det(B)

2) A is nonsingular (invertible) if and only if det(A) # 0.

3) The determinant of an upper triangular or lower triangular matrix is the
product of the entries on its main diagonal.

4) If a square matrix M has the block diagonal form

B 0 - 0
AR
M=1. "
0O .-~ 0 B,

block

then det(M) = [ det(B;). O
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Polynomials

The set of all polynomials in the variable x with coefficients from a field F’ is
denoted by F'[z]. If p(z) € F[xz], we say that p(x) is a polynomial over F'. If

p(z) =ap+az+ - + aa”

is a polynomial with a,, # 0 then a,, is called the leading coefficient of p(z)
and the degree of p(x) is n, written deg p(x) = n. For convenience, the degree
of the zero polynomial is —oco. A polynomial is monic if its leading coefficient
is 1.

Theorem 0.4 (Division algorithm) Let f(x), g(x)
Then there exist unique polynomials q(z),r(x) € F

[
f(x) = q(x)g(x) + r(z)
where r(z) = 0 or 0 < deg r(z) < deg g(z). O

€ Fx] where deg g(x) > 0.
x| for which

If p(z) divides g(x), that is, if there exists a polynomial f(z) for which
q(x) = f(x)p(x)
then we write p(z) | g(x).

Theorem 0.5 Let f(x), g(x) € F|x]. The greatest common divisor of f(z) and
g(x), denoted by ged(f(x), g(x)), is the unique monic polynomial p(x) over F
for which

1) plx) | f(x) and p(x) | 9(x)

2) ifr(x)| f(x) andr(z) | g(x) thenr(x) | p(x).

Furthermore, there exist polynomials a(x) and b(x) over F for which
ged(f(2), g(x)) = a(x) f(x) + b(x)g(x) O

Definition The polynomials f(x),g(x) € F|x] are relatively prime if
ged(f(z),g(x)) = 1. In particular, f(x) and g(x) are relatively prime if and
only if there exist polynomials a(x) and b(x) over F for which

alw)f () + b(x)g(x) = 1 O

Definition A nonconstant polynomial f(z) € F|x] is irreducible if whenever
f(x) = p(x)q(x) then one of p(x) and q(x) must be constant. O

The following two theorems support the view that irreducible polynomials
behave like prime numbers.

Theorem 0.6 A nonconstant polynomial f(x) is irreducible if and only if it has
the property that whenever f(x)|p(x)q(x) then either f(x)|p(z) or

f(@) [ q(x). O
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Theorem 0.7 Every nonconstant polynomial in F[x] can be written as a product
of irreducible polynomials. Moreover, this expression is unique up to order of
the factors and multiplication by a scalar. [

Functions

To set our notation, we should make a few comments about functions.
Definition Let f: .S — T be a function from a set S to a set T

1) The domain of f is the set S.

2) The image or range of f is the set im(f) = {f(s) | s € S}.

3) [ isinjective (one-to-one), or an injection, if x £ y = f(z) # f(y).
4) f is surjective (onto T), or a surjection, if im(f) = T.

5) f is bijective, or a bijection, if it is both injective and surjective.
6) Assuming that 0 € T, the support of f is

supp(f) = {s € 5| f(s) # 0} O
If f: S — T is injective then its inverse f~':im(f) — S exists and is well-

defined as a function on im( f).

It will be convenient to apply f to subsets of S and 7. In particular, if X C .S
and if Y C T, we set

f(X)={f(z) |z € X}
and
YY) ={seS|f(s)eY}

Note that the latter is defined even if f is not injective.

Let f: S — T.If A C S, the restriction of f to A is the function f|4: A — T
defined by

fla(a) = f(a)
for all a € A. Clearly, the restriction of an injective map is injective.
Equivalence Relations

The concept of an equivalence relation plays a major role in the study of
matrices and linear transformations.

Definition Letr S be a nonempty set. A binary relation ~ on S is called an
equivalence relation on S if it satisfies the following conditions:
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1) (Reflexivity)
a~a

foralla € S.
2) (Symmetry)

a~b=>b~a

foralla,b € S.
3) (Transitivity)

a~bb~c=a~c

foralla,b,c € S. 0O

Definition Let ~ be an equivalence relation on S. For a € S, the set of all
elements equivalent to a is denoted by

[a]={beS|b~a}

and called the equivalence class of a. O

Theorem 0.8 Let ~ be an equivalence relation on S. Then
1) belaleac|b]<a =]
2) Foranya,b € S, we have either [a] = [b] or [a] N [b] = 0. O

Definition 4 partition of a nonempty set S is a collection {Ay,..., A} of
nonempty subsets of S, called the blocks of the partition, for which

]) A;ﬂA]:(beI"a”Z#j

2) S=AU---UA, O

The following theorem sheds considerable light on the concept of an
equivalence relation.

Theorem 0.9

1) Let ~ be an equivalence relation on S. Then the set of distinct equivalence
classes with respect to ~ are the blocks of a partition of S.

2) Conversely, if P is a partition of S, the binary relation ~ defined by

a ~ b ifa andb lie in the same block of P

is an equivalence relation on S, whose equivalence classes are the blocks
of P.
This establishes a one-to-one correspondence between equivalence relations on
S and partitions of S.

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
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most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let ~ be an equivalence relation on S. A function f: S — T, where
T is any set, is called an invariant of ~ if it is constant on the equivalence
classes of ~ , that is,

a~b= fla)=f(b)

and a complete invariant if it is constant and distinct on the equivalence
classes of ~ , that is,

a~be fla)=f)

A collection {fi,...,f,} of invariants is called a complete system of
invariants if’

a~b<s fila)=fi(b) foralli=1,... ,n O

Definition Let ~ be an equivalence relation on S. A subset C C S is said to be
a set of canonical forms (or just a canonical form) for ~ if for every s € S,
there is exactly one ¢ € C' such that ¢ ~ s. Put another way, each equivalence
class under ~ contains exactly one member of C. O

Example 0.1 Define a binary relation ~ on F[z] by letting p(z) ~ ¢(x) if and
only if p(z) = ag(x) for some nonzero constant ¢ € F. This is easily seen to be
an equivalence relation. The function that assigns to each polynomial its degree
is an invariant, since

p(x) ~ q(x) = deg(p(z)) = deg(q(x))

However, it is not a complete invariant, since there are inequivalent polynomials
with the same degree. The set of all monic polynomials is a set of canonical
forms for this equivalence relation. [J

Example 0.2 We have remarked that row equivalence is an equivalence relation
on M,, ,(F). Moreover, the subset of reduced row echelon form matrices is a
set of canonical forms for row equivalence, since every matrix is row equivalent
to a unique matrix in reduced row echelon form. [

Example 0.3 Two matrices A, B € M,,(F) are row equivalent if and only if
there is an invertible matrix P such that A = PB. Similarly, A and B are
column equivalent, that is, A can be reduced to B using elementary column
operations if and only if there exists an invertible matrix @) such that A = BQ.

Two matrices A and B are said to be equivalent if there exist invertible
matrices P and @) for which
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A=PBQ

Put another way, A and B are equivalent if A can be reduced to B by
performing a series of elementary row and/or column operations. (The use of the
term equivalent is unfortunate, since it applies to all equivalence relations, not
just this one. However, the terminology is standard, so we use it here.)

It is not hard to see that an m x n matrix R that is in both reduced row echelon
form and reduced column echelon form must have the block form

1, Ok n—t

Jp =
Om—k,k Om—k,n,—k block

We leave it to the reader to show that every matrix A in M,, is equivalent to
exactly one matrix of the form J; and so the set of these matrices is a set of
canonical forms for equivalence. Moreover, the function f defined by
f(A) =k, where A ~ Ji, is a complete invariant for equivalence.

Since the rank of .J;; is k and since neither row nor column operations affect the
rank, we deduce that the rank of A is k. Hence, rank is a complete invariant for
equivalence. In other words, two matrices are equivalent if and only if they have
the same rank. [

Example 0.4 Two matrices A, B € M, (F) are said to be similar if there exists
an invertible matrix P such that

A= PBP!

Similarity is easily seen to be an equivalence relation on M,,. As we will learn,
two matrices are similar if and only if they represent the same linear operators
on a given n-dimensional vector space V. Hence, similarity is extremely
important for studying the structure of linear operators. One of the main goals of
this book is to develop canonical forms for similarity.

We leave it to the reader to show that the determinant function and the trace
function are invariants for similarity. However, these two invariants do not, in
general, form a complete system of invariants. [

Example 0.5 Two matrices A, B € M,,(F) are said to be congruent if there
exists an invertible matrix P for which

A= PBP'

where P! is the transpose of P. This relation is easily seen to be an equivalence
relation and we will devote some effort to finding canonical forms for
congruence. For some base fields F' (such as R, C or a finite field), this is
relatively easy to do, but for other base fields (such as Q), it is extremely
difficult. O
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Zorn's Lemma
In order to show that any vector space has a basis, we require a result known as

Zorn's lemma. To state this lemma, we need some preliminary definitions.

Definition 4 partially ordered set is a pair (P, <) where P is a nonempty set
and < is a binary relation called a partial order, read “less than or equal to,”
with the following properties:

1) (Reflexivity) For all a € P,

a<a
2) (Antisymmetry) Forall a,b € P,
a <bandb < aimpliesa =5
3) (Transitivity) Forall a,b,c € P,
a<bandb < c impliesa < c
Partially ordered sets are also called posets. [
It is customary to use a phrase such as “Let P be a partially ordered set” when

the partial order is understood. Here are some key terms related to partially
ordered sets.

Definition Let P be a partially ordered set.
1) A maximal element is an element m € P with the property that there is no
larger element in P, that is

peEPm<p=m=p

2) A minimal element is an element n € P with the property that there is no
smaller element in P, that is

peEP,p<n=p=n
3) Leta,b e P.Thenu € P is an upper bound for a and b if
a<wuandb < u

The unique smallest upper bound for a and b, if it exists, is called the least
upper bound of a and b and is denoted by lub{a, b}.
4) Leta,b € P.Then{ € P is alower bound for a and b if

{<aandl <b

The unique largest lower bound for a and b, if it exists, is called the
greatest lower bound of a and b and is denoted by glb{a,b}. O
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Let S be a subset of a partially ordered set P. We say that an element v € P is
an upper bound for S if s <w for all s € S. Lower bounds are defined
similarly.

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have =,y € P with the property
thatz L yandy € x.

Definition A partially ordered set in which every pair of elements is
comparable is called a totally ordered set, or a linearly ordered set. Any
totally ordered subset of a partially ordered set P is called a chain in P. O

Example 0.6

1) The set R of real numbers, with the usual binary relation <, is a partially
ordered set. It is also a totally ordered set. It has no maximal elements.

2) The set N={0,1,...} of natural numbers, together with the binary
relation of divides, is a partially ordered set. It is customary to write n | m
to indicate that n divides m. The subset S' of N consisting of all powers of 2
is a totally ordered subset of N, that is, it is a chain in N. The set
P ={2,4,8,3,9,27} is a partially ordered set under | . It has two maximal
elements, namely 8 and 27. The subset Q = {2,3,5,7,11} is a partially
ordered set in which every element is both maximal and minimal!

3) Let S be any set and let P(S) be the power set of S, that is, the set of all
subsets of S. Then P(S), together with the subset relation C , is a partially
ordered set. O

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.

Theorem 0.10 (Zorn's lemma) If P is a partially ordered set in which every
chain has an upper bound then P has a maximal element. O

We will not prove Zorn's lemma. Indeed, Zorn's lemma is a result that is so
fundamental that it cannot be proved or disproved in the context of ordinary set
theory. (It is equivalent to the famous Axiom of Choice.) Therefore, Zorn's
lemma (along with the Axiom of Choice) must either be accepted or rejected as
an axiom of set theory. Since almost all mathematicians accept it, we will do so
as well. Indeed, we will use Zorn's lemma to prove that every vector space has a
basis.

Cardinality
Two sets S and 7" have the same cardinality, written
S| =T

if there is a bijective function (a one-to-one correspondence) between the sets.



12 Advanced Linear Algebra

The reader is probably aware of the fact that
|Z] = IN| and |Q| = |N]|

where N denotes the natural numbers, Z the integers and Q the rational
numbers.

If S is in one-to-one correspondence with a subset of T, we write |S| < |T|. If
S is in one-to-one correspondence with a proper subset of 1" but not all of T’
then we write |S| < |T'|. The second condition is necessary, since, for instance,
N is in one-to-one correspondence with a proper subset of Z and yet N is also in
one-to-one correspondence with Z itself. Hence, |N| = |Z|.

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, size (cardinality) than it is to explicitly define the size (cardinality) of
a given set.

Be that as it may, we associate to each set S a cardinal number, denoted by |S]|
or card(S), that is intended to measure the size of the set. Actually, cardinal
numbers are just very special types of sets. However, we can simply think of
them as vague amorphous objects that measure the size of sets.

Definition
1) A set is finite if it can be put in one-to-one correspondence with a set of the
Jorm Z,, = {0,1,... ,n — 1}, for some nonnegative integer n. A set that is

not finite is infinite. The cardinal number (or cardinality) of a finite set is
Jjust the number of elements in the set.

2) The cardinal number of the set N of natural numbers is X (read “aleph
nought”), where X is the first letter of the Hebrew alphabet. Hence,

IN| = |Z] = Q] = R

3) Any set with cardinality ¥ is called a countably infinite set and any finite
or countably infinite set is called a countable set. An infinite set that is not
countable is said to be uncountable. [J

Since it can be shown that [R| > |N|, the real numbers are uncountable.

If S and T are finite sets then it is well known that
S| < |T|and |T| < |S] = [S| = |T|

The first part of the next theorem tells us that this is also true for infinite sets.

The reader will no doubt recall that the power set P(.S) of a set .S is the set of
all subsets of S. For finite sets, the power set of S is always bigger than the set
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itself. In fact,
IS| =n=[P(5)]=2"

The second part of the next theorem says that the power set of any set S is
bigger (has larger cardinality) than S itself. On the other hand, the third part of
this theorem says that, for infinite sets .S, the set of all finite subsets of S' is the
same size as S.

Theorem 0.11
1) (Schréder—Bernstein theorem) For any sets S and T,

S| < |T|and |T| < |S| = |S| = |T]|
2) (Cantor's theorem) I/ P(S) denotes the power set of S then
S| < [P(S)]

3) If Po(S) denotes the set of all finite subsets of S and if S is an infinite set
then

S| = [Po(5)]

Proof. We prove only parts 1) and 2). Let f: S — T be an injective function
from S into T and let g:7"— S be an injective function from 7" into S. We
want to use these functions to create a bijective function from S to 7. For this
purpose, we make the following definitions. The descendants of an element
s € S are the elements obtained by repeated alternate applications of the
functions f and g, namely

f(s):9(f(s)), F(g(f(5))), -

If ¢ is a descendant of s then s is an ancestor of t. Descendants and ancestors of
elements of 7" are defined similarly.

Now, by tracing an element's ancestry to its beginning, we find that there are
three possibilities: the element may originate in .S, or in 7', or it may have no
point of origin. Accordingly, we can write .S as the union of three disjoint sets

Ss = {s € S| s originates in S}
Sy ={s €S| soriginates in T'}
So = {s € S| s has no originator}

Similarly, T is the disjoint union of 7g, 77 and 7.
Now, the restriction
flsg:Ss — Ts

is a bijection. To see this, note that if ¢ € 7 then ¢ originated in S and therefore
must have the form f(s) for some s € S. But ¢ and its ancestor f(s) have the
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same point of origin and so ¢ € 75 implies s € Sg. Thus, f|s, is surjective and
hence bijective. We leave it to the reader to show that the functions

(9l7.) St — Tr and fls,: Sae — Too

are also bijections. Putting these three bijections together gives a bijection
between S and T'. Hence, | S| = |T|, as desired.

We now prove Cantor's Theorem. The map ¢: S — P(S) defined by ¢(s) = {s}
is an injection from S to P(S) and so |S| < |P(S)|. To complete the proof we
must show that if no injective map f:.S — P(S) can be surjective. To this end,
let

X={seS|s¢ f(s)} €P(S)

We claim that X is not in im(f). For suppose that X = f(x) for some z € S.
Then if z € X, we have by the definition of X that z ¢ X. On the other hand, if
x ¢ X, we have again by the definition of X that x € X. This contradiction
implies that X ¢ im(f) and so f is not surjective. O

Cardinal Arithmetic

Now let us define addition, multiplication and exponentiation of cardinal
numbers. If S and T are sets, the cartesian product S x T is the set of all
ordered pairs

SxT={(s,t)|s€8,teT}

The set of all functions from 7" to S is denoted by S”.

Definition Let k and )\ denote cardinal numbers. Let S and T be any sets for
which |S| = k and |T| = A

1) The sum k + A is the cardinal number of S UT.

2) The product k) is the cardinal number of S x T.

3) The power k’ is the cardinal number of ST. O

We will not go into the details of why these definitions make sense. (For
instance, they seem to depend on the sets S and 7', but in fact they do not.) It
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 0.12 Let xk, A and p be cardinal numbers. Then the following
properties hold:
1) (Associativity)

K+ A+p)=(k+A)+pand s(Ap) = (KA)p
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2) (Commutativity)
K+A=A+kKand kKA = Ak
3) (Distributivity)
KA+ 1) = KA+ Kkp

4) (Properties of Exponents)

a) H)\+/.z — HAKJL
b) (Iﬁ)‘)“ — K)‘“

¢ (kA =rtArO

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 0.13 Let k and )\ be cardinal numbers, at least one of which is
infinite. Then

K+ A=k =max{k,\} O

It is not hard to see that there is a one-to-one correspondence between the power
set P(S) of a set S and the set of all functions from S to {0, 1}. This leads to
the following theorem.

Theorem 0.14 For any cardinal
1) If|S| = k then |P(S)| = 2%
2) k<20

We have already observed that |N| = N;. It can be shown that X is the smallest
infinite cardinal, that is,

Kk < Ny = k is a natural number

It can also be shown that the set R of real numbers is in one-to-one
correspondence with the power set P(N) of the natural numbers. Therefore,

|R| = 2%

The set of all points on the real line is sometimes called the continuum and so
2% is sometimes called the power of the continuum and denoted by c.

Theorem 0.13 shows that cardinal addition and multiplication have a kind of
“absorption” quality, which makes it hard to produce larger cardinals from
smaller ones. The next theorem demonstrates this more dramatically.

Theorem 0.15
1) Addition applied a countable number of times or multiplication applied a
finite number of times to the cardinal number X, does not yield anything
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more than N. Specifically, for any nonzeron € N, we have
N0~N0:NoandN6L:Ng

2) Addition and multiplication, applied a countable number of times to the
cardinal number 2% does not yield more than 2. Specifically, we have

R - 2% = 2% gpg (2%)R0 = 2N |
Using this theorem, we can establish other relationships, such as
Mo (N[))No < (QNO)NO — 2%
which, by the Schréder—Bernstein theorem, implies that
(NO)NU — 9%

We mention that the problem of evaluating x* in general is a very difficult one
and would take us far beyond the scope of this book.

We will have use for the following reasonable—sounding result, whose proof is
omitted.

Theorem 0.16 Let { Ay, | k € K} be a collection of sets, indexed by the set K,
with |K| = k. If |Ax| < A forall k € K then

U

keK

< Ak O

Let us conclude by describing the cardinality of some famous sets.

Theorem 0.17
1) The following sets have cardinality N.
a) The rational numbers Q.
b) The set of all finite subsets of N.
¢) The union of a countable number of countable sets.
d) The set Z" of all ordered n-tuples of integers.
2) The following sets have cardinality 2.
a) The set of all points in R".
b) The set of all infinite sequences of natural numbers.
¢) The set of all infinite sequences of real numbers.
d) The set of all finite subsets of R.
e) The set of all irrational numbers. [1

Part 2 Algebraic Structures

We now turn to a discussion of some of the many algebraic structures that play a
role in the study of linear algebra.
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Groups

Definition A group is a nonempty set G, together with a binary operation
denoted by *, that satisfies the following properties:
1) (Associativity) Forall a,b,c € G

(axb)xc = ax(bxc)

2) (Identity) There exists an element e € G for which

exaq = axe = a

foralla € G.
3) (Inverses) For each a € G, there is an element a™' € G for which

axa ' =a txa=c¢c |

Definition 4 group G is abelian, or commutative, if’
axb = bxa

for all a,b € G. When a group is abelian, it is customary to denote the
operation * by +, thus writing axb as a + b. It is also customary to refer to the
identity as the zero element and to denote the inverse a~' by —a, referred to as
the negative of a. [

Example 0.7 The set F of all bijective functions from a set .S to S is a group
under composition of functions. However, in general, it is not abelian. [

Example 0.8 The set M,, ,,(F') is an abelian group under addition of matrices.
The identity is the zero matrix 0,,, of size m x n. The set M, (F) is not a
group under multiplication of matrices, since not all matrices have multiplicative
inverses. However, the set of invertible matrices of size n X n is a (nonabelian)
group under multiplication. (]

A group G is finite if it contains only a finite number of elements. The
cardinality of a finite group G is called its order and is denoted by o(G) or
simply |G|. Thus, for example, Z, = {0,1,...,n — 1} is a finite group under
addition modulo n, but M,, ,(R) is not finite.

Definition 4 subgroup of a group G is a nonempty subset S of G that is a
group in its own right, using the same operations as defined on G. ]

Rings

Definition A ring is a nonempty set R, together with two binary operations,
called addition (denoted by + ) and multiplication (denoted by juxtaposition),
for which the following hold:

1) R is an abelian group under addition
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2) (Associativity) For all a,b,c € R,
(ab)e = a(be)
3) (Distributivity) For all a,b,c € R,
(a+b)c=ac+bcandc(a+b)=ca+cd

A ring R is said to be commutative if ab = ba for all a,b € R. If a ring R
contains an element e with the property that

ae =ea=a

for all a € R, we say that R is a ring with identity. The identity e is usually
denoted by 1. O

Example 0.9 The set Z, = {0,1,... ,n—1} is a commutative ring under
addition and multiplication modulo n

a®b=(a+b)modn, a©®b=abmodn
The element 1 € Z,, is the identity. [J

Example 0.10 The set E of even integers is a commutative ring under the usual
operations on Z, but it has no identity. [

Example 0.11 The set M,,(F') is a noncommutative ring under matrix addition
and multiplication. The identity matrix I,, is the identity for M, (F"). O

Example 0.12 Let F' be a field. The set F[z] of all polynomials in a single
variable x, with coefficients in F', is a commutative ring, under the usual
operations of polynomial addition and multiplication. What is the identity for
F[z]? Similarly, the set F[zi,...,2,] of polynomials in n variables is a
commutative ring under the usual addition and multiplication of polynomials. (]

Definition A subring of a ring R is a subset S of R that is a ring in its own
right, using the same operations as defined on R and having the same
multiplicative identity as R. O

The condition that a subring S have the same multiplicative identity as R is
required. For example, the set S of all 2 x 2 matrices of the form

a 0
oo
for a € F'is a ring under addition and multiplication of matrices (isomorphic to
F). The multiplicative identity in S’ is the matrix A;, which is not the identity I,

of Mo (F'). Hence, S is a ring under the same operations as My o(F) but it is
not a subring of Mo »(F).
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Applying the definition is not generally the easiest way to show that a subset of
aring is a subring. The following characterization is usually easier to apply.

Theorem 0.18 4 nonempty subset S of a ring R is a subring if and only if
1) The multiplicative identity 1 of R is in S
2) S is closed under subtraction, that is

a,beS=a—-bes
3) S is closed under multiplication, that is,

a,beS=abes |

Ideals
Rings have another important substructure besides subrings.

Definition Let R be a ring. A nonempty subset T of R is called an ideal if
1) T is a subgroup of the abelian group R, that is, I is closed under
subtraction

a,bel=a—-bel

2) T is closed under multiplication by any ring element, that is,

acZl,reR=>arc€Zlandracl O
Note that if an ideal Z contains the unit element 1 then Z = R.
Example 0.13 Let p(z) be a polynomial in F'[z]. The set of all multiples of
p(z)

(p(x)) = {q(z)p(z) | q(x) € Flx]}

is an ideal in F[x], called the ideal generated by p(x). O

Definition Let S be a subset of a ring R with identity. The set
(SY={rsi+--+rus,|ri€R,5,€S,n>1}

of all finite linear combinations of elements of S, with coefficients in R, is an
ideal in R, called the ideal generated by S. It is the smallest (in the sense of set
inclusion) ideal of R containing S. If S = {s1,... , S} is a finite set, we write

(815 y8n)y ={r1s1+---+rus, | ri € R,s; €S} O

Note that in the previous definition, we require that R have an identity. This is
to ensure that S C (5).

Theorem 0.19 Let R be a ring.
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1) The intersection of any collection {Z}; | k € K} of ideals is an ideal.

2) If1y C I, C --- is an ascending sequence of ideals, each one contained in
the next, then the union \ /Iy, is also an ideal.

3) More generally, if

C={Liliel}

is a chain of ideals in R then the union J = Uie ;Li is also an ideal in R.
Proof. To prove 1), let 7 = (\Z;. Then if a,b € J, we have a,b € Z; for all
ke K.Hence,a—b e 7, forallk € K andsoa —b € J. Hence, J is closed
under subtraction. Also, if 7 € R then ra € Zj, forall k € K and so ra € J. Of
course, part 2) is a special case of part 3). To prove 3), if a,b € J then a € 7;
and b € Z; for some i, j € I. Since one of Z; and Z; is contained in the other, we
may assume that Z; C Z;. It follows that a,b € 7y andsoa — b € Z; C J and if
r € Rthenra € Z; C J. Thus J is an ideal. [

Note that in general, the union of ideals is not an ideal. However, as we have
just proved, the union of any chain of ideals is an ideal.

Quotient Rings and Maximal Ideals

Let S be a subset of a commutative ring R with identity. Let = be the binary
relation on R defined by

a=b & a-besS

It is easy to see that = is an equivalence relation. When a = b, we say that a
and b are congruent modulo S. The term “mod” is used as a colloquialism for
modulo and a = b is often written

a=bmodS

As shorthand, we write a = b.

To see what the equivalence classes look like, observe that
a| ={reR|r=a}

={reR|r—acS}
={reR|r=a+ sforsomes e S}
={a+s|seS}
=a+S

The set

a+S={a+s|seS}

is called a coset of S in R. The element a is called a coset representative for
a+S.
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Thus, the equivalence classes for congruence mod S are the cosets a + .S of .S
in R. The set of all cosets is denoted by

R
—={a+S|aeR}
S
This is read “R mod S.” We would like to place a ring structure on R/S.

Indeed, if S is a subgroup of the abelian group R then R/S is easily seen to be
an abelian group as well under coset addition defined by

(a+S)+(b+S)=(a+bd)+ S
In order for the product
(a+S)b+S)=ab+ S
to be well defined we must have
b+S=bV+S=ab+S=ab+S
or, equivalently,
b—beS=alb-V)es
But b — b’ may be any element of S and a may be any element of R and so this

condition implies that S must be an ideal. Conversely, if S is an ideal then coset
multiplication is well defined.

Theorem 0.20 Let R be a commutative ring with identity. Then the quotient
R/T is a ring under coset addition and multiplication if and only if Z is an ideal
of R. In this case, R/Z is called the quotient ring of R modulo Z, where
addition and multiplication are defined by

(a+8S)+b+S)=(a+bd)+ S O
(a+S)b+S)=ab+ S

Definition An ideal T in a ring R is a maximal ideal if T # R and if whenever
J is an ideal satisfying T C J C R then either 7 =7 or J = R. O

Here is one reason why maximal ideals are important.

Theorem 0.21 Let R be a commutative ring with identity. Then the quotient
ring R/7Z is a field if and only if Z is a maximal ideal.

Proof. First, note that for any ideal Z of R, the ideals of R/Z are precisely the
quotients 7 /Z where J is an ideal for which Z C J C R. It is clear that 7 /T
is an ideal of R/Z. Conversely, if K’ is an ideal of R/Z then let

K={reR|r+ZeK'}

It is easy to see that /C is an ideal of R for whichZ C K C R.



22 Advanced Linear Algebra

Next, observe that a commutative ring S with identity is a field if and only if S
has no nonzero proper ideals. For if S is a field and Z is an ideal of S
containing a nonzero element r then 1 = 717 € Z and so Z = S. Conversely, if
S has no nonzero proper ideals and 0 # s € S then the ideal (s) must be S and
so there is an r € S for which rs = 1. Hence, S is a field.

Putting these two facts together proves the theorem. [J
The following result says that maximal ideals always exist.

Theorem 0.22 Any commutative ring R with identity contains a maximal ideal.
Proof. Since R is not the zero ring, the ideal {0} is a proper ideal of R. Hence,
the set S of all proper ideals of R is nonempty. If

C={Zi|iel}

is a chain of proper ideals in R then the union J = |J;.;Z; is also an ideal.
Furthermore, if 7 = R is not proper, then 1 € 7 and so 1 € Z;, for some i € I,
which implies that Z; = R is not proper. Hence, J € S. Thus, any chain in S
has an upper bound in S and so Zorn's lemma implies that S has a maximal
element. This shows that R has a maximal ideal. [J

Integral Domains

Definition Let R be a ring. A nonzero element r € R is called a zero divisor if
there exists a nonzero s € R for which rs =0. A commutative ring R with
identity is called an integral domain if it contains no zero divisors. O

Example 0.14 If n is not a prime number then the ring Z,, has zero divisors and
so is not an integral domain. To see this, observe that if n is not prime then
n = ab in Z, where a,b > 2. But in Z,,, we have

a®b=abmodn =20

and so a and b are both zero divisors. As we will see later, if n is a prime then
Z,, is a field (which is an integral domain, of course). [

Example 0.15 The ring F'[z] is an integral domain, since p(z)q(z) = 0 implies
that p(z) = 0 org(z) = 0.0

If R is a ring and rz = ry where r,x,y € R then we cannot in general cancel
the r's and conclude that x = y. For instance, in Z,, we have 2-3 =2 -1, but
canceling the 2's gives 3 = 1. However, it is precisely the integral domains in
which we can cancel. The simple proof is left to the reader.

Theorem 0.23 Let R be a commutative ring with identity. Then R is an integral
domain if and only if the cancellation law
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re=ry,rZ0=x=y
holds. O

The Field of Quotients of an Integral Domain

Any integral domain R can be embedded in a field. The quotient field (or field
of quotients) of R is a field that is constructed from R just as the field of
rational numbers is constructed from the ring of integers. In particular, we set

R™ ={(p,q) | p,q € R,q # 0}

Thinking of (p, ¢) as the “fraction” p/q we define addition and multiplication of
fractions in the same way as for rational numbers

(p,q) + (r,8) = (ps +qr,qs)
and
(p,q) - (r,5) = (pr,qs)

It is customary to write (p, ¢) in the form p/q. Note that if R has zero divisors,
then these definitions do not make sense, because gs may be 0 even if ¢ and s
are not. This is why we require that R be an integral domain.

Principal Ideal Domains

Definition Let R be a ring with identity and let a € R. The principal ideal
generated by a is the ideal

(a) ={ra|re€ R}

An integral domain R in which every ideal is a principal ideal is called a
principal ideal domain. [

Theorem 0.24 The integers form a principal ideal domain. In fact, any ideal T
in 7, is generated by the smallest positive integer a that is contained in T. [

Theorem 0.25 The ring F|x] is a principal ideal domain. In fact, any ideal T is
generated by the unique monic polynomial of smallest degree contained in T.
Moreover, for polynomials py(x), ... , p,(z),

(P1(@), - s pal2)) = (ged{pr(2), ..., pa(@)})

Proof. Let Z be an ideal in F'[z] and let m(z) be a monic polynomial of
smallest degree in Z. First, we observe that there is only one such polynomial in
Z. Forif n(x) € Z is monic and deg(n(z)) = deg(m(z)) then

b(z) =m(z) —n(z) €T

and since deg(b(x)) < deg(m(x)), we must have b(z)=0 and so
n(z) = m(x).
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We show that Z = (m(z)). Since m(z) € Z, we have (m(z)) C Z. To establish
the reverse inclusion, if p(z) € Z then dividing p(z) by m(z) gives

p(x) = q(x)m(z) + r(z)
where r(z) = 0 or 0 < deg r(x) < deg m(z). But since Z is an ideal,
r(z) = p(z) —q(z)m(x) € T
and so 0 < degr(z) < deg m(x) is impossible. Hence, (x) = 0 and
p(x) = q(x)m(x) € (m(x))
This shows that Z C (m(x)) and so Z = (m(x)).

To prove the second statement, let Z = (p;(z),... , p.(z)). Then, by what we
have just shown,

I = (p(x),...,palx)) = (m(x))

where m(x) is the unique monic polynomial m(z) in Z of smallest degree. In
particular, since p;(z) € (m(x)), we have m(z) | p;(z) for each i =1,... ,n.
In other words, m(z) is a common divisor of the p;(x)'s.

Moreover, if ¢(x) | p;(z) for all i, then p;(x) € (g(x)) for all ¢, which implies
that

m(z) € (m(z)) = (p1(2), ., pa(@)) C (q(2))

and so ¢(z) | m(x). This shows that m(z) is the greatest common divisor of the
pi(x)'s and completes the proof. O

Example 0.16 The ring R = F'[z, y] of polynomials in two variables = and y is
not a principal ideal domain. To see this, observe that the set Z of all
polynomials with zero constant term is an ideal in R. Now, suppose that 7 is the
principal ideal Z = (p(x,y)). Since =,y € Z, there exist polynomials a(x,y)
and b(z, y) for which

r = a(z,y)p(z,y) andy = b(x,y)p(z,y) (0.1)

But p(z,y) cannot be a constant for then we would have Z = R. Hence,
deg(p(z,y)) > 1 and so a(z,y) and b(x,y) must both be constants, which
implies that (0.1) cannot hold. O

Theorem 0.26 Any principal ideal domain R satisfies the ascending chain
condition, that is, R cannot have a strictly increasing sequence of ideals
LicC---

where each ideal is properly contained in the next one.
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Proof. Suppose to the contrary that there is such an increasing sequence of
ideals. Consider the ideal
U=z

which must have the form U = (a) for some a € U. Since a € Z;, for some k,
we have I, = Z; for all j > k, contradicting the fact that the inclusions are
proper. I

Prime and Irreducible Elements

We can define the notion of a prime element in any integral domain. For
r,s € R, we say that r divides s (written r | s) if there exists an « € R for
which s = zr.

Definition Let R be an integral domain.

1) An invertible element of R is called a unit. Thus, v € R is a unit if uv =1
Jfor some v € R.

2) Two elements a,b € R are said to be associates if there exists a unit u for
which a = ub.

3) A nonzero nonunit p € R is said to be prime if

plab=plaorp|d

4) A nonzero nonunit r € R is said to be irreducible if
r = ab = a orb is a unit O

Note that if p is prime or irreducible then so is up for any unit u.

Theorem 0.27 Let R be a ring.

1) Anelement u € R is a unit if and only if (u) = R.

2) rand s are associates if and only if (r) = (s).

3) rdivides s if and only if (s) C (r).

4) r properly divides s, that is, s = xr where x is not a unit, if and only if
(s) C (r).O

In the case of the integers, an integer is prime if and only if it is irreducible. In
any integral domain, prime elements are irreducible, but the converse need not

hold. (In the ring Z[v/—5] = {a+b\/—5]a,b € Z} the prime element 2
divides the product (14 +/—5)(1 —+/—5) =06 but does not divide either
factor.)

However, in principal ideal domains, the two concepts are equivalent.
Theorem 0.28 Let R be a principal ideal domain.

1) Anr € Ris irreducible if and only if the ideal (r) is maximal.
2) An element in R is prime if and only if it is irreducible.
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3) The elements a,b € R are relatively prime, that is, have no common
nonunit factors if and only if there exist r, s € R for which

ra+sb=1

Proof. To prove 1), suppose that r is irreducible and that (r) C (a) C R. Then
r € {(a) and so r = za for some = € R. The irreducibility of  implies that a or
x is a unit. If ¢ is a unit then (a) = R and if = is a unit then {(a) = (za) = (r).
This shows that (r) is maximal. (We have (r) # R, since r is not a unit.)
Conversely, suppose that r is not irreducible, that is, r = ab where neither a nor
b is a unit. Then (r) C (a) C R. But if (a) = (r) then r and a are associates,
which implies that b is a unit. Hence (r) # (a). Also, if (a) = R then a must be
a unit. So we conclude that (r) is not maximal, as desired.

To prove 2), assume first that p is prime and p = ab. Then p | a or p | b. We
may assume that p | a. Therefore, a = xp = xab. Canceling a's gives 1 = xb
and so b is a unit. Hence, p is irreducible. (Note that this argument applies in
any integral domain.)

Conversely, suppose that r is irreducible and let r | ab. We wish to prove that
r | aorr|b. The ideal (r) is maximal and so (r,a) = (r) or (r,a) = R. In the
former case, r | a and we are done. In the latter case, we have

1=za+yr
for some z,y € R. Thus,
b= xab+ yrd

and since r divides both terms on the right, we have r | b.

To prove 3), it is clear that if ra 4+ sb = 1 then a and b are relatively prime. For
the converse, consider the ideal (a, b) which must be principal, say (a,b) = ().
Then z | @ and z | b and so x must be a unit, which implies that (a,b) = R.
Hence, there exists r, s € R for which ra + sb = 1. [0

Unique Factorization Domains

Definition An integral domain R is said to be a unique factorization domain

if it has the following factorization properties:

1) Every nonzero nonunit element r € R can be written as a product of a finite
number of irreducible elements r = py- - -py,.

2) The factorization into irreducible elements is unique in the sense that if
r=p---p, and r = qy---qy, are two such factorizations then m = n and
after a suitable reindexing of the factors, p; and q; are associates. O

Unique factorization is clearly a desirable property. Fortunately, principal ideal
domains have this property.
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Theorem 0.29 Every principal ideal domain R is a unique factorization
domain.

Proof. Let » € R be a nonzero nonunit. If r is irreducible then we are done. If
not then r = ry7ry, where neither factor is a unit. If r; and r9 are irreducible, we
are done. If not, suppose that ry is not irreducible. Then ry = r3ry, where
neither r3 nor 74 is a unit. Continuing in this way, we obtain a factorization of
the form (after renumbering if necessary)

r=r1re = r1(r3ry) = (rir3)(rsre) = (rirsrs)(rerg) = -+

Each step is a factorization of r into a product of nonunits. However, this
process must stop after a finite number of steps, for otherwise it will produce an
infinite sequence s1, S2, ... of nonunits of R for which s;.; properly divides s;.
But this gives the ascending chain of ideals

(s1) C (s2) C (83) C (84) C -+~

where the inclusions are proper. But this contradicts the fact that a principal
ideal domain satisfies the ascending chain condition. Thus, we conclude that
every nonzero nonunit has a factorization into irreducible elements.

As to uniqueness, if r = p;---p, and r = ¢;---q,, are two such factorizations
then because R is an integral domain, we may equate them and cancel like
factors, so let us assume this has been done. Thus, p; # g; for all 4, j. If there are
no factors on either side, we are done. If exactly one side has no factors left then
we have expressed 1 as a product of irreducible elements, which is not possible
since irreducible elements are nonunits.

Suppose that both sides have factors left, that is,
pl. . .p7l — ql. . .qm

where p; # ¢;. Then g, | p1- - -p,, which implies that g, | p; for some i. We can
assume by reindexing if necessary that p, = a,q,,. Since p, is irreducible a,
must be a unit. Replacing p, by a,q,, and canceling g,, gives

AnP1-*Pn—1 = 41" "dm-1

This process can be repeated until we run out of ¢'s or p's. If we run out of ¢'s
first then we have an equation of the form up;---p;, = 1 where w is a unit, which
is not possible since the p;'s are not units. By the same reasoning, we cannot run
out of ¢'s first and so n =m and the p's and ¢'s can be paired off as
associates. (]

Fields

For the record, let us give the definition of a field (a concept that we have been
using).
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Definition A field is a set F', containing at least two elements, together with two

binary operations, called addition (denoted by + ) and multiplication

(denoted by juxtaposition), for which the following hold:

1) F'is an abelian group under addition.

2) The set F* of all nonzero elements in F' is an abelian group under
multiplication.

3) (Distributivity) For all a,b,c € F,

(a+b)c =ac+bcandc(a+b) =ca+ch O

We require that F' have at least two elements to avoid the pathological case, in
which 0 = 1.

Example 0.17 The sets Q, R and C, of all rational, real and complex numbers,
respectively, are fields, under the usual operations of addition and multiplication
of numbers. [

Example 0.18 The ring Z,, is a field if and only if n is a prime number. We
have already seen that Z,, is not a field if n is not prime, since a field is also an
integral domain. Now suppose that n = p is a prime.

We have seen that Z, is an integral domain and so it remains to show that every
nonzero element in Z, has a multiplicative inverse. Let 0 # a € Z,. Since
a < p, we know that ¢ and p are relatively prime. It follows that there exist
integers u and v for which

ua +vp=1
Hence,
ua = (1—vp) =1mod p
and so u ® a = 1 in Z,, that is, v is the multiplicative inverse of a. [
The previous example shows that not all fields are infinite sets. In fact, finite

fields play an extremely important role in many areas of abstract and applied
mathematics.

A field F is said to be algebraically closed if every nonconstant polynomial
over F' has a root in F'. This is equivalent to saying that every nonconstant
polynomial splits into linear factors over F'. For example, the complex field C is
algebraically closed but the real field R is not. We mention without proof that
every field I is contained in an algebraically closed field F, called the
algebraic closure of F'.

The Characteristic of a Ring

Let R be a ring with identity. If n is a positive integer then by n - r, we simply
mean
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n-r=r+--+r
N ——
n terms

Now, it may happen that there is a positive integer n for which

n-1=0
For instance, in Z,, we have n-1=mn = 0. On the other hand, in Z, the
equation n - 1 = 0 implies n = 0 and so no such positive integer exists.
Notice that, in any finite ring, there must exist such a positive integer n, since
the infinite sequence of numbers

1-1,2-1,3-1,...

cannot be distinctand soi -1 = j- 1 for some i < j, whence (j —¢)-1=0.
Definition Let R be a ring with identity. The smallest positive integer c for
which c - 1 = 0 is called the characteristic of R. If no such number c exists, we
say that R has characteristic 0. The characteristic of R is denoted by
char(R). O
If char(R) = c then for any r € R, we have

cor=r4+--+r :(\1+~~~+1)T:0~7’:0
c terms c terms

Theorem 0.30 Any finite ring has nonzero characteristic. Any finite field has
prime characteristic.

Proof. We have already seen that a finite ring has nonzero characteristic. Let F’
be a finite field and suppose that char(F) = ¢ > 0. If ¢ = pq, where p,q < ¢
then pg - 1 = 0. Hence, (p-1)(¢- 1) = 0, implying that p-1 =0org-1=0.In
either case, we have a contradiction to the fact that c is the smallest positive
integer such that ¢ - 1 = 0. Hence, ¢ must be prime. O

Notice that in any field F' of characteristic 2, we have 2a =0 for all a € F.
Thus, in F

a=—aforalla € F

This property takes a bit of getting used to and makes fields of characteristic 2
quite exceptional. (As it happens, there are many important uses for fields of
characteristic 2.)

Algebras

The final algebraic structure of which we will have use is a combination of a
vector space and a ring. (We have not yet officially defined vector spaces, but
we will do so before needing the following definition, which is placed here for
easy reference.)
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Definition An algebra A over a field F' is a nonempty set A, together with
three operations, called addition (denoted by + ), multiplication (denoted by
Jjuxtaposition) and scalar multiplication (also denoted by juxtaposition), for
which the following properties hold:

1) A is avector space over I under addition and scalar multiplication.

2)  Ais aring under addition and multiplication.

3) Ifr € Fanda,be Athen

r(ab) = (ra)b = a(rd) O
Thus, an algebra is a vector space in which we can take the product of vectors,

or a ring in which we can multiply each element by a scalar (subject, of course,
to additional requirements as given in the definition).
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Chapter 1
Vector Spaces

Vector Spaces

Let us begin with the definition of one of our principal objects of study.

Definition Let F' be a field, whose elements are referred to as scalars. A vector
space over I is a nonempty set V, whose elements are referred to as vectors,
together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) of vectors in V a vector u+v in V. The
second operation, called scalar multiplication and denoted by juxtaposition,
assigns to each pair (r,u) € F'xV a vector ru in V. Furthermore, the
following properties must be satisfied:

1) (Associativity of addition) For all vectors u,v,w € V

u+ (v+w)=(ut+v)+w
2) (Commutativity of addition) For all vectors u,v € V
Uu+v=v+u
3) (Existence of a zero) There is a vector 0 € V with the property that
O+u=u+0=u

Jor all vectors w € V.
4) (Existence of additive inverses) For each vector u € V, there is a vector
in'V, denoted by —u, with the property that

u+(—u)=(-u)+u=0
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5) (Properties of scalar multiplication) For all scalars a,b € F and for all
vectors u,v € V

a(u 4+ v) = au + av O
(a+b)u =au+ bdbu
(ab)u = a(bu)
lu=wu

Note that the first four properties in the definition of vector space can be
summarized by saying that V' is an abelian group under addition.

Any expression of the form
a1v1 + -+ apvy,

where a; € ' and v; € V for all 4, is called a linear combination of the vectors
v1,...,0,. If at least one of the scalars a; is nonzero, then the linear combination
is nontrivial.

Example 1.1

1) Let F be a field. The set F'¥' of all functions from F to F is a vector space
over F', under the operations of ordinary addition and scalar multiplication
of functions

(f+9)(x) = fz) + 9(2)
and
(af)(z) = a(f(z))

2) The set M,, ,(F) of all m x n matrices with entries in a field F' is a vector
space over F, under the operations of matrix addition and scalar
multiplication.

3) The set I of all ordered n-tuples, whose components lie in a field F, is a
vector space over F, with addition and scalar multiplication defined
componentwise

(a1, ... ya,) + (b1,... ,by) = (a1 + b1,... ,a, + by)
and
clat, ... ,an) = (cay,... ,cay)

When convenient, we will also write the elements of /™™ in column form.
When Fis a finite field F; with g elements, we write V' (n, q) for F}'.

4) Many sequence spaces are vector spaces. The set Seq(F') of all infinite
sequences with members from a field F' is a vector space under
componentwise operations

(S'VL) + (tn) = (Sn + tn)
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and
a(sn) = (asy)

In a similar way, the set ¢y of all sequences of complex numbers that
converge to 0 is a vector space, as is the set /*° of all bounded complex
sequences. Also, if p is a positive integer then the set /P of all complex
sequences (s,,) for which

o0
Z [sn|P < o0
n=1

is a vector space under componentwise operations. To see that addition is a
binary operation on /7, one verifies Minkowski's inequality

00 1/p . 1/p . 1/p
(Srer) < (Sr) s (S
n=1 n=1 n=1

which we will not do here. O

Subspaces

Most algebraic structures contain substructures, and vector spaces are no
exception.

Definition 4 subspace of a vector space V' is a subset S of V' that is a vector
space in its own right under the operations obtained by restricting the
operations of V to §. O

Since many of the properties of addition and scalar multiplication hold a fortiori
in a nonempty subset .S, we can establish that S is a subspace merely by
checking that S is closed under the operations of V.

Theorem 1.1 A nonempty subset S of a vector space V is a subspace of V if
and only if' S is closed under addition and scalar multiplication or, equivalently,
S is closed under linear combinations, that is

a,be Fu,veS=au+bves ]

Example 1.2 Consider the vector space V' (n,2) of all binary n-tuples, that is,
n-tuples of 0's and 1's. The weight W(v) of a vector v € V' (n, 2) is the number
of nonzero coordinates in v. For instance, W(101010) = 3. Let E,, be the set of
all vectors in V' of even weight. Then E,, is a subspace of V' (n, 2).

To see this, note that
W(u+v) = W(u) + W(v) —2W(unwo)

where u N v is the vector in V' (n, 2) whose ith component is the product of the
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1th components of u and v, that is,
(uNv); =u; v

Hence, if W(u) and W(v) are both even, so is W(u + v). Finally, scalar
multiplication over F} is trivial and so F,, is a subspace of V' (n,2), known as
the even weight subspace of V' (n,2). O

Example 1.3 Any subspace of the vector space V' (n, q) is called a linear code.
Linear codes are among the most important and most studied types of codes,
because their structure allows for efficient encoding and decoding of
information. O

The Lattice of Subspaces

The set S(V') of all subspaces of a vector space V is partially ordered by set
inclusion. The zero subspace {0} is the smallest element in S(V') and the entire
space V is the largest element.

If S, T € S(V) then S N T is the largest subspace of V' that is contained in both
S and 7. In terms of set inclusion, S N1 is the greatest lower bound of S and
T

SNT = gb{S,T}

Similarly, if {S;|¢ € K} is any collection of subspaces of V then their
intersection is the greatest lower bound of the subspaces

(]S = glb{S; | i € K}
€K

On the other hand, if S, T € S(V) (and F is infinite) then S UT € S(V') if and
only if S CT or T C S. Thus, the union of two subspaces is never a subspace
in any “interesting” case. We also have the following.

Theorem 1.2 A nontrivial vector space V over an infinite field F is not the
union of a finite number of proper subspaces.
Proof. Suppose that V' = 5; U --- U S,,, where we may assume that

S1ZSU---US,
Letw e Sy \ (SeU---US,) and let v ¢ Sy. Consider the infinite set
A={rw+v|reF}

which is the “line” through v, parallel to w. We want to show that each S;
contains at most one vector from the infinite set A, which is contrary to the fact
that V = Sy U--- U S,. This will prove the theorem.
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If rw+ v €Sy for r # 0 then w € Sy implies v € Sy, contrary to assumption.
Next, suppose that riw +v € S; and row+ v € S;, for i > 2, where r; # ro.
Then

Si 3 (rw+v) — (row+v) = (re — r)w
and so w € S;, which is also contrary to assumption. [
To determine the smallest subspace of V' containing the subspaces S and 7', we
make the following definition.

Definition Let S and T be subspaces of V. The sum S + T is defined by
S+T={ut+v|ueS,veT}

More generally, the sum of any collection {S; | i € K} of subspaces is the set
of all finite sums of vectors from the union | JS;

2512{81+"'+3"|5J6USZ} o

€K €K

It is not hard to show that the sum of any collection of subspaces of V' is a
subspace of V and that in terms of set inclusion, the sum is the least upper
bound

S+T =1ub{S,T}
More generally,

> S =lub{S;|ie K}

ieK

If a partially ordered set P has the property that every pair of elements has a
least upper bound and greatest lower bound, then P is called a lattice. If P has
a smallest element and a largest element and has the property that every
collection of elements has a least upper bound and greatest lower bound, then P
is called a complete lattice.

Theorem 1.3 The set S(V') of all subspaces of a vector space V is a complete
lattice under set inclusion, with smallest element {0}, largest element V,

glb{S; |ie K} =[S

ieK
and

lub{S; | i€ K} =S |

€K
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Direct Sums

As we will see, there are many ways to construct new vector spaces from old
ones.

External Direct Sums

Definition Let V1, ..., V,, be vector spaces over a field F. The external direct
sum of V1, ..., V,, denoted by

V=ViH---8YV,
is the vector space V' whose elements are ordered n-tuples
V={(v,...,0) |vi €Vs,i=1,... ,n}
with componentwise operations
(Ury oo ) 4+ (V1,00 0n) = (U + 01,00 up +0p)
and
r(vi, ... ,u) = (rog, ... ,T0,) O

Example 1.4 The vector space F™" is the external direct sum of n copies of F',
that is,
F"=FH--BF

where there are n summands on the right-hand side. O

This construction can be generalized to any collection of vector spaces by
generalizing the idea that an ordered n-tuple (vy,...,v,) is just a function
f:{1,... ,n} = JV; from the index set {1,...,n} to the union of the spaces
with the property that f(i) € V.

Definition Let F = {V; | i € K} be any family of vector spaces over F. The
direct product of F is the vector space

[[vi= {f:KHUvi

icK ieK

f(i)ew}

thought of as a subspace of the vector space of all functions from K to | JV;. O

It will prove more useful to restrict the set of functions to those with finite
support.

Definition Let F = {V;|i € K} be a family of vector spaces over F. The
support of a function f: K — |V is the set

supp(f) = {i € K | f(i) # 0}
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Thus, a function f has finite support if f (i) = 0 for all but a finite number of
i € K. The external direct sum of the family F is the vector space

P vi= {f:K—> Uv

€K €K

f(@) €V, f has finite support}

thought of as a subspace of the vector space of all functions from K to | JV;. O

An important special case occurs when V; =V for all i € K. If we let V&
denote the set of all functions from K to V and (V), denote the set of all
functions in VX that have finite support then

[TV =v" and @™V = (v5),
€K €K

Note that the direct product and the external direct sum are the same for a finite
family of vector spaces.

Internal Direct Sums

An internal version of the direct sum construction is often more relevant.
Definition Let V' be a vector space. We say that V is the (internal) direct sum
of a family F = {S; | i € K} of subspaces of V if every vector v € V can be

written, in a unique way (except for order), as a finite sum of vectors from the
subspaces in F, that is, if for allv € V,

v=ur+--+tu,
Jforu; € S; and furthermore, if
v=w;+ -+ Wy
where w; € S; then m = n and (after reindexing if necessary) w; = u; for all

t=1,...,n.

If'V is the direct sum of F, we write

vV =ps:

€K

and refer to each S; as a direct summand of V. If F = {S1,... , S, } is a finite
SJamily, we write

V=5®& &8,
IfV =S @®T thenT is called a complement of S in V. I
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Note that a sum is direct if and only if whenever u; + ---+w;, = 0 where
ui, € S;; and i # 1, then u;; = 0 for all j, that is, if and only if O has a unique
representation as a sum of vectors from distinct subspaces.

The reader will be asked in a later chapter to show that the concepts of internal
and external direct sum are essentially equivalent (isomorphic). For this reason,
we often use the term “direct sum” without qualification. Once we have
discussed the concept of a basis, the following theorem can be easily proved.

Theorem 1.4 Any subspace of a vector space has a complement, that is, if S is a
subspace of V then there exists a subspace T for whichV =S & T. O

It should be emphasized that a subspace generally has many complements
(although they are isomorphic). The reader can easily find examples of this in
R2. We will have more to say about the existence and uniqueness of
complements later in the book.

The following characterization of direct sums is quite useful.

Theorem 1.5 A vector space V' is the direct sum of a family F = {S; | i € K}
of subspaces if and only if
1) 'V is the sum of the S;

V=>S
€K

2) Foreachie€ K,
0 (308;) =10}
J#i

Proof. Suppose first that V' is the direct sum of F. Then 1) certainly holds and
if

veE SN (ZSJ)

J#i

then v = s; for some s; € S; and

V= sjl + “-+sjn
where s;, € S), and j, # i for all k =1,...,n. Hence, by the uniqueness of
direct sum representations, s; = 0 and so v = 0. Thus, 2) holds.

For the converse, suppose that 1) and 2) hold. We need only verify the
uniqueness condition. If

V=5t s,

and
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v:tk]+"'+tk

m

where s; € S}, and t;, € Sj, then by including additional terms equal to 0 we
may assume that the index sets {ji,...,j,} and {ki,..., k,} are the same set
{i1,...,1,}, that is

v =Sj + -+ 8,
and
V=t 4+t
Thus,
(s, —tiy) + -+ (s, —t;,) =0
Hence, each term s;, —t;, € S;, is a sum of vectors from subspaces other than

S;,, which can happen only if s;, —t;, = 0. Thus, s;, =¢;, for all ¢, and V' is
the direct sum of 7. O

Example 1.5 Any matrix A € M,, can be written in the form
1 1
A=§(A+At)—|—§(A—At):B—|—O (1.1)

where A! is the transpose of A. It is easy to verify that B is symmetric and C'is
skew-symmetric and so (1.1) is a decomposition of A as the sum of a symmetric
matrix and a skew-symmetric matrix.

Since the sets Sym and SkewSym of all symmetric and skew-symmetric
matrices in M,, are subspaces of M,,, we have
M, = Sym + SkewSym

Furthermore, if S + T = S’ 4+ T’, where S and S’ are symmetric and T and T’
are skew-symmetric, then the matrix

U=8-8=17-T

is both symmetric and skew-symmetric. Hence, provided that char(F) # 2, we
musthave U =0andso S = S and T = T"'. Thus,

M,, = Sym @ SkewSym O

Spanning Sets and Linear Independence

A set of vectors spans a vector space if every vector can be written as a linear
combination of some of the vectors in that set. Here is the formal definition.
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Definition 77e¢ subspace spanned (or subspace generated) by a set S of
vectors in'V' is the set of all linear combinations of vectors from S

(S) =span(S) = {riv1+ -+ 1, | € Fou, €V}

When S = {vi,...,v,} is a finite set, we use the notation (vi,...,v,), or
span(vy,...,v,). A set S of vectors in V' is said to span V, or generate V, if
V = span(S), that is, if every vector v € V' can be written in the form

V="101 + -+ U,

for some scalars 11, ... ,r, and vectors vy, ..., v,. O

It is clear that any superset of a spanning set is also a spanning set. Note also
that all vector spaces have spanning sets, since the entire space is a spanning set.

Definition A nonempty set S of vectors in V is linearly independent if for any
Vi, ...,V in S, we have

ro+--+ru,=0=r=---=r,=0

If a set of vectors is not linearly independent, it is said to be linearly
dependent. []

It follows from the definition that any nonempty subset of a linearly
independent set is linearly independent.

Theorem 1.6 Let S be a set of vectors in' V. The following are equivalent:

1) S is linearly independent.

2)  Every vector in span(S) has a unique expression as a linear combination of
the vectors in S.

3) Novector in S is a linear combination of the other vectors in S. [J

The following key theorem relates the notions of spanning set and linear
independence.

Theorem 1.7 Let S be a set of vectors in V. The following are equivalent:

1) S is linearly independent and spans V.

2) For every vector v € V, there is a unique set of vectors vy, ...,v, in S,
along with a unique set of scalars ri,...,r, in F, for which

V=101 + - F TRy,

3) S is a minimal spanning set, that is, S spans V' but any proper subset of S
does not span'V .

4) S is a maximal linearly independent set, that is, S is linearly
independent, but any proper superset of S is not linearly independent.

Proof. We leave it to the reader to show that 1) and 2) are equivalent. Now

suppose 1) holds. Then S is a spanning set. If some proper subset S’ of S also
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spanned V' then any vector in S — .S’ would be a linear combination of the
vectors in S’, contradicting the fact that the vectors in S are linearly
independent. Hence 1) implies 3).

Conversely, if S is a minimal spanning set then it must be linearly independent.
For if not, some vector s € S would be a linear combination of the other vectors
in S and so S — {s} would be a proper spanning subset of S, which is not
possible. Hence 3) implies 1).

Suppose again that 1) holds. If S were not maximal, there would be a vector
v €V — S for which the set S U {v} is linearly independent. But then v is not
in the span of .S, contradicting the fact that S is a spanning set. Hence, S is a
maximal linearly independent set and so 1) implies 4).

Conversely, if S is a maximal linearly independent set then S must span V/, for
if not, we could find a vector v € V' — S that is not a linear combination of the
vectors in S. Hence, S U {v} would be a linearly independent proper superset of
S, which is a contradiction. Thus, 4) implies 1). O

Definition A set of vectors in V' that satisfies any (and hence all) of the
equivalent conditions in Theorem 1.7 is called a basis for V. O

Corollary 1.8 4 finite set S = {v1,...,v,} of vectors in V is a basis for V if
and only if

V=A(u)® & (v) O

Example 1.6 The ith standard vector in F™" is the vector e; that has Os in all
coordinate positions except the ith, where it has a 1. Thus,

er = (1,0,...,0), e =(0,1,...,0) ,..., e,=1(0,...,0,1)

The set {ey, ..., e, } is called the standard basis for F". [J

The proof that every nontrivial vector space has a basis is a classic example of
the use of Zorn's lemma.

Theorem 1.9 Let V' be a nonzero vector space. Let I be a linearly independent
setin'V and let S be a spanning set in 'V containing I. Then there is a basis B
for'V for which I C B C S. In particular,

1)  Any vector space, except the zero space {0}, has a basis.

2)  Any linearly independent set in'V is contained in a basis.

3) Any spanning set in V contains a basis.

Proof. Consider the collection A of all linearly independent subsets of V'
containing I and contained in S. This collection is not empty, since I € A.
Now, if
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is a chain in A then the union
U = U L‘
keK

is linearly independent and satisfies I C U C S, that is, U € A. Hence, every
chain in A has an upper bound in .4 and according to Zorn's lemma, .4 must
contain a maximal element B, which is linearly independent.

Now, B is a basis for the vector space (S) =V, for if any s € S is not a linear
combination of the elements of B then BU {s} C S is linearly independent,
contradicting the maximality of . Hence S C (B) andso V = (S) C (B). O

The reader can now show, using Theorem 1.9, that any subspace of a vector
space has a complement.

The Dimension of a Vector Space

The next result, with its classical elegant proof, says that if a vector space V has
a finite spanning set S then the size of any linearly independent set cannot
exceed the size of S.

Theorem 1.10 Let V' be a vector space and assume that the vectors vy, ..., v,
are linearly independent and the vectors s1, ..., Sy, span' V. Thenn < m.
Proof. First, we list the two sets of vectors: the spanning set followed by the
linearly independent set

S1y+--3SmsV1y...,Up

Then we move the first vector v; to the front of the first list
V1,815 38myV2,...,Up
Since s1,..., S, span V, v is a linear combination of the s;'s. This implies that

we may remove one of the s;'s, which by reindexing if necessary can be si,
from the first list and still have a spanning set

U1y 82y+++5Sm;V2,...,Un

Note that the first set of vectors still spans V' and the second set is still linearly
independent.

Now we repeat the process, moving vo from the second list to the first list
V1,V2,82,...58m;U3,...,Up
As before, the vectors in the first list are linearly dependent, since they spanned

V' before the inclusion of v9. However, since the v;'s are linearly independent,
any nontrivial linear combination of the vectors in the first list that equals 0



Vector Spaces 45

must involve at least one of the s;'s. Hence, we may remove that vector, which
again by reindexing if necessary may be taken to be s, and still have a spanning
set

V1,V2,83, .-+ ,8m;V3,...,Un

Once again, the first set of vectors spans V' and the second set is still linearly
independent.

Now, if m < n, then this process will eventually exhaust the s;'s and lead to the
list

V1,025 -« Umi Um41y-++,Un
where vy, vo, ..., v, span V, which is clearly not possible since v,, is not in the
span of vy, v, ..., v,,. Hence,n < m. O

Corollary 1.11 [f'V has a finite spanning set then any two bases of V' have the
same size. O]

Now let us prove Corollary 1.11 for arbitrary vector spaces.

Theorem 1.12 If'V is a vector space then any two bases for V' have the same
cardinality.

Proof. We may assume that all bases for V' are infinite sets, for if any basis is
finite then V' has a finite spanning set and so Corollary 1.11 applies.

Let B = {b; | i € I} be a basis for V and let C be another basis for V. Then any
vector ¢ € C can be written as a finite linear combination of the vectors in B,
where all of the coefficients are nonzero, say

Cc = ZT‘JL

€U,

But because C is a basis, we must have

Juv.=1

ceC

for if the vectors in C can be expressed as finite linear combinations of the
vectors in a proper subset B’ of B then B’ spans V', which is not the case.

Since |U,| < R for all ¢ € C, Theorem 0.16 implies that
|B] = 1] < No|C| = [C]|

But we may also reverse the roles of 5 and C, to conclude that |B| < |C| and so
|B| = |C| by the Schréder—Bernstein theorem. [

Theorem 1.12 allows us to make the following definition.
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Definition A vector space V is finite-dimensional if it is the zero space {0}, or
if it has a finite basis. All other vector spaces are infinite-dimensional. The
dimension of the zero space is 0 and the dimension of any nonzero vector
space V' is the cardinality of any basis for V. If a vector space V' has a basis of
cardinality x, we say that V' is x-dimensional and write dim(V') = x. O

It is easy to see that if S is a subspace of V' then dim(S) < dim(V). If in
addition, dim(S) = dim(V) < co then S = V.

Theorem 1.13 Let V' be a vector space.
1) IfBis a basis for V and if B = By U By and B; N By = () then
V = (B1) @ (By)

2) Let V.=S&T. If By is a basis for S and By is a basis for T then

ByN By =0 and B = By U By is a basis for V. O
Theorem 1.14 Let S and T be subspaces of a vector space V. Then

dim(S) 4+ dim(T") = dim(S + T) + dim(S N 7T)
In particular, if T is any complement of S in V then
dim(S) + dim(7T") = dim(V)
that is,
dim(S @ T) = dim(S) + dim(7T")

Proof. Suppose that B = {b; | i € I} is a basis for S N T. Extend this to a basis
AUB for S where A = {a;|je J} is disjoint from B. Also, extend B to a
basis BUC for T where C = {¢;, | k € K} is disjoint from B. We claim that
AUBUC is abasis for S + T It is clear that (AU BUC) = S + T.

To see that A U B U C is linearly independent, suppose to the contrary that

oqvy + -+ av, =0

where v; € AUBUC and «; # 0 for all 4. There must be vectors v; in this
expression from both A and C, since A U BB and B U C are linearly independent.
Isolating the terms involving the vectors from A on one side of the equality
shows that there is a nonzero vector in « € (A) N (BUC). Butthenz € SNT
and so = € (A) N (B), which implies that =0, a contradiction. Hence,
A U B UZC is linearly independent and a basis for S + 7.
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Now,

dim(S) +dim(T) = |AU B| + |BUC(]
= |A[+ (B[ +[B] +[C|
=|A|+|B|+[C|+dim(SNT)
= dim(S + T) + dim(SN7T)

as desired. [

It is worth emphasizing that while the equation

dim(S) + dim(7T") = dim(S + T') + dim(S N T)
holds for all vector spaces, we cannot write

dim(S + T') = dim(S) + dim(7") — dim(S N7T")
unless S + T is finite-dimensional.
Ordered Bases and Coordinate Matrices

It will be convenient to consider bases that have an order imposed upon their
members.

Definition Let V' be a vector space of dimension n. An ordered basis for V is
an ordered n-tuple (v, ...,v,) of vectors for which the set {vy,...,v,} is a
basis for V. O

If B=(vy,...,v,) is an ordered basis for V' then for each v € V there is a
unique ordered n-tuple (r1, ..., r,) of scalars for which

V=T101 + o+ TR,

Accordingly, we can define the coordinate map ¢3: V' — F” by

¢(v) =[vls= | : (1.3)

where the column matrix [v]g is known as the coordinate matrix of v with
respect to the ordered basis B. Clearly, knowing [v]s is equivalent to knowing v
(assuming knowledge of ).

Furthermore, it is easy to see that the coordinate map ¢pg is bijective and
preserves the vector space operations, that is,

QSB(TIUI + -+ Tnvn,) = T1¢B(Ul) + -+ Tn‘bB(”n)

or equivalently
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[riv1 4+ -+ 1) = ri{vi]g + -+ rofvns

Functions from one vector space to another that preserve the vector space
operations are called /inear transformations and form the objects of study in the
next chapter.

The Row and Column Spaces of a Matrix

Let A be an m x n matrix over F'. The rows of A span a subspace of F" known
as the row space of A and the columns of A span a subspace of F'" known as
the column space of A. The dimensions of these spaces are called the row rank
and column rank, respectively. We denote the row space and row rank by
rs(A) and rrk(A) and the column space and column rank by cs(A) and crk(A).

It is a remarkable and useful fact that the row rank of a matrix is always equal to
its column rank, despite the fact that if m # n, the row space and column space
are not even in the same vector space!

Our proof of this fact hinges upon the following simple observation about
matrices.

Lemma 1.15 Let A be an m x n matrix. Then elementary column operations do
not affect the row rank of A. Similarly, elementary row operations do not affect
the column rank of A.

Proof. The second statement follows from the first by taking transposes. As to
the first, the row space of A is

rs(A) = (e14,...,e,A)

where e; are the standard basis vectors in F™. Performing an elementary
column operation on A is equivalent to multiplying A on the right by an
elementary matrix F. Hence the row space of AE is

1s(AE) = (e1AE, ..., e, AFE)
and since F is invertible,
r(A) = dim(rs(A)) = dim(rs(AE)) = rr(AE)
as desired. O

Theorem 1.16 If A € M,,,, then trk(A) = ctk(A). This number is called the
rank of A and is denoted by tk(A).

Proof. According to the previous lemma, we may reduce A to reduced column
echelon form without affecting the row rank. But this reduction does not affect
the column rank either. Then we may further reduce A to reduced row echelon
form without affecting either rank. The resulting matrix M has the same row
and column ranks as A. But M is a matrix with 1's followed by 0's on the main
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diagonal (entries M 1, Ms2,...) and 0's elsewhere. Hence,
rk(A) = k(M) = crk(M) = crk(A)
as desired. (I

The Complexification of a Real Vector Space

If W is a complex vector space (that is, a vector space over C), then we can
think of W as a real vector space simply by restricting all scalars to the field R.
Let us denote this real vector space by Wr and call it the real version of 1.

On the other hand, to each real vector space V, we can associate a complex
vector space VC. This “complexification” process will play a useful role when
we discuss the structure of linear operators on a real vector space. (Throughout
our discussion V" will denote a real vector space.)

Definition If V is a real vector space then the set VC =V x V of ordered
pairs, with componentwise addition
(u,v) + (2,9) = (u+ 2,0+ y)
and scalar multiplication over C defined by
(a + bi)(u,v) = (au — bv, av + bu)

Jor a,b € R is a complex vector space, called the complexification of V. O
It is convenient to introduce a notation for vectors in V' that resembles
complex numbers. In particular, we denote (u,v) € VC by u + vi and so

VE={u+vi|uveV}
Addition now looks like ordinary addition of complex numbers

(utvi)+ (z+yi) = (u+x)+ (v+y)i
and scalar multiplication looks like ordinary multiplication of complex numbers
(a+ bi)(u + vi) = (au — bv) + (av + bu)i

Thus, for example, we immediately have for a,b € R

a(u + vi) = au + avi
bi(u + vi) = —bv + bui
(a+ bi)u = au + bui
(a + bi)vi = —bv + avi

The real part of z = v+ vi is w € V' and the imaginary part of z is v € V.
The essence of the fact that z = u + vi € VC is really an ordered pair is that z is
0 if and only if its real and imaginary parts are both 0.
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We can define the complexification map cpx: V' — VC by
cpx(v) = v+ 0i

Let us refer to v + 0¢ as the complexification, or complex version of v € V.
Note that this map is a group homomorphism, that is,

cpx(0) =0+ 0i and cpx(u £ v) = cpx(u) £ cpx(v)
and it is injective
cpx(u) = cpx(v) ©u=wv
Also, it preserves multiplication by real scalars
cpx(au) = au + 0i = a(u + 0i) = acpx(u)
for a € R. However, the complexification map is not surjective, since it gives

only “real” vectors in VC.

The complexification map is an injective linear transformation from the real
vector space V' to the real version (VC)R of the complexification VC, that is, to
the complex vector space VC provided that scalars are restricted to real
numbers. In this way, we see that VVC contains an embedded copy of V.

The Dimension of V'

The vector-space dimensions of V and VC are the same. This should not
necessarily come as a surprise because although V¢ may seem “bigger” than V/,
the field of scalars is also “bigger.”

Theorem 1.17 If B={v;|j€ I} is a basis for V over R then the
complexification of B

cpx(B) = {v; + 0i | v; € B}
is a basis for the vector space V© over C. Hence,
dim(V®) = dim(V)

Proof. To see that cpx(B) spans V' over C, let x + iy € VC. Then z,y € V
and so there exist real numbers a; and b; (some of which may be 0) for which
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J
Z bjUj] )
j=1

J
= > (aju; + bjvji)

J

J
T+ Y= Z a;v; +
j=1

=1
J

(a]- + bﬂ) (Uj + OZ)
j=1

J
To see that cpx(B) is linearly independent, if
J
> (a;+ bji)(v; + 0i) = 0 4 0i

Jj=1

then the previous computations show that

J J
Z a;V; = 0 and Z ijj =0
=1 =1

The independence of B then implies that a; = 0 and b; = 0 for all 7. O

If v € V and B is a basis for V then we may write

n
v = E a;vV;
i=1

for a; € R. Since the coefficients are real, we have

v+ 0i =Y ai(v; + 0i)
i=1

and so the coordinate matrices are equal

[U + Oﬂcpx(B) = [U}B

Exercises

1. LetV be a vector space over F'. Prove that v =0 and r0 = 0 forallv € V
and r € F. Describe the different O's in these equations. Prove that if
rv = 0 then r = 0 or v = 0. Prove that 7v = v implies thatv = 0 or r = 1.
2. Prove Theorem 1.3.
3. a) Find an abelian group V and a field F' for which V' is a vector space
over F in at least two different ways, that is, there are two different
definitions of scalar multiplication making V' a vector space over F'.
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10.
11.

12.

13.

14.
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b) Find a vector space V' over F' and a subset S of V that is (1) a
subspace of V' and (2) a vector space using operations that differ from
those of V.

Suppose that V' is a vector space with basis B={b; |i€ I} and S is a

subspace of V.. Let { By, ..., By} be a partition of B. Then is it true that

k
S =P n(By)
i=1
What if S N (B;) # {0} for all i?
Prove Corollary 1.8.
Let S,T,U € S(V). Show that if U C S then

SN(T+U)=(SNT)+U

This is called the modular law for the lattice S(V/).
For what vector spaces does the distributive law of subspaces

SN(T4+U)=(SNT)+(SNU)

hold?

A vector v = (ay,...,a,) € R" is called strongly positive if a; > 0 for all

1=1,...,n.

a) Suppose that v is strongly positive. Show that any vector that is “close
enough” to v is also strongly positive. (Formulate carefully what “close
enough” should mean.)

b) Prove that if a subspace S of R” contains a strongly positive vector,
then S has a basis of strongly positive vectors.

Let M be an m x n matrix whose rows are linearly independent. Suppose

that the k£ columns ¢, , ..., c;, of M span the column space of M. Let C' be

the matrix obtained from M by deleting all columns except ¢;,...,c;j,.

Show that the rows of C' are also linearly independent.

Prove that the first two statements in Theorem 1.7 are equivalent.

Show that if S is a subspace of a vector space V then dim(S) < dim(V).

Furthermore, if dim(S) = dim(V') < oo then S = V. Give an example to

show that the finiteness is required in the second statement.

Let dim(V') < oo and suppose that V =U & S; = U & S;. What can you

say about the relationship between S; and S5? What can you say if

S1 C 55?

What is the relationship between S @ 7T and T & S? Is the direct sum

operation commutative? Formulate and prove a similar statement

concerning associativity. Is there an “identity” for direct sum? What about

“negatives”?

Let V be a finite-dimensional vector space over an infinite field F'. Prove

that if Sy,...,S) are subspaces of V of equal dimension then there is a

subspace T of V for which V = 5; @ T foralli = 1,..., k. In other words,

T is a common complement of the subspaces .5;.
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16.
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Prove that the vector space C of all continuous functions from R to R is

infinite-dimensional.

Show that Theorem 1.2 need not hold if the base field F' is finite.

Let S be a subspace of V. The set v+ S ={v+s|s € S} is called an

affine subspace of V.

a) Under what conditions is an affine subspace of V' a subspace of V'?

b) Show that any two affine subspaces of the form v + S and w + S are
either equal or disjoint.

If V and W are vector spaces over F' for which |V| = |W| then does it

follow that dim(V) = dim(W)?

Let V' be an n-dimensional real vector space and suppose that S is a

subspace of V' with dim(S) = n — 1. Define an equivalence relation = on

the set V' \ S by v = w if the “line segment”

Lv,w)={rv+(1-rw|0<r<1}

has the property that L(v,w) NS = 0. Prove that = is an equivalence

relation and that it has exactly two equivalence classes.

Let F' be a field. A subfield of F' is a subset K of F' that is a field in its

own right using the same operations as defined on F'.

a) Show that F' is a vector space over any subfield K of F.

b) Suppose that F' is an m-dimensional vector space over a subfield K of
F.IfV is an n-dimensional vector space over F, show that V is also a
vector space over K. What is the dimension of V' as a vector space
over K?

Let F be a finite field of size ¢ and let V' be an n-dimensional vector space

over F. The purpose of this exercise is to show that the number of

subspaces of V' of dimension k is

(") _ (¢"—1)--(¢—1)

k/a  (¢F=1)-(g=D(¢"F=1)-(¢—1)

The expressions (), are called Gaussian coefficients and have properties

similar to those of the binomial coefficients. Let S(n, k) be the number of

k-dimensional subspaces of V.

a) Let N(n,k) be the number of k-tuples of linearly independent vectors
(v1,...,v;) in V. Show that

N(n,k)= ("= 1)(¢" = q)(¢" - ¢")

b) Now, each of the k-tuples in a) can be obtained by first choosing a
subspace of V' of dimension k and then selecting the vectors from this
subspace. Show that for any k-dimensional subspace of V', the number
of k-tuples of independent vectors in this subspace is

(" = 1(¢" = q)--(d" — ")
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22.

23.

24.

25.

26.
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¢) Show that
N(n,k) = S(n,k)(¢" = 1)(¢" — q)---(¢" = ¢*")

How does this complete the proof?
Prove that any subspace S of R" is a closed set or, equivalently, that its set
complement S¢ = R™ \ S is open, that is, for any x € S° there is an open
ball B(s, €) centered at z with radius € > 0 for which B(z,¢) C S°.
Let B={by,...,b,} and C = {c1,...,c,} be bases for a vector space V.
Let 1 < m < n — 1. Show that there is a permutation o of {1,...,n} such
that

b17 vy bm, C(T(nl+l)7 ceey Co.(n)
and
Co(1)s -+ Co(m)> bm+1, ey b,

are both bases for V.

Let dim(V) = n and suppose that Si,..., Sy are subspaces of V with
dim(S;) < m < n. Prove that there is a subspace T of V of dimension
n — m for which T'N S; = {0} for all 4.

What is the dimension of the complexification VC thought of as a real
vector space?

(When is a subspace of a complex vector space a complexification?) Let V
be a real vector space with complexification V' and let U be a subspace of
V€. Prove that there is a subspace S of V' for which

U=S8={s+ti|steS}

if and only if U is closed under complex conjugation y: V¢ — V' defined
by x(u + iv) = u — iv.



Chapter 2
Linear Transformations

Linear Transformations

Loosely speaking, a linear transformation is a function from one vector space to
another that preserves the vector space operations. Let us be more precise.

Definition Let V' and W be vector spaces over a field F'. A function T:V — W
is a linear transformation if’

T(ru+ sv) = rr(u) + s7(v)

Jor all scalars r,s € F and vectors u,v € V. A linear transformation 7:V — V
is called a linear operator on V. The set of all linear transformations from V
to W is denoted by L(V , W) and the set of all linear operators on'V is denoted
by L(V). O

We should mention that some authors use the term linear operator for any linear
transformation from V to W.

Definition The following terms are also employed:

1) homomorphism for linear transformation

2) endomorphism for linear operator

3) monomorphism (or embedding) for injective linear transformation
4) epimorphism for surjective linear transformation

5) isomorphism for bijective linear transformation.

6) automorphism for bijective linear operator. O

Example 2.1
1) The derivative D:V — V is a linear operator on the vector space V' of all
infinitely differentiable functions on R.
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2) The integral operator 7: F[x] — F'[z] defined by

n=[ 1o
is a linear operator on F'[z].

3) Let A be an m X n matrix over F'. The function 74: F" — F™ defined by
T4(v) = Av, where all vectors are written as column vectors, is a linear
transformation from F" to F'". This function is just multiplication by A.

4) The coordinate map ¢:V — F™ of an n-dimensional vector space is a
linear transformation from V to F™. O

The set £L(V, W) is a vector space in its own right and £(1) has the structure of
an algebra, as defined in Chapter 0.

Theorem 2.1

1) The set L(V,W) is a vector space under ordinary addition of functions
and scalar multiplication of functions by elements of F'.

2) Ifoe LWU,V)andT € LIV, W) then the composition To is in L(U,W).

3) Ift e L(V,W) is bijective then > € LW, V).

4) The vector space L(V') is an algebra, where multiplication is composition
of functions. The identity map « € L(V') is the multiplicative identity and
the zero map 0 € L(V') is the additive identity.

Proof. We prove only part 3). Let 7:V — W be a bijective linear

transformation. Then 7=': W — V is a well-defined function and since any two

vectors w; and wy in W have the form w; = 7(v;) and wy = 7(v9), we have

7 Haw; + bwy) = 77 Hat(v1) + b7(v2))
=7 Y7(av; + buy))
= avy + bvy
=ar Y(wy) + b (w)

which shows that 7! is linear. O

One of the easiest ways to define a linear transformation is to give its values on
a basis. The following theorem says that we may assign these values arbitrarily
and obtain a unique linear transformation by linear extension to the entire
domain.

Theorem 2.2 Let V and W be vector spaces and let B = {v; |i € I} be a
basis for V. Then we can define a linear transformation T € L(V, W) b
specifying the values of T(v;) € W arbitrarily for all v; € B and extending the
domain of T to V' using linearity, that is,

T(a1vy + - + ayvy) = a17(v1) + - + a,7(vy,)
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This process uniquely defines a linear transformation, that is, if
7,0 € LV, W) satisfy T(v;) = o(v;) for all v; € B then T = 0.

Proof. The crucial point is that the extension by linearity is well-defined, since
each vector in V' has a unique representation as a linear combination of a finite
number of vectors in 5. We leave the details to the reader.

Note that if 7 € £(V, W) and if S is a subspace of V, then the restriction 7|g of
7 to S is a linear transformation from S to W.

The Kernel and Image of a Linear Transformation

There are two very important vector spaces associated with a linear
transformation 7 from V' to W.

Definition Let 7 € L(V,W). The subspace
ker(t) ={ve V| r(v) =0}
is called the kernel of T and the subspace
im(r) = {r(v) |[veV}

is called the image of 7. The dimension of ker(t) is called the nullity of T and is
denoted by null(t). The dimension of im(7) is called the rank of T and is
denoted by tk(r). O

It is routine to show that ker(7) is a subspace of V' and im(7) is a subspace of
W. Moreover, we have the following.

Theorem 2.3 Let 7 € L(V,W). Then

1) 7 is surjective if and only if im(17) = W

2) T isinjective if and only if ker(1) = {0}

Proof. The first statement is merely a restatement of the definition of
surjectivity. To see the validity of the second statement, observe that

T(u) =7(v) & 7(u—v) =0 u—v € ker(r)

Hence, if ker(7) = {0} then 7(u) = 7(v) < u = v, which shows that 7 is
injective. Conversely, if 7 is injective and u € ker(7) then 7(u) = 7(0) and so
u = 0. This shows that ker(7) = {0}. O

Isomorphisms

Definition A bijective linear transformation TV — W is called an
isomorphism from V to W. When an isomorphism from V to W exists, we say
that V and W are isomorphic and write V =~ W. [

Example 2.2 Let dim(V') = n. For any ordered basis B of V, the coordinate
map ¢p:V — F" that sends each vector v € V' to its coordinate matrix
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[v]g € F™ is an isomorphism. Hence, any n-dimensional vector space over F is
isomorphic to F". [

Isomorphic vector spaces share many properties, as the next theorem shows. If
7€ L(V,W)and S CV we write

7(S) = {7(s) [ s € S}

Theorem 2.4 Let 7 € L(V , W) be an isomorphism. Let S C V. Then

1) S spansV if and only if 7(S) spans W.

2) S is linearly independent in V' if and only if 7(S) is linearly independent in
w.

3) Sisabasis for V if and only if 7(S) is a basis for W. O

An isomorphism can be characterized as a linear transformation 7: V' — W that
maps a basis for V' to a basis for W.

Theorem 2.5 A linear transformation T € L(V ,W) is an isomorphism if and
only if there is a basis B of V' for which 7(B) is a basis of W. In this case, T
maps any basis of V' to a basis of W. O

The following theorem says that, up to isomorphism, there is only one vector
space of any given dimension.

Theorem 2.6 Let V and W be vector spaces over F. Then V.~ W if and only
if dim(V') = dim(W). O

In Example 2.2, we saw that any n-dimensional vector space is isomorphic to
F". Now suppose that B is a set of cardinality x and let (F'?), be the vector
space of all functions from B to F’ with finite support. We leave it to the reader
to show that the functions &, € (F'#), defined for all b € B, by

1 ife=0
%(@) = {0 ifz#b
form a basis for (F'?)y, called the standard basis. Hence, dim((F?)y) = | B|.

It follows that for any cardinal number &, there is a vector space of dimension «.
Also, any vector space of dimension x is isomorphic to (F'?),.

Theorem 2.7 If n is a natural number then any n-dimensional vector space
over F is isomorphic to F". If k is any cardinal number and if B is a set of
cardinality k then any k-dimensional vector space over F' is isomorphic to the
vector space (FB)y of all functions from B to I with finite support. (I
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The Rank Plus Nullity Theorem
Let 7 € L(V,W). Since any subspace of V' has a complement, we can write
V = ker(1) @ ker(7)¢
where ker(7) is a complement of ker(7) in V. It follows that
dim(V) = dim(ker(7)) + dim(ker(7))
Now, the restriction of 7 to ker(7)¢
¢ ker(r)" — W
is injective, since
ker(7¢) = ker(7) Nker(7)¢ = {0}

Also, im(7¢) C im(7). For the reverse inclusion, if 7(v) € im(7) then since
v=u+ w for u € ker(7) and w € ker(7)¢, we have

7(v) = 7(u) + 7(w) = 7(w) = 7°(w) € im(7°)
Thus im(7¢) = im(7). It follows that
ker(7)¢ ~ im(1)

From this, we deduce the following theorem.

Theorem 2.8 Let T € L(V,W).
1) Any complement of ker(7) is isomorphic to im(T)
2) (The rank plus nullity theorem)

dim(ker(7)) + dim(im(7)) = dim(V)
or, in other notation,
tk(7) 4+ null(7) = dim(V) O

Theorem 2.8 has an important corollary.

Corollary 2.9 Let 7 € L(V, W), where dim(V) = dim(W) < co. Then T is
injective if and only if it is surjective. (1

Note that this result fails if the vector spaces are not finite-dimensional.

Linear Transformations from £ to F'™

Recall that for any m x n matrix A over F' the multiplication map

Ta(v) = Av
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is a linear transformation. In fact, any linear transformation 7 € L(F™, F™) has
this form, that is, 7 is just multiplication by a matrix, for we have

(r(er) | -+ | Ten))er = (r(er) | - | r(ea)” = (e:)
and so 7 = 74 where
A= (r(er) || (en))

Theorem 2.10
1) If Aisanm x n matrix over F then Ty € L(F", F™).
2) Ift € L(F",F™) then T = T4 where

A=(r(er) |-~ [ 7(en))
The matrix A is called the matrix of 7. 1
Example 2.3 Consider the linear transformation 7: F* — F3 defined by
T(l‘,y,Z) = (J?— 2y,z,x+y+z)

Then we have, in column form

T r—2y 1 -2 0 T
Tly| = z =10 0 1 Y
z z+y+z 1 1 1 z
and so the standard matrix of 7 is
1 -2 0
A=1[10 0 1 O
1 1 1

If A € M,,, then since the image of 74 is the column space of A, we have
dim(ker(74)) 4 tk(A) = dim(F")

This gives the following useful result.

Theorem 2.11 Let A be an m x n matrix over F'.
1) 714:F" — F™ js injective if and only if tk(A) = n.
2) Ta: F™ — F™ js surjective if and only if tk(A) = m. O

Change of Basis Matrices

Suppose that B = (by,...,b,) and C = (c1,...,¢,) are ordered bases for a
vector space V. It is natural to ask how the coordinate matrices [v]z and [v]¢ are
related. The map that takes [v]3 to [v]¢ is ¢pc = Pedg' and is called the change
of basis operator (or change of coordinates operator). Since ¢p¢ is an
operator on F", it has the form 74 where
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A= (¢pcler), ..., onclen))
= (¢edp' ((b1B), -, ¢cdp' ([bulB))
= ([bl]Ca EEN) [bn]c))

We denote A by Mp and call it the change of basis matrix from 3 to C.

Theorem 2.12 Let B = (by, ... ,b,) and C be ordered bases for a vector space
V. Then the change of basis operator ¢pc = gb(;(bgl is an automorphism of F",
whose standard matrix is

Mpe = ([bile, -5 [bnle))

Hence
[vle = Mpc[v]s

and MC,B = Ml;é O

Consider the equation

A= Mpc

or equivalently,
A= ([bie, -, [bnle))

Then given any two of A (an invertible n x n matrix), B (an ordered basis for
F™) and C (an order basis for F""), the third component is uniquely determined
by this equation. This is clear if 3 and C are given or if A and C are given. If A
and B are given then there is a unique C for which A=! = M 5 and so there is a
unique C for which A = Mp_.

Theorem 2.13 [f'we are given any two of the following:
1) Aninvertible n x n matrix A.

2)  An ordered basis B for F™".

3) An ordered basis C for F".

then the third is uniquely determined by the equation

A= Mg O

The Matrix of a Linear Transformation

Let m:V — W be a linear transformation, where dim(V)=n and
dim(W) =m and let B = (b1,...,b,) be an ordered basis for V and C an
ordered basis for W. Then the map

0: [v]g — [7(v)]e

is a representation of T as a linear transformation from F" to F™, in the sense
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that knowing 6 (along with B and C, of course) is equivalent to knowing 7. Of
course, this representation depends on the choice of ordered bases 5 and C.

Since 6 is a linear transformation from F™ to F, it is just multiplication by an
m X n matrix A, that is
[7(v)]e = Alv]s
Indeed, since [b;]p = e;, we get the columns of A as follows:
AW = Ae; = Al = [r(b)le

Theorem 2.14 Let 7 € L(V, W) and let B = (by,...,b,) and C be ordered
bases for V and W, respectively. Then T can be represented with respect to B
and C as matrix multiplication, that is

[T(v)]e = [T]clv]s
where
[7]sc = ([r(b1)lc | -+~ | [T(bn)le)

is called the matrix of 7 with respect to the bases B and C. When V. =W and
B = C, we denote )z by [T and so

[r()ls = [7]s[v]5 O

Example 2.4 Let D: P, — P, be the derivative operator, defined on the vector
space of all polynomials of degree at most 2. Let B = C = (1, x,z?%). Then

0 1 0
[DW))e=[0lc= |0, [D(@)]c=[le=|0],[D(*)]c=[2z]c = |2
0 0 0

o

o

and so Dp(z) =1+ 42. O

The following result shows that we may work equally well with linear
transformations or with the matrices that represent them (with respect to fixed
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ordered bases B and C). This applies not only to addition and scalar
multiplication, but also to matrix multiplication.

Theorem 2.15 Let V and W be vector spaces over F, with ordered bases
B=(b,...,b,) andC = (c1, ..., cn), respectively.
1) Themap p: LIV, W) — M, .(F) defined by

() = [7lsc

is an isomorphism and so L(V , W) = M, ,,(F).
2) Ifoe LU,V)andT € L(V,W) and if B, C and D are ordered bases for
U, V and W, respectively then

[Tolsp = [Tleplolse

Thus, the matrix of the product (composition) To is the product of the
matrices of T and o. In fact, this is the primary motivation for the definition
of matrix multiplication.

Proof. To see that . is linear, observe that for all 4

[80’ + tT]&c[bJB = [(SO’ + tT)(bZ')]c

= [so(b;) + t7(bi)lc

= s[o(bi)le + t[(bi)]e
slolsclbi]s + t[T]s.clbils
= (slolsc +t[T]sc)lbils

and since [b;]3 = e; is a standard basis vector, we conclude that
[SO’ + t’r]&c = 8[0']57(; + t[T]&C

and so p is linear. If A € M,,,,, we define 7 by the condition [7(b;)]¢c = AW,
whence p(7) = A and p is surjective. Since dim(L(V,W)) = dim(M,,,,(F)),
the map p is an isomorphism. To prove part 2), we have

[rolsp[v]s = [T(0(v)]lp = [Tleplo(v)le = [Tleplo]sclv]s O

Change of Bases for Linear Transformations

Since the matrix [7]g that represents 7 depends on the ordered bases 55 and C, it
is natural to wonder how to choose these bases in order to make this matrix as
simple as possible. For instance, can we always choose the bases so that 7 is
represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,
we will take up the general question of how best to represent a linear operator
by a matrix. For now, let us take the first step and describe the relationship
between the matrices [7]p¢ and [7]z ¢ of T with respect to two different pairs
(B,C) and (B',C’) of ordered bases. Multiplication by [7]z ¢ sends [v]p to
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[7(v)]e. This can be reproduced by first switching from B’ to B, then applying
[7]8¢ and finally switching from C to C', that is,

[TlBe = Mce(lBeMp s = Mce [T]B,CML;,}%’

Theorem 2.16 Let 7 € L(V,W) and let (B,C) and (B',C") be pairs of ordered
bases of V. and W, respectively. Then

[Tlg.c = Mce[T]seMp s 2.na

When 7 € L(V) is a linear operator on V, it is generally more convenient to
represent 7 by matrices of the form [r]g, where the ordered bases used to
represent vectors in the domain and image are the same. When 5 = C, Theorem
2.16 takes the following important form.

Corollary 2.17 Let 7 € L(V') and let B and C be ordered bases for V. Then the
matrix of T with respect to C can be expressed in terms of the matrix of T with
respect to B as follows

[Tle = Mge[r]sMg g (2.2)0

Equivalence of Matrices

Since the change of basis matrices are precisely the invertible matrices, (2.1) has
the form

[r]g.c = Plr]pcQ "

where P and () are invertible matrices. This motivates the following definition.

Definition Two matrices A and B are equivalent if there exist invertible
matrices P and Q) for which

B=PAQ! O

We remarked in Chapter 0 that B is equivalent to A if and only if B can be
obtained from A by a series of elementary row and column operations.
Performing the row operations is equivalent to multiplying the matrix A on the
left by P and performing the column operations is equivalent to multiplying A
on the right by Q1.

In terms of (2.1), we see that performing row operations (premultiplying by P)
is equivalent to changing the basis used to represent vectors in the image and
performing column operations (postmultiplying by @Q~') is equivalent to
changing the basis used to represent vectors in the domain.
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According to Theorem 2.16, if A and B are matrices that represent 7 with
respect to possibly different ordered bases then A and B are equivalent. The
converse of this also holds.

Theorem 2.18 Let V' and W be vector spaces with dim(V)=n and
dim(W) = m. Then two m x n matrices A and B are equivalent if and only if
they represent the same linear transformation T € L(V, W), but possibly with
respect to different ordered bases. In this case, A and B represent exactly the
same set of linear transformations in L(V ,W).

Proof. If A and B represent 7, that is, if

A= [T]B,C and B = [T]Br,@

for ordered bases B,C, B’ and C’ then Theorem 2.16 shows that A and B are
equivalent. Now suppose that A and B are equivalent, say

B=PAQ!

where P and () are invertible. Suppose also that A represents a linear
transformation 7 € L(V, W) for some ordered bases B and C, that is,

A = [T]B,C

Theorem 2.13 implies that there is a unique ordered basis B’ for V' for which
@ = Mpg p and a unique ordered basis C’ for W for which P = M . Hence

B = Mce[rlpeMp s = [Tlgc

Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear transformations. This completes the proof. I

We remarked in Example 0.3 that every matrix is equivalent to exactly one
matrix of the block form

I — I Ok,nfk
k= 0 0
m—k,k m—kn—Fk | plock

Hence, the set of these matrices is a set of canonical forms for equivalence.
Moreover, the rank is a complete invariant for equivalence. In other words, two
matrices are equivalent if and only if they have the same rank.

Similarity of Matrices

When a linear operator 7 € L(V) is represented by a matrix of the form [7],
equation (2.2) has the form

[rls = Plr]sP™

where P is an invertible matrix. This motivates the following definition.



66 Advanced Linear Algebra

Definition Two matrices A and B are similar if there exists an invertible
matrix P for which

B=PAP™!
The equivalence classes associated with similarity are called similarity
classes. [1

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19 Let V' be a vector space of dimension n. Then two n X n
matrices A and B are similar if and only if they represent the same linear
operator 7 € L(V), but possibly with respect to different ordered bases. In this
case, A and B represent exactly the same set of linear operators in L(V).
Proof. If A and B represent 7 € L(V), that is, if

A= [T]B and B = [T]C

for ordered bases B and C then Corollary 2.17 shows that A and B are similar.
Now suppose that A and B are similar, say

B=PAP™!

Suppose also that A represents a linear operator 7 € £(V') for some ordered
basis B, that is,

A= [T]B

Theorem 2.13 implies that there is a unique ordered basis C for V' for which
P = Mpc. Hence

B = Mgﬁc[T]Bngé = [T]C

Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear operators. This completes the proof. [

We will devote much effort in Chapter 7 to finding a canonical form for
similarity.

Similarity of Operators

We can also define similarity of operators.

Definition Two linear operators T,0 € L(V') are similar if there exists an
automorphism ¢ € L(V') for which

o= (257'(]571

The equivalence classes associated with similarity are called similarity
classes. [
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The analog of Theorem 2.19 in this case is the following.

Theorem 2.20 Let V' be a vector space of dimension n. Then two linear
operators T and o on 'V are similar if and only if there is a matrix A € M,, that
represents both operators (but with respect to possibly different ordered bases).
In this case, T and o are represented by exactly the same set of matrices in M,,.

Proof. If 7 and o are represented by A € M,,, that is, if

[Tl = A= [o]c
for ordered bases BB and C then
[o]e = [T]s = Mcg[TlcMpc

Let ¢ € L(V) be the automorphism of V defined by ¢(c;) =b;, where
B={b,...,bp}and C = {¢y,...,c,}. Then

[9lc = ([p(c)le | - [ [@(en)le) = ([bae [ -+~ | [bule) = M
and so
[o]e = [¢lc [Tle[gle = (67 7¢le

from which it follows that o and 7 are similar. Conversely, suppose that 7 and o
are similar, say

o=¢rop !
Suppose also that 7 is represented by the matrix A € M,,, that is,
A=Ir]s
for some ordered basis 3. Then
[o]s = [¢7¢'|5 = [¢]sl7]5[0]5"
If we set ¢; = ¢(b;) then C = (e, ..., ¢,) is an ordered basis for V' and
[¢]s = ([6(b1)]s | -+~ | [6(bn)]B) = ([c1] | -+ | [ea]s) = Mes

Hence

It follows that

and so A also represents o. By symmetry, we see that 7 and o are represented
by the same set of matrices. This completes the proof. [
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Invariant Subspaces and Reducing Pairs
The restriction of a linear operator 7 € £L(V') to a subspace S of Vis not

necessarily a linear operator on S. This prompts the following definition.

Definition Ler 7 € L(V'). A subspace S of V' is said to be invariant under 7 or
T-invariant if 7(S) C S, that is, if 7(s) € S for all s € S. Put another way, S
is invariant under T if the restriction T|g is a linear operator on S. O
If

V=S¢T

then the fact that .S is 7-invariant does not imply that the complement 7" is also
T-invariant. (The reader may wish to supply a simple example with V' = R?.)

Definition Let 7 € L(V). If V =S & T and if both S and T are T-invariant,
we say that the pair (S,T) reduces 7. O

A reducing pair can be used to decompose a linear operator into a direct sum as
follows.

Definition Let 7 € L(V'). If (S,T) reduces T we write
T=Tls®T|r
and call T the direct sum of 7| and 7|p. Thus, the expression
p=0dDT
means that there exist subspaces S and T of V' for which (S, T) reduces p and
o= plsand 7 = plr 0

The concept of the direct sum of linear operators will play a key role in the
study of the structure of a linear operator.

Topological Vector Spaces

This section is for readers with some familiarity with point-set topology. The
standard topology on R” is the topology for which the set of open rectangles

B ={I) x --- x I, | I's are open intervals in R}

is a basis (in the sense of topology), that is, a subset of R” is open if and only if
it is a union of sets in B. The standard topology is the topology induced by the
Euclidean metric on R".
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The standard topology on R" has the property that the addition function
A:R" x R" = R™: (v,w) > v+ w
and the scalar multiplication function
M:R xR" = R": (r,v) — rv
are continuous. As such, R” is a topological vector space. Also, any linear

functional f:R"™ — R is a continuous map.

More generally, any real vector space V' endowed with a topology 7 is called a
topological vector space if the operations of addition A:V xV — V and
scalar multiplication M:R x V — V are continuous under 7 .

Let V be a real vector space of dimension n and fix an ordered basis
B = (v1,...,v,) for V. Consider the coordinate map

¢p=¢p:V —R"v— [vp
and its inverse

’[/)B — ¢E1:Rn — V: (a,l, ...70,”) — Za’ﬂ]i

We claim that there is precisely one topology 7 = 7y on V for which V
becomes a topological vector space and for which all linear functionals are
continuous. This is called the natural topology on V. In fact, the natural
topology is the topology for which ¢p (and therefore also ¥p) is a
homeomorphism, for any basis B. (Recall that a homeomorphism is a bijective
map that is continuous and has a continuous inverse.)

Once this has been established, it will follow that the open sets in 7 are
precisely the images of the open sets in R under the map 5. A basis for the
natural topology is given by

{Yp(Iy X --- x I,) | I's are open intervals in R}
= {Z rv; | I;'s are open intervals in ]R}

ri€l;

First, we show that if V' is a topological vector space under a topology 7 then 1
is continuous. Since 1) = > 1); where 1);: R" — V is defined by

%(Gl, ceey an) = @;V;

it is sufficient to show that these maps are continuous. (The sum of continuous
maps is continuous.) Let O be an open set in 7. Then

MYO)={(r,z) eRx V | rz € O}

isopenin R x V. We need to show that the set
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¥;71(0) = {(a1,...,a,) € R" | av; € O}

is open in R", so let (ay,...,a,) € ;7' (O). Thus, a;v; € O. It follows that
(a;,v;) € M~Y(O), which is open, and so there is an open interval I C R and
an open set B € 7 of V for which

(ai,v;) € I x BC M™(0)

Then the openset U =R x --- x R X I X R x --- x R, where the factor [ is in
the ith position, has the property that ¢;(U) C O. Thus

(a1,...,ap) eng/Ji_l(O)

and so 171 (O) is open. Hence, 1);, and therefore also ), is continuous.

Next we show that if every linear functional on V is continuous under a
topology 7 on V then the coordinate map ¢ is continuous. If v € V' denote by
[v]g; the ith coordinate of [v]z. The map u: V' — R defined by u(v) = [v]g; is a
linear functional and so is continuous by assumption. Hence, for any open
interval I; € R the set

Ai={veV|p;€ L}
is open. Now, if I; are open intervals in R then
d L x--xL)={veV el x - xI,} = ﬂA,,;
is open. Thus, ¢ is continuous.

Thus, if a topology 7 has the property that V' is a topological vector space and
every linear functional is continuous, then ¢ and ¢ =¢ ' are
homeomorphisms. This means that 7, if it exists, must be unique.

It remains to prove that the topology 7 on V' that makes ¢ a homeomorphism
has the property that V' is a topological vector space under 7 and that any linear
functional f on V' continuous.

As to addition, the maps ¢:V — R"” and (¢ x ¢):V x V — R"” x R" are
homeomorphisms and the map A": R" x R™ — R" is continuous and so the map
A:V xV — V, being equal to ¢t o A’ o (¢ x ¢), is also continuous.

As to scalar ~ multiplication, the  maps ¢V —R"? and
(tx¢):RxV —-RxR" are homeomorphisms and the map
M':R x R" — R" is continuous and so the map M:V x V — V, being equal
to o M o (1 x ¢), is also continuous.

Now let f be a linear functional. Since ¢ is continuous if and only if f o ¢~ ! is
continuous, we can confine attention to V' = R". In this case, if ey, ..., e, is the



Linear Transformations 71

standard basis for R" and |f(e;)| < M, then for any = = (a4, ...,a,) € R" we

have
Dl =Y afen] < 3 ladlfe)) < MY lai

Now, if |z| < ¢/Mn then |a;| < ¢/Mn and so |f(z)| < €, which implies that f
is continuous.

According to the Riesz representation theorem and the Cauchy—Schwarz
inequality, we have

If @) < Ryl

Hence, x, — 0 implies f(z,) — 0 and so by linearity, z, — = implies
f(x,) — x and so f is continuous.

Theorem 2.21 Let V' be a real vector space of dimension n. There is a unique
topology on V., called the natural topology for which V' is a topological vector
space and for which all linear functionals on' V' are continuous. This topology is
determined by the fact that the coordinate map ¢:V —R" is a
homeomorphism. [J

Linear Operators on V'C

A linear operator 7 on a real vector space V' can be extended to a linear operator

7C on the complexification V' by defining

78w+ vi) = 7(u) + 7(v)i
Here are the basic properties of this complexification of 7.
Theorem 2.22 IfT, o € L(V) then
1) (ar)® =a7® a eR

2) (T+U) =7C4+6C
(

3) TO') —TCO'C

4 [r()]=750"). 0
Let us recall that for any ordered basis B for V' and any vector v € V we have
[v+ 0]epe(s) = [v]B
Now, if B is a basis for V, then the ith column of 7]z is
[r(b0)]5 = [7(0i) + Olepx(s) = [T (b + 00)|epu(s)

which is the ith column of the coordinate matrix of 7C with respect to the basis
cpx(B). Thus we have the following theorem.
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Theorem 2.23 Let T € L(V) where V is a real vector space. The matrix of ¢
with respect to the basis cpx(B) is equal to the matrix of T with respect to the
basis B

[TC]Cpx(B) =[5

Hence, if a real matrix A represents a linear operator 7 on V then A also
represents the complexification 7€ of T on VC. O

Exercises

1.

10.

11.

Let A € M,,, have rank k. Prove that there are matrices X € M,,; and
Y € M, both of rank k, for which A = XY Prove that A has rank 1 if
and only if it has the form A = x'y where z and y are row matrices.

Prove Corollary 2.9 and find an example to show that the corollary does not
hold without the finiteness condition.

Let 7 € L(V,W). Prove that 7 is an isomorphism if and only if it carries a
basis for V' to a basis for V.

If 7€ L(V1,W1) and o € L(Va,Ws) we define the external direct sum
THo € [,(‘/1 E%,WlEHWQ)by

(T8 o)((v1,02)) = (7(01), 0(v2))

Show that 7 HH o is a linear transformation.

Let V=S @T. Prove that S® T ~ SHT. Thus, internal and external
direct sums are equivalent up to isomorphism.

Let V = A + B and consider the external direct sum £ = A H B. Define a
map 7: AH B — V by 7(v, w) = v+ w. Show that 7 is linear. What is the
kernel of 7? When is 7 an isomorphism?

Let 7 be a subset of £L(V'). A subspace S of V' is 7 -invariant if S is 7-
invariant for every 7 € 7. Also, V is 7 -irreducible if the only 7 -invariant
subspaces of V are {0} and V. Prove the following form of Schur's lemma.
Suppose that 7y C L(V') and Ty C L(W) and V is Ty -irreducible and W
is Ty -irreducible. Let o € L(V, W) satisfy aZyy = Tyya, that is, for any
1 € Ty there is a A € Ty such that ap = Aa. Prove that &« = 0 or « is an
isomorphism.

Let 7€ L(V) where dim(V) < oco. If rk(7?) =rk(r) show that
im(7) Nker(7) = {0}.

LetT € L(U,V) and o € L(V,W). Show that

tk(ro) < min{rk(7), rk(o)}
Let7 € L(U,V)and o € L(V,W). Show that
null(ro) < null(7) + null(o)
Let 7,0 € L£(V) where 7 is invertible. Show that
tk(ro) = 1k(o1) = 1k(0)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
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LetT,0 € L(V,W). Show that
k(7 + o) < 1k(7) + k(o)

Let S be a subspace of V. Show that there is a 7 € L(V) for which
ker(7) = S. Show also that there exists a 0 € L(V') for which im(c) = S.
Suppose that 7,0 € L(V).

a) Show that o = 7 for some p € £(V) if and only if im(o) C im(7).

b) Show that o = p7 for some p € L(V') if and only if ker(7) C ker(o).
Let V = 5; @& S,. Define linear operators p; on V' by p;(s1 + s2) = s; for
i =1, 2. These are referred to as projection operators. Show that

D pi=pi

2) p1+ pe = I, where I is the identity map on V.

3) pip; = 0fori # j where 0 is the zero map.

4) V =im(p;) ® im(p2)

Let dim(V') < oo and suppose that 7 € £(V) satisfies 72 = 0. Show that
2rk(7) < dim(V).

Let A be an m x n matrix over F'. What is the relationship between the
linear transformation 74: F — F™ and the system of equations AX = B?
Use your knowledge of linear transformations to state and prove various
results concerning the system AX = B, especially when B = 0.

Let V have basis B = {vy,...,v,}. Suppose that for each 1 < i,j < n we
define 7; ; € L(V') by

N o ifk#i
TZ’J(’Uk)_{Ui-f—Uj ifk=1

Prove that the 7; ; are invertible and form a basis for £L(V').

Let 7 € £(V).If S is a T-invariant subspace of V' must there be a subspace
T of V for which (S, T') reduces 72

Find an example of a vector space V' and a proper subspace S of V' for
which V =~ S.

Let dim(V) < oo. If 7, 0 € L(V) prove that o7 = ¢ implies that 7 and ¢
are invertible and that o = p(7) for some polynomial p(z) € F[z].

Let 7 € £(V) where dim(V') < oo. If 70 = o7 for all 0 € L(V) show that
T = at, for some a € F, where ¢ is the identity map.

Let A, B € M, (F). Let K be a field containing F'. Show that if A and B
are similar over K, that is, if B = PAP~! where P € M,,(K) then A and
B are also similar over F, that is, there exists @ € M, (F) for which
B =QAQ™!'. Hint: consider the equation XA —-BX =0 as a
homogeneous system of linear equations with coefficients in F. Does it
have a solution? Where?

Let f:R™ — R be a continuous function with the property that

flx+y) = f(z)+ f(y)

Prove that f is a linear functional on R".



74

25.
26.

27.

28.

29.

30.

31.

34.

35.

36.
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Prove that any linear functional f: R" — R is a continuous map.

Prove that any subspace S of R" is a closed set or, equivalently, that

S¢=R"\ S is open, that is, for any x € S¢ there is an open ball B(s, €)

centered at x with radius ¢ > 0 for which B(z, ¢) C S°.

Prove that any linear transformation 7:V — W is continuous under the

natural topologies of V and W.

Prove that any surjective linear transformation 7 from V' to W (both finite-

dimensional topological vector spaces under the natural topology) is an

open map, that is, 7 maps open sets to open sets.

Prove that any subspace S of a finite-dimensional vector space V is a

closed set or, equivalently, that S¢ is open, that is, for any x € S there is

an open ball B(s,e) centered at z with radius € >0 for which

B(z,€) C S°.

Let S be a subspace of V' with dim(V') < cc.

a) Show that the subspace topology on .S inherited from V is the natural
topology.

b) Show that the natural topology on V' /S is the topology for which the
natural projection map m: V' — V' /.S continuous and open.

If V is a real vector space then V' is a complex vector space. Thinking of

V€ as a vector space (VC)g over R, show that (V) is isomorphic to the

external direct product V H V.

(When is a complex linear map a complexification?) Let V' be a real vector

space with complexification VC and let o € £L(VC). Prove that o is a

complexification, that is, o has the form 7* for some 7 € £(V') if and only

if o commutes with the conjugate map x:V® — VC defined by

x(u+iv) = u — dv.

Let W be a complex vector space.

a) Consider replacing the scalar multiplication on W by the operation

(z,w) — Zw

where z € C and w € W. Show that the resulting set with the addition
defined for the vector space W and with this scalar multiplication is a
complex vector space, which we denote by W.

b) Show, without using dimension arguments, that (VVR)‘C ~WBW.

a) Let 7 be a linear operator on the real vector space U with the property
that 72 = —.. Define a scalar multiplication on U by complex numbers
as follows

(a+bi)-v=av+br(v)

for a,b € R and v € U. Prove that under the addition of U and this
scalar multiplication U is a complex vector space, which we denote by
U,.

b) What is the relationship between U,and V©? Hint: consider
U=V BV and(u,v) = (—v,u).



Chapter 3
The Isomorphism Theorems

Quotient Spaces

Let S be a subspace of a vector space V. It is easy to see that the binary relation
on V defined by

u=vsu—veS

is an equivalence relation. When u = v, we say that v and v are congruent
modulo S. The term mod is used as a colloquialism for modulo and v = v is
often written

uw=vmodS

When the subspace in question is clear, we will simply write u = v.

To see what the equivalence classes look like, observe that

pl={uveV]u=v}
={ueV|u—-veS}
={ueV |u=v+sforsomese S}
={v+s|seS}
=v+S

The set
p=v+S={v+s|seS}

is called a coset of S in V and v is called a coset representative for v + S.
(Thus, any member of a cost is a coset representative.)

The set of all cosets of S in V' is denoted by
Vv
< ={v+S|veV}
S
This is read “V mod S” and is called the quotient space of V modulo S. Of
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course, the term space is a hint that we intend to define vector space operations
onV/S.

Note that congruence modulo S is preserved under the vector space operations
on V, for if u; = vy and us = v, then

up — v € S,us — v €8 = r(ug —v1) + s(ug —wvg) €S
= (ru; + sus) — (rv1 + sv9) € S
= ruy] + Sus = rv; + Svs

A natural choice for vector space operations on V' /S is
r(lu+S)=ru+S
(u+S)+w+S)=(ut+v)+S

However, in order to show that these operations are well-defined, it is necessary
to show that they do not depend on the choice of coset representatives, that is, if

w+S=u+Sandv;+S =v2+8
then

ruy + S =rus+ S
(U1+1}1)+S:(UQ+U2)+S

The straightforward details of this are left to the reader. Let us summarize.

Theorem 3.1 Let S be a subspace of V. The binary relation
u=vEsu—veS
is an equivalence relation on V', whose equivalence classes are the cosets
v+ S={v+s|seS}

of S'in V. The set V /S of all cosets of S in V, called the quotient space of V'
modulo S, is a vector space under the well-defined operations

ru; +S =rus+ S
(U1+U1)+S:<UQ+’U2)+S

The zero vector in V'/S is the coset 0 + S = S. O
The Natural Projection and the Correspondence Theorem

If S is a subspace of V' then we can define a map 7g: V' — V' /S by sending
each vector to the coset containing it

ms(v) =v+ S

This map is called the canonical projection or natural projection of V' onto
V' /S, or simply projection modulo S. It is easily seen to be linear, for we have
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(writing 7 for mg)
w(ru+ sv) = (ru+sv) + S =r(u+S) + s(v+ S) = rr(u) + sw(v)

The canonical projection is clearly surjective. To determine the kernel of 7, note
that

veker(n) ©n(v)=00v+S=5S<ves
and so
ker(m) = S
Theorem 3.2 The canonical projection ng:V — V' /S defined by
ms(v) =v+ S
is a surjective linear transformation with ker(rg) = S. O
If S is a subspace of V' then the subspaces of the quotient space V' /S have the
form T'/S for some intermediate subspace T satisfying S C T C V. In fact, as
shown in Figure 3.1, the projection map wg provides a one-to-one
correspondence between intermediate subspaces S C T° C V and subspaces of

the quotient space V'/S. The proof of the following theorem is left as an
exercise.

Vv
T \ VIS
S /S
{0} {0}

Figure 3.1: The correspondence theorem

Theorem 3.3 (The correspondence theorem) Let S be a subspace of V.. Then
the function that assigns to each intermediate subspace S CT CV the
subspace T'/S of V /S is an order preserving (with respect to set inclusion)
one-to-one correspondence between the set of all subspaces of V' containing S
and the set of all subspaces of V' /S. O

The Universal Property of Quotients and the First
Isomorphism Theorem
Let S be a subspace of V. The pair (V' /S, ms) has a very special property,

known as the universal property—a term that comes from the world of category
theory.



78 Advanced Linear Algebra

Figure 3.2 shows a linear transformation 7€ L£(V,W), along with the
canonical projection 7g from V' to the quotient space V' /S.

vV ———> W

Figure 3.2: The universal property

The universal property states that if ker(7) O S then there is a unique
7.V /S — W for which

Tomg =1

Another way to say this is that any such 7 € L(V, W) can be factored through
the canonical projection 7g.

Theorem 3.4 Let S be a subspace of V and let 7€ L(V,W) satisfy
S Cker(r). Then, as pictured in Figure 3.2, there is a unique linear
transformation 7': V' | S — W with the property that

/
TOomg =T

Moreover, ker(7') = ker(7)/S and im(7') = im(1).
Proof. We have no other choice but to define 7’ by the condition 7" o g = T,
that is,

'(v+8) =7(v)
This function is well-defined if and only if
v+S=u+S=7w+S)=7(u+S9)
which is equivalent to each of the following statements:

v+S=u+S8= 7)) =7(u)
v—ueS=1v—u)=0
ze€S=71(x)=0
S C ker(7)

Thus, 7: V /S — W is well-defined. Also,
im(7') = {7'(v+8) |ve V}={r(v)|ve V}=im(r)

and
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ker(7') = {v+ S |7 (v+ S) =0}
={v+5][7(v) =0}
={v+ S |veker(r)}
= ker(1)/S

The uniqueness of 7' is evident. [J

Theorem 3.4 has a very important corollary, which is often called the first
isomorphism theorem and is obtained by taking S = ker(7).

Theorem 3.5 (The first isomorphism theorem) Let 7:V — W be a linear

transformation. Then the linear transformation 7': V [ker(1) — W defined by
7' (v + ker(7)) = 7(v)

is injective and

v
ker(7)

~ im(7) O

According to Theorem 3.5, the image of any linear transformation on V' is
isomorphic to a quotient space of V. Conversely, any quotient space V' /.S of V
is the image of a linear transformation on V': the canonical projection 7g. Thus,
up to isomorphism, quotient spaces are equivalent to homomorphic images.

Quotient Spaces, Complements and Codimension

The first isomorphism theorem gives some insight into the relationship between
complements and quotient spaces. Let S be a subspace of V and let T" be a
complement of S, that is

V=SeT

Since every vector v € V' has the form v = s + ¢, for unique vectors s € S and
t € T, we can define a linear operator p: V' — V by setting

p(s+1t)=t

Because s and t are unique, p is well-defined. It is called projection onto 7'
along S. (Note the word onto, rather than modulo, in the definition; this is not
the same as projection modulo a subspace.) It is clear that

im(p) =T
and

ker(p) ={s+teV |t=0}=5
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Hence, the first isomorphism theorem implies that

v
T~ —
S

Theorem 3.6 Let S be a subspace of V. All complements of S in V are
isomorphic to V' /S and hence to each other. [J

The previous theorem can be rephrased by writing

ApB=A¢eC=B=~=C

On the other hand, quotients and complements do not behave as nicely with
respect to isomorphisms as one might casually think. We leave it to the reader to
show the following:

1) Ttis possible that

AeB=C®D

with A = C but B % D. Hence, A ~ C does not imply that a complement
of A is isomorphic to a complement of C'.
2) [Itis possible that V' ~ W and

V=Se&BandW=S5S&D
but B # D. Hence, V = W does not imply that V' /S % W /S. (However,
according to the previous theorem, if V' equals W then B ~ D.)
Corollary 3.7 Let S be a subspace of a vector space V. Then
dim(V') = dim(S) 4+ dim(V'/.5) O
Definition If S is a subspace of V' then dim(V /.S) is called the codimension of
S in'V and is denoted by codim(SS) or codimy (S). O
Thus, the codimension of S in V' is the dimension of any complement of S in V'
and when V is finite-dimensional, we have
codimy (S) = dim(V') — dim(S)

(This makes no sense, in general, if V' is not finite-dimensional, since infinite
cardinal numbers cannot be subtracted.)

Additional Isomorphism Theorems

There are several other isomorphism theorems that are consequences of the first
isomorphism theorem. As we have seen, if V' = S @ T then V /T ~ S. This can
be written
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seT S

T ~SnT

This applies to nondirect sums as well.

Theorem 3.8 (The second isomorphism theorem) Let V' be a vector space
and let S and T be subspaces of V. Then

S+T S

T ~SNT
Proof. Let 7: (S + 1) — S/(S NT) be defined by
T(s+t)=s+(SNT)

We leave it to the reader to show that 7 is a well-defined surjective linear
transformation, with kernel 7. An application of the first isomorphism theorem
then completes the proof. [

The following theorem demonstrates one way in which the expression V' /S
behaves like a fraction.

Theorem 3.9 (The third isomorphism theorem) Let V' be a vector space and
suppose that S C T C 'V are subspaces of V. Then

Vs VvV

T/S T

Proof. Let 7:V /S — V /T be defined by 7(v+ S) = v+ T. We leave it to the
reader to show that 7 is a well-defined surjective linear transformation whose
kernel is T'/S. The rest follows from the first isomorphism theorem. O

The following theorem demonstrates one way in which the expression V' /S
does not behave like a fraction.

Theorem 3.10 Let V' be a vector space and let S be a subspace of V. Suppose
thatV.=Vi & Voand S = S1 & Sy with S; C V;. Then

V_Vien ViV

S Si®S " S S

Proof. Let 7: V — (V4 /S1) B (V2/S5) be defined by

T(Ul + 1}2) = <U1 + 51,1)2 =+ SQ)

This map is well-defined, since the sum V = V| & V5 is direct. We leave it to
the reader to show that 7 is a surjective linear transformation, whose kernel is
S1 @ Ss. The rest follows from the first isomorphism theorem. [
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Linear Functionals

Linear transformations from V' to the base field F' (thought of as a vector space
over itself) are extremely important.

Definition Let V' be a vector space over F. A linear transformation
f € L(V,F), whose values lie in the base field F is called a linear functional
(or simply functional) on V. (Some authors use the term linear function.) The
vector space of all linear functionals on 'V is denoted by V™ and is called the
algebraic dual space of V. O

The adjective algebraic is needed here, since there is another type of dual space
that is defined on general normed vector spaces, where continuity of linear
transformations makes sense. We will discuss the so-called continuous dual
space briefly in Chapter 13. However, until then, the term “dual space” will
refer to the algebraic dual space.

To help distinguish linear functionals from other types of linear transformations,
we will usually denote linear functionals by lower case italic letters, such as f, g
and h.

Example3.1 The map f: F[z] — F, defined by f(p(z)) = p(0) is a linear
functional, known as evaluation at 0. (]

Example 3.2 Let C[a, b] denote the vector space of all continuous functions on
[a,b] CR. Let f:C[a,b] — R be defined by

b
fla(z)) = / o(z) da
Then f € Cla,b]*. O

For any f € V", the rank plus nullity theorem is
dim(ker(f)) + dim(im(f)) = dim(V)

But since im(f) C F', we have either im(f) = {0}, in which case f is the zero
linear functional, or im(f) = F, in which case f is surjective. In other words, a
nonzero linear functional is surjective. Moreover, if f # 0 then

codim(ker(f)) = dim(kef(f)) =1

and if dim(V") < oo then
dim(ker(f)) = dim(V) —1
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Thus, in dimensional terms, the kernel of a linear functional is a very “large”
subspace of the domain V.

The following theorem will prove very useful.

Theorem 3.11

1) For any nonzero vector v € V, there exists a linear functional f € V" for
which f(v) # 0.

2)  Avectorv €V is zero if and only if f(v) =0 forall f € V™.

3) Let f e V*.If f(x) # O then

V = (x) @ ker(f)

4) Two nonzero linear functionals f,g € V* have the same kernel if and only
if there is a nonzero scalar \ such that f = \g.

Proof. For part 3), if 0# v € (z) Nker(f) then f(v) =0 and v=ax for

0# a € F, whence f(z) =0, which is false. Hence, (x) Nker(f) = {0} and

the direct sum S = (z) @ ker(f) exists. Also, for any v € V' we have

W) (I
) *( @)

and so V = (z) @ ker(f).

9:> € (x) + ker(f)

For part 4), if f=MXg for A#0 then ker(f)=ker(g). Conversely, if
K = ker(f) = ker(g) then for z ¢ K we have by part 3),

V=) K

Of course, f|x = Ag|x for any A. Therefore, if A = f(x)/g(x), it follows that
Ag(z) = f(z) and hence f = \g. O

Dual Bases

Let V be a vector space with basis B = {v; | i € I'}. For each i € I, we can
define a linear functional v} € V", by the orthogonality condition

v; (v) = bij

where ¢; ; is the Kronecker delta function, defined by

s _ 1 iti=j
WT0 0 ifi#£ g

Then the set B* = {v! |i € I} is linearly independent, since applying the
equation

e . * e . *
0=a;v; + -+ a;v;

to the basis vector v;, gives
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k k
0= E aljvij(vlk) = E ;010 = iy
J=1 J=1

for all 7.

Theorem 3.12 Let V be a vector space with basis B = {v; | i € I}.

1) Theset B* = {v} | i € I} is linearly independent.

2) If'V is finite-dimensional then B* is a basis for V*, called the dual basis of
B

Proof. For part 2), for any f € V*, we have
S Fwusv) = fw)si; = f(wi)
J J
and so f =Y f(v;)v] is in the span of B*. Hence, B" is a basis for V*. O
Corollary 3.13 Ifdim(V') < oo then dim(V*) = dim(V'). O

The next example shows that Corollary 3.13 does not hold without the finiteness
condition.

Example3.3 Let V be an infinite-dimensional vector space over the field
F =7, ={0,1}, with basis B. Since the only coefficients in F' are 0 and 1, a
finite linear combination over F is just a finite sum. Hence, V is the set of all
finite sums of vectors in B and so according to Theorem 0.11,

VI < [Po(B)| = |B]

On the other hand, each linear functional f € V* is uniquely defined by
specifying its values on the basis B. Since these values must be either O or 1,
specifying a linear functional is equivalent to specifying the subset of B on
which f takes the value 1. In other words, there is a one-to-one correspondence
between linear functionals on V' and all subsets of 5. Hence,

V| =IP(B)| > |B| = |V
This shows that V* cannot be isomorphic to V', nor to any proper subset of V.
Hence, dim(V*) > dim(V"). O
Reflexivity

If V is a vector space then so is the dual space V*. Hence, we may form the
double (algebraic) dual space V**, which consists of all linear functionals
0:V* — F. In other words, an element o of V™" is a linear map that assigns a
scalar to each linear functional on V.



The Isomorphism Theorems 85

With this firmly in mind, there is one rather obvious way to obtain an element of
V** Namely, if v € V, consider the map v: V* — F defined by

o(f) = f(v)

which sends the linear functional f to the scalar f(v). The map T is called
evaluation at v. To see thatv € V**,if f,g € V* and a,b € F then

v(af +bg) = (af +bg)(v) = af(v) + bg(v) = av(f) + bv(g)

and so v is indeed linear.

We can now defineamap 7: V. — V** by
T(v) =70

This is called the canonical map (or the natural map) from V' to V**. This
map is injective and hence in the finite-dimensional case, it is also surjective.

Theorem 3.14 The canonical map T:V — V** defined by 7(v) = v, where U is
evaluation at v, is a monomorphism. If V is finite-dimensional then T is an
isomorphism.

Proof. The map 7 is linear since

G+ bu(f) = flau+bv) = af (u) + bf (v) = (i + bo)(f)
for all f € V*. To determine the kernel of 7, observe that

T(v)=0=7=0
=o(f)=0forall f € V*
= f(v)=0forall f e V"
= v=0

by Theorem 3.11 and so ker(7) = {0}.

In the finite-dimensional case, since dim(V**) = dim(V*) = dim(V/), it follows
that 7 is also surjective, hence an isomorphism. [1

Note that if dim(V') < oo then since the dimensions of V and V** are the same,
we deduce immediately that V' =~ V**. This is not the point of Theorem 3.14.
The point is that the natural map v — v is an isomorphism. Because of this, V'
is said to be algebraically reflexive. Thus, Theorem 3.14 implies that all finite-
dimensional vector spaces are algebraically reflexive.

If V is finite-dimensional, it is customary to identify the double dual space V**
with V' and to think of the elements of V** simply as vectors in V. Let us
consider an example of a vector space that is not algebraically reflexive.
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Example 3.4 Let V' be the vector space over Z, with basis
er =(0,...,0,1,0,...)

where the 1 is in the kth position. Thus, V' is the set of all infinite binary
sequences with a finite number of 1's. Define the order o(v) of any v € V' to be
the largest coordinate of v with value 1. Then o(v) < oo forallv € V.

Consider the dual vectors e;;, defined (as usual) by
ei(es) = O
For any v € V, the evaluation functional v has the property that
v(ey) = er(v) = 0ifk > o(v)

However, since the dual vectors e are linearly independent, there is a linear
functional f € V** for which

fle) =1

for all £k > 1. Hence, f does not have the form v for any v € V. This shows that
the canonical map is not surjective and so V' is not algebraically reflexive. [

Annihilators

The functions f € V* are defined on vectors in V, but we may also define f on
subsets M of V' by letting

M) ={f(v) [ve M}

Definition Let M be a nonempty subset of a vector space V. The annihilator
MO of M is

M°={f e V" | f(M)={0}} U

The term annihilator is quite descriptive, since M consists of all linear
functionals that annihilate (send to 0) every vector in M. It is not hard to see
that M is a subspace of V*, even when M is not a subspace of V.

The basic properties of annihilators are contained in the following theorem,
whose proof is left to the reader.

Theorem 3.15
1) (Order-reversing) For any subsets M and N of 'V,

MCN=N'cM°
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2) Ifdim(V) < oo then we have
M ~ span(M)

under the natural map. In particular, if S is a subspace of V then S® =~ S.
3) Ifdim(V) < oo and S and T are subspaces of V then

(SNT)Y =8 +T°and (S +T)° = 85" NT° m|
Consider a direct sum decomposition
V=S¢T

Then any linear functional f € T* can be extended to a linear functional f on V'
by setting f(S) = 0. Let us call this extension by 0. Clearly, f € S° and it is
easy to see that the extension by 0 map f — f is an isomorphism from T* to
SO, whose inverse is restriction to 7.

Theorem 3.16 Ler V =S & T.
a) The extension by 0 map is an isomorphism from T* to S° and so
T* ~ §°
b) If'V is finite-dimensional then
dim(S") = codimy (S) = dim(V') — dim(S) O

Example 3.5 Part b) of Theorem 3.16 may fail in the infinite-dimensional case,
since it may easily happen that S° ~ V*. As an example, let V' be the vector
space over Zs with a countably infinite ordered basis B = (ej,es,...). Let
S = (e1) and T = (e, e3,...). It is easy to see that S° ~ T* ~ V* and that
dim(V*) > dim(V). O

The annihilator provides a way to describe the dual space of a direct sum.

Theorem 3.17 A linear functional on the direct sum V =S @© T can be written
as a direct sum of a linear functional that annihilates S and a linear functional
that annihilates T, that is,

(SoT) =8"aT1°

Proof. Clearly S° N T° = {0}, since any functional that annihilates both .S and
T must annihilate S @ T = V. Hence, the sum S° 4+ T is direct. If f € V*
then we can write

f=(fopr)+(fops)eS’aT’
andsoV =5 7°. 0
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Operator Adjoints
If 7 € L(V,W) then we may define a map 7: W* — V* by

()= for=ir
for f € W". (We will write composition as juxtaposition.) Thus, for any v € V

[T () = f((v))
The map 7 is called the operator adjoint of 7 and can be described by the
phrase “apply T first.”
Theorem 3.18 (Properties of the Operator Adjoint)
1) Fort,oe L(V,W)anda,beF

(aT + bo)* = at™ + bo™
2) Foroe L(V,W)andT e LIW,U)

(to)* =o*7*
3) For any invertible T € L(V)
(r 1% = (7)L
Proof. Proof of part 1) is left for the reader. For part 2), we have for all f € U*
(r0)*(f) = f(r0) = o7 (f7) = 77"(c"(f)) = ("0 ")(f)
Part 3) follows from part 2) and
P = (rin) = =

and in the same way, (77!)*7* = 1. Hence (77!)* = (r)~1. O

If 7€ L(V,W) then 7% € LIW*,V*) and so 7°* € L(V*™, W**). Of course,
7% is not equal to 7. However, in the finite-dimensional case, if we use the
natural maps to identify V** with V' and W** with W then we can think of 7**
as being in L(V,W). Using these identifications, we do have equality in the

finite-dimensional case.

Theorem 3.19 Let V' and W be finite-dimensional and let T € L(V,W). If we
identify V** with V. and W** with W using the natural maps then > is
identified with 7.

Proof. For any = € V let the corresponding element of V** be denoted by = and
similarly for W. Then before making any identifications, we have forv € V'

T @)(f) = ol ()] = v(f7) = f(r(v)) = 7(0)(f)
forall f € W" and so
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P (5) = 7(0) € W
Therefore, using the canonical identifications for both V** and W** we have
7% (v) = 7(v)

forallv e V. O
The next result describes the kernel and image of the operator adjoint.

Theorem 3.20 Let 7 € L(V,W). Then
1) ker(r*) = im(7)°

2) im(7*) = ker(7)°

Proof. For part 1),

ker(77) ={f e W* | 7°(f) = 0}
={few 1 f(=(V)) ={0}}
={f e W[ f(im(r)) = {0}}

= im(7)°

For part 2), if f=gr=71"¢g€im(7”) then ker(r) C ker(f) and so
f € ker(7)".

For the reverse inclusion, let f € ker(7) C V*. On K = ker(7), there is no
problem since f and 7*¢g = g7 agree on K for any g€ W*. Let S be a
complement of ker(7). Then 7 maps a basis B = {b; | i € I} for S to a linearly
independent set

7(B) = {7(b;) | i € I}

in W and so we can define g € W* any way we want on 7(53). In particular, let
g € W* be defined by setting

g(7(bi)) = f(b:)

and extending in any manner to all of W*. Then f=gr=7"¢g on B and
therefore on S. Thus, f = 7%¢g € im(7*). O

Corollary 3.21 Let 7 € L(V,W), where V and W are finite-dimensional.
Then tk(7) = tk(7>). O

In the finite-dimensional case, 7 and 7 can both be represented by matrices.
Let

B: (b17~~~7bn) andC: (Cl,...,Cm)

be ordered bases for V' and W, respectively and let
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B = (bl,...,b}) and C* = (c],...,c")

e m

be the corresponding dual bases. Then

and

([lsc)iy = ([T(b)le)i = ¢;[(by)]

([T le )iy = ([T ()]s )i = b [77(c))] = 77(¢) (bs) = ¢j(7(bi))

Comparing the last two expressions we see that they are the same except that the
roles of ¢ and j are reversed. Hence, the matrices in question are transposes.

Theorem 3.22 Let 7 € L(V, W), where V and W are finite-dimensional. If B
and C are ordered bases for V. and W, respectively and B* and C* are the
corresponding dual bases then

[T )e- 5 = ([7]B.c)"

In words, the matrices of 7 and its operator adjoint 7™ are transposes of one
another. [

Exercises

1.

bl

If V is infinite-dimensional and S is an infinite-dimensional subspace, must
the dimension of V' /S be finite? Explain.

Prove the correspondence theorem.

Prove the first isomorphism theorem.

Complete the proof of Theorem 3.10.

Let S be a subspace of V. Starting with a basis {s1,...,s;} for S, how
would you find a basis for V' /S?

Use the first isomorphism theorem to prove the rank-plus-nullity theorem

tk(7) 4+ null(7) = dim(V)

fort e L(V,W).
Let 7 € £L(V) and suppose that S is a subspace of V. Define a map
V]S —=V/Sby

v+ S)=7)+ S

When is 7/ well-defined? If 7’ is well-defined, is it a linear transformation?
What are im(7') and ker(7')?

Show that for any nonzero vector v € V, there exists a linear functional
f € V* for which f(v) # 0.

Show that a vector v € V' is zero if and only if f(v) =0 forall f € V*.

. Let S be a proper subspace of a finite-dimensional vector space V' and let

ve V\S. Show that there is a linear functional f € V* for which
f(v)=1and f(s) =0foralls € S.



11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.
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Find a vector space V' and decompositions
V=AeoB=C&D

with A ~ C but B # D. Hence, A ~ C does not imply that A° ~ C°.
Find isomorphic vectors spaces V and W with

V=S¢BandW =S¢ D

but B % D. Hence, V =~ W does not imply that V /S % W /S.
Let V be a vector space with

V=51¢Ti=5dT

Prove that if S; and S5 have finite codimension in V' then so does S; N Sy
and

codim(S; N S2) < dim(7y) + dim(7T3)

Let V' be a vector space with
V=SiaoTh=5oT

Suppose that S; and S, have finite codimension. Hence, by the previous
exercise, so does S; N S,. Find a direct sum decomposition V =W & X
for which (1) W has finite codimension, (2) W C S; NS5 and (3)
XDOT +1Ts.

Let B be a basis for an infinite-dimensional vector space V' and define, for
all b € B, the map b’ € V* by b'(c) =1 if ¢ = b and 0 otherwise. Does
{V' | b € B} form a basis for V*? What do you conclude about the concept
of a dual basis?

Prove that (S & T')* =~ S* @ T™.

Prove that 0* = 0 and +* =+ where 0 is the zero linear operator and ¢ is
the identity.

Let S be a subspace of V. Prove that (V' /S)* ~ S°.

Verify that

a) (t+o0)"=71"40*forr,0€ LV,W).

b) (rr)* =rr* foranyr € FandT € L(V,W)

Let 7€ L(V,W), where V and W are finite-dimensional. Prove that
tk(7) = 1k(7%).

Prove that if o € £(V) has the property that

V =im(o) @ ker(o) and oim(y) = ¢

then ¢ is projection on im(o) along ker(c).

a) Let p:V — S be projection onto a subspace S of V' along a subspace
T of V. Show that p is idempotent, that is p*> = p.

b) Prove thatif p € £(V') is idempotent then it is a projection.

c) Is the adjoint of a projection also a projection?



Chapter 4
Modules I: Basic Properties

Motivation

Let V' be a vector space over a field F' and let 7 € £(V). Then for any
polynomial p(x) € F[z], the operator p(7) is well-defined. For instance, if
p(x) = 14 2z + 22 then

p(t) =14 21 + 73

where ¢ is the identity operator and 73 is the threefold composition 7 o 7 o 7.

Thus, using the operator 7 we can define the product of a polynomial
p(z) € Flx] and a vector v € V by

p(z)v = p(7)(v) (4.1

This product satisfies the usual properties of scalar multiplication, namely, for
all 7(z), s(x) € Flz] and u,v € V,

r(@)(u+v) = r(z)

(r(z) + s(z))u =

[r(2)s())u = r(z)[s(x)u

lu=u

|

<
—~

8
~

Thus, for a fixed 7 € £(V'), we can think of V' as being endowed with the
operations of (the usual) addition along with multiplication of an element of V'
by a polynomial in F[z]. However, since F[z] is not a field, these two
operations do not make V' into a vector space. Nevertheless, the situation in
which the scalars form a ring but not a field is extremely important, not only in
our context but in many others.

Modules

Definition Let R be a commutative ring with identity, whose elements are
called scalars. An R-module (or a module over R) is a nonempty set M,
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together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) € M x M, an element w+v € M. The
second operation, denoted by juxtaposition, assigns to each pair
(ryu) € R x M, an element rv € M. Furthermore, the following properties
must hold:

1) M is an abelian group under addition.

2) Forallr,s € Randu,v e M

r(u+v) =ru+rv
(r+s)u=ru+ su
(rs)u = r(su)
lu=u

The ring R is called the base ring of M. O

Note that vector spaces are just special types of modules: a vector space is a
module over a field.

When we turn in a later chapter to the study of the structure of a linear
transformation 7 € £L(V'), we will think of V' as having the structure of a vector
space over F' as well as a module over F[z]. Put another way, V' is an abelian
group under addition, with two scalar multiplications—one whose scalars are
elements of F' and one whose scalars are polynomials over F. This viewpoint
will be of tremendous benefit for the study of 7. For now, we concentrate only
on modules.

Example 4.1

1) If R is a ring, the set R" of all ordered n-tuples, whose components lie in
R, is an R-module, with addition and scalar multiplication defined
componentwise (just as in F™"),

(al,...,an)+(b1,...,bn) = (a1+b1,...,an+bn)
and
ray,...,a,) = (ray,...,ra,)

for a;, b;, r € R. For example, Z" is the Z-module of all ordered n-tuples
of integers.

2) If R is a ring, the set M,, ,(R) of all matrices of size m X n, is an R-
module, under the usual operations of matrix addition and scalar
multiplication over R. Since R is a ring, we can also take the product of
matrices in M, ,,(R). One important example is R = F[z], whence
Mo (F[2]) is the F[z]-module of all m x n matrices whose entries are
polynomials.

3) Any commutative ring R with identity is a module over itself, that is, R is
an R-module. In this case, scalar multiplication is just multiplication by



Modules I: Basic Properties 95

elements of R, that is, scalar multiplication is the ring multiplication. The
defining properties of a ring imply that the defining properties of an R-
module are satisfied. We shall use this example many times in the sequel.

O
Importance of the Base Ring

Our definition of a module requires that the ring R of scalars be commutative.
Modules over noncommutative rings can exhibit quite a bit more unusual
behavior than modules over commutative rings. Indeed, as one would expect,
the general behavior of R-modules improves as we impose more structure on
the base ring R. If we impose the very strict structure of a field, the result is the
very well-behaved vector space structure.

To illustrate, if we allow the base ring R to be noncommutative then, as we will
see, it is possible for an R-module to have bases of different sizes! Since
modules over noncommutative rings will not be needed for the sequel, we
require commutativity in the definition of module.

As another example, if the base ring is an integral domain then whenever
vy, ...,v, are linearly independent over R so are rvy,...,rv, for any nonzero
r € R. This fails when R is not an integral domain.

We will also consider the property on the base ring R that all of its ideals are
finitely generated. In this case, any finitely generated R-module M has the
desirable property that all of its submodules are also finitely generated. This
property of R-modules fails if R does not have the stated property.

When R is a principal ideal domain (such as Z or F'[x]), not only are all of its
ideals finitely generated, but each is generated by a single element. In this case,
the R-modules are “reasonably” well behaved. For instance, in general a module
may have a basis but one or more of its submodules may not. However, if R is a
principal ideal domain, this cannot happen.

Nevertheless, even when R is a principal ideal domain, R-modules are less well
behaved than vector spaces. For example, there are modules over a principal
ideal domain that do not have any linearly independent elements. Of course,
such modules cannot have a basis.

Many of the basic concepts that we defined for vector spaces can also be
defined for modules, although their properties are often quite different. We
begin with submodules.

Submodules

The definition of submodule parallels that of subspace.
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Definition 4 submodule of an R-module M is a nonempty subset S of M that
is an R-module in its own right, under the operations obtained by restricting the
operations of M to S. O

Theorem 4.1 4 nonempty subset S of an R-module M is a submodule if and
only if it is closed under the taking of linear combinations, that is,

rse€RuveS=rut+sves O

Theorem 4.2 If'S and T are submodules of M then S N'T and S + T are also
submodules of M. O

We have remarked that a commutative ring R with identity is a module over
itself. As we will see, this type of module provides some good examples of non-
vector space like behavior.

When we think of a ring R as an R-module rather than as a ring, multiplication
is treated as scalar multiplication. This has some important implications. In
particular, if S is a submodule of R then it is closed under scalar multiplication,
which means that it is closed under multiplication by all elements of the ring R.
In other words, S is an ideal of the ring R. Conversely, if Z is an ideal of the
ring R then 7 is also a submodule of the module R. Hence, the submodules of
the R-module R are precisely the ideals of the ring R.

Spanning Sets

The concept of spanning set carries over to modules as well.
Definition 7he submodule spanned (or generated) by a subset S of a module
M is the set of all linear combinations of elements of S':
(S)y =span(S) = {rv1+ - +rpv, | r; € Ryu; € S,n>1}
A subset S C M is said to span M or generate M if
M = span(S) O

One very important point to note is that if a nontrivial linear combination of the
elements vy, ..., v, in an R-module M is 0,

rvp+ -+, =0

where not all of the coefficients are 0 then we cannot conclude, as we could in a
vector space, that one of the elements v; is a linear combination of the others.
After all, this involves dividing by one of the coefficients, which may not be
possible in a ring. For instance, for the Z-module Z x Z we have

2(3,6) — 3(2,4) = (0,0)

but neither (3, 6) nor (2, 4) is an integer multiple of the other.
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The following simple submodules play a special role in the theory.

Definition Let M be an R-module. A submodule of the form
(v) =Rv={rv|re€ R}
Jorv € M is called the cyclic submodule generated by v. O

Of course, any finite-dimensional vector space is the direct sum of cyclic
submodules, that is, one-dimensional subspaces. One of our main goals is to
show that a finitely generated module over a principal ideal domain has this
property as well.

For reasons that will become clear soon, we need the following definition.

Definition An R-module M is said to be finitely generated if it contains a
finite set that generates M. ]

Of course, a vector space is finitely generated if and only if it has a finite basis,
that is, if and only if it is finite-dimensional. For modules, life is more
complicated. The following is an example of a finitely generated module that
has a submodule that is not finitely generated.

Example 4.2 Let R be the ring F[x;, 2o,...] of all polynomials in infinitely
many variables over a field F. It will be convenient to use X to denote
Z1,Ts,... and write a polynomial in R in the form p(X). (Each polynomial in
R, being a finite sum, involves only finitely many variables, however.) Then R
is an R-module and as such, is finitely generated by the identity element
p(X) =1.

Now, consider the submodule S of all polynomials with zero constant term.
This module is generated by the variables themselves,

S = <£L‘17LU2,...>
However, S is not finitely generated. To see this, suppose that G = {p1, ..., pn}
is a finite generating set for .S. Choose a variable xj, that does not appear in any

of the polynomials in G. Then no linear combination of the polynomials in G
can be equal to . For if

T = i:ai(X)pi(X)
=1
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then let a;(X) = z1q;(X) + r;(X) where r;(X) does not involve z;,. This gives

n

o=y [wrqi(X) + ri(X)]pi(X)

i=1

= mkiQi(X)pi(X> + anri(x)pi(X)

The last sum does not involve x;, and so it must equal 0. Hence, the first sum
must equal 1, which is not possible since p;(X) has no constant term. [

Linear Independence

The concept of linear independence also carries over to modules.

Definition 4 subset S of a module M is linearly independent if for any
V1,...,0, € Sandry,...,T, € R, we have

rior+ -+ rpv, =0=1r;, =0 foralli
A set S that is not linearly independent is linearly dependent. [J

It is clear from the definition that any subset of a linearly independent set is
linearly independent.

Recall that, in a vector space, a set S of vectors is linearly dependent if and only
if some vector in S is a linear combination of the other vectors in S. For
arbitrary modules, this is not true.

Example 4.3 Consider Z as a Z-module. The elements 2,3 € Z are linearly
dependent, since

3(2) —2(3) =0

but neither one is a linear combination (i.e., integer multiple) of the other.

The problem in the previous example (as noted earlier) is that
rvr o+ T, = 0
implies that
V1 = — Tl — -+ —TpUn

but, in general, we cannot divide both sides by ry, since it may not have a
multiplicative inverse in the ring R.
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Torsion Elements

In a vector space V over a field F, singleton sets {v} where v # 0 are linearly
independent. Put another way, r # 0 and v # 0 imply rv # 0. However, in a
module, this need not be the case.

Example 4.4 The abelian group Z, = {0,1,...,n—1} is a Z-module, with
scalar multiplication defined by za = (z - a) mod n, for all n € Z and a € Z,,.
However, since na =0 for all a € Z,, no singleton set {a} is linearly
independent. Indeed, Z,, has no linearly independent sets. [

This example motivates the following definition.

Definition Let M be an R-module. A nonzero element v € M for which rv =0
Jor some nonzero r € R is called a torsion element of M. A module that has no
nonzero torsion elements is said to be torsion-free. If all elements of M are
torsion elements then M is a torsion module. The set of all torsion elements of
M, together with the zero element, is denoted by My, T

If M is a module over an integral domain, it is not hard to see that M, is a
submodule of M and that M /M, is torsion-free. (We will define quotient
modules shortly: they are defined in the same way as for vector spaces.)

Annihilators

Closely associated with the notion of a torsion element is that of an annihilator.

Definition Let M be an R-module. The annihilator of an element v € M is
ann(v) = {r € R | rv =0}
and the annihilator of a submodule N of M is
ann(N) = {r € R|rN = {0}}

where rN = {rv | v € N}. Annihilators are also called order ideals. O]

It is easy to see that ann(v) and ann(/N) are ideals of R. Clearly, v € M is a
torsion element if and only if ann(v) # {0}.

Let M = (uy,...,u,) be a finitely generated torsion module over an integral
domain R. Then for each i there is a nonzero a; € ann(u;). Hence, the nonzero
product a = a;---a, annihilates each generator of M and therefore every
element of M, that is, a € ann(M ). This shows that ann(M) # {0}.

Free Modules

The definition of a basis for a module parallels that of a basis for a vector space.



100 Advanced Linear Algebra

Definition Let M be an R-module. A subset B of M is a basis if B is linearly
independent and spans M. An R-module M is said to be free if M = {0} or if
M has a basis. If B is a basis for M, we say that M is free on B. [

Theorem 4.3 A subset B of a module M is a basis if and only if for every
v € M, there are unique elements wvi,...,v, € B and unique scalars
r1,...,7n € R for which

v="riv1 + o+ Ty, O

In a vector space, a set of vectors is a basis if and only if it is a minimal
spanning set, or equivalently, a maximal linearly independent set. For modules,
the following is the best we can do in general. We leave proof to the reader.

Theorem 4.4 Let B be a basis for an R-module M. Then
1) B is a minimal spanning set.
2) B is a maximal linearly independent set. (1

The Z-module Z, has no basis since it has no linearly independent sets. But
since the entire module is a spanning set, we deduce that a minimal spanning set
need not be a basis. In the exercises, the reader is asked to give an example of a
module M that has a finite basis, but with the property that not every spanning
set in M contains a basis and not every linearly independent set in M is
contained in a basis. It follows in this case that a maximal linearly independent
set need not be a basis.

The next example shows that even free modules are not very much like vector
spaces. It is an example of a free module that has a submodule that is not free.

Example 4.5 The set Z x Z is a free module over itself, using componentwise
scalar multiplication
(n,m)(a,b) = (na, mb)

with basis {(1,1)}. But the submodule Z x {0} is not free since it has no
linearly independent elements and hence no basis. [

Homomorphisms

The term linear transformation is special to vector spaces. However, the
concept applies to most algebraic structures.

Definition Let M and N be R-modules. A function T:M — N is an R-
homomorphism if it preserves the module operations, that is,

T(ru + sv) = rr(u) + s7(v)

forallr,s € R and u,v € M. The set of all R-homomorphisms from M to N is
denoted by homp (M, N). The following terms are also employed:
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1) An R-endomorphism is an R-homomorphism from M to itself.

2) A R-monomorphism or R-embedding is an injective R-homomorphism.
3) An R-epimorphism is a surjective R-homomorphism.

4) An R-isomorphism is a bijective R-homomorphism. (1

It is easy to see that homp(M, N) is itself an R-module under addition of
functions and scalar multiplication defined by

(rm)(v) = r(7(v)) = 7(rv)

Theorem 4.5 Let 7 € homp (M, N). The kernel and image of T, defined as for
linear transformations by

ker(r) ={ve M | r(v) =0}
and
im(7) = {7(v) | v e M}
are submodules of M and N, respectively. Moreover, T is a monomorphism if

and only ifker(t) = {0}. O

If N is a submodule of the R-module M then the map j: N — M defined by
j(v) = v is evidently an R-monomorphism, called injection of N into M.

Quotient Modules
The procedure for defining quotient modules is the same as that for defining
quotient vector spaces. We summarize in the following theorem.
Theorem 4.6 Let S be a submodule of an R-module M. The binary relation
u=vEsu—ve S
is an equivalence relation on M, whose equivalence classes are the cosets
v+S={v+s|seS}

of S in M. The set M /S of all cosets of S in M, called the quotient module of
M modulo S, is an R-module under the well-defined operations

(u+S)+w+8S)=(u+v)+S
rlu+S)=ru+S

The zero element in M /S is the coset 0+ S = S. O

One question that immediately comes to mind is whether a quotient space of a
free module need be free. As the next example shows, the answer is no.

Example 4.6 As a module over itself, Z is free on the set {1}. For any n > 0,
the set Zn = {zn | z € Z} is a free cyclic submodule of Z, but the quotient Z-
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module Z/Zn is isomorphic to Z, via the map
7(u 4+ Zn) = umodn
and since Z,, is not free as a Z-module, neither is Z/Zn. O

The Correspondence and Isomorphism Theorems

The correspondence and isomorphism theorems for vector spaces have analogs
for modules.

Theorem 4.7 (The correspondence theorem) Let S be a submodule of M.
Then the function that assigns to each intermediate submodule S C'T' C M the
quotient submodule T /S of M /S is an order-preserving (with respect to set
inclusion) one-to-one correspondence between submodules of M containing S
and all submodules of M /S. O

Theorem 4.8 (The first isomorphism theorem) Let 7: M — N be an R-
homomorphism. Then the map 7': M /ker(7) — N defined by

7' (v +ker(7)) = 7(v)
is an R-embedding and so

M
ker(T)

~ im(7) O

Theorem 4.9 (The second isomorphism theorem) Let M be an R-module and
let S and T' be submodules of M. Then

S54+4T , S5

T ~8NnT

Theorem 4.10 (The third isomorphism theorem) Let M be an R-module and
suppose that S C T are submodules of M. Then

M/S M
T/S = T =

a

Direct Sums and Direct Summands

The definition of direct sum is the same for modules as for vector spaces. We
will confine our attention to the direct sum of a finite number of modules.

Definition 4n R-module M is the direct sum of the submodules Si,...,5S,,
written

M=S & &85,

if every v € M can be written, in a unique way (except for order), as a sum of
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one element from each of the submodules S;, that is, there are unique u; € \S;
Jfor which

v=ur+ -+t U,

In this case, each S; is called a direct summand of M. I[f M = S & T then S is
said to be complemented and T is called a complement of S in M. O

Note that a sum is direct if and only if whenever uy; + --- + u,, = 0 where
u; € S; then w; = 0 for all ¢, that is, if and only if O has a unique representation
as a sum of vectors from distinct submodules.

As with vector spaces, we have the following useful characterization of direct
sums.

Theorem 4.11 A module M is the direct sum of submodules S, ..., S, if and
only if

) M=S+---+85,

2) Foreachi=1,...,n

Sin (Zsj) ~ {0} O

J#i

In the case of vector spaces, every subspace is a direct summand, that is, every
subspace has a complement. However, as the next example shows, this is not
true for modules.

Example 4.7 The set Z of integers is a Z-module. Since the submodules of Z
are precisely the ideals of the ring Z and since Z is a principal ideal domain, the
submodules of Z are the sets

ny=Zn={zn|ze€Z}
Hence, any two nonzero proper submodules of Z have nonzero intersection, for
if n # m > 0 then
InNZm = Zk

where k = lem{n, m}. It follows that the only complemented submodules of Z
are Z and {0}. O

In the case of vector spaces, there is an intimate connection between subspaces
and quotient spaces, as we saw in Theorem 3.6. The problem we face in
generalizing this to modules in general is that not all submodules have a
complement. However, this is the only problem.

Theorem 4.12 Let S be a complemented submodule of M. All complements of
S are isomorphic to M /S and hence to each other.
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Proof. For any complement 7" of S, the first isomorphism theorem applied to
the projection p: M — T onto T along S gives T' ~ M /S. O

Direct Summands and One-Sided Invertibility
The next theorem characterizes direct summands, but first a definition.
Definition 4 submodule S of an R-module M is a retract of M by an R-

homomorphism 7: M — S if T fixes each element of S, that is, T(s) = s for all
ses.Od

Note that the homomorphism 7 in the definition of a retract is similar to a
projection map onto S, in that both types of maps are the identity when
restricted to .S. In fact, if S’ is complemented and 7" is a complement of .S then .S
is a retract of M by the projection onto .S along 7'. Indeed, more can be said.

Theorem 4.13 A submodule S of the R-module M is complemented if and only
if it is a retract of M. In this case, if S is a retract of M by T then T is
projection onto S along ker(7) and so

M = S @ ker(r) = im(7) @ ker(7)

Proof. If M =S & 7T then S is a retract of M by the projection map
ps: M — S. Conversely, if 7: M — S is an R-homomorphism that fixes S then
clearly 7 is surjective and S = im(7). Also,

ve Snker(r)=v=17(v)=0
and for any v € M we have
v=[v—7()]+ 7(v) € ker(7) + S
Hence, M = S @ ker(7). O
Definition Let 7: A — B be a module homomorphism. Then a left inverse of T

is a module homomorphism 71,: B — A for which 171, o 7 = 1. A right inverse of
T is a module homomorphism tr: B — A for which T ot = . O

It is easy to see that in order for 7 to have a left inverse 7, it must be injective
since

7(a) =7(b) = 1,07(a) =T107(b) = a=0b
and in order for 7 to have a right inverse 75, it must be surjective, since if b € B
then b = 7[7r(b)] € im(7).

Now, if we were dealing with functions between sets, then the converses of
these statements would hold: 7 is left-invertible if and only if it is injective and
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7 is right-invertible if and only if it is surjective. However, for modules things
are more complicated.

Theorem 4.14
1) An R-homomorphism 17: A — B has a left inverse Ty, if and only if it is
injective and im(7) is a direct summand of B, in which case

B = im(7) & ker(r) ~ im(1) & ker(7)

2) An R-homomorphism 1: A — B has a right inverse T if and only if it is
surjective and ker(T) is a direct summand of B, in which case

A = ker(1) @ im(7r) ~ ker(7) @ im(7)

Proof. For part 1), suppose first that 7,7 =¢4. Then 7 is injective since
applying 7, to the expression 7(x)=r7(y) gives x=y. Also,
x € im(7) Nker(7z) implies that x = 7(a) and

0=rmr(x) =71(7(a)) =a

and so z = 0. Hence, the direct sum im(7) @ ker(7;) exists. For any b € B, we
can write

b=77(b) + [b — 771(b)]
where 771, (b) € im(7) and b — 771(b) € ker(7;) and so B = im(7) & ker(7).

Conversely, if 7 is injective and B = K @ im(7) for some submodule K then
let

-1
TL =T = O Pim(r)

where pim(;) is projection onto im(A). This is well-defined since 7: A — im(7)
is an isomorphism. Then

TL07(b) =7 "0 pimy oT(b) =7 "oT(b) =10

and so 77 is a left-inverse of 7. It is clear that K = ker(r) and since
7r:im(7) — im(77) is injective, im(7) & im(77).

For part 2), if 7 has a right inverse 7 then 7z has a left inverse 7 and so 7
must be injective and

A = im(7g) @ ker(7) = im(7) & ker(7)

Conversely, suppose that A = X @ ker(7). Since the elements of different
cosets of ker(7) are mapped to different elements of B, it is natural to define
Tr: B — A by taking 7r(b) to be a particular element in the coset b + ker(7)
that is sent to b by 7. However, in general we cannot pick just any element of
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the coset and expect to get a module morphism. (We get a right inverse but only
as a set function.)

However, the condition A = X @ ker(7) is precisely what we need, because it
says that the elements of the submodule X form a set of distinct coset
representatives; that is, each x € X belongs to exactly one coset and each coset
contains exactly one element of X.

In addition, if 7(z1) = by and 7(z3) = b for 1, x2 € X then
T(ray + swa) = r7(x1) + s7(x2) = rby + sby

Thus, we can define 7 as follows. For any b € B there is a unique z € X for
which 7(z) = b. Let 7r(b) = «. Then we have

T(r(b)) =7(x) =0
and so 7 o Tp = . Also,
TR(rby + sby) = ray + sxe = r7R(b1) + sTr(b2)

and so 7 is a module morphism. Thus 7 is right-invertible. (I

The last part of the previous theorem is worth further comment. Recall that if
7:V — W is a linear transformation on vector spaces then

V =~ ker(7) @ im(7)

This does not hold in general for modules, but it does hold if ker(7) is a direct
summand.

Modules Are Not As Nice As Vector Spaces

Here is a list of some of the properties of modules (over commutative rings with
identity) that emphasize the differences between modules and vector spaces.

1) A submodule of a module need not have a complement.

2) A submodule of a finitely generated module need not be finitely generated.

3) There exist modules with no linearly independent elements and hence with
no basis.

4) A minimal spanning set or maximal linearly independent set is not
necessarily a basis.

5) There exist free modules with submodules that are not free.

6) There exist free modules with linearly independent sets that are not
contained in a basis and spanning sets that do not contain a basis.

Recall also that a module over a noncommutative ring may have bases of
different sizes. However, all bases for a free module over a commutative ring
with identity have the same size, as we will prove in the next chapter.
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Exercises

1.

2.

10.

11.

12.

13.

Give the details to show that any commutative ring with identity is a
module over itself.

Let S = {vy,...,v,} be a subset of a module M. Prove that N = (S) is the
smallest submodule of M containing S. First you will need to formulate
precisely what it means to be the smallest submodule of M containing S.
Let M be an R-module and let I be an ideal in R. Let I M be the set of all
finite sums of the form

rivy + s+ TRl

where r; € I and v; € M. Is IM a submodule of M?
Show that if S and 7' are submodules of M then (with respect to set
inclusion)

SNT =glb{S,T}and S+ T = lub{S, T}

Let S; C S5 C--- be an ascending sequence of submodules of an R-
module M. Prove that the union | JS; is a submodule of M.

Give an example of a module M that has a finite basis but with the property
that not every spanning set in M contains a basis and not every linearly
independent set in M is contained in a basis.

Show that, just as in the case of vector spaces, an R-homomorphism can be
defined by assigning arbitrary values on the elements of a basis and
extending by linearity.

Let 7 € homp(M, N) be an R-isomorphism. If B is a basis for M, prove
that 7(B) = {7(b) | b € B} is a basis for N.

Let M be an R-module and let 7 € homg(M, M) be an R-endomorphism.
If 7 is idempotent, that is, if 7> = 7 show that

M = ker(7) @ im(7)

Does the converse hold?

Consider the ring R = F'[x,y] of polynomials in two variables. Show that
the set M consisting of all polynomials in R that have zero constant term is
an R-module. Show that M is not a free R-module.

Prove that R is an integral domain if and only if all R-modules M have the
following property: If vy, ..., v, is linearly independent over R then so is
rvy, ..., T, for any nonzero r € R.

Prove that if a commutative ring R with identity has the property that every
finitely generated R-module is free then R is a field.

Let M and N be R-modules. If S is a submodule of M and T is a
submodule of N show that

M®N
SeT

~M
~ s

Nl =
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14.

15.

16.

17.

18.

19.
20.

21.
22.

Advanced Linear Algebra

If R is a commutative ring with identity and 7 is an ideal of R then 7 is an

R-module. What is the maximum size of a linearly independent set in Z?

Under what conditions is Z free?

a) Show that for any module M over an integral domain the set M, of all
torsion elements in a module M is a submodule of M.

b) Find an example of a ring R with the property that for some R-module
M the set M, is not a submodule.

¢) Show that for any module M over an integral domain, the quotient
module M / M, is torsion-free.

Fix a prime p and let

M:{“km,kez,kzo}
p

Show that M is a Z-module and that the set £ = {1/p* |k >0} is a
minimal spanning set for M. Is the set E linearly independent?

Let N be an abelian group together with a scalar multiplication over a ring
R that satisfies all of the properties of an R-module except that 1v does not
necessarily equal v for all v € N. Show that N can be written as a direct
sum of an R-module N and another “pseudo R-module” V;.

Prove that homp (M, N) is an R-module under addition of functions and
scalar multiplication defined by

(rm)(v) = r(7(v)) = 7(rv)

Prove that any R-module M is isomorphic to the R-module homp (R, M).
Let R and S be commutative rings with identity and let f: R — S be a ring
homomorphism. Show that any S-module is also an R-module under the
scalar multiplication

rv= f(r)jv

Prove that homy(Z,,, Z,,) =~ Z4 where d = ged(n, m).

Suppose that R is a commutative ring with identity. If Z and J are ideals of
R for which R/Z ~ R/J as R-modules then prove that Z = J. Is the
result true if R/Z ~ R/J as rings?



Chapter 5
Modules II: Free and Noetherian Modules

The Rank of a Free Module

Since all bases for a vector space V' have the same cardinality, the concept of
vector space dimension is well-defined. A similar statement holds for free R-
modules when the base ring is commutative (but not otherwise).

Theorem 5.1 Let M be a free module over a commutative ring R with identity.
1) Then any two bases of M have the same cardinality.

2)  The cardinality of a spanning set is greater than or equal to that of a basis.
Proof. The plan is to find a vector space V' with the property that, for any basis
for M, there is a basis of the same cardinality for V. Then we can appeal to the
corresponding result for vector spaces.

Let 7 be a maximal ideal of R, which exists by Theorem 0.22. Then R/Z is a
field. Our first thought might be that M is a vector space over R/Z but that is
not the case. In fact, scalar multiplication using the field R/Z

(r+Iv=rv

is not even well-defined, since this would require that ZM = {0}. On the other
hand, we can fix precisely this problem by factoring out the submodule

IM ={ajvy+ -+ ayv, | a;, € Z,v; € M}

Indeed, M /ZM is a vector space over R/Z, with scalar multiplication defined
by

r+Z)(u+IM)=ru+IM
To see that this is well-defined, we must show that the conditions

r+Z=1+1
u+IM=u +IM

imply
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ru+IM =r'v +IM
But this follows from the fact that
ru—7r'u =r(u—u)+(r—r eIM
Hence, scalar multiplication is well-defined. We leave it to the reader to show
that M /Z M is a vector space over R/Z.
Consider now a set B = {b; | i € [} C M and the corresponding set

M
IM={b;+IM |iel}l C —
B+ {b; + | i€ }_IM

If B spans M over R then B+ ZM spans M /IM over R/Z. To see this, note
that any v € M has the form v = Xr;b; for r; € R and so

v+ IM = (Z r,,;b,,;) +IM =3 b+ IM) = 3 (1 + T) (b + IM)
which shows that B + ZM spans M /ZM.

Now suppose that B = {b; | ¢ € I} is a basis for M over R. We claim that
B+ ZIM is a basis for M /IM over R/Z. We have seen that B+ ZM spans
M /I M. Also, if

> (ri+I)(bi+IM)=IM

then ) r;b; € ZM and so

m

n
Z ijj = Z ajbj
=1 =1

where a; € Z. From the linear independence of B we deduce that r; € 7 for all ¢
and so r;+7Z =Z. Hence B+ IM is linearly independent and therefore a
basis, as desired.

To see that | B| = |B + Z M|, note that if b; + ZM = by, + M then
bi — bk = Z (ijj
=

where a; € Z. If b; # by, then 1 = a; € Z, which is not possible since 7 is a
maximal ideal. Hence, b; = by.

Thus, if B is a basis for M over R then
|B| = |B+IM|=dimg/7(M/IM)
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and so all bases for M over R have the same cardinality, which proves part 1).
Moreover, if B spans M over R then B + ZM spans M /Z M and so

dimg,7(M/IM) < |B+IM| < |B]
Thus, B has cardinality at least as great as that of any basis for M over R.

The previous theorem allows us to define the rank of a free module. (The term
dimension is not used for modules in general.)

Definition Let R be a commutative ring with identity. The rank tk(M) of a
nonzero free R-module M is the cardinality of any basis for M. The rank of the
trivial module {0} is 0. O

Theorem 5.1 fails if the underlying ring of scalars is not commutative. The next
example describes a module over a noncommutative ring that has the
remarkable property of possessing a basis of size n for any positive integer n.

Example5.1 Let V' be a vector space over F' with a countably infinite basis
B = {b1,ba,...}. Let L(V) be the ring of linear operators on V. Observe that
L(V') is not commutative, since composition of functions is not commutative.

The ring £(V') is an £(V')-module and as such, the identity map ¢ forms a basis
for £L(V'). However, we can also construct a basis for £(V') of any desired finite
size n. To understand the idea, consider the case n = 2 and define the operators

p1 and (2 by

Bi(bak) = b, B1(b2k+1) =0
and

Ba(bor) = 0, Ba(bor+1) = by

These operators are linearly independent essentially because they are surjective
and their supports are disjoint. In particular, if

[Bi+gB=0
then
0= (fB1 + gB2)(bax) = f(br)
and
0= (fB1 + gB2)(bar+1) = g(br)

which shows that f = 0 and g = 0. Moreover, if h € L(V) then we define f
and g by
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f(bk) = h(ba)
9(br) = h(bas1)

from which it follows easily that
h=fBr+ 9B
which shows that {31, 5>} is a basis for L(V).

More generally, we begin by partitioning B into n blocks. For each
s=0,....,n—1,let

Bs = {b; | i = smod n}
Now we define elements 3, € L(V) by
Bs(bknth) = 6t,sbk

where 0 <t < n and where 6, ; is the Kronecker delta function. These functions
are surjective and have disjoint support. It follows that C, = {f, ..., Bn-1} is
linearly independent. For if a; € £(V') and

0= 04060 + -t an,flﬂnfl
then, applying this to by, gives
0= Oétﬁt(bknﬂ) = Oét(bk)

for all k. Hence, a; = 0.

Also, C,, spans L(V), forif 7 € L(V'), we define oy € L(V) by
as(br) = T(brn+s)
to get
(0o + -+ + an-1Bn-1) bkn+t) = B (bkn+t) = ar(br) = T(bkn+t)
and so
T=af++ a1
Thus, C, = {fo, ..., Bn_1} is a basis for L(V') of size n. O

We have spoken about the cardinality of minimal spanning sets. Let us now
speak about the cardinality of maximal linearly independent sets.

Theorem 5.2 Let R be an integral domain and let M be a free R-module of
finite rank n. Then all linearly independent sets have size at most tk(M ).
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Proof. Since M = R" if we prove the result for R" it will hold for M. Let R"
be the field of quotients of R. Then R" is a subset of the vector space (R*)"
and

1) R™is asubgroup of (R")" under addition

2) scalar multiplication by elements of R is defined and R" is an R-module,

3) scalar multiplication by elements of R* is defined but R" is not closed
under this scalar multiplication.

Now, if B = {vy,...,v;} C R" is linearly dependent over R* then B is clearly
linearly dependent over R. Conversely, suppose that B is linearly independent
over R and

o4t Ly =0

1 T
Sk

51
where s; # 0 for all ¢ and r; # 0 for some j. Multiplying by s = s1---5;, # 0
produces a nontrivial linear dependency over R

s s
—rvy + -+ —rvp =0
S1 Sk

which implies that r; = 0 for all 4. Thus B is linearly dependent over R if and
only if it is linearly dependent over R*. Of course, in the vector space (R1)" all
sets of size n + 1 or larger are linearly dependent over R and hence all subsets
of R" of size n + 1 or larger are linearly dependent over R. [1

Recall that if B is a basis for a vector space V' over F' then V' is isomorphic to
the vector space (F'”), of all functions from B to F that have finite support. A
similar result holds for free R-modules. We begin with the fact that (R?), is a
free R-module. The simple proofis left to the reader.

Theorem 5.3 Let B be any set and let R be a ring. The set (RP)y of all
functions from B to R that have finite support is a free R-module of rank |B|
with basis B = {6y} where

1 ifx=5b
S(@) = {0 ifx#b
This basis is referred to as the standard basis for (R”),. O

Theorem 5.4 Let M be an R-module. If B is a basis for M then M is
isomorphic to (R?),.
Proof. Consider the map 7: M — (R?), defined by setting

7(b) =

where 6 is defined in Theorem 5.3 and extending this to all of M by linearity,
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that is,
T(riby 4+ -+ rpbp) = 16y, + - + 16,

Since 7 maps a basis for M to a basis B = {&} for (R?)y, it follows that 7 is
an isomorphism from M to (R?),. O

Theorem 5.5 Two free R-modules (over a commutative ring) are isomorphic if
and only if they have the same rank.

Proof. If M =~ N then any isomorphism 7 from M to N maps a basis for M to
a basis for N. Since 7 is a bijection, we have k(M) = rk(NN). Conversely,
suppose that rk(M) = 1k(V). Let B be a basis for M and let C be a basis for N.
Since |B| = |C|, there is a bijective map 7: B — C. This map can be extended by
linearity to an isomorphism of M onto N and so M ~ N. O

Free Modules and Epimorphisms

Homomorphic images that are free have some behavior reminiscent of vector
spaces.

Theorem 5.6
1) Ifo: M — F is a surjective R-homomorphism and F is free then ker(o) is

complemented and
M =ker(o) ® N = ker(c) B F
where N ~ F.
2) If S is asubmodule of M and if M /S is free then S is complemented and
M
M~SH—
S

If in addition, M , S and M | S are free then

k(M) = tk(S) + rk(t{)
and if the ranks are all finite then

rk(i{) =rk(M) — 1k(95)

Proof. For part 1), we prove that o is right-invertible. Let B = {v; | i € [} be a
basis for F. Define op: F' — B by setting oz (v;) equal to any member of the
nonempty set o~ *(v;) and extending oy to an R-homomorphism. Then oy is a
right inverse of o and so Theorem 4.14 implies that ker(o) is a direct summand
of M and M =~ ker(o) B F. Part 2) follows from part 1), where o = g is
projection onto S. O
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Noetherian Modules

One of the most desirable properties of a finitely generated R-module M is that
all of its submodules be finitely generated. Example 4.2 shows that this is not
always the case and leads us to search for conditions on the ring R that will
guarantee that all submodules of a finitely generated module are themselves
finitely generated.

Definition An R-module M is said to satisfy the ascending chain condition on
submodules (abbreviated a.c.c.) if any ascending sequence of submodules

51 C5CSC--
of M is eventually constant, that is, there exists an index k for which
Sk = Ske1 = Sz = -+

Modules with the ascending chain condition on submodules are also called

noetherian modules (after Emmy Noether, one of the pioneers of module
theory). O

Theorem 5.7 An R-module M is noetherian if and only if every submodule of
M is finitely generated.

Proof. Suppose that all submodules of M are finitely generated and that M
contains an infinite ascending sequence

51 C85CSC--- (5.1)

of submodules. Then the union
s=Us;
J

is easily seen to be a submodule of M. Hence, S is finitely generated, say
S = {uy,...,u,). Since u; € S, there exists an index k; such that u; € S..
Therefore, if K = max{ky, ..., k,}, we have

{Ulv 7U71,} C S
and so
S=(ur,...,up) €S CSp1 €S2 C---C S
which shows that the chain (5.1) is eventually constant.
For the converse, suppose that M satisfies the a.c.c on submodules and let .S be
a submodule of M. Pick w; € S and consider the submodule S; = (u;) C S
generated by ;. If S1 = S then S is finitely generated. If S # S then there is a

ug € S — S1. Now let Sy = (uy,ug). If S, =S then S is finitely generated. If
Sy # S then pick uz € S — Sy and consider the submodule S3 = (u1,u2,u3).
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Continuing in this way, we get an ascending chain of submodules
(u1) € (u1,u2) C (ur,ug,uz) C---C S

If none of these submodules is equal to S, we would have an infinite ascending
chain of submodules, each properly contained in the next, which contradicts the
fact that M satisfies the a.c.c. on submodules. Hence, S = (uy,...,u,), for
some n and so S is finitely generated. [J

Since a ring R is a module over itself and since the submodules of the module R
are precisely the ideals of the ring R, the preceding discussion may be
formulated for rings as follows.

Definition 4 ring R is said to satisfy the ascending chain condition on ideals if
any ascending sequence

LiCyCIyC---
of ideals of R is eventually constant, that is, there exists an index k for which
Ty =Tky1 = Lp2 = -+

A ring that satisfies the ascending chain condition on ideals is called a
noetherian ring. [

Theorem 5.8 A4 ring R is noetherian if and only if every ideal of R is finitely
generated. [

Note that a ring R is noetherian as a ring if and only if it is noetherian as a
module over itself. More generally, a ring R is noetherian if and only if every
finitely generated R-module is noetherian.

Theorem 5.9 Let R be a commutative ring with identity.

1) R is noetherian if and only if every finitely generated R-module is
noetherian.

2) If, in addition, R is a principal ideal domain then if M is generated by n
elements any submodule of M is generated by at most n elements.

Proof. For part 1), one direction is evident. Assume that R is noetherian and let

M = {uy,...,u,) be a finitely generated R-module. Consider the epimorphism

7: R" — M defined by

T(r1,...,mn) = rup + - + Ty,
Let S be a submodule of M. Then
T_I(S) ={ueR"|7(u) €S}

is a submodule of R" and 7(771(S)) = S. If every submodule of R" is finitely
generated, then 771(.9) is finitely generated and so 77 (S) = (vy,...,v;). Then
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S is finitely generated by {7(v;), ..., 7(v;)}. Hence, it is sufficient to show that
every submodule M of R" is finitely generated. We proceed by induction on n.

If n =1, then M is an ideal of R and is thus finitely generated by assumption.
Assume that every submodule of RF is finitely generated for all 1 < k < n and
let S be a submodule of R".

If n > 1, we can extract from S something that is isomorphic to an ideal of R
and so will be finitely generated. In particular, let S; be the “last coordinates” in
S, specifically, let

S1 ={(0,...,0,a,) | (a1,...,an_1,a,) € S for some ay,...,a,_1 € R}

The set .S is isomorphic to an ideal of R and is therefore finitely generated, say
S1 = {(G1), where Gy = {g1,...,gx} is a finite subset of Sj.

Also, let
So={veS|v=(ai,...,an1,0) for someay,...,a,_1 € R}

be the set of all elements of S that have last coordinate equal to 0. Note that So
is a nonempty submodule of R" and is isomorphic to a submodule of R"~!.
Hence, the inductive hypothesis implies that S is finitely generated, say
Sy = (Gs), where Gs is a finite subset of S.

By definition of Sq, each g; € G; has the form
g9i=1(0,...,0,9in)
for g; , € R where there isa g; € S of the form
Gi = (gi1s--+ Gin-1,Gin)

Let Gy = {gy, ..., 0, }. We claim that S is generated by the finite set G, U G,.

To see this, let v = (aq,...,a,) € S. Then (0,...,0,a,) € S; and so
k
(Oa EER) O,Cl”) = Zrigi
i=1

for r; € R. Consider now the sum

k -

w= Zri@: € (G1)

i=1

The last coordinate of this sum is
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M)~

TiGin = Qn

i=1
and so the difference v — w has last coordinate 0 and is thus in Sy = (Gs).
Hence

v=(v—w)+w€ (G)+ (Gs) = (G UGy)

as desired.

For part 2), we leave it to the reader to review the proof and make the necessary
changes. The key fact is that S; is isomorphic to an ideal of R, which is
principal. Hence, S is generated by a single element of M. [J

The Hilbert Basis Theorem

Theorem 5.9 naturally leads us to ask which familiar rings are noetherian. The
following famous theorem describes one very important case.

Theorem 5.10 (Hilbert basis theorem) [f a ring R is noetherian then so is the
polynomial ring R[x].

Proof. We wish to show that any ideal Z in R[z] is finitely generated. Let L
denote the set of all leading coefficients of polynomials in Z, together with the 0
element of R. Then L is an ideal of R.

To see this, observe that if o € L is the leading coefficient of f(z) € Z and if
r € R then either ra = 0 or else ra is the leading coefficient of rf(z) € Z. In
either case, ra € L. Similarly, suppose that 5 € L is the leading coefficient of
g(x) € Z. We may assume that deg f(x) = ¢ and deg g(x) = j, with ¢ < j. Then
h(x) = 27~ f(x) is in Z, has leading coefficient o« and has the same degree as
g(x). Hence, a— 3 1is either 0 or it is the leading coefficient of
h(z) — g(z) € T. Ineither case« — B € L.

Since L is an ideal of the noetherian ring R, it must be finitely generated, say
L = {ay,...,an). Since a; € L, there exist polynomials f;(z) € Z with leading
coefficient a;. By multiplying each f;(z) by a suitable power of x, we may
assume that

deg fi(z) = d = max{deg fi(z)}

foralle=1,...,m.

Now for k=0,...,d —1 let L; be the set of all leading coefficients of
polynomials in Z of degree k, together with the 0 element of R. A similar
argument shows that Lj is an ideal of R and so L is also finitely generated.
Hence, we can find polynomials P, = {py1(z),...,ppn(x)} in T whose
leading coefficients constitute a generating set for Ly.
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Consider now the finite set

d—1
P = (U Pk> U {fl(x)a ) f’m(x)}

k=0

If J is the ideal generated by P then J C Z. An induction argument can be
used to show that J =Z. If g(x) € Z has degree 0 then it is a linear
combination of the elements of F, (which are constants) and is thus in 7.
Assume that any polynomial in Z of degree less than & is in 7 and let g(z) € T
have degree k.

If k < d then some linear combination h(x) over R of the polynomials in Py
has the same leading coefficient as g(x) and if k& > d then some linear
combination h(z) of the polynomials

{J?kidfl (J)), . 71‘k7dfm(x>} g j

has the same leading coefficient as g(z). In either case, there is a polynomial
h(z) € J that has the same leading coefficient as g(z). Since g(z) — h(z) € T
has degree strictly smaller than that of g(z) the induction hypothesis implies that

g(x) —h(z) e I
and so
g9(x) = lg(x) = h(z)] + h(z) € T
This completes the induction and shows that Z = 7 is finitely generated. O
Exercises

1. If M is a free R-module and 7: M — N is an epimorphism then must N
also be free?

2. Let Z be an ideal of R. Prove that if R/Z is a free R-module then Z is the
zero ideal.

3. Prove that the union of an ascending chain of submodules is a submodule.

4. Let S be a submodule of an R-module M. Show that if M is finitely
generated, so is the quotient module M /S.

5. Let S be a submodule of an R-module. Show that if both S and M /S are
finitely generated then so is M.

6. Show that an R-module M satisfies the a.c.c. for submodules if and only if
the following condition holds. Every nonempty collection S of submodules
of M has a maximal element. That is, for every nonempty collection S of
submodules of M there is an S €S with the property that
TeS=TCS.

7. LetT: M — N be an R-homomorphism.

a) Show that if M is finitely generated then so is im(7).
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11.

12.

13.

14.

15.
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b) Show that if ker(r) and im(r) are finitely generated then
M =ker(r) + S where S is a finitely generated submodule of M.
Hence, M is finitely generated.

If R is noetherian and 7 is an ideal of R show that R/Z is also noetherian.

Prove that if R is noetherian then so is R[x1, ..., z,].

. Find an example of a commutative ring with identity that does not satisfy

the ascending chain condition.

a) Prove that an R-module M is cyclic if and only if it is isomorphic to
R/Z where T is an ideal of R.

b) Prove that an R-module M is simple (M # {0} and M has no proper
nonzero submodules) if and only if it is isomorphic to R/Z where 7 is
a maximal ideal of R.

c) Prove that for any nonzero commutative ring R with identity, a simple
R-module exists.

Prove that the condition that R be a principal ideal domain in part 2) of

Theorem 5.9 is required.

Prove Theorem 5.9 in the following way.

a) Show that if T'C S are submodules of M and if T and S/T are
finitely generated then so is S.

b) The proof is again by induction. Assuming it true for any module
generated by n elements, let M = (vi,...,v,11) and let
M’ = (vy,...,v,). Thenlet T = S N M’ in part a).

Prove that any R-module M is isomorphic to the quotient of a free module

F. If M is finitely generated then F' can also be taken to be finitely

generated.

Prove that if S and 7" are isomorphic submodules of a module M it does

not necessarily follow that the quotient modules M /S and M /T are

isomorphic. Prove also that if S@® 77 ~ .S & 15 as modules it does not

necessarily follow that 7} ~ T5. Prove that these statements do hold if all

modules are free and have finite rank.



Chapter 6
Modules over a Principal Ideal Domain

We remind the reader of a few of the basic properties of principal ideal
domains.

Theorem 6.1 Let R be a principal ideal domain.

1) An element r € R is irreducible if and only if the ideal (r) is maximal.

2) Anelement in R is prime if and only if it is irreducible.

3) R is a unique factorization domain.

4) R satisfies the ascending chain condition on ideals. Hence, so does any
finitely generated R-module M. Moreover, if M is generated by n elements
any submodule of M is generated by at most n elements.

Annihilators and Orders

When R is a principal ideal domain all annihilators are generated by a single
element. This permits the following definition.

Definition Let R be a principal ideal domain and let M be an R-module, with
submodule N. Any generator of ann(N) is called an order of N. An order of
an element v € M is an order of the submodule (v). O

Note that any two orders ;2 and v of N (or of an element v € M) are associates,
since (i) = (v). Hence, an order of N is uniquely determined up to
multiplication by a unit of R. For this reason, we may occasionally abuse the
terminology and refer to “the” order of an element or submodule.

Also, if A C B C M are submodules of M then ann(B) C ann(A) and so any
order of A divides any order of B. Thus, just as with finite groups, the order of
an element/submodule divides the order of the module.
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Cyclic Modules

The simplest type of nonzero module is clearly a cyclic module. Despite their
simplicity, cyclic modules are extremely important and so we want to explore
some of their basic properties.

Theorem 6.2 Let R be a principal ideal domain.

1) If (v) is a cyclic R-module with ann(v) = («) then the map T: R — (v)
defined by 7(r) = rv is a surjective R-homomorphism with kernel ().
Hence

£
(@)

In other words, cyclic R-modules are isomorphic to quotient modules of the
base ring R. If o is a prime then («) is a maximal ideal in R and so R/{«)
is a field.

2)  Any submodule of a cyclic R-module is cyclic.

3) Let (v) be a cyclic submodule of M of order o. Then (Bv) has order
a/ged(ay B). Hence, if B and o are relatively prime then (Bv) also has
order a.

4) If uy,...,u, are nonzero elements of M with orders a,...,«, that are
pairwise relatively prime, then the sum

(v) ~

U:U1+"'+Un,
has order |y = ay- - -a,. Consequently, if M is an R-module and
M:Al ++An

where the submodules A; have orders «; that are pairwise relatively prime,
then the sum is direct.
Proof. We leave proof of part 1) as an exercise. Part 2) follows from part 2) of
Theorem 5.9. For part 3), we first consider the two extremes: when (3 is
relatively prime to o and when (3 | . As to the first, let 3 and « be relatively
prime. If v(fv) = 0 then « | v0. Hence, («, ) = 1 implies that « | v and so
a = a/ged(a, B) is an order of Su.

Next, if a« = 3d then d(8v) = 0 and so any order o(5v) of Sv divides d. But if
o(fv) properly divides d then ¢ properly divides d3 = « and yet annihilates v,
which contradicts the fact that o is an order of v. Hence o(fQv) and d are
associates and so d = /3 = a/ged(a, B) is an order of Sv.

Now we can combine these two extremes to finish the proof. Write 8 = d(5/d)
where d = ged(8, «) divides « and 3/d is relatively prime to «. Using the
previous results, we find that (3/d)v has order o and so Sv = d(3/d)v has
order a/d.
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For part 4), since ;. annihilates v, the order of v divides p. If the order of v is a
proper divisor of p then for some index k, there is a prime p dividing «;, for
which p/p annihilates v. But i1/ p annihilates each u; fori # k and so

0 Ky K _%(u)
= V= U= —| — |ug
p P P\

However, «; and p/ay, are relatively prime and so the order of (p/ay)uy is
equal to the order of u;, which contradicts the equation above. Hence, the order
of v is . Finally, to see that the sum above is direct, note that if

v+--+v,=0

where v; € A; then each v; must be 0, for otherwise the order of the sum on the
left would be different from 1. [

Free Modules over a Principal Ideal Domain

Example 4.5 showed that a submodule of a free module need not be free. (The
submodule Z x {0} of Z x Z is not free.) However, if R is a principal ideal
domain this cannot happen.

Theorem 6.3 Let M be a free module over a principal ideal domain R. Then
any submodule S of M is also free and rk(S) < tk(M).

Proof. We will give the proof only for modules of finite rank, although the
theorem is true for all free modules. Thus, since M ~ R" where n = rk(M) we
may in fact assume that M = R". Our plan is to proceed by induction on n.

For n =1, we have M = R and any submodule S of R is just an ideal of R. If
S = {0} then S is free by definition. Otherwise, S = (a) for some a # 0. But
since R is an integral domain, we have ra # 0 for all » # 0 and so {a} is a
basis for S. Thus, S is free and rk(S) = 1 = rk(M).

Now assume that if & < n then any submodule S of RF is free and rk(S) < k.
Let S be a submodule of R". Let

Si={veS|v=(ay,...,a,1,0) forsomeay,...,a,_1 € R}
and
Sy ={(0,...,0,a,) | (a1,...,a,_1,a,) € S for some ai,...,a, 1 € R}
Note that S; and Ss are nonempty.
Since S; is isomorphic to a submodule of R"~!, the inductive hypothesis

implies that S is free. Let B be a basis for S; with |B| <n — 1. If S; = {0}
then take B = 0.
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Now, S5 is isomorphic to a submodule (ideal) of R and is therefore also free of
rank at most 1. If Sy = {0} then all elements of S have zero final coordinate,
which means that S = S;, which is free with rank at most n, as desired. So
assume that S is not trivial and let {g} be a basis for S where

g=1(0,...,0,7)
for0 # r € R. Letg € S satisfy
G=(r1,...,rn_1,7)

We claim that BU {g} is a basis for S. To see that BU {g} generates S let
v=(a,...,a,) €S.Then (0,...,0,a,) € S, and so

0,...,0,a,) =sg=(0,...,0,sr)
for s € R. Thus a,, = sr and
$G = (871, ., 8Tp_1,87) = (871, ..., 8Ty_1, Qp)
Hence the difference v — sg is in S; = (BB). We then have
v=(v—s9)+sg€(B)+ (9 = (BU{g})

and so B U {g} generates S. Finally, to see that B U {g} is linearly independent,
note that if B = {vy,...,v;} and if

a1v1 + -+ ag—1vr +ag =0

then comparing nth coefficients gives ar = 0. Since R is an integral domain
and 7 # 0 we deduce that a = 0. It follows that a; = 0 for all ¢. Thus BU {g} is
a basis for .S and the proof is complete. [

If V is a vector space of dimension n then any set of n linearly independent
vectors in V' is a basis for V. This fails for modules. For example, Z is a Z-
module of rank 1 but the independent set {2} is not a basis. On the other hand,
the fact that a spanning set of size n is a basis does hold for modules over a
principal ideal domain, as we now show.

Theorem 6.4 Let M be a free R-module of rank n, where R is a principal ideal
domain. Let S = {s1,...,8,} be a spanning set for M. Then S is a basis for
M.

Proof. Let B = {b1,...,b,} be a basis for M and define the map 7: M — M by
7(b;) = s; and extending to a surjective R-homomorphism. Since M is free,
Theorem 5.6 implies that

M = ker(r) B im(7) = ker(7) B M

Since ker(7) is a submodule of the free module and since R is a principal ideal
domain, we know that ker(7) is free of rank at most n. It follows that
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tk(M) = rk(ker(7)) + k(M)

and so rk(ker(7)) = 0, that is, ker(7) = {0}, which implies that 7 is an R-
isomorphism and so S is a basis. [

In general, a basis for a submodule of a free module over a principal ideal
domain cannot be extended to a basis for the entire module. For example, the set
{2} is a basis for the submodule 27 of the Z-module Z, but this set cannot be
extended to a basis for Z itself. We state without proof the following result
along these lines.

Theorem 6.5 Let M be a free R-module of rank n, where R is a principal ideal
domain. Let N be a submodule of M that is free of rank k < n. Then there is a
basis B for M that contains a subset S = {vi,...,v} for which
{riv1,...,rrog} is a basis for N, for some nonzero elements 1, ...,r; of R. O

Torsion-Free and Free Modules

Let us explore the relationship between the concepts of torsion-free and free. It
is not hard to see that any free module over an integral domain is torsion-free.
The converse does not hold, unless we strengthen the hypotheses by requiring
that the module be finitely generated.

Theorem 6.6 Let M be a torsion-free finitely generated module over a
principal ideal domain R. Then M is free. Thus, a finitely generated module
over a principal ideal domain is free if and only if it is torsion free.

Proof. Let G = {vy,...,v,} be a generating set for M. Consider first the case
n =1, whence G = {v}. Then G is a basis for M since singleton sets are
linearly independent in a torson-free module. Hence, M is free.

Now suppose that G = {u, v} is a generating set with u, v # 0. If G is linearly
independent, we are done. If not, then there exist nonzero r,s € R for which
ru = sv. It follows that sM = s(u,v) C (u) and so sM is a submodule of a
free module and is therefore free by Theorem 6.3. But the map 7: M — sM
defined by 7(v) = sv is an isomorphism because M is torsion-free. Thus M is
also free.

Now we can do the general case. Write
G = {ulv"' y Uk U1, - - - ,Un_k}

where S = {uy,...,u;} is a maximal linearly independent subset of G. (Note
that S is nonempty because singleton sets are linearly independent.)

For each v;, the set {uj,...,ug, v;} is linearly dependent and so there exist
a; € Rand ry,...,r; € R for which
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a;v;i +riur + -+ rpup =0
Ifa = ay---a,—; then
aM = aluy, ..., ug, V1, ., Vn—k) C (U1,...,ux)
and since the latter is a free module, so is a M, and therefore so is M. [J
Prelude to Decomposition: Cyclic Modules

The following result shows how cyclic modules can be composed and
decomposed.

Theorem 6.7 Let M be an R-module.
1) Ifuy,...,u, are nonzero elements of M with orders o, ...,«, that are
pairwise relatively prime, then

<U1+"'+u">: <u1>@"'€9<un>

2) Ifve M has order i = o+, where oy, ..., q, are pairwise relatively
prime, then v can be written in the form

v=up + -+ Uy
where u; has order o;. Moreover,
(v) = (u1) & - & (un)

Proof. According to Theorem 6.2, the order of v is i and the sum on the right is
direct. It is clear that (u; + -+ + u,) C (u1) @ -+ @ (u,). For the reverse
inclusion, since o and i/ are relatively prime, there exist r, s € R for which

o +5ﬁ =1
ay

Hence

U = (roq—i—s'u)ul :sﬂul zsﬂ(uri-m—i—un) € (ur + -+ up)
aq aq a1

Similarly, uj, € {(u; + --- + u,,) for all k& and so we get the reverse inclusion.

For part 2), the scalars 3, = u/«y, are relatively prime and so there exist a; € R
for which

alﬂl + -+ a)nﬂn =1
Hence,
v = (alﬁl + - anﬁn)v = alﬁlv + -+ anﬂnv

Since the order of a;[v divides oy, these orders are pairwise relatively prime.
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Hence, the order of the sum on the right is the product of the orders of the terms
and so a[,v must have order ay,. The second statement follows from part 1).

The First Decomposition

The first step in the decomposition of a finitely generated module M over a
principal ideal domain R is an easy one.

Theorem 6.8 Any finitely generated module M over a principal ideal domain R
is the direct sum of a free R-module and a torsion R-module

M = Mfree S2) Mtor

As to uniqueness, the torsion part M, is unique (it must be the set of all torsion
elements of M) whereas the free part My is not unique. However, all possible
free summands are isomorphic and thus have the same rank.

Proof. As to existence, the set M, of all torsion elements is easily seen to be a
submodule of M. Since M is finitely generated, so is the torsion-free quotient
module M /M. Hence, according to Theorem 6.6, M /M, is free. Consider
now the canonical projection 7: M — M /M, onto M. Since M /My is
free, Theorem 5.6 implies that

M = M, ® F
where F' ~ M [ M, is free.

As to uniqueness, suppose that M = T & G where T is torsion and G is free.
Then T C My But if v € My, and v=1t+ g where t € T and g € G then
av = 0 and bt = 0 for some nonzero a,b € R and so (ab)g = 0, which implies
that g = 0, that is, v € T'. Thus, T' = M.

For the free part, since M = M, @ F = M, ® G, the submodules F' and G
are both complements of M, and hence are isomorphic. Hence, all free
summands are isomorphic and therefore have the same rank. [

Note that if {wy, ..., w,,} is a basis for Mg wWe can write
M = <’LU1> b---bD <wm> ¥ Mtor

where each cyclic submodule (w;) has zero annihilator. This is a partial
decomposition of M into a direct sum of cyclic submodules.

A Look Ahead

So now we turn our attention to the decomposition of finitely generated torsion
modules M over a principal ideal domain. We will develop two
decompositions. One decomposition has the form
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M: <fU1> @@ <f0n>
where the annihilators of the cyclic submodules form an ascending chain
ann((v1)) C --- C ann((vy,))

This decomposition is called an invariant factor decomposition of M.

Although we will not approach it in quite this manner, the second
decomposition can be obtained by further decomposing each cyclic submodule
in the invariant factor decomposition into cyclic submodules whose annihilators
have the form (p°) where p is a prime. Submodules with annihilators of this
form are called primary submodules and so the second decomposition is
referred to as a primary cyclic decomposition.

Our plan will be to derive the primary cyclic decomposition first and then obtain
the invariant factor decomposition from the primary cyclic decomposition by a
piecing-together process, as described in Theorem 6.7.

As we will see, while neither of these decompositions is unique, the sequences
of annihilators are unique, that is, these sequences are completely determined by
the module M.

The Primary Decomposition
The first step in the primary cyclic decomposition is to decompose the torsion

module into a direct sum of primary submodules.

Definition Let p be a prime in R. A p-primary (or just primary) module is a
module whose order is a power of p. O

Note that a p-primary module M with order p* must have an element of order
k
pr.

Theorem 6.9 (The primary decomposition theorem) Let M be a nonzero
torsion module over a principal ideal domain R, with order

€n

po=pp

where the p;'s are distinct nonassociate primes in R.
1) Then M is the direct sum

M=M,® &M,
where

M, ={ve M|p]v=0}
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is a primary submodule with order p;" and annihilator
ann(M,,) = (p;")
2)  This decomposition of M into primary submodules is unique up to order of
the summands. That is, if
M =N, ®---®N,

m

where N, is primary of order q;' and qi, ..., qy are distinct nonassociate
primes then m = n and after a suitable reindexing of the summands we
have N, = M,,. Hence, q; and p; are associates and f; =e; (and so

w= q{l- --q/" is also a prime factorization of ).
Proof. For part 1), let us write y; = u/p". We claim that

My, = piM = {piv | ve M}
Since y;v is annihilated by p;’, we have j;M C M,,. On the other hand, since
w; and p{" are relatively prime, there exist a,b € R for which
api + by =
and so if x € M), then
= la = (ap; +bp" )z = apx € M
Hence M, C u;M.

Now, since ged(pq, ..., ptn,) = 1, there exist scalars a; for which
appiy + e appin = 1

and so for any x € M

n
r=1x = (a1p1 + -+ appn)x € ZmM
i=1
Moreover, since the order of ;M divides p;' and the p{''s are pairwise
relatively prime, it follows that the sum of the submodules p; M is direct, that is,

M:MlMeB...@MnM:Mpl@...@M”

As to the annihilators, it is clear that (p{") C ann(p;M). For the reverse
inclusion, if r € ann(y; M) then ry; € ann(M) and so p{'j; | 7, that is, pi* | r
and so r € (p;'). Thus ann(w; M) = (p’).

As to uniqueness, we claim that ¢ = qlll- --qJr is an order of M. This follows
from the fact that N, contains an element u; of order qil and so the sum
v =uj + --- + u,, has order q. Hence, g divides p. But i divides ¢ and so g and
4 are associates.
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Unique factorization in R now implies that m =n and, after a suitable
reindexing, that f; = e; and ¢; and p; are associates. Hence, N, is primary of
order p;’. For convenience, we can write N, as N,. Hence,

N, C{ve M |piv=0} =M,
But if
Npl 69”.@]\]71 :Mpl @...@Mp

n

and N,, C M,, for all 4, we must have N,, = M,, forall ;. O

The Cyclic Decomposition of a Primary Module

The next step in the decomposition process is to show that a primary module
can be decomposed into a direct sum of cyclic submodules. While this
decomposition is not unique (see the exercises), the set of annihilator ideals is
unique, as we will see. To establish this uniqueness, we use the following result.

Lemma 6.10 Let M be a module over a principal ideal domain R and let

p € R be a prime.

1) If pM = {0} then M is a vector space over the field R/(p) with scalar
multiplication defined by

(r+{(p)v=rv

Jorallve M.
2)  For any submodule S of M the set

8P ={yes|pv=0}
is also a submodule of M and if M = S & T then
M® = g g 7P

Proof. For part 1), since p is prime, the ideal (p) is maximal and so R/(p) is a
field. We leave the proof that M is a vector space over R/(p) to the reader. For
part 2), it is straightforward to show that S is a submodule of M. Since
S®) C S and TW) C T we see that S® NT® = {0}. Also, if v € M®) then
pv=0. But v=s+1t for some s€ S and t € T and so 0 = pv = ps + pt.
Since ps € S and pt € T we deduce that ps = pt = 0, whence v € S®) @ T®),
Thus, M®) C S® g T®) and since the reverse inequality is manifest, the result
is proved. [J

Theorem 6.11 (The cyclic decomposition theorem of a primary module) Let
M be a nonzero primary finitely generated torsion module over a principal
ideal domain R, with order p°.
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1) Then M is the direct sum
M = (v1) @ D (vn) (6.1)

of cyclic submodules with annihilators ann({v;)) = (p“) that can be
arranged in ascending order

ann((v;)) C --- C ann((vy))

or equivalently

e=e =€ > 2>e
2) As to uniqueness, suppose that M is also the direct sum
M = (u1) @ -~ & (um)

of cyclic submodules with annihilators ann((v;)) = (q/') arranged in
ascending order

ann((u1)) C -+- C ann((uy,))
or equivalently
h2>2fz2>fn
Then the two chains of annihilators are identical, that is
ann((u;)) = ann({v;))

for all i. Thus, m = n, p and q are associates and f; = e; for all i.
Proof. Note first that if (6.1) holds then p°v; = 0. Hence, the order of v; divides
p° and so must have the form p“ for e; < e. To prove (6.1), let v € M be an
element with order equal to the order of M, that is

ann(v) = ann(M) = (p°)
(We remarked earlier that such an element must exist.)
If we show that (v) is complemented, that is, M = (v) & S for some submodule

S then since S is also a finitely generated primary torsion module over R, we
can repeat the process to get

M= (v)® (v2) ®--- ® (V) ® S

where ann(v;) = (p%). We can continue this decomposition as long as
Sk # {0}. But the ascending sequence of submodules

(v) € (v) ® (va) C -+

must terminate since M is noetherian and so eventually we must have
S = {0}, giving (6.1).
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Now, the direct sum M; = (v) & {0} clearly exists. Suppose that the direct sum
M, = <’U> @ Sk

exists. We claim that if M}, # M then it is possible to find a submodule Sy
that properly contains S}, for which the direct sum M}, = (v) B Sk exists.

Once this claim is established, then since M is finitely generated, this process
must stop after a finite number of steps, leading to M = (v) & S for some
submodule S, as desired.

If My, # M then there is a u € M \ Mj. We claim that for some scalar o € R,
we can take Sgi1 = (Sk,u — av), which is a proper superset of Sy since
u ¢ (v) B Sk.

Thus, we must show that there is an o € R for which
z € (V)N (S, u—av)y=z=0
Now, there exist scalars a and b for which
xr=av=s+blu— av)

What can we say about the scalars a and b?

First, although u ¢ M}, we do have
bu = (a+ ab)v — s € {v) ® S},
So let us consider the ideal of all such scalars
I={reR|ruc (v)®Sy}
Since p¢ € 7 and 7 is principal, we have
I=0p)={reR|ruec ()@ S}

for some f < e. Moreover, f is not 0 since that would imply that Z = R and so
u=1u € (v) ® Sy, contrary to assumption.

Since pf € 7, we have p/u = cv + t for some ¢ € S,. Then
0=pu=p~I(plu) = pTev+pt

and since (v) NS = {0}, it follows that p°~/cv = 0. Hence ¢ = &p/ for some
6 € R and

pPlu=cott==6plv+t

Since b € 7, we have b = 3p/ and so
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bu = Bpu=68p v+ Bt
Thus,
x=av=s+blu—av) = s+ 68pTv+ Bt — afp’v
Now it appears that « = § would be a good choice, since then
r=av=s+ft €S
and since (v) NS, = {0} we get 2 = 0. This completes the proof of (6.1).
For uniqueness, note first that A/ has orders p® and ¢/* and so p and ¢ are

associates and e; = f;. Next we show that n = m. According to part 2) of
Lemma 6.10,

M® — <U1>(P) D@ <Un>(p)
and
M®) = (u)? @& - @ (u,,)P

where all summands are nonzero. Since pM ) = {0}, it follows from part 1) of
Lemma 6.10 that M) is a vector space over R/(p) and so each of the
preceding decompositions expresses M) as a direct sum of one-dimensional
vector subspaces. Hence, m = dim(M ) = n.

Finally, we show that the exponents e; and f; are equal using induction on e;. If
e; =1 then e; =1 for all 7 and since f; = e;, we also have f; =1 for all 1.
Suppose the result is true whenever e; < k — 1 and let e; = k. Suppose that

(e1y...,en) = (e1,...,€5,1,...,1),es> 1

and
(fi,eo s fu)=(fry-o s fu 1,0 1), i > 1
Then
pM = p(v1) -~ @ p{vs)
and

pM = p(ur) & -+ & plur)

But p(v) = (pvy) is a cyclic submodule of M with annihilator (p®~!) and so
by the induction hypothesis

s=tande; = fi,...,e5 = f;

which concludes the proof of uniqueness. [
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The Primary Cyclic Decomposition Theorem
Now we can combine the various decompositions.
Theorem 6.12 (The primary cyclic decomposition theorem) Let M be a

nonzero finitely generated module over a principal ideal domain R.
1) Then

M = Mfree ¥ Mtor
where My is free and My, is a torsion module. If M has order
W= pflfl .. ,pfln

where the p;'s are distinct nonassociate primes in R then M, can be
uniquely decomposed (up to the order of the summands) into the direct sum

M=M, & &M,

where
Mp, = {U € Mior | p;i’l) = 0}

is a primary submodule with annihilator (p;'). Finally, each primary

submodule M), can be written as a direct sum of cyclic submodules, so that
M = Miee ® [ (v1,1) @ - @ {01) |-+ B [ {00,) B - B (k) ]

M,

P

M,

Pn

where ann((v; ;)) = (p;"’) and the terms in each cyclic decomposition can

be arranged so that, for each i,

ann((v;,1)) C -+ C ann((vi,))

or, equivalently,

€ = €12 €> > ek
2) As for uniqueness, suppose that
M = Nfee ® <1}1> DD <I[>

is a decomposition of M into the direct sum of a free module N and

primary cyclic submodules (x;). Then

a) rk(Nfree) = rk(Mfree)

b) The number of summands is the same in both decompositions, that is
€:k1+"'+kn

¢) The summands in this decomposition can be reordered to get
M = Niee ® [(u11) @ --- @ (ur,)] @ © [(un1) ® -+ © (unp,)]

where the primary submodules are the same
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(uin) @ @ (uig,) = (vi1) © - & (vig,)
fori=1,...,n and the annihilator chains are the same, that is,
ann((u;,;)) = ann((v;;))

foralli,j.
In summary, the free rank, primary submodules and annihilator chain are
uniquely determined by the module M.
Proof. We need only prove the uniqueness. We have seen that Npee and My,
are isomorphic and thus have the same rank. Let us look at the torsion part.

Since the order of each primary cyclic submodule (z;) must divide the order of
M, this order is a power of one of the primes pi,...,p,. Let us group the
summands by like primes p; to get

M = Nfree B [ <u1,1> O---D <u1,j1> ] S D [<un71> DD <uﬂ,jn>]

Ny, (primary of order p{ D) Ny, (primary of order p;")

Then each group N, is a primary submodule of M with order pi;. The
uniqueness of primary decompositions of M, implies that IV, = M,,. Then the
uniqueness of cyclic decompositions implies that the annihilator chains for the
decompositions of V), and M,, are the same. [

We have seen that in a primary cyclic decomposition
M = Miree ® [(v1,1) @ - D (vi)] B -+ @ [{vn1) @ ® (vnp,)]
the chain of annihilators
ann((v;,;)) = (p;"”)

is unique except for order. The sequence p?” of generators is uniquely
determined up to order and multiplication by units. This sequence is called the
sequence of elementary divisors of M. Note that the elementary divisors are
not quite as unique as the annihilators: the multiset of annihilators is unique but
the multiset of generators is not since if p;*’ is a generator then so is up;” for
any unit v in R.

The Invariant Factor Decomposition

According to Theorem 6.7, if S and T are cyclic submodules with relatively
prime orders, then S & T is a cyclic submodule whose order is the product of
the orders of .S and 7". Accordingly, in the primary cyclic decomposition of M

M = Mpee ® [(011) @ - & (V1) | & & [ (Un1) B -+ D (Vi) ]

M,

J\Ipn
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with elementary divisors p; " satisfying

€ =€1> €2 > > ey (6.4)

we can feel free to regroup and combine cyclic summands with relatively prime
orders. One judicious way to do this is to take the leftmost (highest order) cyclic
submodules from each group to get

Dy = (v11) ® -+ @ (V1)
and repeat the process

Dy = (vi2) ® -+ @ (vn2)
Dy = (v13) ® - @ (vp3)

Of course, some summands may be missing here since the primary modules M),
do not necessarily have the same number of summands. In any case, the result
of this regrouping and combining is a decomposition of the form

M:Mfree@Dl®"'@Drn

which is called an invariant factor decomposition of M.

For example, suppose that
M = Mpee ® [(v11) ® (v12)] ® [(v2,1)] B [(v31) B (v32) B (v33)]
Then the resulting regrouping and combining gives

M = Myee & [ (v11) & (v21) & (031) | & [ (v12) ® (v32) ] & [(v35)]
Dy D, D3

As to the orders of the summands, referring to (6.4), if D; has order d; then
since the highest powers of each prime p; are taken for d;, the second—highest
for ds and so on, we conclude that

A | diy |-+ [ dy | dy (6.5)
or equivalently,
ann(D;) C ann(Ds) C ---
The numbers d; are called invariant factors of the decomposition.
For instance, in the example above suppose that the elementary divisors are
i, p2, D, 1, s

Then the invariant factors are
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di = pipoph
do = 2 3

2 = P1P3
d3 =p3

The process described above that passes from a sequence pf’”’ of elementary
divisors in order (6.4) to a sequence of invariant factors in order (6.5) is
reversible. The inverse process takes a sequence di,...,d,, satisfying (6.5),
factors each d; into a product of distinct nonassociate prime powers with the
primes in the same order and then “peels off” like prime powers from the left.
(The reader may wish to try it on the example above.)

This fact, together with Theorem 6.7, implies that primary cyclic
decompositions and invariant factor decompositions are essentially equivalent.
In particular, given a primary cyclic decomposition of M we can produce an
invariant factor decomposition of M whose invariant factors are products of the
elementary divisors and for which each elementary divisor appears in exactly
one invariant factor. Conversely, given an invariant factor decomposition of M
we can obtain a primary cyclic decomposition of M whose elementary divisors
are precisely the multiset of prime power factors of the invariant factors.

It follows that since the elementary divisors of M are unique up to
multiplication by units, the invariant factors of M are also unique up to
multiplication by units.

Theorem 6.13 (The invariant factor decomposition theorem) Let M be a
finitely generated module over a principal ideal domain R. Then

M:J\/[free@Dl@"'@Dm

where My is a free submodule and D; is a cyclic submodule of M, with order
d;, where

dm,|dm,—1 | |d2|d1

This decomposition is called an invariant factor decomposition of M and the
scalars d;, are called the invariant factors of M. The invariant factors are
uniquely determined, up to multiplication by a unit, by the module M. Also, the
rank of M. is uniquely determined by M. O

The annihilators of an invariant factor decomposition are called the invariant
ideals of M. The chain of invariant ideals is unique, as is the chain of
annihilators in the primary cyclic decomposition. Note that d; is an order of M,
that is

ann(M) = (dy)

Note also that the product
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v = dy--dy,

of the invariant factors of M has some nice properties. For example, v is the
product of all the elementary divisors of M. We will see in a later chapter that
in the context of a linear operator 7 on a vector space, ~y is the characteristic
polynomial of 7.

Exercises

1.
2.

10.

Show that any free module over an integral domain is torsion-free.

Let R be a principal ideal domain and R the field of quotients. Then R™ is
an R-module. Prove that any nonzero finitely generated submodule of R
is a free module of rank 1.

Let R be a principal ideal domain. Let M be a finitely generated torson-free
R-module. Suppose that IV is a submodule of M for which IV is a free R-
module of rank 1 and M /N is a torsion module. Prove that M is a free R-
module of rank 1. Hint: Use the results of the previous exercise.

Show that the primary cyclic decomposition of a torsion module over a
principal ideal domain is not unique (even though the elementary divisors
are).

Show that if M is a finitely generated R-module where R is a principal
ideal domain, then the free summand in the decomposition M = F' & My,
need not be unique.

If (v) is a cyclic R-module or order a show that the map 7: R — (v)
defined by 7(r) = rv is a surjective R-homomorphism with kernel (a) and
o)

If R is a ring with the property that all submodules of cyclic R-modules are

cyclic, show that R is a principal ideal domain.

Suppose that F' is a finite field and let F'* be the set of all nonzero elements

of F.

a) Show that F'* is an abelian group under multiplication.

b) Show that p(x) € F[z] is a nonconstant polynomial over F' and if
r € Fis aroot of p(x) then x — r is a factor of P(x).

¢) Prove that a nonconstant polynomial p(x) € F[z] of degree n can have
at most n distinct roots in F.

d) Use the invariant factor or primary cyclic decomposition of a finite Z-
module to prove that F™* is cyclic.

Let R be a principal ideal domain. Let M = (v) be a cyclic R-module with

order a. We have seen that any submodule of M is cyclic. Prove that for

each € R such that 8 | « there is a unique submodule of M of order 3.

Suppose that M is a free module of finite rank over a principal ideal

domain R. Let N be a submodule of M. If M /N is torsion, prove that

tk(N) = rk(M).
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Let F[x] be the ring of polynomials over a field F' and let F”[x] be the ring
of all polynomials in F'[z] that have coefficient of = equal to 0. Then F'[z]
is an F’[x]-module. Show that F'[x] is finitely generated and torsion-free
but not free. Is F'[x] a principal ideal domain?

Show that the rational numbers QQ form a torsion-free Z-module that is not
free.

More on Complemented Submodules

13.

14.

15.

16.

Let R be a principal ideal domain and let M be a free R-module.

a) Prove that a submodule N of M is complemented if and only if M /N
is free.

b) If M is also finitely generated, prove that NV is complemented if and
only if M /N is torsion-free.

Let M be a free module of finite rank over a principal ideal domain R.

a) Prove that if N is a complemented submodule of M then
k() = 1k(M) ifand only if N = M.

b) Show that this need not hold if N is not complemented.

c) Prove that N is complemented if and only if any basis for N can be
extended to a basis for M.

Let M and N be free modules of finite rank over a principal ideal domain

R.Let7: M — N be an R-homomorphism.

a) Prove that ker(7) is complemented.

b) What about im(7)?

¢) Prove that

k(M) = rk(ker(r)) + rk(im(r)) = rk(ker(r)) + rk(keer[(T))

d) If 7 is surjective then 7 is an isomorphism if and only if
k(M) = rk(N).
e) If M/Lis free then

rk<]\L/[> = k(M) — rk(L)

A submodule N of a module M is said to be pure in M if whenever

v ¢ M\ N thenrv ¢ N for all nonzero r € R.

a) Show that N is pure if and only if v € IV and v = rw for r € R implies
wE N.

b) Show that N is pure if and only if M /N is torsion-free.

¢) If R is a principal ideal domain and M is finitely generated, prove that
N is pure if and only if M /N is free.

d) If L and N are pure submodules of M then so are LN N and LU N.
What about L + N?

e) If N is pure in M then show that LN N is pure in L for any
submodule L of M.
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17. Let M be a free module of finite rank over a principal ideal domain R. Let
L and N be submodules of M with L complemented in M. Prove that

k(L + N) + tk(L N N) = k(L) + rk(N)



Chapter 7
The Structure of a Linear Operator

In this chapter, we study the structure of a linear operator on a finite-
dimensional vector space, using the powerful module decomposition theorems
of the previous chapter. Unless otherwise noted, all vector spaces will be
assumed to be finite-dimensional.

A Brief Review

We have seen that any linear operator on a finite-dimensional vector space can
be represented by matrix multiplication. Let us restate Theorem 2.14 for linear
operators.

Theorem 7.1 Let 7 € L(V) and let B = (b1, ...,b,) be an ordered basis for V.
Then T can be represented by matrix multiplication
[7(v)]s = [7]5 [v]5
where
[7]s = ([r(0)]s | -+ | [7(b2)]5) U

Since the matrix [7]p depends on the ordered basis B, it is natural to wonder
how to choose this basis in order to make the matrix [7]z as simple as possible.
That is the subject of this chapter.

Let us also restate the relationship between the matrices of 7 with respect to
different ordered bases.

Theorem 7.2 Let 7 € L(V') and let B and B’ be ordered bases for V. Then the
matrix of T with respect to B’ can be expressed in terms of the matrix of T with
respect to B as follows

[rlg = Mppr|s(Mps)~"
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where
MB,B’ = ([b1]3’7 ceey [bn]B’)) O

Finally, we recall the definition of similarity and its relevance to the current
discussion.

Definition Two matrices A and B are similar if there exists an invertible
matrix P for which

B=PAP™!

The equivalence classes associated with similarity are called similarity
classes. [

Theorem 7.3 Let V' be a vector space of dimension n. Then two n. X n matrices
A and B are similar if and only if they represent the same linear operator
7 € L(V), but possibly with respect to different ordered bases. In this case, A
and B represent exactly the same set of linear operators in L(V'). O

According to Theorem 7.3, the matrices that represent a given linear operator
7 € L(V) are precisely the matrices that lie in one particular similarity class.
Hence, in order to uniquely represent all linear operators on V' we would like to
find a simple representative of each similarity class, that is, a set of simple
canonical forms for similarity.

The simplest type of useful matrices is the diagonal matrices. However, not all
linear operators can be represented by diagonal matrices, that is, the set of
diagonal matrices does not form a set of canonical forms for similarity.

This gives rise to two different directions for further study. First, we can search
for a characterization of those linear operators that can be represented by
diagonal matrices. Such operators are called diagonalizable. Second, we can
search for a different type of “simple” matrix that does provide a set of
canonical forms for similarity. We will pursue both of these directions at the
same time.

The Module Associated with a Linear Operator

Throughout this chapter, we fix a nonzero linear operator 7 € £(V') and think
of V not only as a vector space over a field F' but also as a module over F[z],
with scalar multiplication defined by

p(x)v = p(7)(v)

We call V the F[z]-module defined by 7 and write V, to indicate the
dependence on 7 (when necessary). Thus, V; and V,, are modules over the same
ring F'[z], although the scalar multiplication is different if 7 # o.
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Our plan is to interpret the concepts of the previous chapter for the
module/vector space V. First, since V' is a finite-dimensional vector space, so is
L(V). Tt follows that V; is a torsion module. To see this, note that since
dim(L(V)) = n?, the n? + 1 vectors

are linearly dependent in L£(V), which implies that p(7) =0 for some
polynomial p(z) € Flz]. Hence, p(z)V = {0}, which shows that

ann(V') # {0}.

Also, since V is finitely generated as a vector space, it is, a fortiori, finitely
generated as an F'[z]-module defined by 7. Thus, V is a finitely generated
torsion module over a principal ideal domain F'[z] and so we may apply the
decomposition theorems of the previous chapter.

Next we take a look at the connection between module isomorphisms and vector
space isomorphisms. This also describes the connection with similarity.

Theorem 7.4 Let 7 and o be linear operators on V. Then V. and V, are
isomorphic as F[x]-modules if and only if T and o are similar as linear
operators. In particular, a function ¢:V, — V, is a module isomorphism if and
only if it is a vector space automorphism of V satisfying

o=¢rd !
Proof. Suppose that ¢: V. — V, is a module isomorphism. Then forv € V
$(av) = 26(v)
which is equivalent to
¢(7(v)) = o (¢(v))
and since ¢ is bijective this is equivalent to
(679~ v = 0o (v)

that is, o = ¢7¢ . Since a module isomorphism from V. to V is a vector space
isomorphism as well, the result follows.

For the converse, suppose that 0 = ¢7¢ ! for a vector space automorphism ¢
on V. This condition is equivalent to ¢ = ¢7 and so

¢(z*v) = ¢(7"(v)) = 0" (¢(v)) = "¢ (v)
and by the F-linearity of ¢, for any polynomial p(x) € F[z] we have
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o(p(1)v) = p(0)9(v)
which shows that ¢ is a module isomorphism from V; to V,,. I
Submodules and Invariant Subspaces

There is a simple connection between the submodules of the F[z]-module V;
and the subspaces of the vector space V. Recall that a subspace S of V' is 7-
invariant if 7(S) C S.

Theorem 7.5 A subset S of V is a submodule of the F[x]-module V; if and only
if it is a T-invariant subspace of the vector space V. [J

Orders and the Minimal Polynomial

We have seen that since V' is finite-dimensional, the annihilator
ann(V) = {p(z) € F[z] | p(z)V = {0}}

of V' is a nonzero ideal of F'[z] and since F[x] is a principal ideal domain, this
ideal is principal, say

ann(V') = (p(z))

Since all orders of V' are associates and since the units of F'[x] are precisely the
nonzero elements of F, there is a unique monic order of V.

Definition Let V; be an F[x]-module defined by 1. The unique monic order of
V,, that is, the unique monic polynomial that generates ann(V;) is called the
minimal polynomial for 7 and is denoted by m.(x) or min(7). Thus,

ann(V;) = (m(z))
and
p(z)V; = {0} & p(1) = 0 < m-(2) | p(z) O

In treatments of linear algebra that do not emphasize the role of the module V;
the minimal polynomial of a linear operator 7 is simply defined as the unique
monic polynomial m.(x) of smallest degree for which m,(7) = 0. It is not hard
to see that this definition is equivalent to the previous definition.

The concept of minimal polynomial is also defined for matrices. If A is a square
matrix over F' the minimal polynomial ma (x) of A is defined as the unique
monic polynomial p(z) € F[z] of smallest degree for which p(A4) =0. We
leave it to the reader to verify that this concept is well-defined and that the
following holds.
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Theorem 7.6

1) If A and B are similar matrices then my(x) = mp(z). Thus, the minimal
polynomial is an invariant under similarity.

2) The minimal polynomial of T¢€ L(V) is the same as the minimal
polynomial of any matrix that represents T. O

Cyclic Submodules and Cyclic Subspaces
For an F'[z]-module V;, consider the cyclic submodule
() = {p(x)v | p(z) € Fla]} = {p(7)(v) | p(z) € Flz]}

We would like to characterize these simple but important submodules in terms
of vector space notions.

As we have seen, (v) is a 7-invariant subspace of V, but more can be said. Let
m(x) be the minimal polynomial of 7|, and suppose that deg(m(z)) = n. Any
element of (v) has the form p(x)v. Dividing p(z) by m(x) gives

p(x) = q(z)m(z) + r(z)
where deg r(z) < deg m(z). Since m(z)v = 0, we have
p(x)v = g(z)m(z)v + r(z)v = r(z)v
Thus,
() = {r(x)v | degr(x) <n}
Put another way, the ordered set
B=(v,zv,...,z" ') = (v,7(v),..., 7" (v))

spans (v) as a vector space over F. But it is also the case that B is linearly
independent over F, for if

rov + v 4+ 2" =0
then r(z)v = 0 where
1

r(x) =ro+rax+ - +rp_a"

has degree less than n. Hence, r(z) = 0, that is, r; = 0 forall¢ = 0,...,n — 1.
Thus, B is an ordered basis for (v).

To determine the matrix of 7|,y with respect to 13, write w; = 7(v). Then
7(w;) = 7(7'(v)) = 7 (v) = Wi

fori=0,...,n— 2 and so 7 simply “shifts” each basis vector in B, except the
last one, to the next basis vector in B. For the last vector w,,_1, if
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m(m) =ayg+ax+ -+ (ln_l$n71 4z
then since m(7) = 0 we have
0=m(r)=ag+ a7+ +a, 17"+ 7"
and so

T(wpo1) = 7(7" " (v)) = 7"(v)
= —(ao +a7+--+ a/n—lTnil)(U)
= —Qagv — alT(’U) — a71—17n71(v)

= —QWo — a1W1 — 1 — Ap—1Wn-1

Hence, the matrix of 7|, with respect to B is

00 -~ 0 —ap

10 -+ 0 —-a
Clm(z)] =0 1 " :

T, 0 —Qp-2

00 -+ 1 —ap

This is known as the companion matrix for the polynomial m(z). Note that
companion matrices are defined only for monic polynomials.

Definition Let 7 € L(V'). A subspace S of V' is T-cyclic if there exists a vector
v € S for which the set

{o,7(0),..., 7" (v)}
is a basis for S. O
Theorem 7.7 Let V; be an F[x]-module defined by T € L(V).
1) (Characterization of cyclic submodules) 4 subset S CV is a cyclic
submodule of V; if and only if it is a T-cyclic subspace of the vector space

V.
2) Suppose that (v) is a cyclic submodule of V. If the monic order of (v) is

m(x) =ag+ax+---+ an,fl(E”_l NI
then
B = (v,zv,...,2" ) = (v,7(v), ..., 7" }(v))

is an ordered basis for (v) and the matrix [7|,]p is the companion matrix
Clm(x)] of m(x). Hence,

dim({v)) = deg(m(z)) U
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Summary

The following table summarizes the connection between the module concepts
and the vector space concepts that we have discussed.

F[x]-Module V; F-Vector Space VV

Scalar multiplication: p(z)v Action of p(7): p(7)(v)

Submodule of V; T-Invariant subspace of V'
Annihilator: Annihilator:

ann(V7) = {p(z) | p(x)V; = {0}} | ann(V) = {p(z) | p(7)(V) = {0}}
Monic order m(x) of V;: Minimal polynomial of 7:

ann(V;) = (m(x)) m(x) has smallest deg with m(7) =0
Cyclic submodule of V: T-cyclic subspace of V:

(v) = {p(z)v | degp(x) < degm(zx)} | (v) = span{v, T(v),..., 7" L(v)}

The Decomposition of V-

We are now ready to translate the cyclic decomposition theorem into the
language of V.. First, we define the elementary divisors and invariant factors
of an operator 7 to be the elementary divisors and invariant factors, respectively,
of the module V,. Also, the elementary divisors and invariant factors of a
matrix A are defined to be the elementary divisors and invariant factors,
respectively, of the operator 74.

We will soon see that the multiset of elementary divisors and the multiset of
invariant factors are complete invariants under similarity and so the multiset of
elementary divisors (or invariant factors) of an operator 7 is the same as the
multiset of elementary divisors (or invariant factors) of any matrix that
represents 7.

Theorem 7.8 (The cyclic decomposition theorem for V') Let 7 be a linear
operator on a finite-dimensional vector space V. Let
my(x) = B () 9l (@)

be the minimal polynomial of T, where the monic polynomials p;(x) are distinct
and irreducible.
1) (Primary decomposition) The F'[x]-module V. is the direct sum

V=V &V,
where
Vo ={veV|p(r)(v) =0}

is a primary submodule of V.. of order p; (x). In vector space terms, V,, is a
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2)

3)

4)
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T-invariant subspace of V' and the minimal polynomial of T|v, is
min(7ly, ) = pj' (z)

(Cyclic decomposition) Each primary summand V,, can be decomposed
into a direct sum

Vi = (vin) @ -~ @ (vig,)
of cyclic submodules (v; ;) of order p;"” (x) with
€ = €1 2>€> > €L

In vector space terms, (v; ;) is a T-cyclic subspace of 'V, and the minimal
polynomial of |,  is

min(7|, y) = p;"”(2)

(The complete decomposition) This yields the decomposition of V' into a
direct sum of T-cyclic subspaces

V=_(v1)® D ig) D& {(va1)® & (ng,))

(Elementary divisors and dimensions) The multiset of elementary divisors
{p;"()} of T is uniquely determined by 7. If deg(p;" (z)) = d, ; then the

T-cyclic subspace (v; ;) has basis
Bij = (vig, m(vig), -, 7 (vi))

and so dim({v; ;)) = deg(p;"). Hence,

ki
dim(V,) = _ deg(p;") O
j=1

The Rational Canonical Form

The cyclic decomposition theorem can be used to determine a set of canonical
forms for similarity. Recall that if V' = S & T and if both S and 7" are invariant
under 7, the pair (S,T) is said to reduce 7. Put another way, (S, T) reduces 7
if the restrictions 7|g and 7|7 are linear operators on S and T', respectively.

Recall also that we write 7 = p @ o if there exist subspaces S and T of V' for
which (S, T') reduces T and

Ifr

p=rT|lsand o = 7|1

= 0 @ p then any matrix representations of ¢ and p can be used to construct

a matrix representation of 7.
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Theorem 7.9 Suppose that 7 = 7, @ 7o € L(V') has a reducing pair (S, T’). Let
B = (Cl,...,cs,dl,...,dt)

be an ordered basis for V', where C = (cy, ..., cs) is an ordered basis for .S and
D = (d1,...,d;) is an ordered basis for 7. Then the matrix [7]z has the block
diagonal form

s = [ [T(l)]c [TQO}D} block -

Of course, this theorem may be extended to apply to multiple direct summands
and this is especially relevant to our situation, since according to Theorem 7.8

T= T|<7«’J.1> D---D T|<7/'n.k'n>
In particular, if B; ; is an ordered basis for the cyclic submodule (v; ;) and if
B = (Bl,la ceey Bn,/\"”)

denotes the ordered basis for V' obtained from these ordered bases (as we did in
Theorem 7.9) then

[7—1,1}31.1
[7]s =
[Tn,kn]Bn.k‘n block

where 7; j = T|<vw>.

According to Theorem 7.8, the cyclic submodule (v; ;) has ordered basis

Bij = (vij7(vij), .., 7% (i)

€ j

where d; ; = deg(p;”(x)). Hence, we arrive at the matrix representation of 7

described in the following theorem.

Theorem 7.10 (The rational canonical form) Ler dim(V') < oo and suppose
that T € L(V') has minimal polynomial

m-(z) = py' (z)-py'(x)

where the monic polynomials p;(x) are distinct and irreducible. Then V' has an
ordered basis B under which
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Ol ()]

L O™ (@)] ] yroar

where the polynomials pzk (z) are the elementary divisors of T. We also write
this in the form

diag(C[p{" @)], .., 5" (@)], .., Clon ™ (@), ., Clpi™ ()]

This block diagonal matrix is said to be in rational canonical form and is
called a rational canonical form of 7. Except for the order of the blocks in the
matrix, the rational canonical form is a canonical form for similarity, that is, up
to order of the blocks, each similarity class contains exactly one matrix in
rational canonical form. Put another way, the multiset of elementary divisors is
a complete invariant for similarity.

Proof. It remains to prove that if two matrices in rational canonical form are
similar, then they must be equal, up to order of the blocks. Let A be the matrix
[7]s above. The ordered basis B clearly gives a decomposition of V; into a
direct sum of primary cyclic submodules for which the elementary divisors are
the polynomials p;™ (z).

Now suppose that B is another matrix in rational canonical form
: N W fnmn }rz.j,,b
B= dlag(C[qlll(x)], Ol @), Clar (@), ..., Clats (g;)])

If B is similar to A then we get another primary cyclic decomposition of 7 for

which the elementary divisors are the polynomials ¢;"/(x). It follows that the
two sets of elementary divisors are the same and so A and B are the same up to
the order of their blocks. [1

Corollary 7.11

1) Any square matrix A is similar to a unique (except for the order of the
blocks on the diagonal) matrix that is in rational canonical form. Any such
matrix is called a rational canonical form of A.

2) Two square matrices over the same field F' are similar if and only if they
have the same multiset of elementary divisors. [

Here are some examples of rational canonical forms.
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Example 7.1 Let 7 be a linear operator on the vector space R’ and suppose that
7 has minimal polynomial

me(@) = (@ — (2 + 1)

Noting that z — 1 and (2® + 1)? are elementary divisors and that the sum of the
degrees of all elementary divisors must equal 7, we have two possibilities

1)
2)

r—1, (22 +1)% 22 +1
r—1,2-1,z—1, (z2+1)?

These correspond to the following rational canonical forms

1))

2)

(=leleleloNoll S
[N elNoNell oo
[N eNollit e NNl
o OO oo
OOO[lDO»—‘O
_ O OO o oo

SO OO OO
[N eleloBoll s -
O o oo~ OO
OO R OO OO
O=H O OO OO
_ O OO0 o oo
|
OO = O OO

Exercises

1.

We have seen that any 7 € £(V') can be used to make V' into an Fx]-
module. Does every module V' over F[x] come from some 7 € L(V)?
Explain.

Show that if A and B are block diagonal matrices with the same blocks, but
in possibly different order, then A and B are similar.

Let A be a square matrix over a field F. Let K be the smallest subfield of
F containing the entries of A. Prove that any rational canonical form for A
has coefficients in the field K. This means that the coefficients of any
rational canonical form for A are “rational” expressions in the coefficients
of A, hence the origin of the term “rational canonical form.” Given an
operator 7 € L(V') what is the smallest field K for which any rational
canonical form must have entries in K?

Let K be a subfield of F. Prove that two matrices A, B € M(K) are
similar over K if and only if they are similar over F, that is A = PBP~!
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10.

11.
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for some P € M(K) if and only if A=QBQ™! for some Q € M(F).
Hint: Use the results of the previous exercise.

Prove that the minimal polynomial of 7€ £(V) is the least common
multiple of its elementary divisors.

Let Q@ be the field of rational numbers. Consider the linear operator
7 € L(Q?) defined by 7(e1) = e, T(e2) = —ey.

a) Find the minimal polynomial for 7 and show that the rational canonical

form for 7 is
0 -1
[V ]

What are the elementary divisors of 77
b) Now consider the map o € £(C?) defined by the same rules as 7,

namely, o(e;) = e, o(es) = —ey. Find the minimal polynomial for &
and the rational canonical form for o. What are the elementary divisors
of 0?

c) The invariant factors of 7 are defined using the elementary divisors of
7 in the same way as we did at the end of Chapter 6, for a module M.
Describe the invariant factors for the operators in parts a) and b).

Find all rational canonical forms (up to the order of the blocks on the

diagonal) for a linear operator on R® having minimal polynomial

(x — 1)2(x+1)2

How many possible rational canonical forms (up to order of blocks) are

there for linear operators on R® with minimal polynomial (x — 1)(z + 1)2?

Prove that if C' is the companion matrix of p(x) then p(C) = 0 and C has

minimal polynomial p(x).

Let 7 be a linear operator on F* with minimal polynomial

m,(z) = (z%+ 1)(#? — 2). Find the rational canonical form for 7 if

F=Q,F=RorF=C.

Suppose that the minimal polynomial of 7 € £(V) is irreducible. What can

you say about the dimension of V'?



Chapter 8
Eigenvalues and Eigenvectors

Unless otherwise noted, we will assume throughout this chapter that all vector
spaces are finite-dimensional.

The Characteristic Polynomial of an Operator

It is clear from our discussion of the rational canonical form that elementary
divisors and their companion matrices are important. Let C[p,(z)] be the
companion matrix of a monic polynomial

. _ n—1 n
pa(500,... 0, 1) = a0+ 12+ -+ ap 12"+ T

By way of motivation, note that when n = 2, we can write the polynomial p,(z)
as follows

p2(T;a0,a1) = ap + a1z + x? = z(x 4+ a1) + ag

which looks suspiciously like a determinant, namely,

-1 z+aq;

maaor- [} 7))

= det(z] — C[p2(2)])

po(z;ap,a1) = det[ v @ ]

So, let us define

A(z;ag, ... ,an-1) = I — Clpy(z)]

xz 0 0 ap

-1 =z 0 aq

=10 -1 :
: x Op—2

d 0 71 £E+an_1
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where = is an independent variable. The determinant of this matrix is a
polynomial in « whose degree equals the number of parameters ay, ..., a,_1.
We have just seen that

det(A(x; ag,a1)) = po(x; ap,ar)
and this is also true for n = 1. As a basis for induction, suppose that
det(A(z;ag, ..., an-1)) = pu(x;a0,...,a,-1)
Then, expanding along the first row gives

det(A(z, ag, ..., an))

-1 =z 0
= xdet(A(z,ay,...,a,)) + (—1)"ap det _:1 -

0 0 -1

nxn

= xdet(A(z,a1,...,a,)) + ag
=z py(x;a1,...,a,) + ag
= a1z + axx® + -+ a, 2" + 2" + ap
= pn+1(z; AQy ey an)

We have proved the following.

Lemma 8.1 If C[p(z)] is the companion matrix of the polynomial p(x), then
det(a] — C[p(x)]) = p(x) O

Since the determinant of a block diagonal matrix is the product of the
determinants of the blocks on the diagonal, if R is a matrix in rational canonical
form then

det(zI — R) = H P ()

is the product of the elementary divisors of 7. Moreover, if M is similar to R,
say M = PRP~! then

det(zI — M) = det(x] — PRP™")
=det[P(x] — R)P']
= det(P)det(z] — R)det(P™")
= det(z] — R)

and so C)s(x) is the product of the elementary divisors of M. The polynomial
Ch(x) = det(xI — M) is known as the characteristic polynomial of M. Since
the characteristic polynomial is an invariant under similarity, we have the
following.
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Theorem 8.2 Let 7 be a linear operator on a finite-dimensional vector space V.
The characteristic polynomial C,(x) of T is defined to be the product of the
elementary divisors of T. If M is any matrix that represents T, then

Cr(x) = Cy(x) = det(z] — M) O

Note that the characteristic polynomial is not a complete invariant under
similarity. For example, the matrices

6 0 6 0
A:[O 5]andB=[1 6]

have the same characteristic polynomial but are not similar. (The reader might
wish to provide an example of two nonsimilar matrices with the same
characteristic and minimal polynomials.)

We shall have several occasions to use the fact that the minimal polynomial
m-(z) = py'(z)--py(x)
and characteristic polynomial

Cr(x) = H ;" (x)

of a linear operator 7 € L£(V') have the same set of prime factors. This implies,
for example, that these two polynomials have the same set of roots (not counting
multiplicity).

Eigenvalues and Eigenvectors

Let 7 € £(V) and let M be a matrix that represents 7. A scalar A € F' is a root
of the characteristic polynomial C; () of 7 if and only if

det(AT — M) =0 8.1

that is, if and only if the matrix A — M is singular. In particular, if
dim(V') = n then (8.1) holds if and only if there exists a nonzero vector x € F"
for which

(M — M)z =0
or, equivalently
v(T) = Az
If M = [r]g and [v]z = x, then this is equivalent to
[7]s[v]s = Alv]s

or, in operator language
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7(v) = v
This prompts the following definition.

Definition Let V' be a vector space over F'.
1) A scalar ) € F is an eigenvalue (or characteristic value) of an operator
T € L(V) if there exists a nonzero vector v € V. for which

T(v) = Av

In this case, v is an eigenvector (or characteristic vector) of T associated
with .

2) A scalar \ € F is an eigenvalue for a matrix A if there exists a nonzero
column vector x _for which

Ax = \z

In this case, x is an eigenvector (or characteristic vector) for A
associated with .

3) The set of all eigenvectors associated with a given eigenvalue )\, together
with the zero vector, forms a subspace of V, called the eigenspace of A,
denoted by £,. This applies to both linear operators and matrices.

4) The set of all eigenvalues of an operator or matrix is called the spectrum
of the operator or matrix. O

The following theorem summarizes some key facts.

Theorem 8.3 Let 7 € L(V') have minimal polynomial m(x) and characteristic

polynomial C(x).

1) The polynomials m,(x) and Cr(x) have the same prime factors and hence
the same set of roots, called the spectrum of T.

2) (The Cayley—Hamilton theorem) The minimal polynomial divides the
characteristic polynomial. Another way to say this is that an operator T
satisfies its own characteristic polynomial, that is,

C.(t)=0

3) The eigenvalues of a matrix are invariants under similarity.
4) If X\ is an eigenvalue of a matrix A then the eigenspace & is the solution
space to the homogeneous system of equations

(M — A)(z) =0 O

One way to compute the eigenvalues of a linear operator 7 is to first represent 7
by a matrix A and then solve the characteristic equation

CA(LL‘) =0

Unfortunately, it is quite likely that this equation cannot be solved when
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dim(V') > 3. As a result, the art of approximating the eigenvalues of a matrix is
a very important area of applied linear algebra.

The following theorem describes the relationship between eigenspaces and
eigenvectors of distinct eigenvalues.

Theorem 8.4 Suppose that A\i,..., )\, are distinct eigenvalues of a linear
operator T € L(V).
1) The eigenspaces meet only in the 0 vector, that is

En N 5,\] = {O}

2) Eigenvectors associated with distinct eigenvalues are linearly independent.

That is, if v; € E), then the vectors {v1, ..., v} are linearly independent.
Proof. We leave the proof of part 1) to the reader. For part 2), assume that the
eigenvectors v; € &), are linearly dependent. By renumbering if necessary, we
may also assume that among all nontrivial linear combinations of these vectors
that equal 0, the equation

rvr+ -+ ;=0 8.2)
has the fewest number of terms. Applying 7 gives
AU+ -+ TA v =0 (8.3)
Now we multiply (8.2) by A; and subtract from (8.3), to get
ra(A2 — A)va + -+ 1A — A)v; =0

But this equation has fewer terms than (8.2) and so all of the coefficients must
equal 0. Since the \;'s are distinct we deduce that r; = 0 for i = 2,..., 7 and so
ry =0 as well. This contradiction implies that the wv;'s are linearly
independent. O

Geometric and Algebraic Multiplicities

Eigenvalues have two forms of multiplicity, as described in the next definition.

Definition Let \ be an eigenvalue of a linear operator T € L(V).

1) The algebraic multiplicity of )\ is the multiplicity of A as a root of the
characteristic polynomial C..(x).

2)  The geometric multiplicity of \ is the dimension of the eigenspace £,. O

Theorem 8.5 The geometric multiplicity of an eigenvalue X of T € L(V) is less
than or equal to its algebraic multiplicity.

Proof. Suppose that X is an eigenvalue of T with eigenspace £,. Given any basis
By ={v1,...,v;} of £ we can extend it to a basis B for V. Since &, is
invariant under 7, the matrix of 7 with respect to B has the block form
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e = ()\Ik A)
0 B block

where A and B are matrices of the appropriate sizes and so
C;(x) = det(xI — [7]p)
= det(al), — M\ )det(xl,—r — A)
= (z — \)det(zI, , — A)

(Here n is the dimension of V.) Hence, the algebraic multiplicity of \ is at least
k, which is the geometric multiplicity of 7. O

The Jordan Canonical Form

One of the virtues of the rational canonical form is that every linear operator 7
on a finite-dimensional vector space has a rational canonical form. However, the
rational canonical form may be far from the ideal of simplicity that we had in
mind for a set of simple canonical forms.

We can do better when the minimal polynomial of 7 splits over F', that is,
factors into a product of linear factors

mo () = (@ — A1) (@ — Ag) (84)

In some sense, the difficulty in the rational canonical form is the basis for the
cyclic submodules (v; ;). Recall that since (v; ;) is a T-cyclic subspace of V' we
have chosen the ordered basis

Bij = (vij,7(vig), ..., 7" (vi;)

€5

where d; ; = deg(p;”). With this basis, all of the complexity comes at the end,
when we attempt to express

(% (v5)) = 7% (vi)

as a linear combination of the basis vectors.

When the minimal polynomial m.(z) has the form (8.4), the elementary
divisors are

P () = (z = A)™
In this case, we can choose the ordered basis
Cij = (Vijs (T = X)(Vig), s (T = N) 4 (v))

for (v;;). Denoting the kth basis vector in C;; by by, we have for
k‘ZO,...,ei’j—Q,
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7(bx) = 7(r — X)) ¥ (vi)]
= (1= X+ )T = 2)"(vi)]

= (7= ) (vig) + Ai(T = N) (i)
= bpq1 + Aiby,

For k = e; ; — 1, a similar computation, using the fact that
(7= ) (vig) = (1= X)) (vig) = 0
gives
7(be,,~1) = Aibe, ;-1

In this case, the complexity is more or less spread out evenly, and the matrix of
7| () With respect to C; ; is the e; ; X e; ; matrix

Ao 0 0
1 N
J(Niseij) =10 1 :
o 0
0 - 0 1 N

which is called a Jordan block associated with the scalar ;. Note that a Jordan
block has A;'s on the main diagonal, 1's on the subdiagonal and 0's elsewhere.
This matrix is, in general, simpler (or at least more aesthetically pleasing) than a
companion matrix.

Now we can state the analog of Theorem 7.10 for this choice of ordered basis.

Theorem 8.6 (The Jordan canonical form) Let dim(V') < co and suppose that
the minimal polynomial of T € L(V') splits over the base field F', that is,

m(x) = (& — )% (. — Ay)™
Then V' has an ordered basis C under which
[ T (A\1,e11)
\_7(>\13 617]\71)

\7 ()\na en,,kn)

i J(Anv en,kn) J block

where the polynomials (x — \;)% are the elementary divisors of T. This block
diagonal matrix is said to be in Jordan canonical form and is called the
Jordan canonical form of 7.
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If the base field F' is algebraically closed, then except for the order of the blocks
in the matrix, Jordan canonical form is a canonical form for similarity, that is,
up to order of the blocks, each similarity class contains exactly one matrix in
Jordan canonical form.

Proof. As to the uniqueness, suppose that 7 is a matrix in Jordan canonical
form that represents the operator = with respect to some ordered basis B, and
that 7 has Jordan blocks J1 (A1, f1), ...y Tm(Am, fm), Where the A;'s may not be
distinct. Then V' is the direct sum of 7-invariant subspaces, that is, submodules
of V., say

V:‘/l@@‘/m

Consider a particular submodule Vj. it is easy to see from the matrix
representation that 7|y, satisfies the polynomial (z — \;)** on V4, but no
polynomial of the form (x — A\;)? for d < f, and so the order of Vj, is
(z— )\k)f*'. In particular, each V; is a primary submodule of V.

We claim that V}, is also a cyclic submodule of V;. To see this, let (v1,...,vy,)
be the ordered basis that gives the Jordan block 7 (A, fx). Then it is easy to see
by induction that 77v; is a linear combination of vy, ..., v;+1, with coefficient of
v;41 equal to 1 or —1. Hence, the set

2 —1
{v1, 701, 7 Ul,...,TfA v}

is also a basis for V}, from which it follows that V}, is a 7-cyclic subspace of V,
that is, a cyclic submodule of V.

Thus, the Jordan matrix J corresponds to a primary cyclic decomposition of V;
with elementary divisors (2 — Ay )’*. Since the multiset of elementary divisors is
unique, so is the Jordan matrix representation of 7, up to order of the blocks. O

Note that if 7 has Jordan canonical form 7 then the diagonal elements of 7 are
precisely the eigenvalues of 7, each appearing a number of times equal to its
algebraic multiplicity.

Triangularizability and Schur's Lemma

We have now discussed two different canonical forms for similarity: the rational
canonical form, which applies in all cases and the Jordan canonical form, which
applies only when the base field is algebraically closed. Let us now drop the
rather strict requirements of canonical forms and look at two classes of matrices
that are too large to be canonical forms (the upper triangular matrices and the
almost upper triangular matrices) and a class of matrices that is too small to be a
canonical form (the diagonal matrices).

The upper triangular matrices (or lower triangular matrices) have some nice
properties and it is of interest to know when an arbitrary matrix is similar to a
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triangular matrix. We confine our attention to upper triangular matrices, since
there are direct analogs for lower triangular matrices as well.

It will be convenient to make the following, somewhat nonstandard, definition.

Definition A linear operator T on V is upper triangular with respect to an
ordered basis B = (v1,...,v,) if the matrix [7)p is upper triangular, that is, if
foralli=1,....n

7(v;) € {vy,...,v;)

The operator T is upper triangularizable if there is an ordered basis with
respect to which T is upper triangular. [

As we will see next, when the base field is algebraically closed, all operators are
upper triangularizable. However, since two distinct upper triangular matrices
can be similar, the class of upper triangular matrices is not a canonical form for
similarity. Simply put, there are just too many upper triangular matrices.

Theorem 8.7 (Schur's Lemma) Let V be a finite-dimensional vector space

over a field F.

1) Ift € L(V) has the property that its characteristic polynomial C,(x) splits
over F' then T is upper triangularizable.

2) If F is algebraically closed then all operators are upper triangularizable.

Proof. Part 2) follows from part 1). The proof of part 1) is most easily

accomplished by matrix means, namely, we prove that every square matrix

A € M, (F) whose characteristic polynomial splits over F is similar to an upper

triangular matrix. If n = 1 there is nothing to prove, since all 1 x 1 matrices are

upper triangular. Assume the result is true for n — 1 and let A € M,,(F).

Let v; be an eigenvector associated with the eigenvalue A\; € F' of A and extend
{v1} to an ordered basis (v1, ..., v,) for R". The matrix of A with respect to B
has the form

)\1 *x
A =
Als { 0 A1:|block
for some A; € M,_(F). Since [A]g and A are similar, we have
det (zI — A) =det(z] — [A]p) = (x — A) det (2] — Ay)

Hence, the characteristic polynomial of A; also splits over F' and, by the
induction hypothesis, there exists an invertible matrix P € M,,_;(F') for which

U=PA P!

is upper triangular. Hence, if
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1 0
o=o 7]
0 P block

then @ is invertible and
-1 _ 1 0 Al * 1 0 . Al *
QlA]sQ _[o Pll0o Allo P |0 U
is upper triangular. This completes the proof. O

When the base field is F' = R, not all operators are triangularizable. We can,
however, achieve a form that is close to triangular. For the sake of the
exposition, we make the following nonstandard definition (that is, the reader
should not expect to find this definition in other books).

Definition A matrix A € M, (F") is almost upper triangular if it has the form

A1 *

0 Ay, block

where each matrix A; either has size 1 x 1 or else has size 2 x 2 with an
irreducible characteristic polynomial. A linear operator 7 € £L(V) is almost
upper triangularizable if there is an ordered basis B for which [7]z is almost
upper triangular. [

We will prove that every real linear operator is almost upper triangularizable. In
the case of a complex vector space V, any complex linear operator 7 € L(V)
has an eigenvalue and hence V contains a one-dimensional 7-invariant
subspace. The analog for the real case is that for any real linear operator
7€ L(V), the vector space V contains either a one-dimensional or a
“nonreducible” two-dimensional T-invariant subspace.

Theorem 8.8 Let 7 € L(V') be a real linear operator. Then V contains at least

one of the following:

1) A one-dimensional T-invariant subspace,

2) A two-dimensional T-invariant subspace W for which o = 7|y has the
property that m,(x) = Cy(x) is an irreducible quadratic. Hence, W is not
the direct sum of two one-dimensional T-invariant subspaces.

Proof. The minimal polynomial m,(z) of 7 factors into a product of linear and

quadratic factors over R. If there is a linear factor x — A, then A is an eigenvalue

for 7 and if 7o = Av then (v) is the desired one-dimensional T-invariant
subspace.
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Otherwise, let p(x) = 2? 4+ ax + b be an irreducible quadratic factor of m, (z)
and write

m.(z) = p(z)q(v)

Since ¢(7) # 0, we may choose a nonzero vector v € V such that ¢(7)v # 0.
Let

W = (q()v, 7q(7)v)
This subspace is T-invariant, for we have 7[q¢(7)v] € W and
Tlrq(t)v] = T2q(T)v = — (a7 + b)q(T)v € W
Hence, o = 7|y is a linear operator on W. Also,
p(r)W = {0}

and so o has minimal polynomial dividing p(z). But since p(x) is irreducible
and monic, m,(z) = p(x) is quadratic. It follows that W is two-dimensional,
for if

aq(T)v+brq(T)v =0

then a + b7 =0 on W, which is not the case. Finally, the characteristic
polynomial C,(z) has degree 2 and is divisible by m,(x), whence C,(z)
= m,(x) = p(x) is irreducible. Thus, W satisfies condition 2). OI

Now we can prove Schur's lemma for real operators.

Theorem 8.9 (Schur's lemma: real case) Every real linear operator T € L(V)
is almost upper triangularizable.

Proof. As with the complex case, it is simpler to proceed using matrices, by
showing that any n x n real matrix A is similar to an almost upper triangular
matrix. The result is clear for n = 1 or if A is the zero matrix.

For n = 2, the characteristic polynomial C'(x) of A has degree 2 and is divisible
by the minimal polynomial m(z). If m(x) = x — A is linear then A = A\I5 is
diagonal. If m(z) = (z — \)? then A is similar to an upper triangular matrix
with diagonal elements A and if m(x) = (z — A\)(z — p) with A # u then A is
similar to a diagonal matrix with diagonal entries A and p. Finally, if
m(x) = C(z) is irreducible then the result still holds.

Assume for the purposes of induction that any square matrix of size less than
n X n is almost upper triangularizable. We wish to show that the same is true
for any n X n matrix A. We may assume that n > 3.

If A has an eigenvector v; € R", then let W = (v;). If not, then according to
Theorem 8.8, there is a pair of vectors uy, us € R™ for which W = (wy, ws) is
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two-dimensional and A-invariant and the characteristic and minimal
polynomials of 74|y are equal and irreducible. Let U be a complement of W. If
dim(W) = 1 then let B = (v, u1,...,u,—1) be an ordered basis for R" and if
dim(W) = 2 then let B = (w1, w2, u1, ..., u,—2) be an ordered basis for R”. In
either case, A is similar to a matrix of the form

B1 *
A =
[ ]B |: 0 Al :| block

where B; has size 1 x 1 or B; has size 2 x 2, with irreducible quadratic
minimal polynomial. Also, A; has size k X k, where k =n—1or k=n— 2.
Hence, the induction hypothesis applies to A; and there exists an invertible
matrix P € M, for which

U=PA P!

is almost upper triangular. Hence, if

then @ is invertible and
Iy OBy * || Ln— 0 By %
-1 _ n—k 1 n—k _ 1
ot =[5 B[ A P[0 0]
is almost upper triangular. This completes the proof. [

Unitary Triangularizability

Although we have not yet discussed inner product spaces and orthonormal
bases, the reader is no doubt familiar with these concepts. So let us mention that
when V is a real or complex inner product space, then if an operator 7 on V' can
be triangularized (or almost triangularized) using an ordered basis B, it can also

be triangularized (or almost triangularized) using an orthonormal ordered basis
0.

To see this, suppose we apply the Gram—Schmidt orthogonalization process to
B = (v1,...,v,). The resulting ordered orthonormal basis O = (uy, ..., u,) has
the property that

(1, 05) = (U, ooy uy)
for all ¢ < n. Since [7]p is upper triangular, that is,
T(v;) € (v1,...,v;)
for all 7 < n, it follows that

T(u;) € (TU1, ..o, T C (U1, .00, 05) = (U, ..., uy)
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and so the matrix [7]e is also upper triangular. (A similar argument holds in the
almost upper triangular case.)

A linear operator 7 is unitarily upper triangularizable if there is an ordered
orthonormal basis with respect to which 7 is upper triangular. Accordingly,
when V is an inner product space, we can replace the term ‘“upper
triangularizable” with “unitarily upper triangularizable” in Schur's lemma. (A
similar statement holds for almost upper triangular matrices.)

Diagonalizable Operators

A linear operator 7 € L(V') is diagonalizable if there is an ordered basis B for
which [7]p is diagonal. In the case of an algebraically closed field, we have seen
that all operators are upper triangularizable. However, even for such fields, not
all operators are diagonalizable.

Our first characterization of diagonalizability amounts to little more than the
definitions of the concepts involved.

Theorem 8.10 An operator 7 € L(V') is diagonalizable if and only if there is a
basis for V' that consists entirely of eigenvectors of T, that is, if and only if

V = g/\l D @5)\k
where A1, ..., A, are the distinct eigenvalues of 7. O
Diagonalizability can also be characterized via minimal polynomials. Suppose
that 7 is diagonalizable and that B = {v1,..., v, } is a basis for V' consisting of

eigenvectors of 7. Let Ay, ..., \; be a list of the distinct eigenvalues of 7. Then
each basis vector v; is an eigenvector for one of these eigenvalues and so

k
H (T - /\L‘)U‘j =0
i=1
for all basis vectors v;. Hence, if
k/.
ple) =[] -
i=1
then p(7) =0 and so m,(z) | p(z). But every eigenvalue \; is a root of the

minimal polynomial of 7 and so p(x) | m,(x), whence p(x) = m,(x).

Conversely, if the minimal polynomial of 7 is a product of distinct linear factors,
then the primary decomposition of V' looks like

where
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Vi={veV]|(r—-XNv=0}=¢&,
By Theorem 8.10, 7 is diagonalizable. We have established the following result.
Theorem 8.11 4 linear operator T € L(V') on a finite-dimensional vector space

is diagonalizable if and only if its minimal polynomial is the product of distinct
linear factors. [

Projections

We have met the following type of operator before.

Definition Let V = S @ T. The linear operator p:V — V defined by
p(s+1t)=s

where s € S andt € T is called projection on S along T'. [
The following theorem describes projection operators.

Theorem 8.12
1) Let p be projection on S along T'. Then
a) im(p) =95 ker(p) =T
b) 'V =im(p) ® ker(p)
¢) veim(p) & p(v) =v
Note that the last condition says that a vector is in the image of p if and
only if it is fixed by p.
2) Conversely, if o € L(V) has the property that

V =im(o) @ ker(o) and oimy) = ¢
then o is projection on im(co) along ker(o). O
Projection operators play a major role in the spectral theory of linear operators,

which we will discuss in Chapter 10. Now we turn to some of the basic
properties of these operators.

Theorem 8.13 A linear operator p € L(V) is a projection if and only if it is
idempotent, that is, if and only if p*> = p.
Proof. If p is projection on S along 7" then forany s € Sandt € T,

pP(s+1) = p(s) = 5= p(s +1)

and so p® = p. Conversely, suppose that p is idempotent. If v € im(p) N ker(p)
then v = p(z) and so

0= p(v) = p*(x) = p(x) = v
Hence im(p) Nker(p) = {0}. Moreover, if v € V then
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v=[v—p)] + p(v) € ker(p) & im(p)

and so V' = ker(p) © im(p). Finally, p[p(z)] = p(x) and so plin(,) = ¢. Hence,
p is projection on im(p) along ker(p). O

The Algebra of Projections
If p is projection on S along 7" then ¢ — p is idempotent, since
(t=p)P=—p—ptp’=1—p

Hence, ¢ — p is also a projection. Since ker(t — p) = im(p) and im(c — p)
= ker(p), it follows that « — p is projection on T" along S.

Orthogonal Projections
Definition The projections p,o € L(V) are orthogonal, written p L o, if
po=ocp=0.0
Note that p | o if and only if
im(p) C ker(o) and im(o) C ker(p)

The following example shows that it is not enough to have po =0 in the
definition of orthogonality. In fact, it is possible for po = 0 and yet op is not
even a projection.

Example 8.1 Let V = F? and let
D={(x,z) |z € F}
X ={(z,0) |z € F}
YV ={(0,y) [yeF}
Thus, D is the diagonal, X is the z-axis and Y is the y-axis in F'2. (The reader

may wish to draw pictures in R2.) Using the notation p, 5 for the projection on
A along B, we have

PD.XPDY = PDY F PD.X = PDYPD.X

From this we deduce that if p and o are projections, it may happen that both
products po and op are projections, but that they are not equal.

We leave it to the reader to show that py xpx,p = 0 (which is a projection), but
that px ppy x is not a projection. Thus, it may also happen that po is a
projection but that op is not a projection. [

If p and o are projections, it does not necessarily follow that p + o, p — o or po
is a projection. Let us consider these one by one.
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The Sum of Projections
The sum p + o is a projection if and only if
(p+o)i=p+o

or

po+op=0 (8.5)
Of course, this holds if po = op =0, that is, if p L 0. We contend that the
converse is also true, namely, that (8.5) implies that p L o.
Multiplying (8.5) on the left by p and on the right by p gives the pair of
equations

po+pop =0
pop+op=0

Hence po = op which together with (8.5) gives 2po = 0. Therefore, if
char(F) # 2 then po = 0 and therefore op = 0, that is, p L 0. We have proven
that p+ o is a projection if and only if p L o (assuming that F' has
characteristic different from 2).

Now suppose that p + o is a projection. To determine ker(p + o), suppose that
(p+0)(v) =0

Applying p and noting that p? = p and po = 0, we get p(v) = 0. Similarly,
o(v) =0 and so ker(p + o) C ker(p) Nker(c). But the reverse inclusion is
obvious and so

ker(p + o) = ker(p) Nker(o)
As to the image of p + o, we have
veim(p+o) = v=(p+0)(v) = p(v) +o(v) € im(p) + im(c)

and so im(p + o) C im(p) + im(o). But po = 0 implies that im(c) C ker(p)
and so the sum is direct and

im(p + o) C im(p) ® im(c)
For the reverse inequality, if v = r + s, where r € im(p) and s € im(o) then
(p+0)(v)=(p+o)(r)+(p+o)(s)=r+s=v
and so v € im(p + o). Let us summarize.
Theorem 8.14 Let p,o € L(V') be projections where V' is a vector space over a

field of characteristic # 2. Then p + o is a projection if and only if p L o, in
which case p + o is projection on im(p) @ im(o) along ker(p) Nker(o). O
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The Difference of Projections
Let p and o be projections. The difference p — o is a projection if and only if
0=1—(p=0)=(—p)+o

is a projection. Hence, we may apply the previous theorem to deduce that p — o
is a projection if and only if

(t=plo=0o(t—p)=0
or, equivalently,
po=0p=0

Moreover, in this case, p — o = ¢ — 0 is projection on ker(f) along im(9).
Theorem 8.14 also implies that

im(0) = im(¢v — p) ® im(o) = ker(p) @ im(o)
and
ker(0) = ker(¢ — p) Nker(o) = im(p) N ker(o)

Theorem 8.15 Let p, o € L(V') be projections where V' is a vector space over a
field of characteristic # 2. Then p — o is a projection if and only if

po=0p=0

in which case p — o is projection on im(p) N ker(o) along ker(p) ® im(o). O
The Product of Projections

Finally, let us consider the product po of two projections.

Theorem 8.16 Let p,o € L(V) be projections. If p and o commute, that is, if
po =op then po is a projection. In this case, po is projection on
im(p) Nim(o) along ker(p) + ker(o). (Example 8.1 shows that the converse

may be false.)
Proof. If po = op then

(po)? = popo = p’c” = po

and so po is a projection. To find the image of po, observe that if v = po(v)
then

plv) = pPo(v) = po() = v
and so v € im(p). Similarly v € im(o) and so
im(po) C im(p) Nim(o)

For the reverse inclusion, if z = p(v) = o(w) € im(p) Nim(c) then
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po (@) = po(w) = po(w) = pl(z) = p*(v) = p(v) = =
and so = € im(po). Hence,
im(po) = im(p) Nim(o)

Next, we observe that if v € ker(po) then po(v) =0 and so o(v) € ker(p).
Hence,

v=0(v) + (v—0o(v)) € ker(p) + ker(o)
Moreover, if v = r + s € ker(p) + ker(o) then
po(v) = po(r+s) =op(r) + po(s) =0+0=0
and so v € ker(po). Thus,
ker(po) = ker(p) + ker(o)

We should remark that the sum above need not be direct. For example, if p = o
then ker(p) = ker(c). O

Resolutions of the Identity
If p is a projection then
pL(t—plandp+(t—p)=1

Let us generalize this to more than two projections.

Definition If p1, ..., pi. are mutually orthogonal projections, that is, p; L p; for
i % jandif

prt+-t+pr=1t
where o is the identity operator then we refer to this sum as a resolution of the
identity. (]

There is a connection between the resolutions of the identity map on V' and the
decomposition of V. In general, if the linear operators o; on V satisfy

o1+ -+ or=1
then for any v € V' we have
v=w=o01(v)+ -+ ox(v) € im(oy) + -+ + im(oy)
and so
V =im(oy) + -+ + im(oy,)

However, the sum need not be direct. The next theorem describes when the sum
is direct.
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Theorem 8.17 Resolutions of the identity correspond to direct sum
decompositions of V' in the following sense:
1) Ifp1+ -+ pr = tis aresolution of the identity then

V =im(p1) @ --- @ im(py)
and p; is projection on im(p;) along
ker(p)) = D im(p,)
J#
2) Conversely, suppose that
V=5& &S

If p; is projection on S; along the direct sum of the other subspaces

D

i

then p1 + -+ + pi. = L is a resolution of the identity.
Proof. To prove 1) suppose that p; + --- 4 p,, = ¢ is a resolution of the identity.
Then as we have seen

V =im(p;) + - + im(py)
To see that the sum is direct, if
p1T1+ o+ ppry, =0

then applying p; gives piz; = p?x; = 0 for all i. Hence, the sum is direct.
Finally, we have

im(p;) & @ im(p;) =V = im(p;) & ker(p:)
J#i

which implies that

ker(p;) = €D im(p;)

J#i
To prove part 2), observe that for ¢ # j,
im(p;) = S5; C ker(p;)

and similarly im(p;) C ker(p;). Hence, p; L p;. Also, if v=1s5; 4 --+s;
where s; € S; then

w=s1+ -+ sp=pi(v) + -+ pp(v)

and so ¢ = p; + --- + py is a resolution of the identity. [J
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Spectral Resolutions

Let us try to do something similar to Theorem 8.17 for an arbitrary linear
operator 7 on V (rather than just the identity ¢). Suppose that 7 can be resolved
as follows

T=MAp1+ -+ Ao
where p; + -+ + pr. = ¢ is a resolution of the identity and A\; € F'. Then
V =im(p1) ® --- ® im(py)
Moreover, if v € im(p;) then v = p;(x) and so
T(v) = (Mp1 + -+ Mepr) pj(@) = Ajpj() = Ajv

Hence, im(p;) C &,,. But the reverse is also true, since the equation 7(v) = \jv
is

(A1 + -+ Aepr) (v) = Aj(pr + -+ + pr)v
or
(A = A)pr(v) + -+ 4 (A = Aj)pi(v) =0
But since (A\; — Aj)p;i(v) € im(p;), we deduce that p;(v) = 0 for i # j and so
v=(p1+ -+ pp)v=pjv € im(p;)
Thus, im(p;) = £, and we can conclude that
V=838,

that is, 7 is diagonalizable. The converse also holds, for if V' is the direct sum of
the eigenspaces of 7 and if p; is projection on &), along the direct sum of the
other eigenspaces then

prttpp =1
But for any v; € £, we have
T(v;) = v = Ni(p1 + -+ pr)vi = (Aipr + -+ + Appr) (03)
and so
T=Ap1+ -+ Aepr

Theorem 8.18 A linear operator 7 € L(V') is diagonalizable if and only if it
can be written in the form

T=XAip1+ o+ Aepr (8.6)

where the \;'s are distinct and p1 + --- + pr = L is a resolution of the identity.
In this case, {\1, ..., \; } is the spectrum of T and the projections p; satisfy
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im(p;) = &\, and ker(p;) = @5,\].
i

Equation (8.6) is referred to as the spectral resolution of 7. [
Projections and Invariance

There is a connection between projections and invariant subspaces. Suppose that
S is a T-invariant subspace of V' and let p be any projection onto S (along any
complement of S). Then for any v € V, we have p(v) € S and so 7(p(v)) € S.
Hence, 7(p(v)) is fixed by p, that is

pTp(v) = Tp(v)

Thus p7p = 7p. Conversely, if p7p = 7p then for any s € S, we have s = p(s),
whence

p7(s) = prp(s) = 7p(s) = 7(s)
and so 7(s) is fixed by p, from which it follows that 7(s) € S. In other words, S

1S T-invariant.

Theorem 8.19 Let 7 € L(V'). A subspace S of V' is T-invariant if and only if
pTp ="Tp

for some projection p on S. [
We also have the following relationship between projections and reducing pairs.

Theorem 8.20 Let V = S @ T'. Then a linear operator T € L(V') is reduced by
the pair (S,T) if and only if Tp = pt, where p is projection on S along T.
Proof. Suppose first that 7p = p7, where p is projection on S along 7. For
s € S we have

pr(s) = 7p(s) = 7(s)

and so p fixes 7(s), which implies that 7(s) € S. Hence S is invariant under 7.
Also, fort € T

pr(t) =7p(t) =0

and so 7(t) € ker(p) = T. Hence, T is invariant under 7.

Conversely, suppose that (S,7T) reduces 7. The projection operator p fixes
vectors in S and sends vectors in 7" to 0. Hence, for s € S and ¢ € T we have

pr(s) = 7(s) = 7p(s)

and
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p7(t) =0 =7p(t)

which imply that p7 = 7p. O

Exercises

1.

10.

11.

12.

13.

Let J be the n x n matrix all of whose entries are equal to 1. Find the
minimal polynomial and characteristic polynomial of J and the
eigenvalues.

A linear operator 7 € £(V) is said to be nonderogatory if its minimal
polynomial is equal to its characteristic polynomial. Prove that 7 is
nonderogatory if and only if V' is a cyclic module.

Prove that the eigenvalues of a matrix do not form a complete set of
invariants under similarity.

Show that 7 € L£(V) is invertible if and only if 0 is not an eigenvalue of 7.
Let A be an n x n matrix over a field F' that contains all roots of the
characteristic polynomial of A. Prove that det(A) is the product of the
eigenvalues of A, counting multiplicity.

Show that if \ is an eigenvalue of 7 then p()\) is an eigenvalue of p(7), for
any polynomial p(x). Also, if A # 0 then A~! is an eigenvalue for 7.

An operator 7 € L(V) is nilpotent if 7" = 0 for some positive n € N.

a) Show that if 7 is nilpotent then the spectrum of 7 is {0}.

b) Find a nonnilpotent operator 7 with spectrum {0}.

Show that if 7,0 € L(V') then 7o and o7 have the same eigenvalues.
(Halmos)

a) Find a linear operator 7 that is not idempotent but for which

2L —7)=0.
b) Find a linear operator 7 that is not idempotent but for which
(b —7)2=0.

¢) Prove thatif 7%(1 — 7) = 7(¢ — 7)? = 0 then 7 is idempotent.

An involution is a linear operator § for which 6% = . If 7 is idempotent
what can you say about 27 —? Construct a one-to-one correspondence
between the set of idempotents on V' and the set of involutions.

Let A, B € My(C) and suppose that A?= B*=1,ABA=B"! but
A # I and B # I. Show that if C' € M,(C) commutes with both A and B
then C' = rI for some scalar r € C.

Suppose that J and K are matrices in Jordan canonical form. Prove that if
J and K are similar then they are the same except for the order of the
Jordan blocks. Hence, Jordan form is a canonical form for similarity (up to
order of the blocks).

Fix € > 0. Show that any complex matrix is similar to a matrix that looks
just like a Jordan matrix except that the entries that are equal to 1 are
replaced by entries with value €, where € is any complex number. Thus, any
complex matrix is similar to a matrix that is “almost” diagonal. Hint:
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15.

16.

17.
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consider the fact that

1 0 0 A0 O 1 0 0 A0 O
0 € O 1 X 0 0 e 0|l=]e XA O
0 0 &[]0 1 X||0o 0 €2 0 € X

Show that the Jordan canonical form is not very robust in the sense that a
small change in the entries of a matrix A may result in a large jump in the
entries of the Jordan form J. Hint: consider the matrix
e O
=[5

What happens to the Jordan form of A, as e — 0?

Give an example of a complex nonreal matrix all of whose eigenvalues are

real. Show that any such matrix is similar to a real matrix. What about the

type of the invertible matrices that are used to bring the matrix to Jordan
form?

Let J = [7]g be the Jordan form of a linear operator 7 € £L(V'). For a given

Jordan block of J(A,e) let U be the subspace of V' spanned by the basis

vectors of B associated with that block.

a) Show that 7|y has a single eigenvalue A\ with geometric multiplicity 1.
In other words, there is essentially only one eigenvector (up to scalar
multiple) associated with each Jordan block. Hence, the geometric
multiplicity of A for 7 is the number of Jordan blocks for A. Show that
the algebraic multiplicity is the sum of the dimensions of the Jordan
blocks associated with A.

b) Show that the number of Jordan blocks in J is the maximum number
of linearly independent eigenvectors of 7.

¢) What can you say about the Jordan blocks if the algebraic multiplicity
of every eigenvalue is equal to its geometric multiplicity?

Assume that the base field F' is algebraically closed. Then assuming that the

eigenvalues of A are known, it is possible to determine the Jordan form J

of a matrix A by looking at the rank of various matrix powers. A matrix B

is nilpotent if B" =0 for some n > 0. The smallest such exponent is

called the index of nilpotence.

a) Let J =J(\,n) be a single Jordan block of size n x n. Show that
J — AI is nilpotent of index n. Thus, n is the smallest integer for
which tk(J — AI)" = 0.

Now let J be a matrix in Jordan form but possessing only one eigenvalue

A

b) Show that J — AI is nilpotent. Let m be its index of nilpotence. Show
that m is the maximum size of the Jordan blocks of J and that
tk(J — AI)™~! is the number of Jordan blocks in .J of maximum size.

¢) Show that rk(J — AI)™2 is equal to 2 times the number of Jordan
blocks of maximum size plus the number of Jordan blocks of size one
less than the maximum.
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Show that the sequence rtk(J — AI)* for k=1,...,m uniquely
determines the number and size of all of the Jordan blocks in J, that is,
it uniquely determines .J up to the order of the blocks.

Now let J be an arbitrary Jordan matrix. If X is an eigenvalue for .J
show that the sequence rk(J — M) for k = 1,...,m where m is the
first integer for which rk(J — AI)™ = rk(J — AI)™" uniquely
determines J up to the order of the blocks.

Prove that for any matrix A with spectrum {\,..., \;} the sequence
tk(A — \I)F fori=1,...,5 and k = 1,...,m where m is the first
integer for which rk(A — A\I)™ = rk(A — A\I)™"! uniquely determines
the Jordan matrix J for A up to the order of the blocks.

18. Let A € M,(F).

a)

b)

©)

If all the roots of the characteristic polynomial of A lie in F’ prove that
A is similar to its transpose A’. Hint: Let B be the matrix

0 -~ 0 1
10
B=§ . :
1 0 0

that has 1's on the diagonal that moves up from left to right and 0's
elsewhere. Let J be a Jordan block of the same size as B. Show that
BJB ' =J'.

Let A, B € M, (F). Let K be a field containing F'. Show that if A and
B are similar over K, that is, if B = PAP~! where P € M,,(K) then
A and B are also similar over F, that is, there exists Q € M,,(F) for
which B = QAQ~". Hint: consider the equation XA — BX =0 as a
homogeneous system of linear equations with coefficients in F'. Does it
have a solution? Where?

Show that any matrix is similar to its transpose.

19. Prove Theorem 8.8 using the complexification of V.
The Trace of a Matrix

20. Let A be an n x n matrix over a field F'. The trace of A, denoted by tr(A),
is the sum of the elements on the main diagonal of A. Verify the following

statements:

a) tr(rA) =rtr(A), forre F

b) tr(A+ B) =tr(A) + tr(B)

c) tr(AB) =tr(BA)

d) Prove that tr(ABC) =tr(CAB) =tr(BCA). Find an example to
show that tr(ABC') may not equal tr(AC B).

e) The trace is an invariant under similarity

f) If F is algebraically closed then the trace of A is the sum of the

eigenvalues of A.

Formulate a definition of the trace of a linear operator, show that it is well-
defined and relate this concept to the eigenvalues of the operator.
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21. Use the concept of the trace of a matrix, as defined in the previous exercise,
to prove that there are no matrices A, B € M,,(C) for which

AB—-BA=1

22. Let T: M,,(F') — F be a function with the following properties. For all
matrices A, B € M, (F)andr € F,
1) T(rA) =rT(A)
2) T(A+B)=T(A)+T(B)
3) T(AB) = T(BA)
Show that there exists s € F for which T(A) =str(A), for all
Ae M, (F).

Simultaneous Diagonalizability

23. A pair of linear operators o, 7 € L(V') is simultaneously diagonalizable if
there is an ordered basis B3 for V' for which [r]z and [0]z are both diagonal,
that is, B is an ordered basis of eigenvectors for both 7 and o. Prove that
two diagonalizable operators ¢ and 7 are simultaneously diagonalizable if
and only if they commute, that is, o7 = 70. Hint: If o7 = 70 then the
eigenspaces of T are invariant under o.

Common Eigenvectors
It is often of interest to know whether a family
F={nel(V)|ieTI}

of linear operators on V' has a common eigenvector, that is, a single vector
v €V that is an eigenvector for every operator in F (the corresponding
eigenvalues may be different for each operator, however).

A commuting family F of operators is a family in which each pair of operators
commutes, that is, o, 7 € F implies 07 = 70. We say that a subspace U of V is
JF-invariant if it is 7-invariant for every 7 € F.

24. Let o, 7 € L(V). Prove that if o and 7 commute then every eigenspace of o
is 7-invariant. Thus, if F is a commuting family then every eigenspace of
any member of F is F-invariant.

25. Let F be a family of operators in £(V') with the property that each operator
in F has a full set of eigenvalues in the base field F', that is, the
characteristic polynomial splits over F. Prove that if F is a commuting
family then F has a common eigenvector v € V.

26. What do the real matrices

1 1 1 2
A—[_l 1] .andB—{_2 1]

have to do with the issue of common eigenvectors?
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GerSgorin Disks

It is generally impossible to determine precisely the eigenvalues of a given
complex operator or matrix A € M,,(C), for if n > 5 then the characteristic
equation has degree 5 and cannot in general be solved. As a result, the
approximation of eigenvalues is big business. Here we consider one aspect of
this approximation problem, which also has some interesting theoretical
consequences.

Let A € M,,(C) and suppose that Av = \v where v = (by, ..., b,)". Comparing
kth rows gives

i:Ak,,;b,,; = by
i=1

which can also be written in the form

bp(A — Apr) = ZAkibi
Zk

If k has the property that |b;| > |b;| for all 4, we have

[BelIA = Al < YAl lbi] < [l Y| Al
izk iZk

and thus

A= Al <Ak (8.7)

izk
The right-hand side is the sum of the absolute values of all entries in the kth row
of A except the diagonal entry Ayy. This sum Ry (A) is the kth deleted absolute
row sum of A. The inequality (8.7) says that, in the complex plane, the

eigenvalue A lies in the disk centered at the diagonal entry Ay with radius equal
to R;.(A). This disk

GRi(A)={z€C||z— A < Rr(A)}
is called the GerSgorin row disk for the kth row of A. The union of all of the

Ger§gorin row disks is called the Gersgorin row region for A.

Since there is no way to know in general which is the index k for which
|br| > |bi], the best we can say in general is that the eigenvalues of A lie in the
union of all Ger§gorin row disks, that is, in the Ger§gorin row region of A.
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Similar definitions can be made for columns and since a matrix has the same
eigenvalues as its transpose, we can say that the eigenvalues of A lie in the
Ger$gorin column region of A. The GerSgorin region G(A) of a matrix
A € M, (F) is the intersection of the Ger§gorin row region and the Ger§gorin
column region and we can say that all eigenvalues of A lie in the Ger§gorin
region of A. In symbols, 0(A) C G(A).

27. Find and sketch the Gersgorin region and the eigenvalues for the matrix

1 2 3
A=1|4 5 6
7T 8 9

28. A matrix A € M, (C) is diagonally dominant if foreachk =1,...,n
|| > Ri(A)

and it is strictly diagonally dominant if strict inequality holds. Prove that
if A is strictly diagonally dominant then it is invertible.

29. Find a matrix A € M,,(C) that is diagonally dominant but not invertible.

30. Find a matrix A € M, (C) that is invertible but not strictly diagonally
dominant.



Chapter 9
Real and Complex Inner Product Spaces

We now turn to a discussion of real and complex vector spaces that have an
additional function defined on them, called an inner product, as described in the
upcoming definition. Thus, in this chapter, F' will denote either the real or
complex field. If r is a complex number then the complex conjugate of r is
denoted by 7.

Definition Let V' be a vector space over F' =R or F' = C. An inner product
on 'V is a function {,): V x V' — F with the following properties:
1) (Positive definiteness) For all v € V, the inner product (v, v) is real and

(v,v) > 0and (v,v) =0 v=0

2) For F' = C: (Conjugate symmetry)

(u,v) = (v, u)
For F = R: (Symmetry)
(u, v) = (v, u)
3) (Linearity in the first coordinate) For all u,v € V andr,s € F
(ru + sv,w) = r{u, w) + s{v, w)

A real (or complex) vector space V, together with an inner product, is called a
real (or complex) inner product space. [

We will study bilinear forms (also called inner products) on vector spaces over
fields other than R or C in Chapter 11. Note that property 1) implies that the
quantity (v, v) is always real, even if V' is a complex vector space.

Combining properties 2) and 3), we get, in the complex case

(w,Tu 4 sv) = {ru + sv, w) = T(u, w) + 5(v, w) = 7w, u) + 3{w, v)
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This is referred to as conjugate linearity in the second coordinate. Thus, a
complex inner product is linear in its first coordinate and conjugate linear in its
second coordinate. This is often described by saying that the inner product is
sesquilinear. (Sesqui means “one and a half times.”) In the real case (F' = R),
the inner product is linear in both coordinates—a property referred to as
bilinearity.

Example 9.1
1) The vector space R” is an inner product space under the standard inner
product, or dot product, defined by

<(Tla 7Trb>a (317 ---7Sn)> =781+ -+ TSy

The inner product space R" is often called m-dimensional Euclidean
space.

2) The vector space C" is an inner product space under the standard inner
product defined by

((r1yeooy70), (81,4, 80)) = T181 + -+ + 1,8,

This inner product space is often called n-dimensional unitary space.

3) The vector space Ca, b] of all continuous complex-valued functions on the
closed interval [a,b] is a complex inner product space under the inner
product

b PR
(f.g) = / f(2)g(@) dx 0

Example 9.2 One of the most important inner product spaces is the vector space
% of all real (or complex) sequences (s,,) with the property that Z|3n|2 < 00,
under the inner product

(s () = S s
n=0

Of course, for this inner product to make sense, the sum on the right must
converge. To see this, note that if (s,,), (£,) € £* then

0 < (Isn| — |tn|)2 = |3n|2 — 2|sp|[ta] + |tn|2
and so

2|3ntn| < |3n|2 + |tn|2
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which gives

o0
anﬂ

n=0

2

<2 st < s’ + ) |tal® < 00
n=0 n=0

n=0

We leave it to the reader to verify that £? is an inner product space. (I
The following simple result is quite useful and easy to prove.

Lemma 9.1 [f'V is an inner product space and (u,z) = (v,x) for all x € V
thenu =v. O

Note that a vector subspace S of an inner product space V' is also an inner
product space under the restriction of the inner product of V' to S.

Norm and Distance
If V is an inner product space, the norm, or length of v € V' is defined by
[oll = v/ (v, v) ©.1

A vector v is a unit vector if ||v|| = 1. Here are the basic properties of the norm.
Theorem 9.2
1) ||v|]| = 0and ||v|| = 0 if and only if v = 0.

2) ol = |rll|lvl| forallr € FyveV
3) (The Cauchy-Schwarz inequality) For all u,v € V,

[{w, )| < [lul][ol]

with equality if and only if one of u and v is a scalar multiple of the other.
4) (The triangle inequality) For all u,v € V

lu+ ol < flull + o]

with equality if and only if one of u and v is a scalar multiple of the other.
5) Forallu,v,x eV

lu = ol < flu—zf| + [z — ]|
6) ForalluveV
el = vl < flu — o]l
7) (The parallelogram law) For all u,v € V
lu+ o)) + Ju = o]* = 2]jul* + 2||o])*

Proof. We prove only Cauchy-Schwarz and the triangle inequality. For Cauchy-
Schwarz, if either u or v is zero the result follows, so assume that u,v # 0.
Then, for any scalar r € F,
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U — TV, U — TV)
u u> 7"<'LL, U> - TKU) u> - F<Uy U>]

Choosing 7 = (v, u)/({v,v) makes the value in the square brackets equal to 0
and so

(v, u)(u, v) _ [, 0)
{v,v) o]l”

which is equivalent to the Cauchy-Schwarz inequality. Furthermore, equality
holds if and only if ||u — rv||* = 0, that is, if and only if u — rv = 0, which is
equivalent to v and v being scalar multiples of one another.

To prove the triangle inequality, the Cauchy-Schwarz inequality gives

||u—|—v||2— (u+v,u+ )
= (u,u) + (u,v) + (v,u) + (v,0)
< lul® + 2[jllv]l + vl
= (full + [[oll)?

from which the triangle inequality follows. The proof of the statement
concerning equality is left to the reader. [

Any vector space V, together with a function ||-|:V — R that satisfies
properties 1), 2) and 4) of Theorem 9.2, is called a normed linear space. (And
the function || - || is called a norm.) Thus, any inner product space is a normed
linear space, under the norm given by (9.1).

It is interesting to observe that the inner product on V' can be recovered from the
norm.

Theorem 9.3 (The polarization identities)
1) IfV is a real inner product space, then

(,0) = (4 = Jlu— o])
2) If'V is a complex inner product space, then
() = (o = [l = ol + Gl v~ u )
The formulas in Theorem 9.3 are known as the polarization identities.

The norm can be used to define the distance between any two vectors in an
inner product space.
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Definition Let V' be an inner product space. The distance d(u,v) between any
two vectors  and vin V is

d(u,v) = [[u— ] (920

Here are the basic properties of distance.

Theorem 9.4
1) d(u,v) > 0andd(u,v) =0 ifand only if u = v
2) (Symmetry)

d(u,v) = d(v,u)
3) (The triangle inequality)
d(u,v) < d(u,w) + d(w,v) O

Any nonempty set V, together with a function d: V' x V' — R that satisfies the
properties of Theorem 9.4, is called a metric space and the function d is called
a metric on V. Thus, any inner product space is a metric space under the metric
(9.2).

Before continuing, we should make a few remarks about our goals in this and
the next chapter. The presence of an inner product (and hence a metric) raises a
host of topological issues related to the notion of convergence. We say that a
sequence (v,,) of vectors in an inner product space converges to v € V' if

lim d(v,,v) =0
n—oo

that is, if

lim ||lv, —v|| =0
n—oo

Some of the more important concepts related to convergence are closedness and
closures, completeness and the continuity of linear operators and linear
functionals.

In the finite-dimensional case, the situation is very straightforward: all
subspaces are closed, all inner product spaces are complete and all linear
operators and functionals are continuous. However, in the infinite-dimensional
case, things are not as simple.

Our goals in this chapter and the next are to describe some of the basic
properties of inner product spaces—both finite and infinite-dimensional—and
then discuss certain special types of operators (normal, unitary and self-adjoint)
in the finite-dimensional case only. To achieve the latter goal as rapidly as
possible, we will postpone a discussion of topological properties until Chapter
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13. This means that we must state some results only for the finite-dimensional
case in this chapter, deferring the infinite-dimensional case to Chapter 13.

Isometries

An isomorphism of vector spaces preserves the vector space operations. The
corresponding concept for inner product spaces is the following.

Definition Let V and W be inner product spaces and let T € L(V ,W).
1) T is an isometry if it preserves the inner product, that is, if

(r(u),7(v)) = (u,v)

forallu,ve V.

2) A bijective isometry is called an isometric isomorphism. When 7:V — W
is a bijective isometry, we say that V and W are isometrically
isomorphic. O

It is not hard to show that an isometry is injective and so it is an isometric
isomorphism provided it is also surjective. Moreover, if
dim(V) = dim(W) < o0

injectivity implies surjectivity and so the concepts of isometry and isometric
isomorphism are equivalent. On the other hand, the following example shows
that this is not the case for infinite-dimensional inner product spaces.

Example 9.3 Let 7: /2 — ¢ be defined by
(21, 29, x3...) = (0,21, T2,...)
(This is the right shift operator.) Then T is an isometry, but it is clearly not

surjective. [

Theorem 9.5 A linear transformation 7 € L(V ,W) is an isometry if and only if
it preserves the norm, that is, if and only if

IT@)| = ol

forallveV.
Proof. Clearly, an isometry preserves the norm. The converse follows from the
polarization identities. In the real case, we have
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(rw), 7(0)) = (@) + 7)1 = [[r(w) = (@)
= L+ )l =l = v))

1
= ;lut o> = flu—o]*)
= <’U,,U>

and so 7 is an isometry. The complex case is similar. [J

The next result points out one of the main differences between real and complex
inner product spaces.

Theorem 9.6 Let V' be an inner product space and let T € L(V').

D If(r(v),w) =0forallv, w €V thenT = 0.

2) If'V is a complex inner product space and {T(v),v) = 0 for all v € V then
T=0.

3) Part 2) does not hold in general for real inner product spaces.

Proof. Part 1) follows directly from Lemma 9.1. As for part 2), let v = rz + v,

forz,y € V and r € F. Then

0= (r(rz+y),rz + )
= [r|*(r(x), z) + (7(y),y) + r(r(x),y) + T{r(y), )
=r(r(z),y) +T(7(y), x)
Setting = 1 gives
(r(x),y) + (1(y),z) =0
and setting r = 7 gives
(r(2),y) — (7(y),z) =0

These two equations imply that (7(z),y) = 0 for all ,y € V and so 7 = 0 by
part 1). As for part 3), rotation by 7/2 in the real plane R? has the property that
(1(v),v) = 0 for all v, yet T is not zero. O

Orthogonality

The presence of an inner product allows us to define the concept of
orthogonality.

Definition Let V' be an inner product space.

1)  Two vectors u,v € V are orthogonal, written v L v, if (u,v) = 0.

2) Two subsets X,Y CV are orthogonal, written X LY, if x L y for all
ze€XandyeY.
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3) The orthogonal complement of a subset X C 'V is the set
Xt={weV|{v} LX} O

The following result is easily proved.

Theorem 9.7 Let V' be an inner product space.

1) The orthogonal complement X~ of any subset X C V is a subspace of V.
2) For any subspace S of V, SN S+ = {0}. O

Orthogonal and Orthonormal Sets

Definition 4 nonempty set O = {u; |i € K} of vectors in an inner product
space is said to be an orthogonal set if w; L u; for all i # j€ K. If, in
addition, each vector w; is a unit vector, the set O is an orthonormal set. Thus,
a set is orthonormal if

(ui,uj) = 6; 4

Joralli,j € K, where b, j is the Kronecker delta function. [1

Of course, given any nonzero vector v € V', we may obtain a unit vector u by
multiplying v by the reciprocal of its norm

1

U=+
o]l

Thus, it is a simple matter to construct an orthonormal set from an orthogonal
set of nonzero vectors.

Note that if u L v then
2 2 2
lw+oll” = Jlull” + v

and the converse holds if F' = R.

Theorem 9.8 Any orthogonal set of nonzero vectors in V is linearly
independent.
Proof. Let O = {u; |i € K} be an orthogonal set of nonzero vectors and
suppose that

rug + -+ rpu, =0
Then, forany k =1,...,n,
0= (riuy + -+ rptn, up) = re{ug, ug)

and so 1, = 0, for all k. Hence, O is linearly independent. [



Real and Complex Inner Product Spaces 189

Definition 4 maximal orthonormal set in an inner product space V' is called a
Hilbert basis for V. [

Zorn's lemma can be used to show that any nontrivial inner product space has a
Hilbert basis. We leave the details to the reader.

Extreme care must be taken here not to confuse the concepts of a basis for a
vector space and a Hilbert basis for an inner product space. To avoid confusion,
a vector space basis, that is, a maximal linearly independent set of vectors, is
referred to as a Hamel basis. An orthonormal Hamel basis will be called an
orthonormal basis, to distinguish it from a Hilbert basis.

The following example shows that, in general, the two concepts of basis are not
the same.

Example 9.4 Let V = ¢2 and let M be the set of all vectors of the form
e; =(0,...,0,1,0,...)

where e; has a 1 in the ¢th coordinate and 0's elsewhere. Clearly, M is an
orthonormal set. Moreover, it is maximal. For if v = (x,,) € £ has the property
thatv | M then

T = <U,€i> =0

for all ¢ and so v = 0. Hence, no nonzero vector v ¢ M is orthogonal to M.
This shows that M is a Hilbert basis for the inner product space £2.

On the other hand, the vector space span of M is the subspace S of all
sequences in /2 that have finite support, that is, have only a finite number of
nonzero terms and since span(M) = S # (2, we see that M is not a Hamel
basis for the vector space ¢2. (1

We will show in Chapter 13 that all Hilbert bases for an inner product space
have the same cardinality and so we can define the Hilbert dimension of an
inner product space to be that cardinality. Once again, to avoid confusion, the
cardinality of any Hamel basis for V' is referred to as the Hamel dimension of
V. The Hamel dimension is, in general, not equal to the Hilbert dimension.
However, as we will now show, they are equal when either dimension is finite.

Theorem 9.9 Let V' be an inner product space.

1) (Gram-Schmidt orthogonalization) If' B = (vi,vs,...) is a linearly
independent sequence in V, then there is an orthogonal sequence
O = (uy,uz,...) inV for which

span(uy, ..., u,) = span(vy, ..., v,)

Joralln > 0.
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2) If dim(V') = n is finite then V has a Hilbert basis of size n and all Hilbert
bases for V' have size n .

3) IfV has a finite Hilbert basis of size n, then dim(V') = n.

Proof. To prove part 1), first let u; = v;. Once the orthogonal set {uy, ..., us}

of nonzero vectors has been chosen so that

span(uq, ..., uy) = span(vy, ..., vg)
the next vector uy1 is chosen by setting
Up = V) + 71U + o+ Tp_1Ug—1
and requiring that uy; be orthogonal to each u; for ¢ < k, that is,
0= (up,w;) = (Vg +r1ug + - + rp_1wp—1, wi) = (Vg wi) + 73 {wg, ug)
or, finally,

_ <Uk’7ui>
(ui, ui)

i =

foralli=1,... k.

For part 2), applying the Gram—Schmidt orthogonalization process to a Hamel
basis gives a Hilbert basis of the same size n. Moreover, if V' has a Hilbert basis
of size greater than n, it must also have a Hamel basis of size greater than n,
which is not possible. Finally, if V' has a Hilbert basis 3 of size less than n then
B can be extended to a proper superset C that is also linearly independent. The
Gram—Schmidt process applied to C gives a proper superset of 5 that is
orthonormal, which is not possible. Hence, all Hilbert bases have size n.

For part 3), suppose that dim(V') > n. Since a Hilbert basis H of size n is
linearly independent, we can adjoin a new vector to H to get a linearly
independent set of size n 4+ 1. Applying the Gram—Schmidt process to this set
gives an orthonormal set that properly contains H, which is not possible. (]

For reference, let us state the Gram—Schmidt orthogonalization process
separately and give an example of its use.

Theorem 9.10 (The Gram-Schmidt orthogonalization process) If
B = (vi,v9,...) is a sequence of linearly independent vectors in an inner
product space V, then the sequence O = (uy,us, ...) defined by

k—1

Ul = Vi — Z <Uk’ui> (77

i=1 <u’177 U’i>
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is an orthogonal sequence in V' with the property that
span(uy, ..., u;) = span(vy, ..., vx)

forallk > 0.0

Of course, from the orthogonal sequence (u;), we get the orthonormal sequence
(w;), where w; = u;/||u;]|.

Example 9.5 Consider the inner product space R|[x] of real polynomials, with
inner product defined by

1

(p(2), a(z)) = / p(z)q(z)dz

-1

Applying the Gram-Schmidt process to the sequence B = (1,x,2% 2%,...)
gives

ur(x) =1
1
d
ug(x) = — e du 1=z
1
[ dx
1 2d 1 Sd
u3 () =z’ - ff11xd - ffllx dx =2 — %
Cdx Cxdx
ws(z) = 2 — f_llmgdx B f_llx4dx B f}lx?’(xg—%)da: , 1
4(x) ==z : . T T, I\ T3
[ dx Jojzdx Jo (@2 =3)%dx
3
=2 - "2
5

and so on. The polynomials in this sequence are (at least up to multiplicative
constants) the Legendre polynomials. [

Orthonormal bases have a great advantage over arbitrary bases. From a
computational point of view, if B = {vy,...,v,} is a basis for V' then each
v € V has the form

V=711 + -+ TR0,

In general, however, determining the coordinates r; requires solving a system of
linear equations of size n X n.

On the other hand, if O = {uy, ..., u,} is an orthonormal basis for Vand
V=T Ty
then the coefficients are quite easily computed:

(Vi) = (riug + - + P, wi) = rilu, ui) =1
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Even if O = {uy,...,u,} is not a basis (but just an orthonormal set), we can
still consider the expansion

V= <U7 U]>U] + -+ <U7 un>un
Proof of the following characterization of orthonormal (Hamel) bases is left to

the reader.

Theorem 9.11 Let O = {uy,...,u;} be an orthonormal set of vectors in a
finite-dimensional inner product space V. For any v €V, the Fourier
expansion of v with respect to O is

0= </U, U1>U1 +o <U, uk>uk
In this case, Bessel's inequality holds for all v € V, that is
1ol < ]l

Moreover, the following are equivalent:
1) The set O is an orthonormal basis for V.
2) Every vector is equal to its Fourier expansion, that is, for allv € V

V=
3) Bessel's identity holds for all v € V, that is
[0l = [lvll

4) Parseval's identity holds for all v,w € V, that is

(v, wy = (v, u){w,ur) + <+ + (v, ug) (w, ug) O

The Projection Theorem and Best Approximations

We have seen that if S is a subspace of an inner product space V' then
SN S+ ={0}. This raises the question of whether or not the orthogonal
complement St is a vector space complement of S, that is, whether or not
V=SS5

If S is a finite-dimensional subspace of V, the answer is yes, but for infinite-
dimensional subspaces, S must have the topological property of being complete.
Hence, in accordance with our goals in this chapter, we will postpone a
discussion of the general case to Chapter 13, contenting ourselves here with an
example to show that, in general, V # S @ S+.

Example 9.6 As in Example 9.4, let V = ¢? and let S be the subspace of all
sequences of finite support, that is, .S is spanned by the vectors

e; =(0,...,0,1,0,...)

where ¢; has a 1 in the ith coordinate and Os elsewhere. If x = (x,,) € S+ then
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x; = (z,¢;) = 0 for all i and so z = 0. Therefore, S* = {0}. However,
S@St=8#/ O

As the next theorem shows, in the finite-dimensional case, orthogonal
complements are also vector space complements. This theorem is often called
the projection theorem, for reasons that will become apparent when we discuss
projection operators. (We will discuss the projection theorem in the infinite-
dimensional case in Chapter 13.)

Theorem 9.12 (The projection theorem) If' S is a finite-dimensional subspace
of an inner product space V' (which need not be finite-dimensional) then

V=5Sast

Proof. Let O = {uy,...,u;} be an orthonormal basis for S. For each v € V,
consider the Fourier expansion

D= (v,ur)uy + -+ (v, uphug
with respect to O. We may write
v=7+ (v—7)
where ¥ € S. Moreover, v — 7 € ST, since
(v=",u;) = (v,u;) — (T,u;) =0
Hence V =S + S*+. We have already observed that SN S+ = {0} and so
V=S&s5.0

According to the proof of the projection theorem, the component of v that lies in
S is just the Fourier expansion of v with respect to any orthonormal basis O for

S.
Best Approximations

The projection theorem implies that if v =7 + s* where ¥ € S and st € S+
then 7 is the element of S that is closest to v, that is, ¥ is the best
approximation to v from within S. For if t € S then since v — ¥ € S+ we have
(v—"0) L (v—t)andso

lo—tI* = llv =2 +2 —t||* = Jlo = 3| + [~ ¢

It follows that ||v — ¢|| is smallest when ¢ = . Also, note that ¥ is the unique
vector in S for which v — @ L S. Thus, we can say that the best approximation
to v from within S is the unique vector s € S for which (v —s) L S and that
this vector is the Fourier expansion v of v.
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Orthogonal Direct Sums

Definition Let V' be an inner product space and let Sy, ..., S, be subspaces of
V. Then V is the orthogonal direct sum of Sy, ..., S,, written

S=850--08,
if
D V=S85,
2) SiLSjfori#j
In general, to say that the orthogonal direct sum S; ® --- ® S, of subspaces
exists is fo say that the direct sum Sy & --- § S,, exists and that 2) holds. T

Theorem 9.12 states that V = S & S+, for any finite-dimensional subspace S of
a vector space V. The following simple result is very useful.

Theorem 9.13 Let V' be an inner product space. The following are equivalent.
) V=SoT

2) V=S®TandT = S+

3) V=S®TandT C S+

Proof. Suppose 1) holds. Then V =S& T and S LT, which implies that
T C S+ Butifwe Stthenw=s+tforse S, teT andso

0= (s,w) =(s,8) + (s,t) = (s, )

Hence s = 0 and w € T, which implies that S+ C T. Hence, S+ = T, which
gives 2). Of course, 2) implies 3). Finally, if 3) holds then T C S+, which
implies that S L T and so 1) holds. O

Theorem 9.14 Let V' be an inner product space.
1) Ifdim(V) < oo and S is a subspace of V' then

dim(S+) = dim(V) — dim(S)
2) If S is a finite-dimensional subspace of V' then
St =39
3) If X is asubset of V and dim(span(X)) < oo then
X*++ = span(X)

Proof. Since V =S @ S+, we have dim(V) = dim(S) + dim(S+), which
proves part 1). As for part 2), it is clear that S C S**. On the other hand, if
v € S+ then by the projection theorem

v=s+s
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where s € S and s’ € S*. But v € S+ implies that 0 = (v, s') = (s, s') and so
s' = 0, showing that v € S. Therefore, S*+ C S and S*+ = S. We leave the
proof of part 3) as an exercise. [

The Riesz Representation Theorem

If z is a vector in an inner product space V' then the function ¢,:V — F
defined by

¢r(v) = (v, )

is easily seen to be a linear functional on V. The following theorem shows that
all linear functionals on a finite-dimensional inner product space V' have this
form. (We will see in Chapter 13 that, in the infinite-dimensional case, all
continuous linear functionals on V' have this form.)

Theorem 9.15 (The Riesz representation theorem) Let V' be a finite-
dimensional inner product space and let f € V* be a linear functional on V.
Then there exists a unique vector € V for which

f(v) = (v,z) 9.3)

for all v € V. Let us call = the Riesz vector for f and denote it by R;. (This
term and notation are not standard.)

Proof. If f is the zero functional, we may take x = 0, so let us assume that
f # 0. Then K = ker(f) has codimension 1 and so

V=(woK
forw € K+. If z = aw for some o € F, then (9.3) holds if and only if
fw) = (v, 0w)

and since any v € V has the form v = fw+ k for 8 € F and k € K, this is
equivalent to

f(Bw) = (fw, aw)
or
f(w) = @w, w) = al|w|’
Hence, we may take o = f(w)/||w||* and

_fw)

- 2
]

Proof of uniqueness is left as an exercise. [J

If V. =R", then it is easy to see that Ry = (f(ei1),...,f(en)) where
(e1,...,en) is the standard basis for R".
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Using the Riesz representation theorem, we can define a map ¢: V* — V by
setting ¢(f) = Ry, where Ry is the Riesz vector for f. Since

(v,0(rf + sg)) = (rf + s9)(v)
= rf(v) + sg(v)
(v,70(f)) + (v,35¢(9))

= (v,7¢(f) +50(9))

for all v € V, we have

and

o(rf +s9) =To(f) +350(9)

so ¢ is conjugate linear. Since ¢ is bijective, the map ¢:V* — V is a

“conjugate isomorphism.”

Exercises

1.
2.
3.

10.

11.

Verify the statement concerning equality in the triangle inequality.
Prove the parallelogram law.
Prove the Appolonius identity

1 1 ?
2 2 2
o= ul® 4+ o= o = Gl ol + 20~ 5+ 0

Let V' be an inner product space with basis B. Show that the inner product
is uniquely defined by the values (u,v), for all u,v € B.

Prove that two vectors u and v in a real inner product space V are
orthogonal if and only if

2 2 2
[+ of|” = [luf|” + o]

Show that an isometry is injective.

Use Zorn's lemma to show that any nontrivial inner product space has a
Hilbert basis.

Prove Bessel's inequality.

Prove that an orthonormal set O is a basis for V' if and only if ¥ = v, for all
veV.

Prove that an orthonormal set O is a basis for V' if and only if Bessel's
identity holds for all v € V, that is, if and only if

ol = ol

forallv e V.
Prove that an orthonormal set O is a basis for V' if and only if Parseval's
identity holds for all v, w € V, that is, if and only if

(v,w) = (v, ug){w,ur) + - + (v, uE)(w, ug)

forallv,w e V.



12.

13.

14.

15.
16.

17.

18.

19.
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Let u = (ry,...,7m,) and v = (s1,...,8,) be in R™. The Cauchy-Schwarz
inequality states that

risi 4+ rasal” < (rf 4 4 72)(5T 4+ 52)
Prove that we can do better:
(Jris1] + -+ |7’nsn|)2 < (r% + -4 1"721)(.9? + -+ 5,21)

Let V be a finite-dimensional inner product space. Prove that for any subset
X of V, we have X+ = span(X).

Let P5 be the inner product of all polynomials of degree at most 3, under
the inner product

o) ata)) = [ plalata)e da
—00

Apply the Gram-Schmidt process to the basis {1,z,z% 2%}, thereby
computing the first four Hermite polynomials (at least up to a
multiplicative constant).
Verify uniqueness in the Riesz representation theorem.
Let V' be a complex inner product space and let S be a subspace of V.
Suppose that v € V' is a vector for which (v, s) + (s,v) < (s,s) for all
s € S. Prove thatv € S*.

If V and W are inner product spaces, consider the function on V H W
defined by

((v1,w1), (v2, w2)) = (v1,va) + (w1, ws)

Is this an inner product on V H W?

A normed vector space over R or C is a vector space (over R or C)
together with a function ||||: V' — R for which for all u,v € V" and scalars r
we have

2 [ro] = [rlflo]

b) flu+ vl < lull + v

¢) |lv|| =0ifand only ifv =20

If V is a real normed space (over R) and if the norm satisfies the
parallelogram law

2 2 2 2
[+ vlI” + flu — ol” = 2[ul]” + 2][v|
prove that the polarization identity
1 2 2
(u,v) = 2 (lu+o]” = llu =)

defines an inner product on V.
Let S be a subspace of an inner product space V. Prove that each coset in
V' /S contains exactly one vector that is orthogonal to S.
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Extensions of Linear Functionals

20. Let f be a linear functional on a subspace S of a finite-dimensional inner
product space V. Let f(v) = (v, Ry). Suppose that g € V* is an extension
of f, thatis, g|s = f. What is the relationship between the Riesz vectors R
and R,?

21. Let f be a linear functional on a subspace S of a finite-dimensional inner
product space V and let K = ker(f). Show that if g € V* is an extension
of f then R, € K+ \ S*. Moreover, for each vector u € K+ \ S* there is
exactly one scalar A for which the linear functional g(X) = (X, Au) is an
extension of f.

Positive Linear Functionals on R™

A vector v = (aq,...,a,) in R” is nonnegative (also called positive), written
v >0, if a; > 0 for all i. The vector v is strictly positive, written v > 0, if v is
nonnegative but not 0. The set R" of all strictly positive vectors in R" is called
the nonnegative orthant in R"”. The vector v is strongly positive, written
v > 0, if a; > 0 for all ¢. The set R}, of all strongly positive vectors in R" is
the strongly positive orthant in R”.

Let f: S — R be a linear functional on a subspace S of R”. Then f is
nonnegative (also called positive), written f > 0, if

v>0= f(v) >0

forall v € S and f is strictly positive, written f > 0, if

v>0= f(v)>0

forallv e S.

22. Prove that a linear functional f on R" is positive if and only if Ry > 0 and
strictly positive if and only if Ry > 0. If S is a subspace of R" is it true
that a linear functional f on S is nonnegative if and only if 2y > 0?

23. Let f: S — R be a strictly positive linear functional on a subspace S of R".
Prove that f has a strictly positive extension to R". Use the fact that if
U NR7Y = {0}, where

R} ={(a1,...,a,) [ @; > O all i}

and U is a subspace of R" then U+ contains a strongly positive vector.

24. If V is a real inner product space, then we can define an inner product on its
complexification V' as follows (this is the same formula as for the ordinary
inner product on a complex vector space)

(u+ i,z +yi) = (u,2) + (v,9) + ({0, 2) = (u,9))i

Show that
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12 2 2
I + i) " = [Ju]” + o]

where the norm on the left is induced by the inner product on V¢ and the
norm on the right is induced by the inner product on V.



Chapter 10
Structure Theory for Normal Operators

Throughout this chapter, all vector spaces are assumed to be finite-dimensional
unless otherwise noted.

The Adjoint of a Linear Operator

The purpose of this chapter is to study the structure of certain special types of
linear operators on finite-dimensional inner product spaces. In order to define
these operators, we introduce another type of adjoint (different from the
operator adjoint of Chapter 3).

Theorem 10.1 Let V and W be finite-dimensional inner product spaces over F
and let T € L(V,W). Then there is a unique function 7:W — V., defined by
the condition

(r(v), w) = (v, 7" (w))

Jorallv € V and w € W. This function is in L(W , V') and is called the adjoint

of T.
Proof. For a fixed w € W, consider the function 0,,: V' — F defined by

6.,(v) = (r(v), w)

It is easy to verify that 6, is a linear functional on V' and so, by the Riesz
representation theorem, there exists a unique vector € V for which

0. (v) = (v, )
for all v € V. Hence, if 7*(w) = « then
(r(v), w) = (v, 7" (w))

for all v € V. This establishes the existence and uniqueness of 7. To show that
7* 1s linear, observe that
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(v, 7" (rw + su)) = (T(v), 7w + su)

)
—
=

g

N

+

@l
—

)
—

<
=
£

for all v € V and so
T (rw 4 su) = r7*(w) + s7"(u)

Hence 7 € £L(V,W). O
Here are some of the basic properties of the adjoint. Proof is left to the reader.

Theorem 10.2 Let Vand W be finite-dimensional inner product spaces. For
everyo,7 € L(V,W)andr € F

D (c+71)f =047

2) (rr)*=7r"

3) ™=r1

4) IfV =W then (o1)* = 10"

5) IfTis invertible then (171)* = (%)~

6) IfV =W andp(z) € R[z] then p(7)* = p(r*). O

Now let us relate the kernel and image of a linear transformation to those of its
adjoint.

Theorem 10.3 Let 7 € L(V,W) where Vand W are finite-dimensional inner
product spaces. Then
1) ker(r*) = im(7)*
2) im(7*) = ker(7)*
3) T is injective if and only if T* is surjective.
4) 7 is surjective if and only if T* is injective.
5) ker(t*1) = ker(7)
6) ker(rr*) = ker(7*)
7) im(7*7) = im(7*)
8) im(77*) = im(7)
9) If p is projection onto im(p) along ker(p) then p* is projection onto
ker(p)* along im(p)*.
Proof. For part 1),
u € ker(7) < 7 (u) =0

< (7"(u),v) =0 forall v

< (u,7(v)) =0 forall v

& u € im(7)

[

Part 2) follows from part 1) by replacing 7 by 7 and taking orthogonal
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complements. Parts 3) and 4) follow from parts 1) and 2). For part 5), it is clear
that 7(u) = 0 implies that 7°7(u) = 0. For the converse, we have

7' 7r(u) =0= ("1(u),u) =0
= (r(u),7(w)) =0
=7(u)=0

Part 6) follows from part 5) by replacing T with 7*. We leave parts 7)-9) for the
reader. [

The Operator Adjoint and the Hilbert Space Adjoint

We should make some remarks about the relationship between the operator
adjoint 7° of 7, as defined in Chapter 3 and the adjoint 7* that we have just
defined, which is sometimes called the Hilbert space adjoint. In the first place,
if 7: V — W then 7™ and 7* have different domains and ranges

W=V
but
W =V

These maps are shown in Figure 10.1, where ¢1: V* — V and ¢o: W* — W are
the conjugate linear maps defined by the conditions

fw) = (v, 01(f))
forall f € V*andv € V and
g(w) = (w, $2(9))

for all g € W* and w € W, and whose existence is guaranteed by the Riesz
representation theorem.

Figure 10.1
The map o: W* — V* defined by

o= (¢1)"" T ¢o
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is linear. Moreover, forall f € W*andv e V

() = [(&1) 7" ()] (v)
{(¢1)” 1[7 $2(F)I}Hv)
(v, 7°02(f))

(r(v), 92(f))
f

(r(v))

and so 0 = 7. Hence, the relationship between 7> and 7 is
= (1) o

The functions ¢ are like “change of variables” functions from linear functionals
to vectors, and we can say, loosely speaking, that 7" does to Riesz vectors what
7% does to the corresponding linear functional.

In Chapter 3, we showed that the matrix of the operator adjoint 7 is the
transpose of the matrix of the map 7. For Hilbert space adjoints, the situation is
slightly different (due to the conjugate linearity of the inner product). Suppose
that B = (by,...,b,) is an ordered orthonormal basis for V and
C = (e,...,¢p) is an ordered orthonormal basis for W. Then

([T]es)iy = (77(ci), 0j) = (ei, 7(by)) = (7(bs), ¢i) = ([7]s.c)j

and so [7*]¢ 5 and [7]p ¢ are conjugate transposes. If A = (a; ;) is a matrix over
F, let us write the conjugate transpose as

At = (a;;)

Theorem 10.4 Let 7 € L(V, W), where V and W are finite-dimensional inner
product spaces.
1) The operator adjoint T* and the Hilbert space adjoint T* are related by

=(¢1) 'y

where ¢; maps a linear functional f to its Riesz vector R;.
2) If B and C are ordered orthonormal bases for V and W, respectively, then

[T]es = ([7]sc)"
In words, the matrix of the adjoint T* is the conjugate transpose of the
matrix of 7. O
Unitary Diagonalizability

Recall that a linear operator 7 € £(V') on a finite-dimensional vector space V' is
diagonalizable if and only if V' has a basis consisting entirely of eigenvectors of
T, or equivalently, V' can be written as a direct sum of the eigenspaces of T
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V=E,8-®&,

Of course, each eigenspace &), has an orthonormal basis O;, but the union of
these bases, while certainly a basis for V', need not be orthonormal.

Definition Let V' be a finite-dimensional inner product space and let 7 € L(V').
If there is an orthonormal basis O for V' for which [1)eo is a diagonal matrix, we
say that T is unitarily diagonalizable when V' is complex and orthogonally
diagonalizable when V is real. O

For simplicity in exposition, we will tend to use the term unitarily
diagonalizable for both cases. It is clear that the following statements are
equivalent:

1) 7 is unitarily diagonalizable
2) There is an orthonormal basis for V' consisting entirely of eigenvectors of 7
3) V can be written as an orthogonal direct sum of eigenspaces

VvV :g/\l ® ...@g&_’
Since unitarily diagonalizable operators are so well behaved, it is natural to seek
a characterization of such operators. Remarkably, there is a simple one.
Let us first suppose that 7 is unitarily diagonalizable and that O is an ordered
orthonormal basis of eigenvectors for 7. Then the matrix [7]o is diagonal

[T]o = diag(Xi,, ..., i)

and so

[T*}O = diag()\il, oo ,X,‘,“)
Clearly, [7]p and [7*]» commute. Hence, T and 7* also commute, that is
T =717

It is a surprising fact that the converse also holds on a complex inner product
space, that is, if 7 and 7" commute then 7 is unitarily diagonalizable.
(Something similar holds for real inner product spaces, as we will see.)

Normal Operators
It is clear from the preceding discussion that the following concept is key.
Definition A linear operator 7 on an inner product space V' is normal if it
commutes with its adjoint

T =717 a

Normal operators have some very nice properties.
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Theorem 10.5 Let N be the set of normal operators on a finite-dimensional
inner product space V. Then N satisfies the following properties:
1) (Closure under linear combinations)

rse€F,o,TeN=ro+streN
2) (Closure under multiplication, under a commutivity requirement)
o, TEN,c"T=10"=>07CN
3) (Closure under inverses)
T €N, Tinvertible =17 € N
4) (Closure under polynomials)
T €N = p(1) € N for any p(z) € F|z]

Moreover, if 7 € A/ then

5) T(v)=0&71(v)=0

6) ™) =0s1()=0

7)  The minimal polynomial of T is a product of distinct irreducible monic
polynomials.

8) 1(v) =lve 7)) =

9) Let S and T be submodules of V., whose orders are relatively prime real
polynomials. Then S 1 T.

10) If X and v are distinct eigenvalues of T then £y L E,,.

Proof. We leave parts 1)—4) for the reader. Normality implies that

IT(@)° = (r(v), 7(0)) = (7*(v), 7" (v)) = |7 (0)|”
and so part 5) follows. For part 6) let = 7%7. Then o has the property that
(o(v),w) = (T77(v), w) = (r(v), T(w)) = (v, 7"7(w)) = (v, 0 (w))

and so 0* = 0. (We will discuss this property of being self~adjoint in detail
later.) Now we can easily prove part 6) for o. For if o (v) = 0 for k > 1 then

0 = (0" (0),0"2(0)) = (0" (1), 0" (o)

and so o*~1(v) = 0. Continuing in this way gives o(v) = 0. Now, if 7¥(v) = 0
for £ > 1, then the normality of 7 implies that

o*(v) = (1) (v) = 0
and so o(v) = 0. Hence
0= (a(v),v) = (777(v),v) = (7(v), 7(v))
and so 7(v) = 0.
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For part 7), suppose that
me(x) = pi' (z)--py (z)

where p;(z),...,pr(z) are distinct, irreducible and monic. If e; > 1 then for
anyveV

where m(f)(x) = m,(z)/p; (z). Hence, since p;() is also normal, part 6)

implies that

for all v €V and so pl-(T)m@(T) = 0, which is false since the polynomial
pi(:v)mg) (x) has degree less than that of m.(x). Hence, e; = 1 for all 4.

For part 8), using part 5) we have

For part 9), let ann(S) = (p(z)) and ann(T") = (g(z)). Then there are real
polynomials a(z) and b(z) for which a(z)p(x) + b(x)gq(xz) = 1. If u € S and
v € T then since p(7)u = 0 implies that p(7*)u = 0, we have
(u, v) = ([a(7")p(7") + b(77)q(77)]u, v)
= (b(7")a(T")u, v)
< > q(7)b(T)v)

Hence, S L T'. For part 10), we have forv € £y and w € &,

Av, w) = (7(v), w) = (v, 7 (w)) = (v, w) = p(v, w)
and since A # p we get (v,w) = 0.0
Special Types of Normal Operators

Before discussing the structure of normal operators, we want to introduce some
special types of normal operators that will play an important role in the theory.

Definition Let V' be an inner product space and let T € L(V').
1) 7 is self-adjoint (also called Hermitian in the complex case and
symmetric in the real case), if
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2) 7 is called skew-Hermitian in the complex case and skew-symmetric in
the real case, if

T =-T

3) 7 is called unitary in the complex case and orthogonal in the real case if T
is invertible and

™ =7t |

There are also matrix versions of these definitions, obtained simply by replacing
the operator 7 by a matrix A. In the finite-dimensional case, we have seen that

for any ordered orthonormal basis O of V' and so if 7 is normal then
[lolrlo = [rlo[Tlo = [777]o = [T"7lo = [T]ol7]o = [Tlol7]o

which implies that the matrix [7]o of 7 is normal. The converse holds as well. In
fact, we can say that 7 is normal (respectively: Hermitian, symmetric, skew-
Hermitian, unitary, orthogonal) if and only if any matrix that represents 7, with
respect to an ordered orthonormal basis O, is normal (respectively: Hermitian,
symmetric, skew-Hermitian, unitary, orthogonal).

In some sense, square complex matrices are a generalization of complex
numbers. Also, the adjoint (conjugate transpose) of a matrix seems to be a
generalization of the complex conjugate. In looking for a tighter analogy—one
that will lead to some useful mnemonics, we could consider just the diagonal
matrices, but this is a bit too tight. The next logical choice is the normal
operators.

Among the complex numbers, there are some special subsets: the real numbers,
the positive numbers and the numbers on the unit circle. We will soon see that a
normal operator is self-adjoint if and only if its complex eigenvalues are all real.
This would suggest that the analog of the set of real numbers is the set of self-
adjoint operators. Also, we will see that a normal operator is unitary if and only
if all of its eigenvalues have norm 1, so numbers on the unit circle seem to
correspond to the set of unitary operators. Of course, this is just an analogy.

Self-Adjoint Operators

Let us consider some properties of self-adjoint operators. The quadratic form
associated with the linear operator 7 is the function @,: V' — F' defined by

Qr(v) = (7(v), )

We have seen that in a complex inner product space 7 = 0 if and only if ), = 0
but this does not hold, in general, for real inner product spaces. However, it
does hold for symmetric operators on a real inner product space.
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Theorem 10.6 Let H be the set of self-adjoint operators on a finite-dimensional
inner product space V. Then H satisfies the following properties:
1) (Closure under addition)

o, TEH=0+4+TEH

2) (Closure under real scalar multiplication)
reRreH=rreH

3) (Closure under multiplication if the factors commute)

o, T€eH,or =70 =07 E€H
4) (Closure under inverses)
T € H, T invertible = 77! € 'H
5) (Closure under real polynomials)
T € H = p(r) € H for any p(x) € Rx]

6) A complex operator T is Hermitian if and only if Q.(v) is real for all
veV.

7) If F =Corif F =R and T is symmetric then T = 0 if and only if Q, = 0

8) If 7 is self-adjoint, then the characteristic polynomial of T splits over R and
so all complex eigenvalues are real.

Proof. For part 6), if 7 is Hermitian then

(r(v),v) = (v, 7(v)) = (7(v), )
and so Q. (v) = (7(v),v) is real. Conversely, if (7(v), v) € R then
(0,7(v)) = (7(v),v) = (v, 7"(v))

and so (v, (7 —7*)(v)) =0 for all v € V, whence 7 — 7* = 0, which shows
that 7 is Hermitian.

As for part 7), the first case (F' = C) is just Theorem 9.6 so we need only
consider the real case, for which

= (r(@),2) + (r(v),y) + (r(z),y) + (7(y), 2)
= (7(2),y) + (7(y), 2)

= (r(@),y) + (z,7(y))

= (7(2),y) + (7(2),9)

= 2(r(z),y)

and so 7 = 0.
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For part 8), if 7 is Hermitian (¥’ = C) and 7(v) = Av then
v, v) = (7(v),v) = Q7 (v)

is real by part 5) and so A must be real. If 7 is symmetric (F' = R), we must be
a bit careful, since if A is a complex root of C,(z), it does not follow that
7(v) = Av for some 0 # v € V. However, we can proceed as follows. Let 7 be
represented by the matrix A, with respect to some ordered basis for V. Then
Cr(xz) = C4(x). Now, A is a real symmetric matrix, but can be thought of as a
complex Hermitian matrix that happens to have real entries. As such, it
represents a Hermitian linear operator on the complex space C™ and so, by what
we have just shown, all (complex) roots of its characteristic polynomial are real.
But the characteristic polynomial of A is the same, whether we think of A as a
real or a complex matrix and so the result follows. [

Unitary Operators and Isometries

We now turn to the basic properties of unitary operators. These are the
workhorse operators, in that a unitary operator is precisely a normal operator
that maps orthonormal bases to orthonormal bases.

Note that 7 is unitary if and only if
(r(v),w) = (v, 77 (w))

forallv,w e V.

Theorem 10.7 Let U be the set of unitary operators on a finite-dimensional
inner product space V. Then U satisfies the following properties:
1) (Closure under scalar multiplication by complex numbers of norm 1)

reC,lrl=1landrelUU=rreld

2) (Closure under multiplication)

o,TeEU=0TEU
3) (Closure under inverses)

reU=1"relU

4) T is unitary/orthogonal if and only it is an isometric isomorphism.

5) T is unitary/orthogonal if and only if it takes an orthonormal basis to an
orthonormal basis.

6) If' T is unitary/orthogonal then the eigenvalues of T have absolute value 1.

Proof. We leave the proofs of 1)-3) to the reader. For part 4), a

unitary/orthogonal map is injective and since the range and domain have the

same finite dimension, it is also surjective. Moreover, for a bijective linear map

T, we have
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7 is an isometry < (7(v), 7(w)) = (v, w) forallv,w € V
& (v, 7'7(w)) = (v,w) forallv,w € V
& 7r(w) =wforallw € V
ST T=1
STt =7"
4 T is unitary/orthogonal

1

For part 5), suppose that 7 is unitary/orthogonal and that O = {uy, ..., u,} is an
orthonormal basis for V. Then

(T(ui), 7(uy)) = (i, uj) = b;

and so 7(O) is an orthonormal basis for V. Conversely, suppose that O and
7(Q) are orthonormal bases for V. Then

(T(ui), T(uy)) = 615 = (ui, uy)

Using the conjugate linearity/bilinearity of the inner product, we get
(1(v), 7(w)) = (v,w) and so T is unitary/orthogonal.

For part 6), if 7 is unitary and 7(v) = A\v then
A (v, v) = (A, M) = (7(v), 7(v)) = (v, v)
and so |A|” = AX = 1, which implies that || = 1. O

We also have the following theorem concerning unitary (and orthogonal)
matrices.

Theorem 10.8 Let A be an n x n matrix.
1) The following are equivalent:
a) Ais unitary
b) The columns of A form an orthonormal set in C".
¢) The rows of A form an orthonormal set in C".
2) If A is unitary then |det(A)| = 1. In particular, if A is orthogonal then
det(A) = £ 1.
Proof. The matrix A is unitary if and only if AA* = I, which is equivalent to
saying that the rows of A are orthonormal. Similarly, A is unitary if and only if
A*A = I, which is equivalent to saying that the columns of A are orthonormal.
As for part 2), we have

AA* =1 = det(A)det(A*) = 1 = det(A)det(A) =1

from which the result follows. O

Unitary/orthogonal matrices play the role of change of basis matrices when we
restrict attention to orthonormal bases. Let us first note that if B = (uy,...,u,)
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is an ordered orthonormal basis and
v=aiu + -+ apy
w=biuy + -+ byuy,
then
(v,w) = arby + -+ + apb, = [V - [w]s

and so v L w if and only if [v]p L [w]s.
We can now state the analog of Theorem 2.13.

Theorem 10.9 If we are given any two of the following:
1) A unitary/orthogonal n x n matrix A.

2) An ordered orthonormal basis B for F™.

3) An ordered orthonormal basis C for F™".

then the third is uniquely determined by the equation

A= Mg O

Unitary Similarity
We have seen that the change of basis formula for operators is given by
[r]s = P[r]sP™"
where P is an invertible matrix. What happens when the bases are orthonormal?
Definition Two complex matrices A and B are unitarily similar (also called
unitarily equivalent) if there exists a unitary matrix U for which
B=UAU'=UAU"

The equivalence classes associated with unitary similarity are called unitary
similarity classes. Similarly, two real matrices A and B are orthogonally
similar (also called orthogonally equivalent) if there exists an orthogonal
matrix O for which

B=0A0"'=0A0!
The equivalence classes associated with orthogonal similarity are called
orthogonal similarity classes. [

The analog of Theorem 2.19 is the following.

Theorem 10.10 Let V' be an inner product space of dimension n. Then two
n X n matrices A and B are unitarily/orthogonally similar if and only if they
represent the same linear operator 7 € L(V'), but possibly with respect to
different ordered orthonormal bases. In this case, A and B represent exactly the
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same set of linear operators in L(V'), when we restrict attention to orthonormal
bases.
Proof. If A and B represent 7 € L(V), that is, if

A= [T]B and B = [T]C
for ordered orthonormal bases BB and C then
B = MB,CAMC,B

and according to Theorem 10.9, Mz ¢ is unitary/orthogonal. Hence, A and B are
unitarily/orthogonally similar.

Now suppose that A and B are unitarily/orthogonally similar, say
B=UAU""

where U is unitary/orthogonal. Suppose also that A represents a linear operator
7 € L(V) for some ordered orthonormal basis B, that is,

A=[r]s

Theorem 10.9 implies that there is a unique ordered orthonormal basis C for V'
for which U = Mpc. Hence

B = Mpgclr]sMgg = [Tl

Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear operators, under all possible ordered orthonormal bases. []

Unfortunately, canonical forms for unitary similarity are rather complicated and
not well discussed. We have shown in Chapter 8 that any complex matrix A is
unitarily similar to an upper triangular matrix, that is, that A is unitarily upper
triangularizable. (This is Schur's lemma.) However, just as in the nonunitary
case, upper triangular matrices do not form a canonical form for unitary
similarity. We will soon show that every complex normal matrix is unitarily
diagonalizable. However, we will not discuss canonical forms for unitary
similarity in this book, but instead refer the reader to the survey article [Sh].

Reflections

The following defines a very special type of unitary operator.

Definition For a nonzero v € V, the unique operator H, for which

Hpw = —v, (Hy)|@y: =1

is called a reflection or a Householder transformation. (]
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It is easy to verify that

2
H,(z)=2x— (x,v)v
(v, v)
Note also that if 7 is a reflection then 7 = H, if and only if 7(x) = —z. For if
7 = H, and 7(z) = —x then we can write x = av + z where z L v and so

—(av+2)=—z=7(x) = H(aw+2) = —av+ 2

which implies that z = 0, whence H, = H,-1, = H,.

If H, is reflection and we extend v to an ordered orthonormal basis B for V' then
[H,)s is the matrix obtained from the identity matrix by replacing the (1,1)
entry by —1. Thus, we see that a reflection is unitary, Hermitian and idempotent
(H?=0).

Theorem 10.11 Let v,w € V with ||v|| = ||w|| # 0. Then H,_,, is the unique
reflection sending v to w, that is, H,_,,(v) = w.
Proof. If ||v|| = ||w]|| then (v — w) L (v+ w) and so

vaw(
Hi:—w(

—w)=w-—"v

v
v+w)=v+w

from which it follows that H,_,,(v) = w. As to uniqueness, suppose H, is a

reflection for which H,(v) = w. Since H;* = H,, we have H,(w) = v and so
H,(v—w)=—(v—w)

which implies that H, = H,_,,. O

Reflections can be used to characterize unitary operators.

Theorem 10.12 An operator T on a finite-dimensional inner product space V is
unitary (for F' = C) or orthogonal (for F' = R) if and only if it is a product of
reflections.

Proof. Since reflections are unitary (orthogonal) and the product of unitary
(orthogonal) operators is unitary, one direction is easy.

For the converse, let 7 be unitary. Let B = (uyq, ..., u,) be an orthonormal basis
for V. Hence 7(B) is also an orthonormal basis for V. We make repeated use of
the fact that H,_,(x) = y. For example, if

x1 =7(u1) — w
then
(Hyy7)(u1) = wy

and so H,, 7 is the identity on (u;). Next, if
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xg = (Hy, 1) (u2) — ug
then
(Hy, Hy, ) (u2) = ug
Also, we claim that xo L u;. Since H, u; = H;llul = 7(u1), it follows that

(Hy,7)(u2) — ug,ur) = ((Hy,7)(u2), u1)

= (7(u2), Hyu1)
= (7(u2), 7(u1))
= (ug,u1)

=0

Hence

(HyHyym) () = Hyy(u1) = wg
and so H,,, H,, 7 is the identity on (u1, u2). Now let us generalize.
Assume that for £ > 1, we have found reflections H,, ,...,H,, for which
H,, ,---H, 7 is the identity on (uy, ..., ux_1). If

xp = (Hy, - -Hy, 7)) (ug) — ug
then

(Hy, - Hy ) (ug) = uy,

Also, we claim that z; L w; for all i < k. Since H,, -+ -Hyu; = 7(u;) it
follows that
<(H7:A,,]"'Ht]7—)(uk) - ukaui> = <(H quT)(uk) uz>
= <T(uk)7sz71 “Hoyug)
(

I
=
=
T
3
—
=
8

Hence
(Hmk' ' 'H%T)(ui) = Hmk-(ui) = Uk

and so H,,---H,, 7 is the identity on (uy, ..., ug).

Thus, for k =nwe have H, ---H, 7 =ctandsoT = H, ---H,,, as desired. [

The Structure of Normal Operators

We are now ready to consider the structure of a normal operator 7 on a finite-
dimensional inner product space. According to Theorem 10.5, the minimal
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polynomial of 7 has the form
my(x) = pi(x)-pn()

where the p;'s are distinct monic irreducible polynomials.

If FF=C, then each p;(x) is linear. Theorem 8.11 then implies that 7 is
diagonalizable and

V:g/\l @...@5&

where \q, ..., Ay are the distinct eigenvalues of 7. Theorem 10.5 also tells us
thatif \; # A; then &), L &), and so

V=E6,0-0&,

This is equivalent to saying that V' has an orthonormal basis of eigenvectors of
T.

The converse is also true, that is, if B = (uq, ..., u,) is an ordered orthonormal
basis of eigenvectors of 7 then
(i, ug) = (i, Tug) = (i, Ajug) = Njbij = (Awi, )
and so 7" u; = A\ju;. It follows that
T = M\u = T T,

and so 7 is normal.

Theorem 10.13 (The structure theorem for normal operators: complex
case) Let V be a finite-dimensional complex inner product space. Then a linear
operator T on V is normal if and only if V' has an orthonormal basis B
consisting entirely of eigenvectors of T, that is

Vi=E, 008,
where {\1,..., \;} is the spectrum of T. Put another way, T is normal if and

only if it is unitarily diagonalizable. O]

Now let us consider the real case, which is more complex than the complex
case. However, we can take advantage of the corresponding result for F' = C,
by using the complexification process (which we will review in a moment).

First, let us observe that when F' = R, the minimal polynomial of 7 is a product
of distinct real linear and real quadratic factors, say

me(x) = (v —7r1)-( — i) pr () -palz)

where the 7;'s are distinct and the p;(z)'s are distinct real irreducible quadratics.
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Hence, according to part 9) of Theorem 10.5, the primary decomposition of V;
has the form

Vi=E6,0--0&8,0W0---0W,
where {1, ..., A} is the spectrum of 7 and where
Wi={veV|p(r)v=0}

are T-invariant subspaces. Accordingly, we can focus on the subspace
W =W;®---® Wi, upon which 7 is normal, with a minimal polynomial that
is the product of distinct irreducible quadratic factors.

Let us briefly review the complexification process. Recall that if V' is a real
vector space, then the set

VE ={u+vi|u,veV}

is a complex vector space under addition and scalar multiplication “borrowed”
from the field of complex numbers, that is,

(u+vi)+ (z+yi) = (ut+z)+ (v+y)i
(a + bi)(u + vi) = (au — bv) + (av + bu)i

Recall also that the complexification map cpx: V' — V' defined by
cpx(v) = v+ 0i

is an injective linear transformation from the real vector space V' to the real
version (V ©)g of the complexification V' C.

If B={v;| j € I} isabasis for V over R, then the complexification of B
cpx(B) = {v; + 0i | v; € B}
is a basis for the vector space V'C over C and so
dim(VC) = dim(V)
For any linear operator 7 on V', we can define a linear operator 7° on V' by
7 (u + vi) = 7(u) + 7(v)i
Note that

)(C C.C

(oT)- =0T

Also, if p(z) is a real polynomial then p(7¢) = [p(7)]°.
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For any ordered basis B of V', we have

Loty = 7l

Hence, if a real matrix A represents a linear operator 7 on V' then A also
represents the complexification of 7 on VC. In particular, the polynomial
c(z) = det(x] — A) is the characteristic polynomial of both 7 and 7°.

If V is a real inner product space, then we can define an inner product on the
complexification V© as follows (this is the same formula as for the ordinary
inner product on a complex vector space)

(u i,z +yi) = (u,z) + (v, ) + ((v,2) — (u,y))i
From this, it follows that if u,z € V then
(u®,2%) = (u, x)

and, in particular, v 1 2 in V if and only if u® L 2€ in VC.

Next, we have (7%)¢ = (7¢)*, since

(u+vi, (1) (& + i) = (u+vi, 7" (2) + 77
= (u, 7 () + (v, 7" (y
= (T(w), z) + (1(v),y) + ((7(v), 2) = (r(u),y))i
<T( )+ 7()i,  + i)
= (1% + vi), z + yi)

= (u+vi, (7°)" (& + yi))

It follows that 7 is normal if and only if 7 is normal.

Now consider a normal linear operator 7 on a real vector space V' and suppose
that the minimal polynomial m.(z) of 7 is the product of distinct irreducible
quadratic factors

m:(x) = pi(z)-pa(z)
Hence, m. () has distinct roots, all of which are nonreal, say
AL AL Ads Ad

and since the characteristic polynomial c(x) of 7 and 7 is a multiple of m. (),

these scalars are characteristic roots of 7C.

Also, since m(x) is real, it follows that

me(r) = [m(7)]° = 0
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and so m,c(z) | m.(x). However, the eigenvalues \;, \; of 7€ are roots of
mc(x) and so m,(z) | m.c(z). Thus, m.c(z) = m.(x).

Since m.c(x) is the product of distinct linear factors over C, we deduce
immediately that 7€ is diagonalizable. Hence, VC has a basis of eigenvectors of
C .

7-, that is,

VE=6,08 008,08,

Note also that since 7€

inner product on VC.

is normal, these eigenspaces are orthogonal under the

Let us consider a particular eigenvalue pair A and X\ and the subspace £, ® &
(For convenience, we have dropped the subscript.) Suppose that A = a + bi and
that

O = (up + vidy ..., Uy + Upd)
is an ordered orthonormal basis for £,. Then forany j = 1,...,m,
7 (uj + i) = (a + bi) (uj + vji)
and so
7(u;) = au; — bu,
7(v;) = bu; + av;
It follows that

7 (u; — vji) = 7(u;) — 7(v;)i
auj — bvj — (bu; + avj)i
= (a —bi)(u; — vji)

= X(u, — UJ'?;)

which shows that u; — v;i is an eigenvector for 7C associated with A and so

O = (u1 — Vi, ..., Uy — Vi) C &
But the set O is easily seen to be linearly independent and so
dim(&5) > dim(€)). Using the same argument with A replaced by A, we see that
this inequality is an equality. Hence O is an ordered orthonormal basis for 5.
It follows that
E0E=U 60U,
where

U; = span(u; + v;i, u; — vjt)
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is two-dimensional, because the eigenvectors w;+v;i and wu; — vy are
associated with distinct eigenvalues and are therefore linearly independent.

Hence, VC is the orthogonal direct sum of 7-invariant two-dimensional
subspaces

ve=U,0---00U,

where 2n = dim(V'¢) = dim(V) and where each subspace U; has the property
that

7(uj) = ajuj = bjv;
7(v)) = bju; + a;v;
and where the scalars A\ =a;+ bji range over the distinct eigenvalues

Al,Xl,...,)\d,XdofTC.

Now we wish to drop down to V. For each j=1,...,n, let S; = span(u;, v;)
be the subspace of V' spanned by the real and imaginary parts of the
eigenvectors u; +vji and wuj —v;i that span U;. To see that S; is two-
dimensional, consider its complexification

S;-C ={z+vyi|z,yes;}
Since U; C S}C, we have
2 = dim(U)) < dim(S}) = dim(S;) < 2

(This can also be seen directly by applying 7€ to the equation ru; + sv; =0
and solving the resulting pair of equations in u; and v;.)

Next, we observe that if € S; and y € S). with j # k, then since zC e U; and
y© € Uy, we have € L y© and so z L y. Thus, S; L Sj.

In summary, if B; = (uj,v;), then the subspaces S; are two-dimensional, 7-
invariant and pairwise orthogonal, with matrix

=[5 ]

It follows that S; ® --- ® S,, C V but since the dimensions of both sides are
equal, we have equality

V=565
Theorem 10.14 (The structure theorem for normal operators: real case) Let

V' be a finite-dimensional real inner product space. A linear operator 7 on V' is
normal if and only if
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V=E6,0086,080-05,

where {\i,..., A;} is the spectrum of 7 and each S; is a two-dimensional 7-
invariant subspace for which there exists an ordered basis B; = (uj,v;) for
which
_ |y b
ls, = [bj a; ]
for aj, b; € R.

Proof. We need only show that if V" has such a decomposition, then 7 is normal.
But since [7]p,([7]5,)" = (af +b3) 1o, it is clear that [7]s, is real normal. it
follows easily that 7 is real normal. (1

The following theorem includes the structure theorems stated above for the real
and complex cases, along with some further refinements related to self-adjoint
and unitary/orthogonal operators.

Theorem 10.15 (The structure theorem for normal operators)
1) (Complex case) Let V be a finite-dimensional complex inner product
space. Then
a) An operator T on V is normal if and only if V' has an orthonormal
basis B consisting entirely of eigenvectors of T, that is

{/T:g/\l@...@&k

where {1, ..., A} is the spectrum of T. Put another way, T is normal
if and only if it is unitarily diagonalizable.

b) Among the normal operators, the Hermitian operators are precisely
those for which all complex eigenvalues are real.

¢) Among the normal operators, the unitary operators are precisely those
for which all eigenvalues have norm 1.

2) (Real case) Let V be a finite-dimensional real inner product space. Then
a) A linear operator T on'V is normal if and only if

V6,008,080 08,
where {Ai,...,\i} is the spectrum of T and each S; is a two-

dimensional T-invariant subspace for which there exists an ordered
basis Bj = (uj, v;) for which

=5 )

foraj,bj e R
b) Among the real normal operators, the symmetric operators are
precisely those for which there are no subspaces U; in the
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decomposition of part 2b). Hence, an operator is symmetric if and only
if it is orthogonally diagonalizable.

¢) Among the real normal operators, the orthogonal operators are
precisely those for which the eigenvalues are equal to +1 and the
matrices [T|p, described in part 2a) have rows (and columns) of norm
1, that is,

s, = sind —cosf
TB = | cos®  sinf

for some 0 € R.
Proof. We have proved part 1a). As to part 1b), it is only necessary to look at
the matrix A of 7 with respect to a basis B consisting of eigenvectors for 7. This
matrix is diagonal and so it is Hermitian (A = A*) if and only if the diagonal
entries are real. Similarly, A is unitary (A~' = A*) if and only if the diagonal
entries have absolute value equal to 1.

We have proved part 2a). Parts 2b) and 2c¢) are seen to be true by looking at the
matrix A = [7]g, which is symmetric (A = A?) if and only if A is diagonal and
A is orthogonal if and only if A; = +1 and the matrices M have orthonormal
rows. [

Matrix Versions

We can formulate matrix versions of the structure theorem for normal operators.

Theorem 10.16 (The structure theorem for normal matrices)
1) (Complex case)

a) A complex matrix A is normal if and only if there is a unitary matrix U
for which

UAU ' = diag(Mi, ..., \p)

where {1, ..., \p } is the spectrum of T. Put another way, A is normal
if and only if it is unitarily diagonalizable .

b) A complex matrix A is Hermitian if and only if la) holds where all
eigenvalues \; are real.

¢) A complex matrix A is unitary if and only if la) holds where all
eigenvalues \; have norm 1.

2) (Real case)

a) A real matrix A is real normal if and only if there is an orthogonal

matrix O for which OAO™! has the block diagonal form

-1 _ 1: ai _bl Qm _b"l
OAO —dlag<>‘17""Ak7|:b1 a :|,.”’|:bm am :|>

b) A real matrix A is symmetric if and only if there is an orthogonal
matrix O for which OAO™! has the block diagonal form
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OAO™ = diag(\y,..., \p)

That is, a real matrix A is symmetric if and only if it is orthogonally
diagonalizable.

¢) A real matrix A is orthogonal if and only if there is an orthogonal
matrix O for which OAO™! has the block diagonal form

OAO™!

_diag()\l,...,)\k,[smel —cos&l],m,[smem —cosem})

cosf; sinb; cosf,, sinb,,
for some 01, ...,0, ¢ R. O

Orthogonal Projections

We now wish to characterize unitary diagonalizability in terms of projection
operators.

Definition Let V = S ® S*. The projection map p:V — S on S along S+ is
called orthogonal projection onfo S. Put another way, a projection map p is
an orthogonal projection if im(p) L ker(p). O

Note that some care must be taken to avoid confusion between the term
orthogonal projection and the concept of projections that are orthogonal to each
other, that is, for which po = op = 0.

We saw in Chapter 8 that an operator p is a projection operator if and only if it
is idempotent. Here is the analogous characterization of orthogonal projections.

Theorem 10.17 Let V' be a finite-dimensional inner product space. The
Jollowing are equivalent for an operator p on'V :

1) pis an orthogonal projection

2) pis idempotent and self-adjoint

3) pis idempotent and does not expand lengths, that is

o)l < vl

forallveV.
Proof. To see that 1) and 2) are equivalent, we have

p=p" < im(p) =im(p") and ker(p) = ker(p")
& im(p) = ker(p)* and ker(p) = im(p)*
< im(p) L ker(p)

To prove that 1) implies 3), note that v = p(v) + z where z € ker(p) and since
p(v) L z we have
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2 2 2 2
[0l = o) + [I2[I" = ()]

from which the result follows.

Now suppose that 3) holds. We know that V' = im(p) @ ker(p) and wish to
show that this sum is orthogonal. According to Theorem 9.13, it is sufficient to
show that im(p) C ker(p)*. Let w € im(p). Then since V = ker(p) ® ker(p)*,
we have w = x + y, where z € ker(p) and y € ker(p)* and so

w = p(w) = p(z) + p(y) = p(y)

Hence

2 2 2 2 2
)™+ lyl1” = llwll” = llp)II” < llyl

which implies that ||z|| = 0 and hence that x = 0. Thus, w = y € ker(p)* and
so im(p) C ker(p)*, as desired. OJ

Note that for an orthogonal projection p, we have

(v, p(0)) = (v, p*(0)) = (p(v), p(v)) = [|p()]|”

Next we give some additional properties of orthogonal projections.

Theorem 10.18 Let V be an inner product space over a field of

characteristic # 2. Let p, p1,...,pr and o be projections, each of which is

orthogonal. Then

1) po=0ifandonlyifop = 0.

2) p+ o is an orthogonal projection if and only if p L o, in which case p + o
is projection on im(p) @ im(o) along ker(p) Nker(o).

3) p=p1+--+ px is an orthogonal projection if and only if p; L p; for all
I

4) p — o is an orthogonal projection if and only if

po=0p=0

in which case p — o is projection on im(p) N ker(c) along ker(p) @ im(o).
5) If po=op then po is an orthogonal projection. In this case, po is
projection on im(p) Nim(o) along ker(p) © ker(o).
6) a) p* is orthogonal projection onto ker(p)* along im(p)
b) p*p is orthogonal projection onto ker(p) along ker(p)*
c) pp*is orthogonal projection onto im(p) along im(p)*
Proof. We prove only part 3). If the p;'s are orthogonal projections and if
pi L p; for all i # j then p;p; = 0 for all ¢ # j and so it is straightforward to
check that p? = p and that p* = p. Hence, p is an orthogonal projection.
Conversely, suppose that p is an orthogonal projection and that « € im(p;) for a
fixed i. Then p;(z) = « and so

1
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] = llp(@)* = {p(z), p()) = {p(z), )
=> (o). 2) =D _llpi(@)|* = lloi(@)|* = Jl=]*

j
which implies that p;(z) = 0 for j # . In other words,

im(pi) C ker(p;) = im(p;)*
Therefore,

0 = (p;(v), pi(w)) = (pip;(v), w)

for all v, w € V, which shows that p;p; = 0, that is, p; L p;. O
For orthogonal projections ¢ and p, we can define a partial order by defining
o <p to be im(c) Cim(p). it is easy to verify that this is a reflexive,

antisymmetric, transitive relation on the set of all orthogonal projections.
Furthermore, we have the following characterizations.

Theorem 10.19 The following statements are equivalent for orthogonal
projections p and o:

1) o<p
2) po=o
3) op=o

4 Mol < o)l forallv e V.
5) Qyp—(v) >0, forallveV.
Proof. First, we show that 2) and 3) are equivalent. If 2) holds then

op=c'p = (po) =0c"=0

and so 3) holds. Similarly, 3) implies 2). Next, note that 4) and 5) are
equivalent, since

Qp—o(v) = (p(v),v) = {o(v),v)
= (p(v), p(v)) = (o (v), 0(v))
= llo@)II* = o (v)|*
Now, 2) is equivalent to the statement that p fixes each element of im(o), which

is equivalent to the statement that im(c) C im(p), which is 1). Hence, 1)-3) are
equivalent.

Finally, if 2) holds, then 3) also holds and so by Theorem 10.18, the difference
p — o is an orthogonal projection, from which it follows that

Qp—o(v) = ((p = 9)(v),0) = {(p = 9)(v), (p = 9)(v)) 2 0

which is 5). Also, if 4) holds, then for any v € im(c¢), we have v = = + y, where
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x € im(p),y € ker(p) and z L y. Then,

2l + [lyll* = [[oll* = llo()* < llo)I* = ||z
and so y = 0, that is, v € im(p). Hence, 1) holds. I
Orthogonal Resolutions of the Identity

Recall that resolutions of the identity
pttpr=1t

correspond to direct sum decompositions of the space V. It is the mutual
orthogonality of the projections that gives the directness of the sum. If, in
addition, the projections are themselves orthogonal, then the direct sum is an
orthogonal sum.

Definition If p; 4+ -+ 4+ p;, = ¢ is a resolution of the identity and if each p; is
orthogonal, then we say that p; + --- 4+ pr = ¢ is an orthogonal resolution of
the identity. [

The following theorem displays a correspondence between orthogonal direct
sum decompositions of V' and orthogonal resolutions of the identity.

Theorem 10.20
1) Ifpr+ -+ pr = tis an orthogonal resolution of the identity then
V =im(p;) ©--- © im(py)
2) Conversely, if V=5,0---OS8y and p; is projection on S; along

51008, - ©S;, where the hat ™ means that the corresponding
term is missing from the direct sum, then

prt-tpp=1

is an orthogonal resolution of the identity.
Proof. To prove 1) suppose that p; + --- + p;. = ¢ is an orthogonal resolution of
the identity. According to Theorem 8.17, we have

V =im(p1) ® --- & im(py)
However, since the p;'s are orthogonal, they are self-adjoint and so for ¢ # j,
(pi(v); pi(w)) = (v, pipj(w)) = (v,0) =0
Hence
V =im(p1) © -+ © im(py)

For the converse, we know from Theorem 8.17 that p; 4+ ---+pr=1¢ is a
resolution of the identity and we need only show that each p; is an orthogonal
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projection. But this follows from the fact that

im(p;)* = im(p) © --- © im(p; 1) © im(pi41) © --- © im(py) = ker(p;) O

The Spectral Theorem

We can now characterize the normal (unitarily diagonalizable) operators on a
finite-dimensional complex inner product space using projections.

Theorem 10.21 (The spectral theorem for normal operators) Let 7 be an
operator on a finite-dimensional complex inner product space V. The following
Statements are equivalent:

1) T is normal

2) T is unitarily diagonalizable, that is,

V=£5,0-08,

3) T has the orthogonal spectral resolution
T=Mp1+ -+ \pk (10.1)

where \; € C and where p1 + -+ + pr = v is an orthogonal resolution of
the identity.
Moreover, if T has the form (10.1), where the \;'s are distinct and the p;'s are
nonzero then the \;'s are the eigenvalues of T and im(p;) is the eigenspace
associated with \;.
Proof. We have seen that 1) and 2) are equivalent. Suppose that 7 is unitarily
diagonalizable. Let p; be orthogonal projection onto £,.. Then any v € V' can be
written as a sum of orthogonal eigenvectors

v=v+ -+
and so
T(v) = Aot + o+ Ao = (Aipr 4o+ Aepr) ()
Hence, 3) holds. Conversely, if (10.1) holds, we have
V =im(p1) © - ©im(py)

But Theorem 8.18 implies that im(p;) =&, and so 7 is unitarily
diagonalizable. [

In the real case, we have the following.

Theorem 10.22 (The spectral theorem for self-adjoint operators) Let T be an
operator on a finite-dimensional real inner product space V. The following
Statements are equivalent:

1) 7 is self-adjoint
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2) T is orthogonally diagonalizable, that is,
V=E,0-08&,
3) T has the orthogonal spectral resolution
T=Mp1+ -+ Nepr (10.2)

where \; € R and p1 + -+ + pp = ¢ is an orthogonal resolution of the
identity.
Moreover, if T has the form (10.2), where the \;'s are distinct and the p;'s are
nonzero then the \;'s are the eigenvalues of T and im(p;) is the eigenspace
associated with \;. (I

Spectral Resolutions and Functional Calculus

Let 7 be a linear operator on a finite-dimensional inner product space V', and let
7 have spectral resolution

T=Mp1 A+ Ak

Since p; is idempotent, we have p;" = p; for all m > 1. The mutual
orthogonality of the projections means that p;p; = 0 for all ¢ # j and so

"= (A1p1 A+ Aep)" = Ao+ Ao
More generally, for any polynomial p(x) over F, we have
p(r) = p(A)pr+ -+ + p(Ak) pr
Now, we can extend this further by defining, for any function
fi{h, .o, )= F
the linear operator f(7) by setting

f(r) = fM)pr+ -+ f(x)pr

For example, we may define \/;, 771, €7 and so on. Notice, however, that

since the spectral resolution of 7 is a finife sum, we gain nothing (but
convenience) by using functions other than polynomials, for we can always find
a polynomial p(z) for which p(\;) = f(\;) fori =1,...,k and so

f(r) = fM)pr + -+ f(M)pr = p(A)p1 + -+ + p(Ax) o = p(7)

The study of the properties of functions of an operator 7 is referred to as the
functional calculus of 7.

According to the spectral theorem, if V' is complex and 7 is normal then f(7) is
a normal operator whose eigenvalues are f(J);). Similarly, if V' is real and 7 is
self-adjoint then f(7) is self-adjoint, with eigenvalues f()\;). Let us consider
some special cases of this construction.
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If p;(x) is a polynomial for which
pi(Ai) = b
fori =1,...,k, then
pi(T) = pj

and so we see that each projection p; in the spectral resolution is a polynomial
function of 7.

If 7 is invertible then )\; # 0O for all i and so we may take f(x) = 21, giving
=M+ A

as can easily be verified by direct calculation.

If f(\;) = \; and if 7 is normal then each p; is self-adjoint and so

Fr) =Xpr+ -+ M =7

Commutativity

The functional calculus can be applied to the study of the commutativity
properties of operators. Here are two simple examples.

Theorem 10.23 Let V' be a finite-dimensional complex inner product space.
For 1,0 € L(V), let us write T ~ o to denote the fact that 7 and o commute.
Let T and o have spectral resolutions

T=Mp1+ 4+ Mpr
U:M1V1+"'+/J/mym

Then

1) Forany ¢ € L(V), we have ¢ ~ T if and only if ¢ ~ p; for all i.

2) T ~oifandonlyifp; ~ vy foralli,j.

3) If f:{\,..., i} — F and g:{p1,...,um}t — F are injective functions,
then f(1) ~ g(o) if and only if T ~ 0.

Proof. The proof is based on the fact that if o and § are operators then o ~ (3

implies that p(a) ~ ¢(8) for any polynomials p(z) and ¢(x), and hence

f(a) ~ g(B) for any functions f and g.

For 1), it is clear that ¢ ~ p; for all ¢ implies that ¢ ~ 7. The converse follows
from the fact that p; is a polynomial in 7. Part 2) is similar. For part 3), 7 ~ o
clearly implies f(7) ~ g(o). For the converse, let A = {\y,..., \;}. Since f is
injective, the inverse function f~!:f(A) — A is well-defined and
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f7Y(f(r)) = 7. Thus, 7 is a function of f(7). Similarly, ¢ is a function of g(o).
it follows that f(7) ~ g(o) implies T ~ o. O

Theorem 10.24 Let V be a finite-dimensional complex inner product space and
let T and o be normal operators on V. Then T and o commute if and only if they
have the form

T =p(r(r,0))
o =q(r(r,0))

where p(x), q(x) and r(x,y) are polynomials.
Proof. If 7 and o are polynomials in € then they clearly commute. For the
converse, suppose that 7o = o7 and let

T=Xp1+ -+ Nepr
and
o=+ -+ UpVn

be the orthogonal spectral resolutions of 7 and ¢. Then according to Theorem
10.23, p;v; = v;p;. Now, let us choose any polynomial r(x, y) with the property
that o;; j = r(\;, p1;) are distinct. Since each p; and v; is self-adjoint, we may set
0 = r(r, o) and deduce (after some algebra) that

0=r(r,0) = aipiv;
i

We also choose p(x) and g(x) so that p(c ;) = A; for all j and g(«; ;) = p; for
all ¢. Then

p(0) = Zp(o‘m)f’i’/y‘ = Z/\ipiyj = (Z/\z‘pz‘)(zlﬁ) = Z&Pi =T

and similarly, ¢(6) = 0. O
Positive Operators

One of the most important cases of the functional calculus is when f(z) = \/5
First, we need some definitions. Recall that the quadratic form associated with a
linear operator T is

Qr(v) = (7(v), )

Definition A self-adjoint linear operator 7 € L(V) is
1) positive if Q,(v) > 0 forallveV
2) positive definite if Q. (v) > 0 for all v # 0. O

Theorem 10.25 A4 self-adjoint operator T on a finite-dimensional inner product
space is



Structure Theory for Normal Operators 231

1) positive if and only if all of its eigenvalues are nonnegative
2) positive definite if and only if all of its eigenvalues are positive.
Proof. If Q,(v) > 0 and 7(v) = Av then

0 < (r(v),v) = Av, )
and so A > 0. Conversely, if all eigenvalues of 7 are nonnegative then we have
T=Mp1+ A Neprs A =20

and since ¢ = p; + -+ + pg,
(r(v),v) = ZMpf(v), pi(v)) = z{:ki\lpi(v)ll2 >0

and so 7 is positive. Part 2) is proved similarly. I

If 7 is a positive operator, with spectral resolution
T=MNp1+ -+ Aepr, Ai 20

then we may take the positive square root of 7,

V7= R4+

where 1/ \; is the nonnegative square root of \;.

It is clear that

(VP =7

and it is not hard to see that \ﬁ is the only positive operator whose square is 7.
In other words, every positive operator has a unique positive square root.
Conversely, if 7 has a positive square root, that is, if 7 = ¢, for some positive
operator ¢ then 7 is positive. Hence, an operator 7 is positive if and only if it
has a positive square root.

If 7 is positive then \/? is self-adjoint and so

VoREE

Conversely, if 7 = o*c for some operator o then 7 is positive, since it is clearly
self-adjoint and

(1(v),v) = ("o (v),v) = (o(v),0(v)) >0

Thus, 7 is positive if and only if it has the form 7 = o*o for some operator o.

Here is an application of square roots.
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Theorem 10.26 If 7 and o are positive operators and To = o7 then 10 is
positive.
Proof. Since 7 is a positive operator, it has a positive square root \ﬁ, which is

a polynomial in 7. A similar statement holds for ¢. Therefore, since 7 and o
commute, so do ﬁ and ﬁ. Hence,

(Ve = (V) = 7o

Since /7 and \ﬁ are self-adjoint and commute, their product is self-adjoint
and so 7o is positive. [

The Polar Decomposition of an Operator

It is well known that any nonzero complex number z can be written in the polar
form z = re®, where r is a positive number and 6 is real. We can do the same
for any nonzero linear operator 7 on a finite-dimensional complex inner product
space.

Theorem 10.27 Let 7 be a nonzero linear operator on a finite-dimensional

complex inner product space V. Then

1) There exists a positive operator p and a unitary operator v for which
T = vp. Moreover, p is unique and if T is invertible then v is also unique.

2) There exists a positive operator o and a unitary operator p for which
T = ou. Moreover, o is unique and if T is invertible then 11 is also unique.

Proof. Let us suppose for a moment that 7 = vp. Then

7 = (vp)* = p'vt = pl
and so
't = prlvp = p?
Also, if v € V then
7(v) = v(p(v))

These equations give us a clue as to how to define p and v.

Let us define p to be the unique positive square root of the positive operator
7*7. Then

lp()[I* = (p(v), p(v)) = (p*(v),0) = (T°7(v),0) = |IT(v)|*  (10.3)
Let us define v on im(p) by
v(p(v)) = 7(v) (10.4)

for all v € V. Equation (10.3) shows that p(z) = p(y) implies that 7(z) = 7(y)
and so this definition of v on im(p) is well-defined.
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Moreover, v is an isometry on im(p), since (10.3) gives

[ (p() = lIT(@)Il = llp(v)]l
Thus, if B ={by,...,by} is an orthonormal basis for im(p), then
v(B) ={v(b1),...,v(bg)} is an orthonormal basis for v(im(p)) = im(7).

Finally, we may extend both orthonormal bases to orthonormal bases for V' and
then extend the definition of v to an isometry on V', for which 7 = vp.

As for the uniqueness, we have seen that p must satisfy p?> = 7*7 and since p°

has a unique positive square root, we deduce that p is uniquely defined. Finally,

if 7 is invertible then so is p since ker(p) C ker(7). Hence, v = 7p~! is

uniquely determined by 7.

Part 2) can be proved by applying the previous theorem to the map 7%, to get

T=(r) = (vp) =pr = pp

where (4 is unitary. O

We leave it as an exercise to show that any unitary operator 4 has the form
= €', where o is a self-adjoint operator. This gives the following corollary.

Corollary 10.27 (Polar decomposition) Let 7 be a nonzero linear operator on a
finite-dimensional complex inner product space. Then there is a positive
operator p and a self-adjoint operator ¢ for which 7 has the polar
decomposition

T = pe'’

Moreover, p is unique and if 7 is invertible then o is also unique. O
Normal operators can be characterized using the polar decomposition.

Theorem 10.28 Let T = pe'® be a polar decomposition of a nonzero linear
operator 7. Then T is normal if and only if po = op.
Proof. Since
¢ = peiaefiap — p2
and
—io 2 _io

T =e"ppe’’ = e pe

we see that 7 is normal if and only if

—ioc 2 _io __ 2

e pe’ =p
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or equivalently,

p2eia _ eiap2 (105)
Now, p is a polynomial in p? and o is a polynomial in ¢/ and so (10.5) holds if
and only if po = op. O

Exercises

1. LettT e L(U,V).If 7 is surjective, find a formula for the right inverse of 7
in terms of 7*. If 7 is injective, find a formula for the left inverse of 7 in
terms of 7*. Hint: Consider ker(77*) and ker(7*7).

2. LetT e L(V) where V is a complex vector space and let

1 1
= 5(74—7*) and 75 = Z(’T— )

Show that 7; and 1 are self-adjoint and that
T=7+inand T =71 — i

What can you say about the uniqueness of these representations of 7 and
T?

3. Prove that all of the roots of the characteristic polynomial of a skew-
Hermitian matrix are pure imaginary.

4. Give an example of a normal operator that is neither self-adjoint nor
unitary.

5. Prove that if ||7(v)|| = ||7*(v)|| for all v € V, where V' is complex then 7 is
normal.

6. a) Show that if 7 is a normal operator on a finite-dimensional inner

product space then 7 = p(7), for some polynomial p(x) € F[z].
b) Show that if 7 is normal and o7 = 70 then o7 = 7%0. In other words,
7" commutes with all operators that commute with 7.

7. Show that a linear operator 7 on a finite-dimensional complex inner product
space V' is normal if and only if whenever S is an invariant subspace under
7,s01s S*.

8. Let V be a finite-dimensional inner product space and let 7 be a normal
operator on V.

a) Prove that if 7 is idempotent then it is also self-adjoint.
b) Prove that if 7 is nilpotent then 7 = 0.
¢) Prove that if 72 = 73 then 7 is idempotent.

9. Show that if 7 is a normal operator on a finite-dimensional complex inner
product space then the algebraic multiplicity is equal to the geometric
multiplicity for all eigenvalues of 7.

10. Show that two orthogonal projections ¢ and p are orthogonal to each other
if and only if im(o) L im(p).

11. Let 7 be a normal operator and let o be any operator on V. If the
eigenspaces of T are o-invariant, show that 7 and o commute.



12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
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Prove that if 7 and o are normal operators on a finite-dimensional inner
complex product space and if 70 = fo for some operator 6 then 7°0 = 6o™*.
Prove that if two normal n x n complex matrices are similar then they are
unitarily similar, that is, similar via a unitary matrix.

If v is a unitary operator on a complex inner product space, show that there
exists a self-adjoint operator o for which v = €.

Show that a positive operator has a unique positive square root.

Let a;, 5; be complex numbers, for i = 1,..., k. Construct a polynomial
p(z) for which p(«;) = f; for all 4.

Prove that if 7 has a square root, that is, if 7 = o2, for some positive
operator ¢ then 7 is positive.

Prove that if 0 < 7 and if @ is a positive operator that commutes with both
o and 7 then o6 < 76.

Does every self-adjoint operator on a finite-dimensional real inner product
space have a square root?

Let 7 be a linear operator on C" and let Aq, ..., A\, be the eigenvalues of T,
each one written a number of times equal to its algebraic multiplicity. Show
that

>IN < tr(r77)

(2

where tr is the trace. Show also that equality holds if and only if 7 is
normal.

If 7 € L(V)) where V is a real inner product space, show that the Hilbert
space adjoint satisfies (7%)¢ = (7©)*.



Part II—Topics



Chapter 11
Metric Vector Spaces: The Theory of
Bilinear Forms

In this chapter, we study vector spaces over arbitrary fields that have a bilinear
form defined upon them.

Unless otherwise mentioned, all vector spaces are assumed to be finite-
dimensional. The symbol F denotes an arbitrary field and F, denotes a finite
field of size q.

Symmetric, Skew-Symmetric and Alternate Forms

We begin with the basic definition.

Definition Let V' be a vector space over F. A mapping (,):V xV — F is
called a bilinear form if it is a linear function of each coordinate, that is, if

<O“'E + ﬁy, Z> = O‘<x’ Z> + ﬂ<y7 Z>
and
(2, az + By) = alz,z) + B(z,y)

A bilinear form is
1) symmetric if’

(z,y) = (y,)

forallx, yeV.
2) skew-symmetric (or antisymmetric) if

(x,y> = —<y,$>
forallx,y V.
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3) alternate (or alternating) if
(x,x) =0

forallz eV.
A bilinear form that is either symmetric, skew-symmetric, or alternate is
referred to as an inner product and a pair (V' (,)), where V is a vector space
and (,) is an inner product on V, is called a metric vector space or inner
product space. If (,) is symmetric then (V,{,)) (or just V) is called an
orthogonal geometry over F and if (,) is alternate then (V' (,)) (or just V) is
called a symplectic geometry over F. [1

As an aside, the term symplectic, from the Greek for “intertwined” was
introduced in 1939 by the famous mathematician Hermann Weyl in his book
The Classical Groups, as a substitute for the term complex. According to the
dictionary, symplectic means “relating to or being an intergrowth of two
different minerals.” An example is ophicalcite, which is marble spotted with
green serpentine.

Example 11.1 Minkowski space M, is the four-dimensional real orthogonal
geometry R* with inner product defined by

(e1,€e1) = (e2,€2) = (e3,e3) =1
(es,e4) = —1
<€/,;,€J'> =0 for i 7&]

where ey, ..., e4 is the standard basis for R* O

As is traditional, when the inner product is understood, we will use the phrase
“let V' be a metric vector space.”

The real inner products discussed in Chapter 9 are inner products in the present
sense and have the additional property of being positive definite—a notion that
does not even make sense if the base field is not ordered. Thus, a real inner
product space is an orthogonal geometry. On the other hand, the complex inner
products of Chapter 9, being sesquilinear, are not inner products in the present
sense. For this reason, we prefer to use the term metric vector space rather than
inner product space.

If S is a vector subspace of a metric vector space V' then S inherits the metric
structure from V. With this structure, we refer to S as a subspace of V.

The concepts of being symmetric, skew-symmetric and alternate are not
independent. However, their relationship depends on the characteristic of the
base field F', as do many other properties of metric vector spaces. In fact, the
next theorem tells us that we do not need to consider skew-symmetric forms per
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se, since skew-symmetry is always equivalent to either symmetry or
alternateness.

Theorem 11.1 Let V' be a vector space over a field F.
1) Ifchar(F) = 2 then

symmetric < skew-symmetric
alternate = skew-symmetric

2) Ifchar(F) # 2 then

alternate < skew-symmetric

Also, the only form that is both alternate and symmetric is the zero form:
(x,y) =0forallz,y e V.
Proof. First note that for any base field, if (,) is alternate then

O0=(z+y,z+y)=(r,2)+ (Y + Y1)+ (yy) = (©.9) + {y,2)
Thus,
(r,y) + (y,) =0
or
(z,y) = —(y, )
which shows that (,) is skew-symmetric. Thus, alternate always implies skew-

symmetric.

If char(F) =2 then —1 =1 and so the definitions of symmetric and skew-
symmetric are equivalent. This proves 1). If char(F) # 2 and (,) is skew-
symmetric, then for any x € V, we have (z,z) = —(z,z) or 2(x, z) = 0, which
implies that (x,x) = 0. Hence, (,) is alternate. Finally, if the form is alternate
and symmetric, then it is also skew-symmetric and so (u,v) = —(u,v) for all
u,v € V and so (u,v) =0 forallu,v € V. O

Example 11.2 The standard inner product on V' (n, ¢), defined by
($17~~~ 7xn) . (yh ayn) = T1Y1 + - +xnyn
is symmetric, but not alternate, since

(1,0,...,0)-(1,0,...,0) =10 O
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The Matrix of a Bilinear Form

If B = (by,...,b,) is an ordered basis for a metric vector space V' then the form
(,) is completely determined by the n x n matrix of values

Mg = (ai ;) = ((bi, b))

This is referred to as the matrix of the form (,) with respect to the ordered
basis B. We also refer to Mp as the matrix of V' with respect to 5 and write
Mp(V') when the space needs emphasis.

Observe that multiplication of the coordinate matrix of a vector by My produces
a vector of inner products, to wit, if x = Xr;b; then

<b17 £U>
Mplx|s = :
<bn7 x)
and
[]pMp = ({x,b1) -+ (x,b,))
It follows that if y = > s;b; then
[LU]ILBMB[ZAB = ( <.T,b1> <x7bn> ) = <$,y>

and this uniquely defines the matrix Mp, that is, if [z];Alylg = (x,y) then
A = Mp.

Notice also that a form is symmetric if and only if the matrix My is symmetric,
skew-symmetric if and only if Mp is skew-symmetric and alternate if and only
if Mp is skew-symmetric and has 0's on the main diagonal. The latter type of
matrix is referred to as alternate.

Now let us see how the matrix of a form behaves with respect to a change of
basis. Let C = (cy, ..., ¢,) be an ordered basis for V. Recall from Chapter 2 that
the change of basis matrix M¢ 5, whose ith column is [¢;], satisfies

[v]s = Mc[v]c
Hence,

(x,y) = [2]5 Mplyls
= ([z]leM( 5 )YMp(Meslyle )
= [2]e(M¢ g MpMes)[yle
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and so
M = Mg g MMe

This prompts the following definition.

Definition Two matrices A, B € M, (F) are said to be congruent if there
exists an invertible matrix P for which

A=P'BP

The equivalence classes under congruence are called congruence classes. [
Let us summarize.

Theorem 11.2 [f the matrix of a bilinear form on V with respect to an ordered
basis B = (by,...,b,) is

Mp = ((bi, b;))
then
(@,y) = [o]s Mslyls
Furthermore, if C = (¢, ..., ¢,) is an ordered basis for V' then
Me = Mg g MMe

where M g is the change of basis matrix from C to B. [

We have shown that if two matrices represent the same bilinear form on V/, they
must be congruent. Conversely, congruent matrices represent the same bilinear
form on V. For suppose that B = Mjp represents a bilinear form on V', with
respect to the ordered basis B and that

A= P'BP

where P is nonsingular. We saw in Chapter 2 that there is an ordered basis C for
V' with the property that

P = Mg
and so
A= Mé’B MpMec g

Thus, A = M¢ represents the same form with respect to C.

Theorem 11.3 Two matrices A and B represent a bilinear form (,) on'V if and
only if they are congruent, in which case they represent the same set of bilinear
forms on'V. O
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In view of the fact that congruent matrices have the same rank, we may define
the rank of a bilinear form (or of V') to be the rank of any matrix that represents
that form.

The Discriminant of a Form

If A and B are congruent matrices then
det(A) = det(P'AP) = det(P)*det(B)

and so det(A) and det(B) differ by a square factor. The discriminant of a
bilinear form is the set of all determinants of the matrices that represent the form
under all choices of ordered bases. Thus, if det(A) = d for some matrix A
representing the form then the discriminant of the form is the set

A=Fd={r’d|0#rcF}

Quadratic Forms
There is a close link between symmetric bilinear forms and another important

type of function defined on a vector space.

Definition A quadratic form on a vector space V' is a map Q:V — F with the
Jfollowing properties:
1) ForadlreF,veV

Q(rv) = r*Q(v)
2) The map
(u,v)Q = Qu+v) = Qu) — Q(v)
is a (symmetric) bilinear form. O
Thus, every quadratic form () defines a symmetric bilinear form (u, v)¢. On the

other hand, if char(F') # 2 and if (,) is a symmetric bilinear form on V' then we
can define a quadratic form @ by

Q) = 3 e,)

We leave it to the reader to verify that this is indeed a quadratic form. Moreover,
if ) is defined from a bilinear form in this way then the bilinear form associated
with @ is
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(u,v)q = Qu+0) = Qu) — Q(v)
1 1 1
= %<u+v,u1+ v) — §<u,u> - §<U’U>
= §<’U,,U> + 7<U7’U/> = <U7U>

2

which is the original bilinear form. In other words, the maps (,) — @ and
@ — (,)q are inverses and so there is a one-to-one correspondence between
symmetric bilinear forms on V' and quadratic forms on V. Put another way,
knowing the quadratic form is equivalent to knowing the corresponding bilinear
form.

Again assuming that char(F) # 2, if B = (vy,...,v,) is an ordered basis for an
orthogonal geometry V' and if the matrix of the symmetric form on V is
Mp = (Cl@j) then for x = Xx;v;,

| —

Q) = 5le.2) = 3 lelh Molals = 3 St

and so Q(z) is a homogeneous polynomial of degree 2 in the coordinates x;.
(The term “form” means homogeneous polynomial—hence the term quadratic

form.)
Orthogonality

As we will see, not all metric vector spaces behave as nicely as real inner
product spaces and this necessitates the introduction of a new set of terminology
to cover various types of behavior. (The base field F' is the culprit, of course.)
The most striking differences stem from the possibility that (x,z) =0 for a
nonzero vector x € V.

The following terminology should be familiar.

Definition A4 vector x is orthogonal to a vector y, written © L y, if (x,y) = 0.
A vector © € V' is orthogonal fo a subset S of V, written x L S, if (x,s) =0
forall s € S. A subset S of V is orthogonal to a subset T of V, written S 1L T,
if (s,t) =0 for all s € S and t € T. The orthogonal complement of a subset
X of a metric vector space V., denoted by X+, is the subspace

Xt={veV|vlX} |

Note that regardless of whether the form is symmetric or alternate (and hence
skew-symmetric), orthogonality is a symmetric relation, that is, « L y implies
y L z. Indeed, this is precisely why we restrict attention to these two types of
bilinear forms. We will have more to say about this issue momentarily.
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There are two types of degenerate behaviors that a vector may possess: It may
be orthogonal to itself or, worse yet, it may be orthogonal to every vector in V.
With respect to the former, we have the following terminology.

Definition Let (V, (,)) be a metric vector space.

1) A nonzero x €V is isotropic (or null) if (x,x) =0, otherwise it is
nonisotropic.

2) 'V is nonisotropic (also called anisotropic) if it contains no isotropic
vectors.

3) V isisotropic if it contains at least one isotropic vector.

4) V is totally isotropic (that is, symplectic) if all vectors in V are
isotropic. O

With respect to the latter (and more severe) form of degeneracy, we have the
following terminology.

Definition Let (V, (,)) be a metric vector space.
1) The set V* of all degenerate vectors is called the radical of V and written

rad(V) = V*

2) V is nonsingular, or nondegenerate, ifrad(V') = {0}.
3) V is singular, or degenerate, if rad(V') # {0}.
4) V is totally singular or totally degenerate ifrad(V) = V. O

Let us make a few remarks about these terms. Some of the above terminology is
not entirely standard, so care should be exercised in reading the literature. Also,
it is not hard to see that a metric vector space V' is nonsingular if and only if the
matrix M is nonsingular, for any ordered basis B.

If v is an isotropic vector then so is av for all a € F'. This can be expressed by
saying that the set I of isotropic vectors in V' is a cone in V.

With respect to subspaces, to say that a subspace S of V' is totally degenerate,
for example, means that S is totally degenerate as a metric vector space in its
own right and so each vector in S is orthogonal to all other vectors in S, not
necessarily in V. In fact, we have

rad(S) = S5 = SN St

where the symbols 1 ¢ and L y refer to the orthogonal complements with
respect to S and V/, respectively.
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Example 11.3 Recall that V' (n,q) is the set of all ordered n-tuples, whose
components come from the finite field F7,. It is easy to see that the subspace

S = {0000,1100,0011,1111}

of V(4,2) has the property that S = S*. Note also that V' (4, 2) is nonsingular
and yet the subspace S is totally singular. O

The following result explains why we restrict attention to symmetric or alternate
forms (which includes skew-symmetric forms).

Theorem 11.4 Let (,) be a bilinear form on V. Then orthogonality is a
symmetric relation, that is,
zly=ylx (11.1)

if and only if (,) is either symmetric or alternate, that is, if and only if V is a
metric vector space.

Proof. It is clear that (11.1) holds if (, ) is symmetric. If (,) is alternate then it is
skew-symmetric and so (11.1) also holds. For the converse, assume that (11.1)
holds.

Let us introduce the notation = X y to mean that (x, y) = (y, «) and the notation
x XV to mean that (x,v) = (v,z) forallv € V.Forz,y,z € V, let
w = (z,y)z — (z,2)y
Then x 1 w and so by (11.1) we have w L z, that is,
(z,y)(z,2) — (z,2)(y,2) = 0
From this we deduce that
z Wy = (z,y)((z,2) = (z,2)) =0
= (z,y) =0orx Xz forallz € V
It follows that
xXy=x Lyor(zXVandyX V) (11.2)

Of course, x M x and so forall x € V

rlzorx XV (11.3)

Now we can show that if V' is not symmetric, it must be alternate. If V' is not
symmetric, there exist u,v € V for which u ¥ wv. Thus, u ¥V and v ¥V,
which implies by (11.3) that v and v are both isotropic. We wish to show that all
vectors in V' are isotropic.
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According to (11.3), if w ¥ V, then w is isotropic. On the other hand, if w X V
then to see that w is also isotropic, we use the fact that if = and y are orthogonal
isotropic vectors, then  — y is also isotropic.

In particular, consider the vectors w + « and u. We have seen that  is isotropic.
The fact that w X V' implies w X » and w X v and so (11.2) gives w L u and
w L v. Hence, (w + u) L w. To see that w + w is isotropic, note that

(w+ u,v) = (u,v) # (v,u) = (v,w+ u)

and so (w + u) ¥ V. Hence, (11.3) implies that w + u is isotropic. Thus, u and
w+u are orthogonal isotropic vectors, and so w = (w+u)—u is also
isotropic. 1

Linear Functionals

Recall that the Riesz representation theorem says that for any linear functional f
on a finite-dimensional real or complex inner product space V, there is a vector
R; €V, which we called the Riesz vector for f, that represents f, in the sense
that

f(v) = (v, Ry)
for all v € V. A similar result holds for nonsingular metric vector spaces.

Let V' be a metric vector space over F'. Let z € V and consider the “inner
product on the right” map ¢,: V — F' defined by

¢x(v) = (v, )
This is easily seen to be a linear functional and so we can define a function
7V — V*by
() = ¢x
The bilinearity of the form insures that 7 is linear and the kernel of 7 is
ker(t) ={z €V |¢, =0} ={r eV |(v,z)=0forallve V} =V"

Hence, if V is nonsingular then ker(7) = V+ = {0} and so 7 is injective.
Moreover, since dim(V') = dim(V™*), it follows that 7 is surjective and so 7 is
an isomorphism from V onto V*. This implies that every linear functional on V'
has the form ¢,, for a unique x € V. We have proved the Riesz representation
theorem for finite-dimensional nonsingular metric vector spaces.

Theorem 11.5 (The Riesz representation theorem) Let V be a finite-
dimensional nonsingular metric vector space. The linear functional T:V — V*
defined by
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where ¢, (v) = (v,x) for all v € V, is an isomorphism from V to V*. It follows
that for each f € V* there exists a unique vector x € V for which f = ¢,, that
is,

f(v) = {v,z)
forallveVv.O

The requirement that V' be nonsingular is necessary. As a simple example, if V'
is totally singular, then no nonzero linear functional could possibly be
represented by an inner product.

We would like to extend the Riesz representation theorem to the case of
subspaces of a metric vector space. The Riesz representation theorem applies to
nonsingular metric vector spaces. Thus, if S is a nonsingular subspace of V', the
Riesz representation theorem applies to S and so all linear functionals on S
have the form of an inner product by a (unique) element of S. This is nothing
new.

As long as V' is nonsingular, even if S is singular, we can still say something
very useful. The reason is that any linear functional f € S* can be extended to a
linear functional g on V' (perhaps in many ways) and since V' is nonsingular, the
extension g has the form of inner product by a vector in V/, that is,

g9(v) = (v, z)
for some = € V. Hence, f also has this form, where its “Riesz vector” is an

element of V/, not necessarily S. Here is the formal statement.

Theorem 11.6 Let V' be a metric vector space and let S be a subspace of V. If
either V or S is nonsingular, the linear transformation 7: V. — S* defined by

7_(1') = ¢T|S

where ¢,(v) = (v, x), is surjective. Hence, for any linear functional f € S*
there is a (not necessarily unique) vector x €V for which f(s) = (s,z).
Moreover, if S is nonsingular then x can be taken from S, in which case it is
unique.

Orthogonal Complements and Orthogonal Direct Sums

If S is a subspace of a real inner product space, then the projection theorem says
that the orthogonal complement S+ of S is a true vector space complement of
S, that is,

V=Sost

Hence, the term orthogonal complement is justified. However, in general metric
vector spaces, an orthogonal complement may not be a vector space
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complement. In fact, Example 11.3 shows that we may have the opposite
extreme, that is, S* = S. As we will see, the orthogonal complement of S is a
true complement if and only if S is nonsingular.

Definition 4 metric vector space V is the orthogonal direct sum of the
subspaces S and T, written

V=SoT
fV=S®TandS LT.0O

In a real inner product space, if V = S © T then T' = S*. However, in a metric
vector space in general, we may have a proper inclusion 7' C S*. (In fact, S+
may be all of V)

Many nice properties of orthogonality in real inner product spaces do carry over
to nonsingular metric vector spaces. The next result shows that the restriction to
nonsingular spaces is not that severe.

Theorem 11.7 Let V' be a metric vector space. Then
V=rad(V)oS

where S is nonsingular and rad(V') is totally singular.

Proof. Ignoring the metric structure for a moment, we know that all subspaces
of a vector space, including rad(V'), have a complement, say V' = rad(V) @ S.
But rad(V) L S and so V =rad(V)® S. To see that S is nonsingular, if
rxerad(S) them 2 LS and so «LV, which implies that
xz €rad(V)NS ={0}, that is, = =0. Hence, rad(S)= {0} and S is
nonsingular. [

Under the assumption of nonsingularity of V', we get many nice properties, just
short of the projection theorem. The first property in the next theorem is key: It
says that if S is a subspace of a nonsingular space V, then the orthogonal
complement of S always has the “correct” dimension, even if it is not well
behaved with respect to its intersection with S5, that is,

dim(S+) = dim(V) — dim(S)

just as in the case of a real inner product space.

Theorem 11.8 Let V' be a nonsingular metric vector space V' and let S be any
subspace of V. Then

1) dim(S) + dim(S+) = dim(V)

2) ifV=S4+StthenV =505+

3) Stt=¢5

4) rad(S) =rad(St)

5) S is nonsingular if and only if S* is nonsingular
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Proof. For part 1), the map 7: V' — S* of Theorem 11.6 is surjective and
ker(7) ={z €V | ¢.]s =0} ={x € V| (s,2) =0 foralls € S} = S+
Thus, the rank-plus-nullity theorem implies that
dim(S*) + dim(S+) = dim(V)
However, dim(S*) = dim(.S) and so part 1) follows.

For part 2), we have using part 1)

dim(V) = dim(S + S*)
= dim(S) + dim(S+) — dim(S N S*)
= dim(V) — dim(S N S*)

and so S NS+ = {0}.

For part 3), part 1) implies that
dim(S) + dim(S*) = dim(V)
and
dim(S™) + dim(S*+) = dim(V)
and so dim(S++) = dim(S). But S C S+ and so equality holds.

For part 4), we have
rad(S) = SN S+ = S+ NS+ =rad(SH)
and part 5) follows from part 4). I
The previous theorem cannot in general be strengthened. Consider the two-
dimensional metric vector space V' = span(u, v) where
(u,u) =1, (u,v) =0, {v,v) =0

Let S = span(u). Then S+ = span(v). Now, S is nonsingular but S* is singular
and so 5) does not hold. Also, rad(S) = {0} and rad(S+) = S and so 4) fails.
Finally, S** =V # S and so 3) fails.

On the other hand, we should note that if S is singular, then so is S+, regardless
of whether V' is singular or nonsingular. To see this, note that if .S is singular
then there is a nonzero s € rad(S) =S N S*. Hence, s € S C St and so
s € St NSt =rad(St), which implies that S is singular.

Now let us state the projection theorem for arbitrary metric vector spaces.
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Theorem 11.9 Let S be a subspace of a finite-dimensional metric vector space
V. Then

V=Sest

if and only if S is nonsingular, that is, if and only if S N S+ = {0}.
Proof. If V = S ® S* then by definition of orthogonal direct sum, we have

rad(S) = SN S+ = {0}

and so S is nonsingular. Conversely, if S is nonsingular, then S NS+ = {0}
and so S ® S+ exists. Now, the same proof used in part 1) of the previous
theorem works if S is nonsingular (even if V' is singular). To wit, the map
7:V — S* of Theorem 11.6 is surjective and

ker(7) ={z €V | ¢.]s =0} ={x € V| (s,2) =0 foralls € S} = S+
Thus, the rank-plus-nullity theorem gives
dim(S*) + dim(S+) = dim(V)
But dim(S*) = dim(S) and so
dim(S ® S*) = dim(S) + dim(S*) = dim(V)
It follows that V = S ® S+. O
Isometries

We now turn to a discussion of structure-preserving maps on metric vector
spaces.

Definition Let V' and W be metric vector spaces. We use the same notation ()
Jor the bilinear form on each space. A bijective linear map 7:V — W is called
an isometry if

(ru, Tv) = (u, )

Jor all vectors u and v in V. If an isometry exists from V to W, we say that V
and W are isometric and write V ~ W. It is evident that the set of all
isometries from 'V to'V forms a group under composition.

If' 'V is a nonsingular orthogonal geometry, an isometry of V is called an
orthogonal transformation. The set O(V') of all orthogonal transformations
on V' is a group under composition, known as the orthogonal group of V.

If V is a nonsingular symplectic geometry, an isometry of V is called a
symplectic transformation. The set Sp(V') of all symplectic transformations on
V' is a group under composition, known as the symplectic group of V. [J
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Here are a few of the basic properties of isometries.

Theorem 11.10 Let 7 € L(V,W) be a linear transformation between finite-

dimensional metric vector spaces V and W

1) Let B={vy,...,v,} be abasis for V. Then T is an isometry if and only if T
is bijective and

(Tvi, Tv) = (i, v5)

forall i, .
2) If'V is orthogonal and char(F) # 2 then T is an isometry if and only if it is
bijective and

(r(v),7(v)) = (v, v)

JorallveV.

3) Suppose that T is an isometry and V =S ® S+ and W =T & T+. If
7(8) =T then 7(S*) = T*. In particular, if T € L(V) is an isometry and
V =8 ® S* then if S is T-invariant, so is S*.

Proof. We prove part 3) only. To see that 7(S+) =T+, if z€ St andt €T

then since T' = 7(.5), we can write t = 7(s) for some s € S and so

(r(2),t) = (1(2),7(5)) = (z,8) = 0
whence 7(S+) C T+, But since dim(7(St)) = dim(7T+), we deduce that
r(SHy=71+.0
Hyperbolic Spaces
A special type of two-dimensional metric vector space plays an important role in
the structure theory of metric vector spaces.
Definition Let V' be a metric vector space. If u, v € V' have the property that

(u,u) = (v,v) =0, (u,v) =1

the ordered pair (u,v) is called a hyperbolic pair. Note that (v,u) = 1 if V is
an orthogonal geometry and (v,u) = —1 if V' is symplectic. In either case, the

subspace H = span(u,v) is called a hyperbolic plane and any space of the
form

H:Hl@...@Hk

where each H; is a hyperbolic plane, is called a hyperbolic space. If (u;, v;) is a
hyperbolic pair for H; then we refer to the basis (uy,v1, ..., ug, v;) for H as a
hyperbolic basis. (In the symplectic case, the usual term is symplectic basis.)[]

Note that any hyperbolic space H is nonsingular.
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In the orthogonal case, hyperbolic planes can be characterized by their degree of
isotropy, so-to-speak. (In the symplectic case, all spaces are totally isotropic by
definition.) Indeed, we leave it as an exercise to prove that a two-dimensional
nonsingular orthogonal geometry V is a hyperbolic plane if and only if V'
contains exactly two one-dimensional totally isotropic (equivalently: totally
degenerate) subspaces. Put another way, the cone of isotropic vectors is the
union of two one-dimensional subspaces of V.

Nonsingular Completions of a Subspace

Let U be a subspace of a nonsingular metric vector space V. If U is singular, it
is of interest to find a minimal nonsingular extension of U, that is, minimal
nonsingular subspace of V' containing U. Such extensions of U are called
nonsingular completions of U.

Theorem 11.11 (Nonsingular extension theorem) Let V' be a nonsingular
metric vector space over F. We assume that char(F) #2 when V s
orthogonal.

1) Let S be a subspace of V. For each isotropic vector v € S\ S, there is a
hyperbolic plane H = span(v, z) contained in S*. Hence, H® S is an
extension of S containing v.

2) Let U be a subspace of V and write U =rad(U) © W where W is
nonsingular and {vy,...,v;} is a basis for rad(U). Then there is a
hyperbolic space Hy ® --- ® Hy, with hyperbolic basis (v1,z1,...,Vk, 2k)
Jfor which

U=H 6 -0H,oW

is a nonsingular extension of U, called a nonsingular completion of U.
Proof. For part 1), the nonsingularity of V' implies that S** = S and so v ¢ S
is equivalent to v ¢ S**. Hence, there is a vector x € S* for which (v, z) # 0.
If V is symplectic then we can take z = (1/(v,z))x. If V is orthogonal, let
z = rv + sx. The conditions defining (v, z) as a hyperbolic pair are (since v is
isotropic)

1={(v,z) = (v,7v+ sx) = s{v, x)
and
0= (z,2) = (rv+ sz,rv+ sz) = 2rs(v,z) + s*(z, z)

Since (v,x) # 0, the first of these equations can be solved for s and since
char(F’) # 2, the second can then be solved for r. Thus, in either case, a vector
z € S* exists for which (v, 2) is a hyperbolic pair and span(v, z) C S*.

For part 2), we proceed by indution on k = dim(rad(U)). If k = 1 then v; is
isotropic and v; € W+ \ W. Hence, part 1) applied to S = W implies that there
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is a hyperbolic plane H = span(vy, z) for which H ® W is an extension of W
containing span(v;) = rad(U). Hence, part 2) holds when k = 1.

Let us assume that the result is true when dim(rad(U)) < k and assume that
dim(rad(U)) = k. Let

Uy = span(vy, ..., vp) © W

Then v; is (still) isotropic and v; € Ui+ \ U;. Hence, we may apply part 1) to
the subspace S =U; to deduce the existence of a hyperbolic plane
H, = span(vy, z1) contained in Uj-.

Now, since H; is nonsingular, we have
_ 1
V=H 0H

Since H; C U, it follows that U; = Ui+ C Hi-. Thus, we may apply the
induction hypothesis to U; as a subspace of the nonsingular H:-, giving a space

Hyo-—- 0 H,0W C H{

containing U . It follows that H; ® Hy ® --- ® H ® W is the desired extension
of U. O

Note that if U is a nonsingular extension of U then
dim(U) = dim(U) + dim(rad(U))

Theorem 11.12 Let V' be a nonsingular metric vector space and let U be a
subspace of V. The following are equivalent:

1) W is a nonsingular completion of U

2) W is a minimal nonsingular extension of U

3) W is a nonsingular extension of U and

dim(W) = dim(U) + dim(rad(U))

Moreover, any two nonsingular completions of U are isomorphic.

Proof. If 1) holds and if U C X C W where X is nonsingular, then we may
apply the nonsingular extension theorem to U as a subspace of X, to obtain a
nonsingular extension U’ of U for which

UCUCXCW

But U’ and W have the same dimension and so must be equal. Hence, X = W.
Thus W is a minimal nonsingular extention of U and 2) holds. If 2) holds then
we have U C U C W where U is a nonsingular completion of U. But the
minimality of W implies that U = W and so 3) holds. If 3) holds then again we
have U C U C W. But dim(U) = dim(W) and so W = U is a nonsingular
completion of U and 1) holds.
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If X=HoW and Y =H OGW are nonsingular completions of
U =W ©rad(U) then H and H' are hyperbolic spaces of the same dimension
and are therefore isometric. It follows that X and Y are isometric. [J

Extending Isometries to Nonsingular Completions

Let V and V' be isometric nonsingular metric vector spaces and let
U =W ®rad(U) be a subspace of V, with nonsingular completion U. If
7:U — 7(U) is an isometry, then it is a simple matter to extend 7 to an
isometry 7 from U onto a nonsingular completion of 7(U ). To see this, let

U=HoW
where W is nonsingular and (uy,vy,...,ug,vx) is a hyperbolic basis for H.
Since (uq,...,uy) is a basis for rad(U), it follows that (7(uy),...,7(ux)) is a

basis for rad(7(U)).

Now we complete 7(U) = 7(W) @ rad(7(WW)) to get
r(U)=H (W)
where H' has hyperbolic basis (7(u1), 21, ..., 7(ux), z). To extend 7, simply

setT(v;) = z; foralli =1,... k.

Theorem 11.13 Let V and V' be isometric nonsingular metric vector spaces
and let U be a subspace of V, with nonsingular completion U. Any isometry
7:U — 7(U) can be extended to an isometry from U onto a nonsingular
completion of T(U). O

The Witt Theorems: A Preview

There are two important theorems that are quite easy to prove in the case of real
inner product spaces, but require more work in the case of metric vector spaces
in general. Let V' and V'’ be nonsingular isometric metric vector spaces over a
field F. We assume that char(F') # 2 if V is orthogonal.
The Witt extension theorem says that if S is a subspace of V' and

78— 71(S)CcV’

is an isometry, then 7 can be extended to an isometry from V' to V'. The Witt
cancellation theorem says that if

V=808t and V' =ToT*:
then

S~T=St~T*
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We will prove these theorems in both the orthogonal and symplectic cases later
in the chapter. For now, we simply want to show that it is easy to prove one
Witt theorem from the other.

Suppose that the Witt extension theorem holds and assume that
V=805t and V' =ToT"

and S ~ T'. Then any isometry 7: S — 7" can be extended to an isometry 7 from
V to V'. According to Theorem 11.10, we have 7(S+) = T+ and so S+ ~ T,
Hence, the Witt cancellation theorem holds.

Conversely, suppose that the Witt cancellation theorem holds and let
7:5 — 7(S) CV’ be an isometry. Then we may extend 7 to a nonsingular
completion of .S. Hence, we may assume that S is nonsingular. Then

V=5o5"
Since 7 is an isometry, 7(.5) is also nonsingular and we can write
V' =7(8)or(S)*"
Since S =~ 7(S), Witt's cancellation theorem implies that S+ ~ 7(S)*. If
w: St — 7(S)* is an isometry then the map o: V' — V' defined by
o(u+v) = 7(u) + p(v)

for u € S and v € S* is an isometry that extends 7. Hence Witt's extension
theorem holds.

The Classification Problem for Metric Vector Spaces

The classification problem for a class of metric vector spaces (such as the
orthogonal or symplectic spaces) is the problem of determining when two metric
vector spaces in the class are isometric. The classification problem is considered
“solved,” at least in a theoretical sense, by finding a set of canonical forms or a
complete set of invariants for matrices under congruence.

To see why, suppose that 7: V' — W is an isometry and B = (vy,...,v,) is an
ordered basis for V. Then C = (7(vy), ..., 7(vy,)) is an ordered basis for W and

Mg(V) = ((vi,v5)) = ((7(vi), 7(v;))) = Mc(W)

Thus, the congruence class of matrices representing V is identical to the
congruence class of matrices representing W'.

Conversely, suppose that V' and W are metric vector spaces with the same
congruence class of representing matrices. Then if B = (vq,...,v,) is an
ordered basis for V, there is an ordered basis C = (wy, ..., w,) for W for which
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((vi,v3)) = Mp(V') = Mc(W) = ((wi, w)))

Hence, the map 7: V' — W defined by 7(v;) = w; is an isometry from V' to W.

We have shown that two metric vector spaces are isometric if and only if they
have the same congruence class of representing matrices. Thus, we can
determine whether any two metric vector spaces are isometric by representing
each space with a matrix and determining if these matrices are congruent, using
a set of canonical forms or a set of complete invariants.

Symplectic Geometry

We now turn to a study of the structure of orthogonal and symplectic geometries
and their isometries. Since the study of the structure (and the structure itself) of
symplectic geometries is simpler than that of orthogonal geometries, we begin
with the symplectic case. The reader who is interested only in the orthogonal
case may omit this section.

Throughout this section, let V' be a nonsingular symplectic geometry.
The Classification of Symplectic Geometries

Among the simplest types of metric vector spaces are those that possess an
orthogonal basis, that is, a basis B = {u1,...,u,} for which (u;,u;) = 0 when
i # j. For in this case, we may write V' as an orthogonal direct sum of one-
dimensional subspaces

V = span(u;) © --- © span(u,)

However, it is easy to see that a symplectic geometry V' has an orthogonal basis
if and only if it is totally degenerate. For if B is an orthogonal basis for V' then
(ui, u;) = 0 for i = j since the form is alternate and for 7 # j since the basis is
orthogonal. It follows that V is totally degenerate. Thus, no “interesting”
symplectic geometries have orthogonal bases.

Thus, in searching for an orthogonal decomposition of V', we must look not at
one-dimensional subspaces, but at two-dimensional subspaces. Given a nonzero
u € V, the nonsingularity of V' implies that there must exist a vector v € V' for
which (u,v) = a # 0. Replacing v by a~'v, we have

(u,u) = (v,v) =0, (u,vy=1 and (v,u)=-1

and so H = span(u, v) is a hyperbolic plane and the matrix of H with respect to
the hyperbolic pair B = (u,v) is

0 1
ve= | o

Since H is nonsingular, we can write
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V=HoH"

where H* is also nonsingular. Hence, we may repeat the preceding
decomposition in H*, eventually obtaining an orthogonal decomposition of V/
of the form

V=H o0H® - ©H

where each H; is a hyperbolic plane. This proves the following structure
theorem for symplectic geometries.

Theorem 11.14

1) A symplectic geometry has an orthogonal basis if and only if it is totally
degenerate.
2)  Any nonsingular symplectic geometry V' is a hyperbolic space, that is,

V=H O0H O OH

where each H; is a hyperbolic plane. Thus, there is a basis for V for which
the matrix of the form is

In particular, the dimenison of V is even.
3) Any symplectic geometry V' has the form

V=rad(V)OH

where H is a hyperbolic space and rad(V') is a totally degenerate space.
The rank of the form is dim(H) and V is uniquely determined up to
isometry by its rank and its dimension. Put another way, up to isometry,
there is precisely one symplectic geometry of each rank and dimension. [

Symplectic forms are represented by alternate matrices, that is, skew-symmetric
matrices with zero diagonal. Moreover, according to Theorem 11.14, each
n X n alternate matrix is congruent to a matrix of the form

Yy O
XQk,n*% - |: 0 In—2k‘:|block

Since the rank of Xy, o is 2k, no two such matrices are congruent.
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Theorem 11.15 The set of n x n matrices of the form Xy o is a set of
canonical forms for alternate matrices under congruence. [

The previous theorems solve the classification problem for symplectic
geometries by stating that the rank and dimension of V' form a complete set of
invariants under congruence and that the set of all matrices of the form Xy, ,_o;;
is a set of canonical forms.

Witt's Extension and Cancellation Theorems

We now prove the Witt theorems for symplectic geometries.

Theorem 11.16 (Witt's extension theorem) Let V' and V' be nonsingular
isometric symplectic geometries over a field F. Suppose that S is a subspace of
V and

S —7(S)CcV’

is an isometry. Then T can be extended to an isometry fromV to V.

Proof. According to Theorem 11.13, we can extend 7 to a nonsingular
completion of S, so we may simply assume that S and 7(5) are nonsingular.
Hence,

V=SoS8"
and
V' =1(8) o 7(9)*
To complete the extension of 7 to V', we need only choose a hyperbolic basis
(er, - eps fp)
for S+ and a hyperbolic basis
(€1 f1--- s € f)

for 7(S)* and define the extension by setting 7(¢;) = e} and 7(f;) = f/. O

7

As a corollary to Witt's extension theorem, we have Witt's cancellation theorem.

Theorem 11.17 (Witt's cancellation theorem) Let V and V' be isometric
nonsingular symplectic geometries over a field F'. If

V=S0S8t and V' =TT+
then

S~T=S*~T* O
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The Structure of the Symplectic Group: Symplectic Transvections

To understand the nature of symplectic transformations on a nonsingular
symplectic geometry V', we begin with the following definition.

Definition Let V' be a nonsingular symplectic geometry over F. Let v €V be
nonzero and let a € F. The map 1,,:V — V defined by

Tpa(T) = + alz,v)v

is called the symplectic transvection determined by v and a. O

The first thing to notice about a symplectic transvection 7, , is that if a = 0 then
Ty.q 1S the identity and if @ # O then 7, , is the identity precisely on the subspace
span(v)*, which is very large, in the sense of having codimension 1. Thus,
despite the name, symplectic transvections are not highly complex maps. On the
other hand, we should point out that since v is isotropic, the subspace span(v) is
singular and span(v) N span(v)* = span(v). Hence, span(v) is not a vector
space complement of the space span(v)* upon which 7, , is the identity. In other
words, while we can write

V = span(v)t @ U

where dim(U') = 1 and 7|gan(v): = ¢, We cannot say that U = span(v).
Here are the basic properties of symplectic transvections.

Theorem 11.18 Let 7, , be a symplectic transvection on V. Then

1) T, is a symplectic transformation.

2) Tye=tifandonlyifa = 0.

3) Ifx Lvthent,,(x) =x. Fora#0,x Lvifandonly ift,.(x) =z
4) Tv,aTv,b = Tv,a+b

5) Tfal = Ty—a

6) For any symplectic transformation o,
0-7-1).,110-_1 = To(v),a
7) Forb e F*,

Tov,a = Tu,ab? o

Note that if U is a subspace of V' and if 7, , is a symplectic transvection on U
then, by definition, v € U. However, the map 7,, can also be thought of as a
symplectic transvection on V', defined by the same formula

Tua(Z) =z + alz, u)u
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where  can be any vector in V. Moreover, for any z € U+ we have Tua(Z) =2
and so 7, , is the identity on U~.

We now wish to prove that any symplectic transformation on a nonsingular
symplectic geometry V' is the product of symplectic transvections. The proof is
not difficult, but it is a bit lengthy, so we break it up into parts. Our first goal is
to show that we can get from any hyperbolic pair to any other hyperbolic pair
using a product of symplectic transvections.

Let us say that two hyperbolic pairs (x,y) and (w, z) are connected if there is a
product i of symplectic transvections that carries  to w and y to z and write

p(z,y) = (w, 2)

or just (x,y) <> (w, z). It is clear that connectedness is an equivalence relation
on the set of hyperbolic pairs.

Theorem 11.19 Let V' be a nonsingular symplectic geometry.

1) For every hyperbolic pair (u,v) and nonzero vector w € V, there is a
vector x _for which (u,v) < (w, ).

2)  Any two hyperbolic pairs (u,v) and (u,w) with the same first coordinate
are connected.

3) Every pair (u,v) and (w, z) of hyperbolic pairs is connected.

Proof. For part 1), all we need to do is find a product p of symplectic

transvections for which p(u) = w, because an isometry maps hyperbolic pairs

to hyperbolic pairs and so we can simply set x = p(v).

If (u, w) # 0 then u # w and
Tu—wa (W) = v+ a{u,u — w)(u —w) = u — alu, w)(u — w)

Taking a = 1/(u, w) gives T,_yo(u) = w, as desired.

Now suppose that (u,w) = 0. If there is a vector y that is not orthogonal to
either u or w, then by what we have just proved, there is a vector x; such that
(u,v) < (y,x1) and a vector z for which (y,z1) < (w, ). Then transitivity
implies that (u, v) < (w,x).

But there is a nonzero vector y € V that is not orthogonal to either u or w since
there is a linear functional f on V for which f(u) # 0 and f(w) # 0. But the
Riesz representation theorem implies that there is a nonzero vector y such that
flx) = (z,y) forallz € V.

For part 2), suppose first that (v, w) # 0. Then v # w and since (u,v — w) = 0,
we know that 7,_,, ,(u) = u. Also,
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To—wa(V) = v+ a{v,v — w)(v—w) = v — a{v,w)(v— w)

Taking a =1/(v,w) gives T,—wq(v) =w, as desired. If (v,w) =0, then
(v,u+v) # 0 implies that (u,v) < (u,u + v) and (u + v,w) # 0 implies that
(u,u +v) < (u,w). It follows by transitivity that (u, v) < (u,w).
For part 3), parts 1) and 2) imply that there is a vector « for which

(u,v) < (u,2) < (w,2)

as desired. [

We can now show that the symplectic transvections generate the symplectic
group.

Theorem 11.20 Every symplectic transformation on a nonsingular symplectic
geometry V is the product of symplectic transvections.

Proof. Let i be a symplectic transformation on V. We proceed by induction on
d = dim(V"), which must be even.

If d =2 then V = H = span(u,v) is a hyperbolic plane and by the previous
theorem, there is a product 7 of symplectic transvections on V' for which

7: (u,v) < (u(w), u(v))
Hence ;1 = 7. This proves the result if d = 2. Assume that the result holds for
all dimensions less than d and let dim(V') = d.
Let H = span(u, v) be a hyperbolic plane in V' and write
V=HoH"
where H* is a nonsingular symplectic geometry of degree less than d.

Since (u(u), u(v)) is a hyperbolic pair, we again have a product 7 of symplectic
transvections on V' for which

7: (u,v) < (p(w), p(v))

Thus i = 7 on the subspace H. Also, since H is invariant under 7714, so is
H*.

If we restrict 7'y to H*, we may apply the induction hypotheses to get a
product 7 of symplectic transvections on H* for which 7'y =7 on H*.
Hence, ;t = 7m on H* and ;= 7 on H. But since the vectors that define the
symplectic transvections making up 7 belong to H+, we may extend 7 to V and
m =t on H. Thus, 4 = 77 on H as well, and we have y = 7mon V.
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The Structure of Orthogonal Geometries: Orthogonal Bases

We have seen that no interesting (not totally degenerate) symplectic geometries
have orthgonal bases. In contradistinction to the symplectic case, almost all
interesting orthogonal geometries V' have orthogonal bases. The only problem
arises when V' is also symplectic and char(F') = 2.

In particular, if V is orthogonal and symplectic, then it cannot possess an
orthogonal basis unless it is totally degenerate. When char(F') # 2, the only
orthogonal, symplectic geometries are the totally degenerate ones, since the
matrix of V' with respect to any basis is both symmetric and skew-symmetric,
with zeros on the main diagonal and so must be the zero matrix. However, when
char(F') = 2, such a nonzero matrix exists, for example

Thus, there are orthogonal, symplectic geometries that are not totally degenerate
when char(F') = 2. These geometries do not have orthogonal bases and we will
not consider them further.

Once we have an orthogonal basis for V, the natural question is: “How close
can we come to obtaining an orthonormal basis?” Clearly, this is possible only if
V' is nonsingular. As we will see, the answer to this question depends on the
nature of the base field, and is different for algebraically closed fields, the real
field and finite fields—the three cases that we will consider in this book.

We should mention that, even when V' has an orthogonal basis, the Gram—
Schmidt orthogonalization process may not apply, because even nonsingular
orthogonal geometries may have isotropic vectors, and so division by (u,u) is
problematic.

For example, consider an orthogonal hyperbolic plane H = span(u,v) and
assume that char(F') # 2. Thus, v and v are isotropic and (u,v) = (v,u) = 1.
The vector u cannot be extended to an orthogonal basis, as would be possible
for a real inner product space, using the Gram—Schmidt process, for it is easy to
see that the set {u, au + bv} cannot be an orthogonal basis for any a,b € F.
However, H has an orthogonal basis, namely, {u + v, u — v}.

Orthogonal Bases

Let V be an orthogonal geometry. If V' is also symplectic, then V has an
orthogonal basis if and only if it is totally degenerate. Moreover, when
char(F’) # 2, these are the only types of orthogonal, symplectic geometries.
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Now, let V' be an orthogonal geometry that is not symplectic. Hence, V' contains
a nonisotropic vector up, the subspace span(u; ) is nonsingular and

V = span(ur) © V;

where Vi = span(u;)*. If V; is not symplectic, then we may decompose V; to
get

V' = span(u;) © span(uz) © Va
This process may be continued until we reach a decomposition
V =span(u;) ® --- © span(uy,) © U
where U is symplectic as well as orthogonal. (This includes the case U = {0}.)
If char(F) # 2, then U is totally degenerate. Thus, if B = (uy,...,u;) and C is

any basis for U, the union BUC is an orthogonal basis for V. Hence, when
char(F’) # 2, any orthogonal geometry has an orthogonal basis.

When char(F') = 2, we must work a bit harder. Since U is symplectic, it has the
form U = H © rad(U) where H is a hyperbolic space and so
V = span(u;) ® --- @ span(uy,) © HO N

where N is totally degenerate and the u; are nonisotropic. If B = (ug, ..., ux)
and C = (z1,Y1,---,Tm,Ym) 18 @ hyperbolic basis for H and D = (z1,..., 2m)
is an ordered basis for A/ then the union

E=BUCUD = (ulv"'vukyxlvyl,"'axm7ymazlv‘“72m)

is an ordered basis for V. However, we can do better.

The following lemma says that, when char(F') = 2, a pair of isotropic basis
vectors (such as x;,y;) can be replaced by a pair of nonisotropic basis vectors,
in the presence of a nonisotropic basis vector (such as uy).

Lemma 11.21 Suppose that char(F) =2. Let W be a three-dimensional

orthogonal geometry with ordered basis B = (u,x,y) for which the matrix of
the form with respect to B is

Mg =

o O Q
_= o O
o = O

where a # 0. Then the vectors
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v=ut+r+ty
V9 = U+ ax
vs=u+(l—a)z+y

form an orthogonal basis of W consisting of nonisotropic vectors.
Proof. It is straightforward to check that the vectors vy, vo and vs are linearly
independent and mutually orthogonal. Details are left to the reader. O

Using the previous lemma, we can replace the vectors {uy,x1,y1} with the
nonisotropic vectors {vg, Ug+1, V42 and still have an ordered basis

gl = (ulv ey Uk—1, Vky V41, Vk42, L2, Y2, - - - 7I7717y7n,)

for V. The replacement process can be repeated until the isotropic vectors are
absorbed, leaving an orthogonal basis of nonisotropic vectors.

Let us summarize.

Theorem 11.22 Let V' be an orthogonal geometry.

1) If'V is also symplectic, then V has an orthogonal basis if and only if it is
totally degenerate. (When char(F) # 2, these are the only types of
orthogonal, symplectic geometries. When char(F) =2, orthogonal,
symplectic geometries that are not totally degenerate do exist.)

2) If V is not symplectic, then V has an ordered orthogonal basis
B = (up,...,Up,21,...,2m) for which (u;,u;) =a; #0 and (z;,z;) = 0.
Hence, Mp has the diagonal form

a1

ai
Mg = k

0

with k = 1k(Mp) nonzero entries and m zeros on the diagonal. O
As a corollary, we get a nice theorem about symmetric matrices.

Corollary 11.23 Let M be a symmetric matrix that is not alternate if
char(F') = 2. Then M is congruent to a diagonal matrix. O

The Classification of Orthogonal Geometries: Canonical
Forms
We now want to consider the question of improving upon Theorem 11.22. The

diagonal matrices of this theorem do not form a set of canonical forms for
congruence. In fact, if 1, ..., r; are nonzero scalars, then the matrix of V' with
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respect to the basis C = (r1uy, ..., TklUn, 21, -+, Zm) 18

r%al

2
M = "Rk (11.5)

0

0

Hence, Mp and M are congruent diagonal matrices, and by a simple change of
basis, we can multiply any diagonal entry by a nonzero square in F'.

The determination of a set of canonical forms for symmetric (nonalternate when
char(F') = 2) matrices under congruence depends on the properties of the base
field. Our plan is to consider three types of base fields: algebraically closed
fields, the real field R and finite fields. Here is a preview of the forthcoming
results.

1) When the base field F is algebraically closed, there is an ordered basis B
for which

MB = Zk,m =

0

If V is nonsingular, then Mp is an identity matrix and V has an
orthonormal basis.
2) Over the real base field, there is an ordered basis B for which

1

MB = Zp7m7k, =
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3) If F is a finite field, there is an ordered basis I for which

1

MB = Zk,m(d) = d

0

where d is unique up to multiplication by a square and if char(F") = 2 then
we can take d = 1.

Now let us turn to the details.
Algebraically Closed Fields

If F is algebraically closed then for every r € F, the polynomial 2> — r has a
root in F, that is, every element of F' has a square root in F'. Therefore, we may
choose r; =1/ \/a7 in (11.5), which leads to the following result.

Theorem 11.24 Let V' be an orthogonal geometry over an algebraically closed
field F. Provided that V is not symplectic as well when char(F) = 2, then V
has an ordered orthogonal basis B = (ui,...,up, 21,...,2m) for which
(uj,u;) = 1 and (z;, z;) = 0. Hence, Mg has the diagonal form

1

MB = Zk:,m =

0

with k ones and m zeros on the diagonal. In particular, if V' is nonsingular then
V' has an orthonormal basis. O

The matrix version of Theorem 11.24 follows.

Theorem 11.25 Let S, be the set of all n X n symmetric matrices over an

algebraically closed field F'. If char(F) = 2, we restrict S, to the set of all

symmetric matrices with at least one nonzero entry on the main diagonal.

1) Any matrix M in S, is congruent to a unique matrix of the form Zy,,, in
Jact, k = 1k(M) and m = n — rk(M).

2)  The set of all matrices of the form Zy, ,,, for k +m = n, is a set of canonical
forms for congruence on S,,.

3) The rank of a matrix is a complete invariant for congruence on S,,. 1
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The Real Field R
If F = R, we can choose r; = 1/4/]a;], so that all nonzero diagonal elements in

(11.5) will be either 0, 1 or —1.

Theorem 11.26 (Sylvester's law of inertia) Any orthogonal geometry V over
the real field R has an ordered orthogonal basis

B = (U1, Up,V1yeney Uy 215 -1 5 2k)

Jor which {u;,u;) = 1, {v;,v;) = —1 and (z;, z;) = 0. Hence, the matrix Mg has
the diagonal form

MB = Zp,m,k =

with p ones, m negative ones and k zeros on the diagonal. (]
Here is the matrix version of Theorem 11.26.

Theorem 11.27 Let S,, be the set of all n x n symmetric matrices over the real

field R.

1)  Any matrix in S,, is congruent to a unique matrix of the form Z,,, ., for
some p, mand k =n —p—m.

2) The set of all matrices of the form Z, ). for p+m+k =n is a set of
canonical forms for congruence on S,.

3) Let M €8, and let M be congruent to Zy,y, .. The number p+m is the
rank of M, the number p —m is the signature of M and the triple
(p,m, k) is the inertia of M. The pair (p,m), or equivalently the pair
(p+ m,p —m), is a complete invariant under congruence on S,.

Proof. We need only prove the uniqueness statement in part 1). Let

B = (Ul,...,Up, V1, ..., VUm;21,...,2k)
and
!/ !/ / / !/ !
C= (Uy e Uy Vi e U 205 e 2h)

be ordered bases for which the matrices My and M. have the form shown in
Theorem 11.26. Since the rank of these matrices must be equal, we have
p+m=p +m' andsok =k’
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If x € span(ui, ..., up) and z # 0 then
(x,x) = <Zmui, eruj> = Zmrj<ui,uj> = Zrﬁj@,j = Zr? >0
i i
On the other hand, if y € span(v}, ..., v),) and y # 0 then

(y,y) = <st;, ng‘v}> =Y sisi(vh, o)) = =) sis;bi;=—) si <0
% 7

Hence, if y € span(v), ..., v}, 21, ..., 2) then (y,y) < 0. It follows that

m'

span(uy, ..., u,) Nspan(vh, ..., v, 21,..., z1,) = {0}

? m'
and so
p+(n—p)<n

that is, p < p/. By symmetry, p’ < p and so p = p/. Finally, since k = k’, it
follows that m = m/. O

Finite Fields

To deal with the case of finite fields, we must know something about the
distribution of squares in finite fields, as well as the possible values of the
scalars (v, v).

Theorem 11.28 Let F,, be a finite field with q elements.

1) Ifchar(F}) = 2 then every element of F, is a square.

2) Ifchar(F,) # 2 then exactly half of the nonzero elements of F, are squares,
that is, there are (¢ — 1)/2 nonzero squares in F,. Moreover, if x is any
nonsquare in F,, then all nonsquares have the form r*z, for some r € F,.

Proof. Write F' = F}, let F™* be the subgroup of all nonzero elements in F' and

let

(F*)*={a’|a € F}

be the subgroup of all nonzero squares in F. The Frobenius map
¢: F* — (F*)? defined by ¢(a) = a? is a surjective group homomorphism, with
kernel

ker(¢p) ={a € F|a*=1} = {-1,1}

If char(F) = 2, then ker(¢) = {1} and so ¢ is bijective and |F*| = |(F*)?],
which proves part 1). If char(F') # 2, then |ker(¢)| = 2 and so |F*| = 2|(F*)?,
which proves the first part of part 2). We leave proof of the last statement to the
reader. [
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Definition A bilinear form on V is universal if for any nonzero c € F' there
exists a vector v € V for which (v,v) = ¢. O

Theorem 11.29 Let V' be an orthogonal geometry over a finite field F with
char(F) # 2 and assume that V' has a nonsingular subspace of dimension at
least 2. Then the bilinear form of V' is universal.

Proof. Theorem 11.22 implies that V' contains two linearly independent vectors
u and v for which

(u,u) =a #0, (v,0) =b#0, (u,v) =0
Given any ¢ € F, we want to find o and 3 for which
¢ = {oau + fv, au + Bv) = aa® + b3
or
aa? = ¢ —b3?

If A={aa’|a € F} then |A| = (¢ + 1)/2, since there are (¢ — 1)/2 nonzero
squares o and also we must consider o = 0. Also, if B = {c — b3 | 8 € F}
then for the same reasons |B| = (g + 1)/2. It follows that A N B cannot be the
empty set and so there are o and 3 for which aa? = ¢ — b3?, as desired. O

Now we can proceed with the business at hand.

Theorem 11.30 Let V be an orthogonal geometry over a finite field F' and
assume that V' is not symplectic if char(F) = 2. If char(F') # 2 then let d be a
Jixed nonsquare in F'. For any nonzero a € F, write

1

Xk(a) = a

where tk(Xy(a)) = k.

1) Ifchar(F) = 2 then there is an ordered basis B for which Mp = X.(1).

2) If char(F) # 2, then there is an ordered basis B for which Mp equals
Xk(l) or Xk(d)

Proof. We can dispose of the case char(F') = 2 quite easily: Referring to (11.5),

since every element of F' has a square root, we may take r; = (,/a; )L

If char(F') # 2, then Theorem 11.22 implies that there is an ordered orthogonal
basis
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B=(u1,.., Uy 21, Zm)
for which (u;, u;) = a; # 0 and (z;, z;) = 0. Hence, My has the diagonal form

ai

a
Mg = ’f

0

Now, consider the nonsingular orthogonal geometry Vi = span(uy,us).
According to Theorem 11.29, the form is universal when restricted to V;.
Hence, there exists a v; € V; for which (vy,v1) = 1.

Now, v; = ru; + sus for r,s € F' not both 0, and we may swap u; and usy if
necessary to ensure that  # 0. Hence,

Bl = (Ul,U,g,...,U;k,Zl,...,Zm)

is an ordered basis for V' for which the matrix Mp, is diagonal and has a 1 in the
upper left entry. We can repeat the process with the subspace V, = span(vq, v3).
Continuing in this way, we can find an ordered basis

C= (V1,02 ..., Uy 21y Zm)

for which M¢ = Xj,(a) for some nonzero a € F. Now, if @ is a square in F'
then we can replace vy, by (1/1/a)vy, to get a basis D for which Mp = X;(1). If

a is not a square in F, then a = r>d for some r € I’ and so replacing v;, by
(1/r)vy, gives a basis D for which Ma = X (d). O

Theorem 11.31 Let S, be the set of all n X n symmetric matrices over a finite
field F. If char(F) = 2, we restrict S, to the set of all symmetric matrices with
at least one nonzero entry on the main diagonal.

1) Ifchar(F) = 2 then any matrix in S,, is congruent to a unique matrix of the
Jorm Xi(1) and the matrices {Xy(1) |k =0,...,n} form a set of
canonical forms for S, under congruence. Also, the rank is a complete
invariant.

2) If char(F) # 2, let d be a fixed nonsquare in F. Then any matrix S, is
congruent to a unique matrix of the form X(1) or Xi(d). The set
{Xi(1),Xi(d) | k=0,...,n} is a set of canonical forms for congruence
on S,,. (Thus, there are exactly two congruence classes for each rank k.)]

The Orthogonal Group

Having “settled” the classification question for orthogonal geometries over
certain types of fields, let us turn to a discussion of the structure-preserving
maps, that is, the isometries.
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Rotations and Reflections
We have seen that if B is an ordered basis for V', then for any =,y € V
(z,y) = [2]5Ms5lyls
Now, for any 7 € L(V'), we have
(r,Ty) = [r2]sMplryls = [=]5([7]sMsl7]5)lY]s

and so 7 is an isometry if and only if

[r]sMplr]s = Mg
Taking determinants gives

det(Mp) = det([7]5)*det( M)

Therefore, if V' is nonsingular then

det([7]p) = £1

Since the determinant is an invariant under similarity, we can make the
following definition.

Definition Let 7 be an isometry on a nonsingular orthogonal geometry V. The
determinant of 7 is the determinant of any matrix [T)|g representing T. If
det(7) = 1 then 7 is called a rotation and if det(7) = —1 then T is called a
reflection. [

The set O1 (V') of rotations forms a subgroup of the orthogonal group O(V)
and the surjective determinant map det: O(V) — {—1,1} has kernel Ot (V).
Hence, if char(F') # 2, then O (V) is a normal subgroup of O(V') of index 2.

Symmetries

Recall that for a real (or complex) inner product space V, we defined a
reflection to be a linear map H, for which

HU’U = -0, (H@)|<F>L =1

The term symmetry is often used in the context of general orthogonal
geometries.

In particular, suppose that V' is a nonsingular orthogonal geometry over F',
where char(F') # 2 and let w € V' be nonisotropic. Write

V = span(u) ® span(u)*

Then there is a unique isometry o, with the properties
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) ou,(u) =—u

2) o,(z) = x forall x € span(u)*

We can also write o, = —¢ ® ¢, that is
Uu(x + Zl/) =—z+y
for all z € span(u) and y € span(u)’. It is easy to see that

2(v, u)u
(u, u)

ou(v) =v—
The map o, is called the symmetry determined by w.

Note that the requirement that « be nonisotropic is required, since otherwise we
would have u € span(u)* and so —u = 0, (u) = u, which implies that u = 0.
(Thus, symplectic geometries do not have symmetries.)

In the context of real inner product spaces, Theorem 10.11 says that if
l|v|| = ||w|| # 0, then H,_,, is the unique reflection sending v to w, that is,
H,_,,(v) = w. In the present context, we must be careful, since symmetries are
defined for nonisotropic vectors only. Here is what we can say.

Theorem 11.32 Let V' be a nonsingular orthogonal geometry over a field F,
with char(F') # 2. If u,v € V have the same nonzero “length,” that is, if

(u,uy = (v,v) #0
then there exists a symmetry o for which
olu)=v or ou)=-v

Proof. In general, if x and y are orthogonal isotropic vectors, then = + y and
x — y are also isotropic. Hence, since u and v are not isotropic, it follows that
one of v — v and w + v must be nonisotropic. If u 4 v is nonisotropic, then

Tupo(u +v) = —(u+0)
and
Oyt —v) =u—v

Combining these two gives o,,(u) = —v. On the other hand, if u— v is
nonisotropic, then

Ou—p(tt —v) = —(u — )
and

Oy +v)=u+v
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These equations give o, (u) = v. O

Recall that an operator on a real inner product space is unitary if and only if it is
a product of reflections. Here is the generalization to nonsingular orthogonal
geometries.

Theorem 11.33 Let V' be a nonsingular orthogonal geometry over a field F
with char(F) # 2. A linear transformation T on V is an orthogonal
transformation (an isometry) if and only if T is the product of symmetries on V.
Proof. We proceed by induction on d = dim(V'). If d = 1 then V = span(v)
where (v, v) # 0. Let 7(v) = aw where « € F'. Since 7 is unitary

a*(v,v) = (av, av) = (1(v), 7(v)) = (v,v)
and so o = £1. If o = 1 then 7 is the identity, which is equal to o2. On the

other hand, if « = —1 then 7 = ¢, In either case, 7 is a product of symmetries.

Assume now that the theorem is true for dimensions less than d and let
dim(V)=d. Let v €V be nonisotropic. Since (7(v),7(v)) = (v,v) #0,
Theorem 11.32 implies the existence of a symmetry o on V' for which

o(t(v)) = ev

where € = £ 1. Thus, o7 = % on span(v). Since Theorem 11.15 implies that
span(v)! is o7-invariant, we may apply the induction hypothesis to o7 on
span(v)™ to get

JT|span(v)i =Ouw, O, =P

where w; € span(v)* and o, is a symmetry on span(v)t. But each o, can be
extended to a symmetry on V' by setting o0,,(v) = v. Assume that p is the
extension of p to V, where p = ¢ on span(v). Hence, o7 = p on span(v)* and
oT = €p on span(v).

If e=1 then o7 =p on V and so 7 = op, which completes the proof. If
¢ = —1 then o7 = o,p on span(v)* since o, is the identity on span(v)* and
o1 = o,p on span(v). Hence, 07 = o,pon V and so 7 = co,pon V. O

The Witt's Theorems for Orthogonal Geometries

We are now ready to consider the Witt theorems for orthogonal geometries.

Theorem 11.34 (Witt's cancellation theorem) Let V and W be isometric
nonsingular orthogonal geometries over a field F with char(F) # 2. Suppose
that

V=S60St and W=T06T*
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Then
S~T=S*~T"

Proof. First, we prove that it is sufficient to consider the case V' = W. Suppose
that the result holds when V' = W and that u: V' — W is an isometry. Then

p(S) O u(St) =SS =uV)=w=ToT"
Furthermore, ;1(S) ~ S ~ T. We can therefore apply the theorem to W to get
St~ p(St) ~ T
as desired.

To prove the theorem when V' = W, assume that
V=SeoSt=ToT*

where S and T are nonsingular and S ~ T. Let 7:.S — T be an isometry. We
proceed by induction on dim(S).

Suppose first that dim(S) = 1 and that S = span(s). Since
(1(s);7(s)) = (s,8) # 0

Theorem 11.32 implies that there is a symmetry o for which o(s) = e7(s)
where ¢ = + 1. Hence, o is an isometry of V for which T = ¢(S) and
Theorem 11.10 implies that T+ = o(S*). Thus, o|g. is the desired isometry.

Now suppose the theorem is true for dim(S) < k and let dim(S) = k. Let
7:5 — T be an isometry. Since S is nonsingular, we can choose a nonisotropic
vector s € S and write S = span(s) ® U, where U is nonsingular. It follows
that

V=S085"=span(s)oU ® S*
and
V=ToT*+=1(span(s)) @ 7(U) @ T+
Now we may apply the one-dimensional case to deduce that
UeSt~rU)oT*
Ifo:U ® St — 7(U) ® T+ is an isometry then
ocU)oa(SH)=cUoSH)=1U)oT+

But o(U)~7(U) and since dim(c(U))=dim(U) <k, the induction
hypothesis implies that S* ~ ¢(S+) ~ 7+. 0O
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As we have seen, Witt's extension theorem is a corollary of Witt's cancellation
theorem.

Theorem 11.35 (Witt's extension theorem) Let V' and V' be isometric
nonsingular orthogonal geometries over a field F, with char(F') # 2. Suppose
that U is a subspace of V' and

U —1(U)CcV'
is an isometry. Then T can be extended to an isometry from V to V'. [

Maximal Hyperbolic Subspaces of an Orthogonal Geometry
We have seen that any orthogonal geometry V' can be written in the form
V =Uorad(V)

where U is nonsingular. Nonsingular spaces are better behaved than singular
ones, but they can still possess isotropic vectors.

We can improve upon the preceding decomposition by noticing that if u € U is
isotropic, then span(u) is totally degenerate and so it can be “captured” in a
hyperbolic plane H = span(u,x), namely, the nonsingular extension of
span(u). Then we can write

V=H6HY ®rad(V)

where HV is the orthogonal complement of H in U and has “one fewer”
isotropic vector.

In order to generalize this process, we first discuss maximal totally degenerate
subspaces.

Maximal Totally Degenerate Subspaces

Let V' be a nonsingular orthogonal geometry over a field F', with char(F') # 2.
Suppose that U and U’ are maximal totally degenerate subspaces of V. We
claim that dim(U') = dim(U"). For if dim(U) < dim(U’), then there is a vector
space isomorphism 7: U — 7(U) C U’, which is also an isometry, since U and
U’ are totally degenerate. Thus, Witt's extension theorem implies the existence
of an isometry 7:V — V that extends 7. In particular, 7-'(U’) is a totally
degenerate space that contains U and so 7 '(U’) = U, which shows that
dim(U) = dim(U").

We have proved the following.

Theorem 11.36 Let V be a nonsingular orthogonal geometry over a field F,
with char(F') # 2.
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1) All maximal totally degenerate subspaces of V' have the same dimension,
which is called the Witt index of V' and is denoted by w(V').
2)  Any totally degenerate subspace of V' of dimension w(V') is maximal. O

Maximal Hyperbolic Subspaces

We can prove by a similar argument that all maximal hyperbolic subspaces of V'
have the same dimension. Let

Hop =H  ©---© Hy,
and
K?m = Kl (OREENO) Km

be maximal hyperbolic subspaces of V' and suppose that H; = span(u;,v;) and
K; = span(x;,y;). We may assume that dim(H) < dim(K).

The linear map 7: ' H — K defined by
7(w;) = xi, T(vi) = Yi

is clearly an isometry from H to 7(7). Thus, Witt's extension theorem implies
the existence of an isometry 7: V' — V that extends 7. In particular, 7 }(K) is a
hyperbolic space that contains H and so 7 !(K) = H. It follows that dim(K)
= dim(H).

It is not hard to see that the maximum dimension (V") of a hyperbolic subspace
of V is 2w(V'), where w(V') is the Witt index of V. First, the nonsingular
extension of a maximal totally degenerate subspace U, of V is a hyperbolic
space of dimension 2w (V') and so A(V') > 2w(V'). On the other hand, there is a
totally degenerate subspace U}, contained in any hyperbolic space Ho; and so
kE<w(V), that is, dim(Hg) <2w(V). Hence h(V) <2w(V) and so
h(V) =2w(V).

Theorem 11.37 Let V be a nonsingular orthogonal geometry over a field F,
with char(F') # 2.

1) All maximal hyperbolic subspaces of V' have dimension 2w(V).

2)  Any hyperbolic subspace of dimenison 2w(V') must be maximal.

3) The Witt index of a hyperbolic space Hoy, is k. O

The Anisotropic Decomposition of an Orthogonal Geometry
If 'H is a maximal hyperbolic subspace of V' then
V=HoH

Since H is maximal, H* is anisotropic, for if u € H* is isotropic then the
nonsingular extension of H ® span(u) would be a hyperbolic space strictly
larger than H.
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Thus, we arrive at the following decomposition theorem for orthogonal
geometries.

Theorem 11.38 (The anisotropic decomposition of an orthogonal geometry)
Let V = U ®rad(V') be an orthogonal geometry over F, with char(F') # 2. Let
H be a maximal hyperbolic subspace of U, where H = {0} if U has no
isotropic vectors. Then

V=SoHOordV)

where S is anisotropic, H is hyperbolic of dimension 2w(V') and rad(V') is
totally degenerate. (1

Exercises

1.

Let U, W be subspaces of a metric vector space V. Show that

a) UCW=Wtcu+

b) UCU*

C) UJ_ — UJ_J_J_

Let U, W be subspaces of a metric vector space V. Show that

a) (U+W)t=U+tnwt

by UnNnW)t=U++wt

Prove that the following are equivalent:

a) V is nonsingular

b) (u,z) = (v,x) forall x € V implies u = v

Show that a metric vector space V is nonsingular if and only if the matrix
Mp of the form is nonsingular, for every ordered basis 5.

Let V' be a finite-dimensional vector space with a bilinear form (, ). We do
not assume that the form is symmetric or alternate. Show that the following
are equivalent:

a) {veV |(v,w)=0forallweV} =0

b) {veV |(w,v)=0forallweV}=0

Hint: Consider the singularity of the matrix of the form.

Find a diagonal matrix congruent to

1 2 3
2 0 1
3 1 -1
Prove that the matrices

1 0 5 0
IZ—{O 1]andM—[o 5]

are congruent over the base field F' = Q of rational numbers. Find an
invertible matrix P such that P'I,P = M.
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10.

11.
12.
13.

14.

15.

16.

17.

18.
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Let V be an orthogonal geometry over a field F' with char(F') # 2. We

wish to construct an orthogonal basis O = (uy, ..., u,) for V, starting with

any generating set G = (v1, ..., v, ). Justify the following steps, essentially

due to Lagrange. We may assume that V" is not totally degenerate.

a) If (v;,v;) # 0 for some ¢ then let u; = v;. Otherwise, there are indices
i # j for which (v, v;) # 0. Let ug = v; + v;.

b) Assume we have found an ordered set of vectors O = (uq, ..., ug)
that form an orthogonal basis for a subspace Vj, of V' and that none of
the u;'s are isotropic. Then V =V, ® V;-.

¢) Foreachwv; € G, let

w; = v; — Z <Ui, uJ>> U;

k
j=1 <uj’ Uj

Then the vectors w; span V. If V,! is totally degenerate, take any
basis for V- and append it to Oy. Otherwise, repeat step a) on V- to
get another vector ug.; and let Q41 = (uy, ..., ugy1). Eventually, we
arrive at an orthogonal basis O,, for V.
Prove that orthogonal hyperbolic planes may be characterized as two-
dimensional nonsingular orthogonal geometries that have exactly two one-
dimensional totally isotropic (equivalently: totally degenerate) subspaces.
Prove that a two-dimensional nonsingular orthogonal geometry is a
hyperbolic plane if and only if its discriminant is F?( — 1).
Does Minkowski space contain any isotropic vectors? If so, find them.
Is Minkowski space isometric to Euclidean space R*?
If (,) is a symmetric bilinear form on V and char(F) # 2, show that
Q(x) = (z,x)/2 is a quadratic form.
Let V be a vector space over a field F', with ordered basis B = (v1, ..., vy).
Let p(z1,...,T,) be a homogeneous polynomial of degree d over F, that is,
a polynomial each of whose terms has degree d. The d-form defined by p
is the function from V to F' defined as follows. If v = Ya;v; then

p(v) = play,...,a,)

(We use the same notation for the form and the polynomial.) Prove that 2-
forms are the same as quadratic forms.

Show that 7 is an isometry on V' if and only if Q(7(v)) = Q(v) where Q is
the quadratic form associated with the bilinear form on V. (Assume that
char(F') # 2.)

Show that a quadratic form @) on V satisfies the parallelogram law:

Qr +y) + Qz —y) =2[Q(x) + Q)]

Show that if V' is a nonsingular orthogonal geometry over a field F’, with
char(F') # 2 then any totally isotropic subspace of V' is also a totally
degenerate space.

Is it true that V = rad(V) ® rad(V)+?
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Let V be a nonsingular symplectic geometry and let 7,, be a symplectic
transvection. Prove that

a) Tv,aTvy = Tva+b

b) For any symplectic transformation o,

-1
0Tv,a0 = To(v),a

c) Forbe F*,

Tov,a = Tu,ab?

d) For a fixed v# 0, the map a+ 7,, is an isomorphism from the
additive group of F’ onto the group {7,, | @ € F'} C Sp(V).

Prove that if = is any nonsquare in a finite field F;, then all nonsquares have

the form r2x, for some r € F. Hence, the product of any two nonsquares in

F, is a square.

Formulate Sylvester's law of inertia in terms of quadratic forms on V.

Show that a two-dimensional space is a hyperbolic plane if and only if it is

nonsingular and contains an isotropic vector. Assume that char(F) # 2.

Prove directly that a hyperbolic plane in an orthogonal geometry cannot

have an orthogonal basis when char(F') = 2.

a) Let U be a subspace of V. Show that the inner product
(x+U,y+U) = (z,y) on the quotient space V /U is well-defined if
and only if U C rad(V).

b) IfU Crad(V), when is V /U nonsingular?

LetV = N ® S, where N is a totally degenerate space.

a) Prove that N = rad(V) if and only if S is nonsingular.

b) If S is nonsingular, prove that S ~ V /rad(V).

Let dim(V)=dim(W). Prove that V /rad(V)~ W /rad(W) implies

VaW.

Let V = S ®T. Prove that

a) rad(V) =rad(S) ®rad(T)

b) V/rad(V) =~ S/rad(S) ® T /rad(T)

¢) dim(rad(V)) = dim(rad(S)) + dim(rad(T))

d) V isnonsingular if and only if S and T" are both nonsingular.

Let V be a nonsingular metric vector space. Because the Riesz

representation theorem is valid in V', we can define the adjoint 7% of a linear

map 7 € L(V) exactly as in the case of real inner product spaces. Prove
that 7 is an isometry if and only if it is bijective and unitary (that is,

TT" =1).

If char(F") # 2, prove that 7 € £(V,W) is an isometry if and only if it is

bijective and (7(v), 7(v)) = (v,v) forallv € V.

Let B={vi,...,v,} be a basis for V. Prove that 7 € L(V,W) is an

isometry if and only if it is bijective and (Tv;, Tv;) = (v;,v;) for all 4, j.

Let 7 be a linear operator on a metric vector space V. Let B = (vq,...,v,)

be an ordered basis for V' and let My be the matrix of the form relative to
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33.

34.

35.
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37.
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B. Prove that 7 is an isometry if and only if
[7]s Mglr]s = Mg

Let V be a nonsingular orthogonal geometry and let 7 € £L(V) be an

isometry.

a) Show that dim(ker(: — 7)) = dim(im(: — 7)%).

b) Show that ker(:—7)=im(.—7)t. How would you describe
ker(¢ — 7) in words?

¢) If7is asymmetry, what is dim(ker(¢ — 7))?

d) Can you characterize symmetries by means of dim(ker(c — 7))?

A linear transformation 7 € £(V') is called unipotent if 7 — ¢ is nilpotent.

Suppose that V' is a nonisotropic metric vector space and that 7 is unipotent

and isometric. Show that 7 = ¢.

Let V' be a hyperbolic space of dimension 2m and let U be a hyperbolic

subspace of V' of dimension 2k. Show that for each £ < j < m, there is a

hyperbolic subspace Hy; of V' for which U C Hy; C V.

Let char(F') # 2. Prove that if X is a totally degenerate subspace of an

orthgonal geometry V' then dim(X) < dim(V')/2.

Prove that an orthogonal geometry V' of dimension n is a hyperbolic space

if and only if V is nonsingular, n is even and V contains a totally

degenerate subspace of dimension n/2.

Prove that a symplectic transformation has determinant equal to 1.



Chapter 12
Metric Spaces

The Definition

In Chapter 9, we studied the basic properties of real and complex inner product
spaces. Much of what we did does not depend on whether the space in question
is finite or infinite-dimensional. However, as we discussed in Chapter 9, the
presence of an inner product and hence a metric, on a vector space, raises a host
of new issues related to convergence. In this chapter, we discuss briefly the
concept of a metric space. This will enable us to study the convergence
properties of real and complex inner product spaces.

A metric space is not an algebraic structure. Rather it is designed to model the
abstract properties of distance.

Definition 4 metric space is a pair (M,d), where M is a nonempty set and
d: M x M — R is a real-valued function, called a metric on M, with the
Jfollowing properties. The expression d(x,y) is read “the distance from x toy.”

1) (Positive definiteness) For all z,y € M,

d(z,y) >0

and d(x,y) = 0 if and only if © = y.
2) (Symmetry) For all x,y € M,

d(z,y) = d(y,z)
3) (Triangle inequality) For all x,y,z € M,
d(z,y) < d(z,z) +d(z,y) U

As is customary, when there is no cause for confusion, we simply say “let M be
a metric space.”
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Example 12.1 Any nonempty set M is a metric space under the discrete
metric, defined by

_JO ifzx=y
d(x,y)—{l ifz £y u

Example 12.2
1) The set R” is a metric space, under the metric defined for x = (x1,...,x,)

andy = (y1,...,Yn) by
d(z,y) = /(x1 —y1)2 + - + (X0 — yn)?

This is called the Euclidean metric on R". We note that R" is also a metric
space under the metric

di(z,y) = |z1 — 1|+ + |20 — ynl

Of course, (R, d) and (R, d;) are different metric spaces.
2) The set C" is a metric space under the unitary metric

d(z,y) = \/lor — 1P + -+ | — gl

where x = (x1,...,z,) and y = (y1,...,y,) are in C". ]

Example 12.3
1) The set C[a,b] of all real-valued (or complex-valued) continuous functions
on [a, b] is a metric space, under the metric

d(f,g) = sup |f(z) — g(x)|

z€|a,b]

We refer to this metric as the sup metric.
2) The set C'[a, b] of all real-valued (or complex-valued) continuous functions
on [a, b] is a metric space, under the metric

b
0, (f(2),g(x)) = / (@) - g(a)] dx O

Example 12.4 Many important sequence spaces are metric spaces. We will

often use boldface roman letters to denote sequences, as in z = (z,) and

Y= (Yn)

1) The set £y of all bounded sequences of real numbers is a metric space
under the metric defined by

d(x,y) = sup|zn — yal

The set £ of all bounded complex sequences, with the same metric, is also

a metric space. As is customary, we will usually denote both of these spaces
by £°°.
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For p > 1, let £? be the set of all sequences = = (x,,) of real (or complex)
numbers for which

o0
Z || < oo

n=1

We define the p-norm of = by

. L/p
||$||p = <Z |xn|p>
n=1

Then /7 is a metric space, under the metric
00 1/p
d(z,y) = | -y, = (Z |z — yn|p>
n=1

The fact that /7 is a metric follows from some rather famous results about
sequences of real or complex numbers, whose proofs we leave as (well-
hinted) exercises.

Hoélder's inequality Let p,q > 1 and p + g = pq. If z € ¢P and y € ¢4 then
the product sequence zy = (z,,3,) is in £! and

leyll, < ll=l,lll,

that is,

oo 0o 1/p 00 1/q
St < (Ser) (S
n=1 n=1 n=1

A special case of this (with p = ¢ = 2) is the Cauchy-Schwarz inequality

00 oo ) oo )
S o < ¢z o ¢z il
n=1 n=1 n=1

Minkowski's inequality For p > 1, if z,y € 7 then the sum =+ y
= (In + yn,) is in /P and

= +yll, < ll=ll, + lyl,

p =

that is,

00 1/p 00 1/p 00 1/p
(Z T +yn|p> < (Dxnv’) + (Z yn|p> O
n=1 n=1 n=1
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If M is a metric space under a metric d then any nonempty subset S of M is
also a metric under the restriction of d to S x S. The metric space S thus
obtained is called a subspace of M.

Open and Closed Sets

Definition Let M be a metric space. Let xy € M and let v be a positive real
number.
1) The open ball centered at x, with radius r, is

B(xg,r) ={x € M | d(z,zp) < r}

2) The closed ball centered at x, with radius r, is

B(zg,7) ={z € M | d(x,zo) < r}
3) The sphere centered at x, with radius r, is
S(xg,r) ={x € M | d(x,zq) = r} O

Definition 4 subset S of a metric space M is said to be open if each point of S
is the center of an open ball that is contained completely in S. More
specifically, S is open if for all x € S, there exists an r >0 such that
B(z,r) C S. Note that the empty set is open. A set T C M is closed if its
complement T in M is open. O

It is easy to show that an open ball is an open set and a closed ball is a closed
set. If x € M, we refer to any open set S containing x as an open
neighborhood of x. It is also easy to see that a set is open if and only if it
contains an open neighborhood of each of its points.

The next example shows that it is possible for a set to be both open and closed,
or neither open nor closed.

Example 12.5 In the metric space R with the usual Euclidean metric, the open
balls are just the open intervals

B(xg,r) = (kg — ry20 +7)

and the closed balls are the closed intervals

B(zg,7) = [x0 — 1y 20 + 7]

Consider the half-open interval S = (a, b], for a < b. This set is not open, since
it contains no open ball centered at b € S and it is not closed, since its
complement S¢ = (—o0, a] U (b, 00) is not open, since it contains no open ball
about a.
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Observe also that the empty set is both open and closed, as is the entire space R.
(Although we will not do so, it is possible to show that these are the only two
sets that are both open and closed in R.) OJ

It is not our intention to enter into a detailed discussion of open and closed sets,
the subject of which belongs to the branch of mathematics known as fopology.
In order to put these concepts in perspective, however, we have the following
result, whose proof is left to the reader.

Theorem 12.1 The collection O of all open subsets of a metric space M has the
following properties:

) 0eO, MeO

2) IfS,TecOthenSNT O

3) If{Si|ie€ K} is any collection of open sets then | J;. ;. S; € O. O

These three properties form the basis for an axiom system that is designed to
generalize notions such as convergence and continuity and leads to the
following definition.

Definition Let X be a nonempty set. A collection O of subsets of X is called a
topology for X if it has the following properties:
) 00, Xe0O
2) IfS, TeOthenSNT €O
3) If{S:|ie K} is any collection of sets in O then | S; € O.
i€k
We refer to subsets in O as open sets and the pair (X, ) as a topological
space. [1

According to Theorem 12.1, the open sets (as we defined them earlier) in a
metric space M form a topology for M, called the topology induced by the
metric.

Topological spaces are the most general setting in which we can define concepts
such as convergence and continuity, which is why these concepts are called
topological concepts. However, since the topologies with which we will be
dealing are induced by a metric, we will generally phrase the definitions of the
topological properties that we will need directly in terms of the metric.

Convergence in a Metric Space

Convergence of sequences in a metric space is defined as follows.

Definition 4 sequence (x,,) in a metric space M converges to x € M, written
lim d(z,,2) =0

n—oo

Equivalently, (x,) — x if for any € > 0, there exists an N > 0 such that
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n>N=d(z,,z) <e

or, equivalently
n>N =z, € B(z,¢)

In this case, x is called the limit of the sequence (z;,). O

If M is a metric space and S is a subset of M, by a sequence in S, we mean a
sequence whose terms all lie in S. We next characterize closed sets and
therefore also open sets, using convergence.

Theorem 12.2 Let M be a metric space. A subset S C M is closed if and only if
whenever (x,,) is a sequence in S and (x,) — x then x € S. In loose terms, a
subset S is closed if it is closed under the taking of sequential limits.

Proof. Suppose that S is closed and let (z,) — x, where x,, € S for all n.
Suppose that « ¢ S. Then since 2 € S° and S° is open, there exists an € > 0 for
which z € B(x,e) C S°. But this implies that

B(z,e)N{x,} =10

which contradicts the fact that (x,,) — z. Hence, z € S.

Conversely, suppose that S is closed under the taking of limits. We show that
5S¢ is open. Let z € S° and suppose to the contrary that no open ball about z is
contained in S°. Consider the open balls B(x,1/n), for all n > 1. Since none of
these balls is contained in S°, for each n, there is an z,, € SN B(z,1/n). It is
clear that (x,) — = and so x € S. But = cannot be in both S and S°. This
contradiction implies that S¢ is open. Thus, S is closed. O

The Closure of a Set

Definition Let S be any subset of a metric space M. The closure of S, denoted
by cl(S), is the smallest closed set containing S. O

We should hasten to add that, since the entire space M is closed and since the
intersection of any collection of closed sets is closed (exercise), the closure of
any set S does exist and is the intersection of all closed sets containing S. The
following definition will allow us to characterize the closure in another way.

Definition Let S be a nonempty subset of a metric space M. An element z € M
is said to be a limit point, or accumulation point of S if every open ball
centered at  meets .S at a point other than x itself. Let us denote the set of all
limit points of S by £(S). O

Here are some key facts concerning limit points and closures.
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Theorem 12.3 Let S be a nonempty subset of a metric space M.

1) x € L(S) if and only if there is a sequence (x,,) in S for which x,, # x for
all n and (z,) — .

2) S is closed if and only if £(S) C S. In words, S is closed if and only if it
contains all of its limit points.

3) cl(S)=5SuLs).

4) x €cl(S) ifand only if there is a sequence (x,) in S for which (z,,) — x.

Proof. For part 1), assume first that « € ¢(S). For each n, there exists a point

x, # x such that z,, € B(x,1/n) N S. Thus, we have

d(z,,x) <1/n

and so (x,) — «. For the converse, suppose that (z,) — x, where = # z, € S.
If B(x,r) is any ball centered at = then there is some N such that n > N
implies x;,, € B(x, r). Hence, for any ball B(x,r) centered at x, there is a point
X, # x, such that ,, € S N B(x,r). Thus, z is a limit point of S.

As for part 2), if S is closed then by part 1), any x € £(S) is the limit of a
sequence (z,) in S and so must be in S. Hence, ¢(S) C S. Conversely, if
£(S) C S then S is closed. For if (z,) is any sequence in S and (x,) — « then
there are two possibilities. First, we might have x,, = x for some n, in which
case x = x, € S. Second, we might have z, # = for all n, in which case
() — x implies that x € £(S) C S. In either case, x € S and so S is closed
under the taking of limits, which implies that S is closed.

For part 3), let T = S U/(S). Clearly, S C T. To show that T is closed, we
show that it contains all of its limit points. So let x € ¢(T"). Hence, there is a
sequence (z,) € T for which z, # = and (x,) — x. Of course, each x,, is
either in S, or is a limit point of S. We must show that x € T, that is, that x is
either in S or is a limit point of .S

Suppose for the purposes of contradiction that = ¢ S and x ¢ £(S). Then there
is a ball B(z,r) for which B(z,r) NS # 0. However, since (z,) — x, there
must be an x,, € B(x,r). Since x,, cannot be in S, it must be a limit point of S.
Referring to Figure 12.1, if d(z,,z) =d <r then consider the ball
B(zy, (r—d)/2). This ball is completely contained in B(x,r) and must contain
an element y of S, since its center x, is a limit point of S. But then
y € SN B(x,r), a contradiction. Hence, x € S or x € £(S). In either case,
x €T =SUL((S)and so T is closed.

Thus, T is closed and contains S and so cl(S) CT. On the other hand,
T=SU{S)Ccl(S)andsocl(S)=T.
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@ '

Figure 12.1

For part 4), if x € cl(S) then there are two possibilities. If « € S then the
constant sequence (x,,), with x,, = x for all z, is a sequence in S that converges
to z. If x ¢ S then x € £(S) and so there is a sequence (z,,) in S for which
x, # x and (z,) — . In either case, there is a sequence in S converging to x.
Conversely, if there is a sequence (z,) in S for which (x,) — x then either
x, = x for some n, in which case z € S C cl(S), or else z;,, # x for all n, in
which case x € £(5) C cl(S). O

Dense Subsets

The following concept is meant to convey the idea of a subset S C M being
“arbitrarily close” to every point in M.

Definition 4 subset S of a metric space M is dense in M if cl(S) = M. 4
metric space is said to be separable if it contains a countable dense subset. (1

Thus, a subset S of M is dense if every open ball about any point z € M
contains at least one point of .S.

Certainly, any metric space contains a dense subset, namely, the space itself.
However, as the next examples show, not every metric space contains a
countable dense subset.

Example 12.6

1) The real line R is separable, since the rational numbers Q form a countable
dense subset. Similarly, R™ is separable, since the set Q" is countable and
dense.

2) The complex plane C is separable, as is C" for all n.

3) A discrete metric space is separable if and only if it is countable. We leave
proof of this as an exercise.
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Example 12.7 The space ¢ is not separable. Recall that /> is the set of all
bounded sequences of real numbers (or complex numbers), with metric

d(z,y) = sup|z, — ynl

To see that this space is not separable, consider the set S of all binary sequences
S ={(x,) | z; =0o0r1 forall i}

This set is in one-to-one correspondence with the set of all subsets of N and so
is uncountable. (It has cardinality 2% > X;.) Now, each sequence in S is
certainly bounded and so lies in £*°. Moreover, if « # y € {>° then the two
sequences must differ in at least one position and so d(z,y) = 1.

In other words, we have a subset S' of £°° that is uncountable and for which the
distance between any two distinct elements is 1. This implies that the
uncountable collection of balls {B(s,1/3) | s € S} is mutually disjoint. Hence,
no countable set can meet every ball, which implies that no countable set can be
dense in ¢>. [

Example 12.8 The metric spaces ¢P are separable, for p > 1. The set S of all
sequences of the form

SZ(Q])"'7QH7O7"')

for all n > 0, where the ¢;'s are rational, is a countable set. Let us show that it is
dense in /7. Any x € (P satisfies

o0
Z |z,|7 < 0o
n=1

Hence, for any € > 0, there exists an IV such that

o0

, €
>l <3

n=N+1

Since the rational numbers are dense in R, we can find rational numbers g; for
which
€

lz; — qi|” < IN

foralli=1,..., N.Hence, if s = (q1,...,qn,0,...) then

N 00
d P — _ p p < E E =
(1',5) ; |xn Qn| + Z |1'n| 2 + 2 €

n=N+1

which shows that there is an element of S arbitrarily close to any element of ¢7.
Thus, S is dense in £ and so ¢? is separable. [
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Continuity

Continuity plays a central role in the study of linear operators on infinite-
dimensional inner product spaces.

Definition Let f: M — M’ be a function from the metric space (M,d) to the
metric space (M',d"). We say that f is continuous at xy € M if for any € > 0,
there exists a 6 > 0 such that

d(z,x0) <6 = d'(f(x), f(x0)) <€

or, equivalently,
f (B(x0,8)) € B(f(x0), )

(See Figure 12.2.) A function is continuous if it is continuous at every
xro € M. O

Figure 12.2

We can use the notion of convergence to characterize continuity for functions
between metric spaces.

Theorem 12.4 A function f: M — M’ is continuous if and only if whenever
() is a sequence in M that converges to xg € M then the sequence (f(x,))
converges to f(xy), in short,

(xn) = xo = (f(xn)) — f(20)

Proof. Suppose first that f is continuous at z( and let (z,,) — zo. Then, given
€ > 0, the continuity of f implies the existence of a § > 0 such that

f (B(x0,6)) € B(f(x0), €)

Since (z,,) — x, there exists an N > 0 such that x,, € B(z, ) for n > N and
S0

n> N = f(z,) € B(f(z0),€)
Thus, f(z,) — f(20).

Conversely, suppose that (z,,) — xo implies (f(z,)) — f(xo). Suppose, for the
purposes of contradiction, that f is not continuous at xy. Then there exists an
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€ > 0 such that, forall § > 0
7 (B(20,8)) € B(f(w0),€)

Thus, for all n > 0,
/(B (:co, ;)) Z B(f(x0),€)

and so we may construct a sequence (x,) by choosing each term z,, with the
property that

z, € B(m i),but F(@n) & B(f(x0), €)

Hence, (x,) — xg, but f(x,) does not converge to f(xp). This contradiction
implies that f must be continuous at x,. [

The next theorem says that the distance function is a continuous function in both
variables.

Theorem 12.5 Let (M, d) be a metric space. If (x,) — x and (y,) — y then

d(mm yn) - d(l’, y)
Proof. We leave it as an exercise to show that

|d(x71,7 yn) - d(l‘, y)| S d(zﬂ’ I) + d(yna y)
But the right side tends to 0 as n — oo and so d(zy,, y,,) — d(z,y). O

Completeness

The reader who has studied analysis will recognize the following definitions.

Definition 4 sequence (x,) in a metric space M is a Cauchy sequence if, for
any € > 0, there exists an N > 0 for which

n,m > N = d(x,, ;) <€ O

We leave it to the reader to show that any convergent sequence is a Cauchy
sequence. When the converse holds, the space is said to be complete.

Definition Let M be a metric space.

1) M is said to be complete if every Cauchy sequence in M converges in M.

2) A subspace S of M is complete if it is complete as a metric space. Thus, S
is complete if every Cauchy sequence (s,) in S converges to an element in

s.0

Before considering examples, we prove a very useful result about completeness
of subspaces.
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Theorem 12.6 Let M be a metric space.

1) Any complete subspace of M is closed.

2) If M is complete then a subspace S of M is complete if and only if it is
closed.

Proof. To prove 1), assume that S is a complete subspace of M. Let (x,,) be a

sequence in S for which (z,,) — x € M. Then (z,) is a Cauchy sequence in S

and since S is complete, (x,,) must converge to an element of S. Since limits of

sequences are unique, we have x € S. Hence, S is closed.

To prove part 2), first assume that S is complete. Then part 1) shows that S’ is
closed. Conversely, suppose that S is closed and let (x,,) be a Cauchy sequence
in S. Since (z,) is also a Cauchy sequence in the complete space M, it must
converge to some « € M. But since S is closed, we have (x,,) — x € S. Hence,
S is complete. [

Now let us consider some examples of complete (and incomplete) metric spaces.

Example 12.9 It is well known that the metric space R is complete. (However, a
proof of this fact would lead us outside the scope of this book.) Similarly, the
complex numbers C are complete. []

Example 12.10 The Euclidean space R" and the unitary space C" are complete.
Let us prove this for R". Suppose that (x;) is a Cauchy sequence in R", where
T = (fk,l, e axk,n)

Thus,

n

d(zy, om)? = Z(xkz - xm,i)Z —0ask,m— o0
=1

and so, for each coordinate position 7,
i — ):<d T,)? — 0
(xk,’z, xm,’l,) > (Jfk, m)

which shows that the sequence (z;)r—=1.... of ith coordinates is a Cauchy
sequence in R. Since R is complete, we must have
(xpi) = yiask — o0
Ify = (y1,...,yn) then
n

d(zr,y)? =) (wh;—y)? = 0ask — oo
i=1

and so (z,) — y € R™. This proves that R" is complete. [
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Example 12.11 The metric space (Cla,b],d) of all real-valued (or complex-
valued) continuous functions on [a, b], with metric

d(f,9) = sup [f(z) - g(z)]

z€lab]

is complete. To see this, we first observe that the limit with respect to d is the
uniform limit on [a, b], that is d(f,, f) — 0 if and only if for any € > 0, there is
an N > 0 for which

n>N =|f.(z)— f(z)] <eforallx € [a,b]

Now, let (f,,) be a Cauchy sequence in (Cla, b], d). Thus, for any € > 0, there is
an N for which

m,n > N = |fo(z) = f(x)] < eforall z € [a,b] (12.1)

This implies that, for each = € [a, b], the sequence (f,,(z)) is a Cauchy sequence
of real (or complex) numbers and so it converges. We can therefore define a
function f on [a, b] by

f(z) = lim f,(z)
n—oo
Letting m — oo in (12.1), we get
n>N=|f.(x) — f(z)] < eforall z € [a,]

Thus, f,(z) converges to f(x) uniformly. It is well known that the uniform
limit of continuous functions is continuous and so f(z) € C[a,b]. Thus,
(fu(z)) — f(z) € C[a,b] and so (Cla, b],d) is complete. O

Example 12.12 The metric space (Cla,b],d;) of all real-valued (or complex-
valued) continuous functions on [a, b], with metric

b
d,(f(x),g(x)) = / (@) — g(o)|da

is not complete. For convenience, we take [a,b] = [0,1] and leave the general
case for the reader. Consider the sequence of functions f,(x) whose graphs are
shown in Figure 12.3. (The definition of f,,(x) should be clear from the graph.)
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Figure 12.3

We leave it to the reader to show that the sequence (f,,(x)) is Cauchy, but does
not converge in (C[0,1],d;). (The sequence converges to a function that is not
continuous.)]

Example 12.13 The metric space £* is complete. To see this, suppose that (x,,)
is a Cauchy sequence in £>°, where

Tp = (zn,la Tn2yee- )
Then, for each coordinate position ¢, we have

| — T < sup |z — Tyl — 0asn,m — oo (12.2)
J

Hence, for each 4, the sequence (x,,;) of ith coordinates is a Cauchy sequence in
R (or C). Since R (or C) is complete, we have

(Tni) — yiasn — oo
for each coordinate position i. We want to show that y = (y;) € £>° and that
(zn) — y.
Letting m — oo in (12.2) gives

sup |x,,; — yj| — 0asn — oo (12.3)
J

and so, for some n,

|25 — y;] < 1forall j
and so

lyjl <1+ |z,,| forall j

But since x;,, € £*°, it is a bounded sequence and therefore so is (y;). That is,
y = (y;) € £*°. Since (12.3) implies that (z,) —y, we see that > is
complete. (1
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Example 12.14 The metric space ¢? is complete. To prove this, let (z,) be a
Cauchy sequence in ¢7, where

Tp = (zn,la Tn2,y-- )

Then, for each coordinate position ¢,

00
|xn,7ﬁ - l'm.,i|p S Z|x71,j - ‘,Em7]_|p = d(xnaxm)p - 0

J=1

which shows that the sequence (x,,;) of ith coordinates is a Cauchy sequence in
R (or C). Since R (or C) is complete, we have

(Ty:) — yiasn — 00

We want to show that y = (y;) € ¢F and that (x,,) — y.

To this end, observe that for any € > 0, there is an [NV for which
T
n,m > N = Z'xn,i - mm,i|p S €
i—1

for all » > 0. Now, we let m — oo, to get

n>N= |z —yil” <€

1

r

3

for all » > 0. Letting » — oo, we get, for any n > N,

oo
Z|xn,i - yi'p <€
=1

which implies that (x,) —y € ¢7 and so y =y — (z,) + (z,) € 7 and in
addition, (z,) — y. O

As we will see in the next chapter, the property of completeness plays a major
role in the theory of inner product spaces. Inner product spaces for which the
induced metric space is complete are called Hilbert spaces.

Isometries

A function between two metric spaces that preserves distance is called an
isometry. Here is the formal definition.

Definition Let (M, d) and (M’,d’) be metric spaces. A function f: M — M’ is
called an isometry if

d'(f(x), f(y)) = d(=z,y)
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for all z,y € M. If f: M — M’ is a bijective isometry from M to M’, we say
that M and M’ are isometric and write M ~ M'. O

Theorem 12.7 Let f: (M, d) — (M',d) be an isometry. Then

1) fis injective

2) f is continuous

3) flf(M) — M is also an isometry and hence also continuous.
Proof. To prove 1), we observe that

f@)=fly) e d(f(z),fly) =0 dx,y) =0z =y
To prove 2), let (x,) — « in M then
d'(f(zn), f(z)) = d(zn, ) — 0asn — oo
and so (f(z,)) — f(x), which proves that f is continuous. Finally, we have
d(f7H(f(2)), FH(f () = d(z,y) = d'(f(2), f (1))
and so f~1: f(M) — M is an isometry. [J
The Completion of a Metric Space

While not all metric spaces are complete, any metric space can be embedded in
a complete metric space. To be more specific, we have the following important
theorem.

Theorem 12.8 Let (M, d) be any metric space. Then there is a complete metric
space (M',d') and an isometry T: M — (M) C M’ for which (M) is dense
in M'. The metric space (M',d') is called a completion of (M, d). Moreover,
(M',d) is unique, up to bijective isomeliry.

Proof. The proof is a bit lengthy, so we divide it into various parts. We can
simplify the notation considerably by thinking of sequences (z,) in M as
functions f: N — M, where f(n) = x,,.

Cauchy Sequences in M

The basic idea is to let the elements of M’ be equivalence classes of Cauchy
sequences in M. So let CS(M) denote the set of all Cauchy sequences in M. If
f,g9 € CS(M) then, intuitively speaking, the terms f(n) get closer together as
n — oo and so do the terms g(n). Therefore, it seems reasonable that
d(f(n), g(n)) should approach a finite limit as n — oo. Indeed, since

|d(f(n),g(n)) — d(f(m),g(m))| < d(f(n), f(m)) + d(g(n), g(m)) — 0

as m,m — oo it follows that d(f(n),g(n)) is a Cauchy sequence of real
numbers, which implies that
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lim d(f(n),g(n)) < oo (12.4)

(That is, the limit exists and is finite.)
Equivalence Classes of Cauchy Sequences in M
We would like to define a metric d’ on the set CS(M) by

d'(f,9) = limd(f(n),g(n))
However, it is possible that

lim d(f(n), g(n)) =0

n—oo

for distinct sequences f and g, so this does not define a metric. Thus, we are led
to define an equivalence relation on CS(M) by

f~ g limd(f(n),g(n) =0

Let CS(M) be the set of all equivalence classes of Cauchy sequences and
define, for f, g € CS(M)
d'(f,9) = limd(f(n), g(n)) (12.5)

n—oo

where f € fand g € 3.
To see that d’ is well-defined, suppose that f' € f and ¢’ € g. Then since
f'~ fand g ~ g, we have
d(f'(n), /() — d(F(n), g(n)| < d(F'(n), F(n)) + d(g'(n), g(n)) — O
as n — oo. Thus,
f~ fandg ~g = tim d(f/(n).g/(n)) = lim d(f(n).g(n))
= d'(f,d)=d(f,9)

which shows that d’ is well-defined. To see that d’ is a metric, we verify the
triangle inequality, leaving the rest to the reader. If f,¢g and h are Cauchy
sequences then

d(f(n),9(n)) < d(f(n),h(n)) +d(h(n),g(n))
Taking limits gives

lim d(f(n), g(n)) < lim d(f(n), h(n)) + lim d(h(n), g(n))

n—oo n—oo n—o0
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and so

d'(f,9) <d(f,h)+d(h,9)

Kl

Embedding (M ,d) in (M',d")

For each = € M, consider the constant Cauchy sequence [z], where [z](n) = =
for all n. The map 7: M — M’ defined by

7(z) = [2]

is an isometry, since

d'(r(x),7(y)) = d'([«], y]) = lim d([z](n), [y](n)) = d(x,y)

n—oo

Moreover, 7(M) is dense in M’. This follows from the fact that we can
approximate any Cauchy sequence in M by a constant sequence. In particular,
let f € M. Since f € f is a Cauchy sequence, for any € > 0, there exists an N
such that

n,m 2 N = d(f(n), f(m)) <e
Now, for the constant sequence [f(N)] we have
(V] F) = limd(F(N), f(n)) < e
and so 7(M) is dense in M.
(M',d") Is Complete
Suppose that

fifos fo o

is a Cauchy sequence in M’. We wish to find a Cauchy sequence g in M for
which

d/(ﬁ,y) = hmd(fk(n)ag(n)) —0ask — o0
Since f; € M’ and since 7(M) is dense in M’, there is a constant sequence

[Ck] = (Ck, Ck, )

for which
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We can think of ¢ as a constant approximation to fj, with error at most 1/k.
Let g be the sequence of these constant approximations

g(k) = cx,

This is a Cauchy sequence in M. Intuitively speaking, since the f;'s get closer
to each other as k£ — oo, so do the constant approximations. In particular, we
have

"(lex],

"([eal,

d(ck, ¢j) = ) -
d/(fmfj) +d'(fjlej])

f)+j%0

¢j]
K+

ININ
?v\r—l& &.

“’\

d'(fi

as k, j — oo. To see that f}, converges to g, observe that

@(F.3) < d'(FToel) + d'(feil ) < 3+ Tim (e, g(n)

n—oo

1
=z + lim d(cy, c,)

n—oo

Now, since g is a Cauchy sequence, for any € > 0, there is an IV such that
k,n> N = d(cg,cn) <€

In particular,

k>N = limd(ct,c,) <e€
n—oQ
and so

— 1
k:zN:>d'(fk,§)§E+e

which implies that f;, — g, as desired.
Uniqueness

Finally, we must show that if (M’ ,d’") and (M",d") are both completions of
(M,d) then M' =~ M". Note that we have bijective isometries

M —7(M)C M ando: M — o(M) C M"
Hence, the map
p=or ir(M) — o(M)

is a bijective isometry from 7(M) onto o(M), where 7(M) is dense in M.
(See Figure 12.4.)
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T "T@M/

p=0T
M AN
RN
Figure 12.4

Our goal is to show that p can be extended to a bijective isometry p from M’ to
M.

Let x € M'. Then there is a sequence (a,,) in 7(M) for which (a,) — =. Since
(an) is a Cauchy sequence in 7(M), (p(a,)) is a Cauchy sequence in
o(M) C M”" and since M” is complete, we have (p(a,)) —y for some
y € M". Let us define p(z) = y.

To see that 5 is well-defined, suppose that (a,) — « and (b,) — z, where both
sequences lie in 7(M). Then

d"(p(an), p(bn)) = d'(an, by) — 0asn — oo

and so (p(a,)) and (p(b,)) converge to the same element of M”, which implies
that p(z) does not depend on the choice of sequence in 7(M) converging to x.
Thus, p is well-defined. Moreover, if a € 7(M) then the constant sequence [a]
converges to a and so p(a) =limp(a) = p(a), which shows that p is an
extension of p.

To see that p is an isometry, suppose that (a,) — x and (b,) — y. Then
(p(an)) — p(x) and (p(b,)) — p(y) and since d” is continuous, we have

4" (p(x), p()) = lim d"(p(an), p(b,)) = lim d'(a,,b,) = d'(, )

Thus, we need only show that p is surjective. Note first that
o(M) =im(p) C im(p). Thus, if im(p) is closed, we can deduce from the fact
that o(M) is dense in M” that im(p) = M". So, suppose that (p(z,)) is a
sequence in im(p) and (p(x,)) — z. Then (p(z,)) is a Cauchy sequence and
therefore so is (z,). Thus, (z,) — x € M'. But p is continuous and so
(p(xn)) — p(x), which implies that p(z) = z and so z € im(p). Hence, 7 is
surjective and M’ ~ M". O



Metric Spaces 303

Exercises
1. Prove the generalized triangle inequality
d(xy,z,) < d(xy,29) + d(wo, 23) + -+ + d(20_1, 1)
2. a) Use the triangle inequality to prove that
|d(z,y) — d(a,b)| < d(x,a) +d(y,b)
b) Prove that
|d(x, z) — d(y, 2)| < d(x,y)

3. Let S C ¢ be the subspace of all binary sequences (sequences of 0's and
1's). Describe the metric on S.

4. Let M ={0,1}" be the set of all binary n-tuples. Define a function
h:S x S — R by letting h(z,y) be the number of positions in which x and
y differ. For example, h[(11010), (01001)] = 3. Prove that h is a metric. (It
is called the Hamming distance function and plays an important role in
the theory of error-correcting codes.)

5. Letl <p<oo.
a) Ifx = (x,) € ¢’ show that z,, — 0
b) Find a sequence that converges to O but is not an element of any ¢* for

1 <p<oo.

6. a) Show thatifz = (z,) € ¢? then = € ¢ for all ¢ > p.
b) Find a sequence z = () that is in ¢? for p > 1, but is not in ¢*.

7. Show that a subset S of a metric space M is open if and only if S' contains
an open neighborhood of each of its points.

8. Show that the intersection of any collection of closed sets in a metric space
is closed.

9. Let (M,d) be a metric space. The diameter of a nonempty subset S C M
is

6(S) = sup d(z,y)

z,yes

A set S is bounded if §(S) < cc.
a) Prove that S is bounded if and only if there is some z € M and r € R
for which S C B(z,r).
b) Prove that §(S) = 0 if and only if S consists of a single point.
¢) Prove that S C T implies 6(S) < 6(T).
d) If S and T are bounded, show that S U T is also bounded.
10. Let (M, d) be a metric space. Let d’ be the function defined by

d(z,y)

d/(x,y) = m
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11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.
24.
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a) Show that (M, d’) is a metric space and that M is bounded under this
metric, even if it is not bounded under the metric d.

b) Show that the metric spaces (M,d) and (M, d’) have the same open
sets.

If S and T are subsets of a metric space (M,d), we define the distance

between S and 7" by

p(S,T) = nf CR)

a) Isittrue that p(S,T) = 0 if and only if S = T'? Is p a metric?

b) Show that = € cl(S) if and only if p({z}, S) = 0.

Prove that x € M is a limit point of S C M if and only if every

neighborhood of = meets S in a point other than z itself.

Prove that x € M is a limit point of S C M if and only if every open ball

B(z,r) contains infinitely many points of S.

Prove that limits are unique, that is, (x,) — z, (z,) — y implies that

T =y.

Let S be a subset of a metric space M. Prove that x € cl(S) if and only if

there exists a sequence (x,,) in S that converges to .

Prove that the closure has the following properties:

a) S Ccl(Y)

b) cl(cl(S)) =S

¢) c(SUT)=cl(S)ucl(T)

d) c(SNT)Ccl(S)Ncl(T)

Can the last part be strengthened to equality?

a) Prove that the closed ball B(x, ) is always a closed subset.

b) Find an example of a metric space in which the closure of an open ball
B(z,7) is not equal to the closed ball B(x, ).

Provide the details to show that R” is separable.

Prove that C" is separable.

Prove that a discrete metric space is separable if and only if it is countable.

Prove that the metric space B[a, b] of all bounded functions on [a, b], with

metric

d(f,g) = sup |f(z) — g(x)|

z€|a,b]

is not separable.

Show that a function f: (M,d) — (M’,d’) is continuous if and only if the
inverse image of any open set is open, that is, if and only if
fFUU)={x e M| f(z) € U} is open in M whenever U is an open set
in M'.

Repeat the previous exercise, replacing the word open by the word closed.
Give an example to show that if f:(M,d) — (M’,d’) is a continuous
function and U is an open set in M, it need not be the case that f(U) is
open in M’.
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31.

32.

33.

34.

35.
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37.
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Show that any convergent sequence is a Cauchy sequence.

If (z,) — « in a metric space M, show that any subsequence (z,, ) of ()

also converges to x.

Suppose that (z,,) is a Cauchy sequence in a metric space M and that some

subsequence (x,,) of (x,) converges. Prove that (z,) converges to the

same limit as the subsequence.

Prove that if (x,,) is a Cauchy sequence then the set {x,} is bounded. What

about the converse? Is a bounded sequence necessarily a Cauchy sequence?

Let (x,,) and (y,) be Cauchy sequences in a metric space M. Prove that the

sequence d,, = d(x,, y,) converges.

Show that the space of all convergent sequences of real numbers (or

complex numbers) is complete as a subspace of £*°.

Let P denote the metric space of all polynomials over C, with metric
d(p,q) = sup |p(x) — q(z)]

z€lab

Is P complete?

Let S C £ be the subspace of all sequences with finite support (that is,
with a finite number of nonzero terms). Is S complete?

Prove that the metric space Z of all integers, with metric
d(n,m) = |n — mj, is complete.

Show that the subspace S of the metric space C'[a, b] (under the sup metric)
consisting of all functions f € CJa, b] for which f(a) = f(b) is complete.
If M ~ M’ and M is complete, show that M’ is also complete.

Show that the metric spaces Cla, b] and C|[c, d], under the sup metric, are
isometric.

Prove Hélder's inequality

0 00 Ur 7 o 1/q
Z|xn,yn,| < (Z |$n,|p> (Z |yn|q>
n=1

n=1 n=1

as follows.

a) Showthats =t/ =t =07}

b) Let u and v be positive real numbers and consider the rectangle R in
R? with corners (0,0), (u,0), (0,v) and (u,v), with area uv. Argue
geometrically (that is, draw a picture) to show that

U v
uv §/ tpfldt—l—/ si71ds
0 0

and so

¢) Now let X = X|z,|” < oo and Y = Xly,|? < co. Apply the results of
part b), to
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w= |2, v — |yn|
X p? T Yl

and then sum on n to deduce Hélder's inequality.
38. Prove Minkowski's inequality

. L/p 00 1/p . 1/p
(len + yn|p> < (Z Ixnlp) + (Z Iyn">
n=1 n=1 n=1

as follows.
a) Prove it for p =1 first.
b) Assume p > 1. Show that

|xn + yn|p < |xn||xn + yn|p_1 + |yn||xn + yn|p_1

¢) Sum this from n = 1 to k and apply Hélder's inequality to each sum on
the right, to get

k
Z|1'n, + yn,|p
n=1

k 1/p k 1/p k 1/q
Ar) + () J ()

Divide both sides of this by the last factor on the right and let n — oo to
deduce Minkowski's inequality.
39. Prove that (P is a metric space.



Chapter 13
Hilbert Spaces

Now that we have the necessary background on the topological properties of
metric spaces, we can resume our study of inner product spaces without
qualification as to dimension. As in Chapter 9, we restrict attention to real and
complex inner product spaces. Hence F' will denote either R or C.

A Brief Review

Let us begin by reviewing some of the results from Chapter 9. Recall that an
inner product space V over F is a vector space V, together with an inner
product (,):V xV — F. If F =R then the inner product is bilinear and if
F = C, the inner product is sesquilinear.

An inner product induces a norm on V, defined by
[ol] = v/ {v,v)

We recall in particular the following properties of the norm.

Theorem 13.1
1) (The Cauchy-Schwarz inequality) For all u,v € V,

[{u, ) < Jlull []v]

with equality if and only if u = rv for somer € F.
2) (The triangle inequality) For all u,v € V,

[[w + ol < flul| + o]

with equality if and only if u = rv for somer € F.
3) (The parallelogram law)

o+ o* + llu = o] = 2]jul|* + 2]v]* O

We have seen that the inner product can be recovered from the norm, as follows.
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Theorem 13.2
1) If'V is a real inner product space then

1
(u,v) = 2 (llu+o* = u—ol’)
2) If'V is a complex inner product space then
1 2 N 2 2
(w,0) = 2w+ 0" = llu = ol") + Zilllu + wl” — flu — ] O

The inner product also induces a metric on V' defined by
d(u,v) = [lu— ]|

Thus, any inner product space is a metric space.

Definition Let V and W be inner product spaces and let T € L(V,W).
1) T is an isometry if it preserves the inner product, that is, if

(r(u), 7(v)) = (u,v)

forall u,v € V.

2) A bijective isometry is called an isometric isomorphism. When 7:V — W
is an isometric isomorphism, we say that V and W are isometrically
isomorphic. [J

It is easy to see that an isometry is always injective but need not be surjective,
even if V' = W. (See Example 10.3.)

Theorem 13.3 4 linear transformation T € L(V, W) is an isometry if and only
if it preserves the norm, that is, if and only if

()]l = [lv
forallveVv.O

The following result points out one of the main differences between real and
complex inner product spaces.

Theorem 13.4 Let V' be an inner product space and let T € L(V').

1) If{r(v),w) =0forallv, w eV thenT = 0.

2) If'V is a complex inner product space and Q,(v) = (1(v),v) =0 for all
veV thent =0.

3) Part 2) does not hold in general for real inner product spaces. [

Hilbert Spaces

Since an inner product space is a metric space, all that we learned about metric
spaces applies to inner product spaces. In particular, if (z,) is a sequence of
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vectors in an inner product space V' then
(x,) — x if and only if ||a, — z|| — 0asn — oo

The fact that the inner product is continuous as a function of either of its
coordinates is extremely useful.

Theorem 13.5 Let V' be an inner product space. Then

1) (xn) =z, (Yn) =y = <xnvyn> - <$7y>
2) (xn) — X = ”an - ”x” O

Complete inner product spaces play an especially important role in both theory
and practice.

Definition An inner product space that is complete under the metric induced by
the inner product is said to be a Hilbert space. [

Example 13.1 One of the most important examples of a Hilbert space is the
space /> of Example 10.2. Recall that the inner product is defined by

00
<x7 y> = anyn
n=1

(In the real case, the conjugate is unnecessary.) The metric induced by this inner
product is

. 172
d(z,y) = |lz—yl, = <Z|xn - yn|2>
n=1

which agrees with the definition of the metric space /> given in Chapter 12. In
other words, the metric in Chapter 12 is induced by this inner product. As we
saw in Chapter 12, this inner product space is complete and so it is a Hilbert
space. (In fact, it is the prototype of all Hilbert spaces, introduced by David
Hilbert in 1912, even before the axiomatic definition of Hilbert space was given
by John von Neumann in 1927.) O

The previous example raises the question of whether or not the other metric
spaces (P (p # 2), with distance given by

00 1/p
d(z,y) = |z —yl, = (Z |xn—yn|1’> (13.1)

n=1

are complete inner product spaces. The fact is that they are not even inner
product spaces! More specifically, there is no inner product whose induced
metric is given by (13.1). To see this, observe that, according to Theorem 13.1,
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any norm that comes from an inner product must satisfy the parallelogram law
2 2 2 2
& +yllI” + llz -yl = 2[=]" + 2]yl

But the norm in (13.1) does not satisfy this law. To see this, take
z=(1,1,0...)andy = (1,—1,0...). Then

and
], =277, |lyll, = 2"/

Thus, the left side of the parallelogram law is 8 and the right side is 4 - 2%/7,
which equals 8 if and only if p = 2.

Just as any metric space has a completion, so does any inner product space.

Theorem 13.6 Let V' be an inner product space. Then there exists a Hilbert
space H and an isometry 7:V — H for which 7(V') is dense in H. Moreover,
H is unique up to isometric isomorphism.

Proof. We know that the metric space (V,d), where d is induced by the inner
product, has a unique completion (V', d’), which consists of equivalence classes

of Cauchy sequences in V. If (z,,) € (z,) € V' and (y,,) € (y,) € V' then we
set

(@n) + (Yn) = (Tn + yn), 7(T0) = (ran)

and

((n); (Yn)) = lim (z,,y5)

n—oo

It is easy to see that, since (x,) and (y,) are Cauchy sequences, so are
(zy, + yn) and (rx,,). In addition, these definitions are well-defined, that is, they
are independent of the choice of representative from each equivalence class. For
instance, if (Z,,) € (z,) then

lim ||z, — Z,|| =0
n—oo
and so

@0y Yn) = Ty Yn) | = [(Tn — T, Yn)| < |l2n — Zullllynll — O

(The Cauchy sequence (y,,) is bounded.) Hence,

o~

<(:L'n)’ (yn)> = lim <xn7 yn> = lim <5/E\n7 yn> = <(33n)a (yn)>

n—oo n—oo

We leave it to the reader to show that V' is an inner product space under these
operations.
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Moreover, the inner product on V’ induces the metric d’, since

<(xn - yn)a (xn - yn)> = lll’Il <mn —Yn, Tp — yn>
n—o0
= lim d(x,, y,)*
= d/((x”), (?J'n))z

Hence, the metric space isometry 7: V' — V’ is an isometry of inner product
spaces, since

(r(2),7(y)) = d'(7(2), 7(y))* = d(z,y)* = (2,9)

Thus, V' is a complete inner product space and 7(V') is a dense subspace of V'
that is isometrically isomorphic to V. We leave the issue of uniqueness to the
reader. [

The next result concerns subspaces of inner product spaces.

Theorem 13.7

1) Any complete subspace of an inner product space is closed.

2) A subspace of a Hilbert space is a Hilbert space if and only if it is closed.

3) Any finite-dimensional subspace of an inner product space is closed and
complete.

Proof. Parts 1) and 2) follow from Theorem 12.6. Let us prove that a finite-

dimensional subspace S of an inner product space V is closed. Suppose that

(z,) is a sequence in S, (x,) > x and x ¢ S. Let B = {b1,...,b,} be an

orthonormal Hamel basis for S. The Fourier expansion

§= f:<f177 bz>b1
i=1

in S has the property that x — s # 0 but
(x — 87bj> = <x7bj> - <5’bj> =0

Thus, if we write y = 2 — s and y,, = z,, — s € S, the sequence (y,,), which is
in S, converges to a vector y that is orthogonal to S. But this is impossible,
because y, L y implies that

2 2 2 2
1y = yllI” = llynll” + llylI” = llyl™ + 0

This proves that S is closed.

To see that any finite-dimensional subspace S of an inner product space is
complete, let us embed S (as an inner product space in its own right) in its
completion S”. Then S (or rather an isometric copy of S) is a finite-dimensional
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subspace of a complete inner product space S’ and as such it is closed.
However, S is dense in S” and so S = S’, which shows that S is complete. [J

Infinite Series

Since an inner product space allows both addition of vectors and convergence of
sequences, we can define the concept of infinite sums, or infinite series.
Definition Let V' be an inner product space. The nth partial sum of the
sequence (xy) in V is

If the sequence (s,,) of partial sums converges to a vector s € V/, that is, if

Isn, — s|]] = 0asn — oo

then we say that the series ) x,, converges to s and write

We can also define absolute convergence.

Definition 4 series > xy. is said to be absolutely convergent if the series

o0

>l

n=1

converges. [1

The key relationship between convergence and absolute convergence is given in
the next theorem. Note that completeness is required to guarantee that absolute
convergence implies convergence.

Theorem 13.8 Let V' be an inner product space. Then V' is complete if and only
if absolute convergence of a series implies convergence.

Proof. Suppose that V' is complete and that > _||z;|| < co. Then the sequence s,
of partial sums is a Cauchy sequence, for if n > m, we have

n
< Dzl =0

k=m+1

n

>

k=m+1

||Sn - Sm” -

Hence, the sequence (s,,) converges, that is, the series )  x;, converges.

Conversely, suppose that absolute convergence implies convergence and let
(z,) be a Cauchy sequence in V. We wish to show that this sequence
converges. Since (x,,) is a Cauchy sequence, for each k > 0, there exists an NV},
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with the property that
o 1
i,j > Np = |z, —zj| < o
Clearly, we can choose N; < N, < ---, in which case

1
”xNHJ - vak‘l < ?

and so

00 1
Z”xNkH - xN/.:H < 227 < o0
k=1 k=1

Thus, according to hypothesis, the series
o0
Z(xNk+1 - xNk)
k=1
converges. But this is a telescoping series, whose nth partial sum is

TNy — TN

313

and so the subsequence (zy,) converges. Since any Cauchy sequence that has a
convergent subsequence must itself converge, the sequence (z) converges and

so V' is complete. [

An Approximation Problem

Suppose that V' is an inner product space and that S is a subset of V. It is of
considerable interest to be able to find, for any =z € V, a vector in S that is
closest to x in the metric induced by the inner product, should such a vector

exist. This is the approximation problem for V.

Suppose that z € V and let

6 = inf ||z — 5|
ses
Then there is a sequence s,, for which
bp = ||z — sn| — 6

as shown in Figure 13.1.
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\Y

Figure 13.1

Let us see what we can learn about this sequence. First, if we let y, = x — s,
then according to the parallelogram law

2 2 2 2
lyx + ysll” + llye — vill™ = 2(llyell” + [lysl17)

or

2
Yk + Yj

2

i — ol = 20l + ) — 4\ (13.2)

Now, if the set S is convex, that is, if

z,yeS=rr+(1—rjyeSforall0 <r<1

(in words S contains the line segment between any two of its points) then
(si +s;)/2 € S and so

Iy — yill> < 2(/lyel® + llysl|*) — 462 — 0

Yr + Yj
2

= >6

Sk + 8;
r—2F 7
2

Thus, (13.2) gives

as k,j — oo. Hence, if S is convex then the sequence (y,) = (z —s,) is a
Cauchy sequence and therefore so is (s;,).

If we also require that S be complete then the Cauchy sequence (s,,) converges
to a vector Z € S and by the continuity of the norm, we must have ||z — Z|| = 6.
Let us summarize and add a remark about uniqueness.

Theorem 13.9 Let V' be an inner product space and let S be a complete convex
subset of V. Then for any x € V, there exists a unique T € S for which

|z = Z|| = inf|lz — 5|
seS

The vector T is called the best approximation fo x in S.
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Proof. Only the uniqueness remains to be established. Suppose that
lz =2 =6 = [z — 2|
Then, by the parallelogram law,
~ 2 112
1@ — 2| = |l — ') — (@ — )|
=2z - 2|* + 2l|z — 2/|* - |20 — 2 — /|
~ /
4Hx T4w

=2z — 2| + 2|z — /|| 5

<282 4+282-482=0

andsozZ =2'. O

Since any subspace S of an inner product space V' is convex, Theorem 13.9
applies to complete subspaces. However, in this case, we can say more.

Theorem 13.10 Let V' be an inner product space and let S be a complete
subspace of V. Then for any x € V, the best approximation to x in S is the
unique vector ' € S for whichx —x' L S.
Proof. Suppose that x — ' 1 S, where 2’ € S. Then for any s € S, we have
x—2a' 1L s—a' andso

= sll” = llo = &I + Jla’ = s[1* > fla = 2/

Hence x’ = 7 is the best approximation to x in .S. Now we need only show that
x —2 L S, where Z is the best approximation to x in .S. For any s € 5, a little
computation reminiscent of completing the square gives

lz —rs||* = (x —rs,z —rs)

2 S—
= [lzl" =7z, 8) — r(s,z) +r7ls]

— |lzl1? slI2[ 7 — <$ 3>7 W
—nn+|n< e H|>
— Jlzl? ot _ |<3373>|2
‘””+'”< u|>< u|> e

_<%52 I@SH

Now, this is smallest when
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in which case

[(z, 5)I”

2 2
e = ros|” = ll=)” — =—5—
sl

Replacing x by z — T gives

(@ — 2, )|

~ 2 ~112
[l =% = ros||” = [lz — 2|" - ;
sl

But 7 is the best approximation to x in .S and since T — r9s € S we must have
lz = & = ros||* > ||z - 2|

Hence,

or, equivalently,

Hence,z — 2z L §. 0O

According to Theorem 13.10, if .S is a complete subspace of an inner product
space V then for any x € V, we may write

=7+ (r—7)
where 7 € S and z — 7 € S*. Hence, V = S + S* and since S NS+ = {0},

we also have V = S ® S*. This is the projection theorem for arbitrary inner
product spaces.

Theorem 13.11 (The projection theorem) If' S is a complete subspace of an
inner product space V then

V=S0S8"
In particular, if S is a closed subspace of a Hilbert space H then
H=SoS5" |

Theorem 13.12 Let S, T and T' be subspaces of an inner product space V.

1) IfV=SOTthenT =S+

2) ST =S0T thenT =T

Proof. If V = S © T then T C S+ by definition of orthogonal direct sum. On
the other hand, if z € S+ then z = s + ¢, for some s € S and t € T. Hence,

0={(z,8) =(s,s) + (t,s) = (s,9)
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and so s = 0, implying that z = ¢ € T'. Thus, S* C T'. Part 2) follows from part
.0

Let us denote the closure of the span of a set S of vectors by cspan(S).

Theorem 13.13 Let H be a Hilbert space.
1) If Ais a subset of H then

cspan(A) = A+

2) If S is a subspace of H then

cl(S) = 5+
3) If K is a closed subspace of H then
K = KLL

Proof. We leave it as an exercise to show that [cspan(A4)]* = A*. Hence
H = cspan(A) ® [cspan(A)]* = cspan(A4) ® A+
But since A' is closed, we also have
= At oAt
and so by Theorem 13.12, cspan(A) = A*+. The rest follows easily from part
n.0O

In the exercises, we provide an example of a closed subspace K of an inner
product space V for which K # K**. Hence, we cannot drop the requirement
that H be a Hilbert space in Theorem 13.13.

Corollary 13.14 If A is a subset of a Hilbert space H then span(A) is dense in
H if and only if A+ = {0}.
Proof. As in the previous proof,

H = cspan(A) ® A+
and so A+ = {0} if and only if H = cspan(A). O
Hilbert Bases

We recall the following definition from Chapter 9.

Definition A maximal orthonormal set in a Hilbert space H is called a Hilbert
basis for H. [

Zorn's lemma can be used to show that any nontrivial Hilbert space has a Hilbert
basis. Again, we should mention that the concepts of Hilbert basis and Hamel
basis (a maximal linearly independent set) are quite different. We will show
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later in this chapter that any two Hilbert bases for a Hilbert space have the same
cardinality.

Since an orthonormal set O is maximal if and only if O+ = {0}, Corollary
13.14 gives the following characterization of Hilbert bases.

Theorem 13.15 Let O be an orthonormal subset of a Hilbert space H. The
following are equivalent:

1) O is a Hilbert basis

2) 0t ={0}

3) O is atotal subset of H, that is, cspan(O) = H. O

Part 3) of this theorem says that a subset of a Hilbert space is a Hilbert basis if
and only if it is a total orthonormal set.

Fourier Expansions

We now want to take a closer look at best approximations. Our goal is to find an
explicit expression for the best approximation to any vector x from within a
closed subspace S of a Hilbert space H. We will find it convenient to consider
three cases, depending on whether S has finite, countably infinite, or
uncountable dimension.

The Finite-Dimensional Case

Suppose that O = {uy,...,u,} is an orthonormal set in a Hilbert space H.
Recall that the Fourier expansion of any x € H, with respect to O, is given by

T

T = Z(m,uk)uk.

k=1
where (x, uy) is the Fourier coefficient of = with respect to uy. Observe that
<:L‘ - /"L'\v uk) = <xauk> - </.’f, uk) =0

and so x —Z L span(Q). Thus, according to Theorem 13.10, the Fourier
expansion Z is the best approximation to x in span(Q). Moreover, since
xr— 2 L T, we have

112 2 112 2
1217 = llzlI” = llz = 2" < ||«
and so
1Z]] < ||

with equality if and only if x = Z, which happens if and only if = € span(O).
Let us summarize.
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Theorem 13.16 Let O = {uy,...,u,} be a finite orthonormal set in a Hilbert
space H. For any x € H, the Fourier expansion T of x is the best
approximation to x in span(Q). We also have Bessel's inequality

12l < 1l

or, equivalently

n

> N un)” < [l (13.3)

k=1
with equality if and only if x € span(O). O
The Countably Infinite-Dimensional Case

In the countably infinite case, we will be dealing with infinite sums and so
questions of convergence will arise. Thus, we begin with the following.

Theorem 13.17 Let O = {uy,us, ... } be a countably infinite orthonormal set in
a Hilbert space H. The series

o0
> e (13.4)
k=1

converges in H if and only if the series

> Ikl (13.5)
k=1

converges in R. If these series converge then they converge unconditionally
(that is, any series formed by rearranging the order of the terms also
converges). Finally, if the series (13.4) converges then

00 2 00

2
Dl =) Il
k=1 k=1

Proof. Denote the partial sums of the first series by s, and the partial sums of
the second series by p,,. Then form <n

n
§ TrUk

k=m+1

2
n

= Z |r1€|2 = |p77 - pm|

k=m+1

[0 — Sm||2 =

Hence (s,,) is a Cauchy sequence in H if and only if (p,) is a Cauchy sequence
in R. Since both H and R are complete, (s,) converges if and only if (p,)
converges.

If the series (13.5) converges then it converges absolutely and hence
unconditionally. (A real series converges unconditionally if and only if it
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converges absolutely.) But if (13.5) converges unconditionally then so does
(13.4). The last part of the theorem follows from the continuity of the norm. [J

Now let O = {uy,us,...} be a countably infinite orthonormal set in H. The
Fourier expansion of a vector z € H is defined to be the sum

/:I/\':

(@, ugyug (13.6)

00
k=1

To see that this sum converges, observe that, for any n > 0, (13.3) gives
- 2 2
> N, u) < |l
k=1

and so

o0

> leul < Jlz)?

k=1
which shows that the series on the left converges. Hence, according to Theorem
13.17, the Fourier expansion (13.6) converges unconditionally.
Moreover, since the inner product is continuous,
(x — Z,up) = (z,up) — (T,ug) =0

and so z — Z € [span(O)]* = [cspan(O)]*. Hence, 7 is the best approximation
to z in cspan(O). Finally, since © — Z L Z, we again have

I2° = Nl = l|lz - 2I|* < ||z
and so
1zl < [zl
with equality if and only if x = Z, which happens if and only if € cspan(O).
Thus, the following analog of Theorem 13.16 holds.

Theorem 13.18 Let O = {uy, us, ... } be a countably infinite orthonormal set in
a Hilbert space H. For any € H, the Fourier expansion

[&°]
= Z(:& Up YU
k=1

of « converges unconditionally and is the best approximation to z in cspan(O).
We also have Bessel's inequality

12l < ]l
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or, equivalently

o0

> @ un)l* < el

k=1
with equality if and only if z € cspan(O). O
The Arbitrary Case

To discuss the case of an arbitrary orthonormal set O = {uy | k € K}, let us
first define and discuss the concept of the sum of an arbitrary number of terms.
(This is a bit of a digression, since we could proceed without all of the coming
details — but they are interesting.)

Definition Let K = {z; | kK € K} be an arbitrary family of vectors in an inner
product space V. The sum
D

keK

is said to converge to a vector x € V and we write

r=Y (13.7)

keK

if for any € > 0, there exists a finite set S C K for which

S

keT

T > S8, T finite = <e¢ O

For those readers familiar with the language of convergence of nets, the set
Po(K) of all finite subsets of K is a directed set under inclusion (for every
A,B € Py(K) there is a C' € Py(K) containing A and B) and the function

S—»Zxk

is a net in H. Convergence of (13.7) is convergence of this net. In any case, we
will refer to the preceding definition as the net definition of convergence.

It is not hard to verify the following basic properties of net convergence for
arbitrary sums.

Theorem 13.19 Let K = {x} | k € K} be an arbitrary family of vectors in an

inner product space V. If
Zxk =z andZyk =y
kekK keK

then
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1) (Linearity)

Z (rap + syr) = re + sy

keK

foranyr,s € F
2) (Continuity)

Z<mk7y> = <Ji,y> andz<yaxk> = <y,$> |

keK keK

The next result gives a useful “Cauchy type” description of convergence.

Theorem 13.20 Let K = {x}, | k € K} be an arbitrary family of vectors in an
inner product space V.
1) Ifthe sum

S

keK

converges then for any € > 0, there exists a finite set I C K such that

>

keJ

JNI =0, J finite = <e

2) If'V is a Hilbert space then the converse of 1) also holds.
Proof. For part 1), given ¢ > 0, let S C K, S finite, be such that

E X — X

keT

T>S, T finite = g%

If JNS =0, J finite then

J J S S
< ZM:*I + Zxkfx <E+E:e
- -2 2
JuUS S

As for part 2), for each n > 0, let I,, C K be a finite set for which

2.

jeT

JNI,=0, J finite = <

SEES

and let

Yn = ka

kel,
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Then (y,,) is a Cauchy sequence, since

||yn ym” - Zxk - Zxk Z T — Z T
I I,—1I In—1Iy,
1
3 DR D ol EE S Y

Since V' is assumed complete, we have (y,) — y.

Now, given € > 0, there exists an IV such that

€
> N = n — = . — < —
nz 1y — yll EI zr—y|| < 5
Setting n = max{N,2/¢e} gives for T D I,,, T finite
c— Y+ E T
T-1I,
€ 1
<-4+ —-—<e
Sgto s

and so ), ;) converges to y. [

323

The following theorem tells us that convergence of an arbitrary sum implies that
only countably many terms can be nonzero so, in some sense, there is no such

thing as a nontrivial uncountable sum.

Theorem 13.21 Let K = {xy | k € K} be an arbitrary family of vectors in an

inner product space V. If the sum

D

keK

converges then at most a countable number of terms xj, can be nonzero.

Proof. According to Theorem 13.20, for each n > 0, we can let I, C K, I,

finite, be such that

J NI, =0, J finite = <

SEES

S

jed

Let I = J,,I,. Then [ is countable and

1
k¢I={k}nl,=0foralln= ||| < —foralln =z, =0
n

O
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Here is the analog of Theorem 13.17.

Theorem 13.22 Let O = {uy, | k € K} be an arbitrary orthonormal family of
vectors in a Hilbert space H. The two series

Zrkuk and Z|rk|2

keK keK

converge or diverge together. If these series converge then

2
2
> rsf| =) Il

keK keK

Proof. The first series converges if and only if for any € > 0, there exists a finite
set I C K such that

2

JNI=0, J finite = <€

E U

keJ

or, equivalently

J NI =0, J finite = Y |ri[* < €
keJ

and this is precisely what it means for the second series to converge. We leave
proof of the remaining statement to the reader. O

The following is a useful characterization of arbitrary sums of nonnegative real
terms.

Theorem 13.23 Let {ry, | k € K} be a collection of nonnegative real numbers.
Then

Zrk, = ISE,E)E Zrk (13.8)

keK e ke

provided that either of the preceding expressions is finite.
Proof. Suppose that

suerk =R<

et
Then, for any € > 0, there exists a finite set S C K such that

RZZrkZRfe
kesS
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Hence, if T' C K is a finite set for which 1" O S then since r;, > 0,

RZZTJQZZWZR*E

keT keS

and so

<e

R - Z?"k7

keT

which shows that Y 7 converges to R. Finally, if the sum on the left of (13.8)
converges then the supremum on the right is finite and so (13.8) holds. (I

The reader may have noticed that we have two definitions of convergence for
countably infinite series: the net version and the traditional version involving
the limit of partial sums. Let us write

o0

Z Tk and Z:L‘k

keNT k=1

for the net version and the partial sum version, respectively. Here is the
relationship between these two definitions.

Theorem 13.24 Let H be a Hilbert space. If x € H then the following are
equivalent:

1) > xp converges (net version) to x
keNT
o)

2) 3" xy, converges unconditionally to
k=1

Proof. Assume that 1) holds. Suppose that 7 is any permutation of N*. Given
any € > 0, there is a finite set S C N* for which

T>S, T finite= |z, —x|| <e
keT
Let us denote the set of integers {1,...,n} by I, and choose a positive integer n

such that 7([,,) D S. Then for m > n we have

m

Z Lrk) — T

k=1

7(l,) Dn(l,) DS =

= Z Tz —x|| L€

ken(I,)

and so 2) holds.
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Next, assume that 2) holds, but that the series in 1) does not converge. Then
there exists an € > 0 such that, for any finite subset I C N, there exists a finite
subset J with J N I = () for which

>

keJ

> €

From this, we deduce the existence of a countably infinite sequence .J,, of
mutually disjoint finite subsets of N™ with the property that

max(J,) = M,, < my4; = min(J,41)

and

> €

S

keJ,

Now, we choose any permutation 7: N* — N* with the following properties
D) 7([mn, My]) C [my, M)
2) if Jn = {jn,l: [ 7jn,u,,} then

W(mn) = jn,la 7T('rnn + 1) = jn,2a ceey W(mn + unfl) = jn,u,b

The intention in property 2) is that, for each n, 7 takes a set of consecutive
integers to the integers in J,,.

For any such permutation 7, we have

my+u,—1

Lr(k)

= > €

e

ked,

k=m,,

which shows that the sequence of partial sums of the series

is not Cauchy and so this series does not converge. This contradicts 2) and
shows that 2) implies at least that 1) converges. But if 1) converges to y € H
then since 1) implies 2) and since unconditional limits are unique, we have
y = z. Hence, 2) implies 1). O

Now we can return to the discussion of Fourier expansions. Let
O = {uy | k € K} be an arbitrary orthonormal set in a Hilbert space H. Given
any x € H, we may apply Theorem 13.16 to all finite subsets of O, to deduce
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that

2 2
sup Y [(z,up)[* < |||

J finite
sck ked

and so Theorem 13.23 tells us that the sum

>l udl

keK

converges. Hence, according to Theorem 13.22, the Fourier expansion

T= Z(:p, Up ) U

keK

of x also converges and

I21* =Dl un)?

keK
Note that, according to Theorem 13.21, Z is a countably infinite sum of terms of
the form (z, uy,)uy, and so is in cspan(O).
The continuity of infinite sums with respect to the inner product (Theorem
13.19) implies that
(v =&, up) = (z,wp) — (@, up) =0

and so z — 7 € [span(Q)]* = [cspan(O)]+. Hence, Theorem 3.10 tells us that 2
is the best approximation to z in cspan(©). Finally, since z — Z L Z, we again
have

1217 = Nl = l|lz - 2I|* < ||z
and so
1Z] < [zl
with equality if and only if x = Z, which happens if and only if € cspan(O).

Thus, we arrive at the most general form of a key theorem about Hilbert spaces.

Theorem 13.25 Let O = {uy, | k € K} be an orthonormal family of vectors in
a Hilbert space H. For any x € H, the Fourier expansion

z= Z(x,uk>uk

keK

of x converges in H and is the unique best approximation to x in cspan(Q).
Moreover, we have Bessel's inequality

2] < [l]
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or, equivalently

Y Hzu)l” < lz)?

keK
with equality if and only if x € cspan(O). O
A Characterization of Hilbert Bases

Recall from Theorem 13.15 that an orthonormal set O = {u; |k € K} in a
Hilbert space H is a Hilbert basis if and only if

cspan(O) = H
Theorem 13.25 then leads to the following characterization of Hilbert bases.
Theorem 13.26 Let O = {u;, | k € K} be an orthonormal family in a Hilbert
space H. The following are equivalent:
1) O is a Hilbert basis (a maximal orthonormal set)
2) 0t ={0}
3) Ois total (that is, cspan(O) = H)

4) x=7ZTforallze H
5)  Equality holds in Bessel's inequality for all x € H, that is,

=]l = N1l

Jorallz € H.
6) Parseval's identity

(z,y) =(2,9)
holds for all x,y € H, that is,
<$7 y> = Z<x7 uk><ya uk>

keK

Proof. Parts 1), 2) and 3) are equivalent by Theorem 13.15. Part 4) implies part
3), since Z € cspan(O) and 3) implies 4) since the unique best approximation of
any x € cspan(Q) is itself and so x = Z. Parts 3) and 5) are equivalent by
Theorem 13.25. Parseval's identity follows from part 4) using Theorem 13.19.
Finally, Parseval's identity for y = = implies that equality holds in Bessel's
inequality. (J

Hilbert Dimension

We now wish to show that all Hilbert bases for a Hilbert space H have the same
cardinality and so we can define the Hilbert dimension of H to be that
cardinality.
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Theorem 13.27 All Hilbert bases for a Hilbert space H have the same
cardinality. This cardinality is called the Hilbert dimension of H, which we
denote by hdim(H).

Proof. If H has a finite Hilbert basis then that set is also a Hamel basis and so
all finite Hilbert bases have size dim(H ). Suppose next that B = {b;, | k € K}
and C = {c¢; | j € J} are infinite Hilbert bases for H. Then for each b, we have

bk = Z<bk,6j>0j
JEJ)

where Jj, is the countable set {j | (b, c;) # 0}. Moreover, since no ¢; can be
orthogonal to every by, we have |JxJi = J. Thus, since each J, is countable,
we have

7] =

U

keK

<N|K| = |K]|

By symmetry, we also have |K| < |.J| and so the Schréder-Bernstein theorem
implies that |.J| = |K|. O

Theorem 13.28 Two Hilbert spaces are isometrically isomorphic if and only if
they have the same Hilbert dimension.

Proof. Suppose that hdim(H;) = hdim(Hs). Let Oy = {u, |k € K} be a
Hilbert basis for H; and Oy = {v); | k € K} a Hilbert basis for H,. We may
define a map 7: H; — H» as follows

T( E rkuk) = E TLUE
keK keK

We leave it as an exercise to verify that 7 is a bijective isometry. The converse
is also left as an exercise. [1

A Characterization of Hilbert Spaces

We have seen that any vector space V' is isomorphic to a vector space (F'?), of
all functions from B to F' that have finite support. There is a corresponding
result for Hilbert spaces. Let K be any nonempty set and let

AE) = {1 K=Y < o}

keK

The functions in ¢?(K) are referred to as square summable functions. (We can
also define a real version of this set by replacing C by R.) We define an inner
product on /?(K) by

(f.9) =D f(k)g(k)

keK

The proof that ¢(2(K) is a Hilbert space is quite similar to the proof that
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2 = (*(N) is a Hilbert space and the details are left to the reader. If we define
6, € 2(K) by

5 =05 ={o il
then the collection
O={6|keK}
is a Hilbert basis for /2(K), of cardinality | K|. To see this, observe that
(6i,85) = Y _6:(k)8;(k) = 61
ek

and so O is orthonormal. Moreover, if f € (*(K) then f(k) # 0 for only a
countable number of k € K, say {k1, ko, ... }. If we define f’ by

then f’ € cspan(Q) and f'(j) = f(j) for all j € K, which implies that f = f'.
This shows that £2(K) = cspan(O) and so O is a total orthonormal set, that is, a
Hilbert basis for £2(K).

Now let H be a Hilbert space, with Hilbert basis B = {uy, | k € K}. We define
amap ¢: H — (*(K) as follows. Since B is a Hilbert basis, any z € H has the

form
T = Z(m, Up ) Uk

keK

Since the series on the right converges, Theorem 13.22 implies that the series
2
PERTN
keK

converges. Hence, another application of Theorem 13.22 implies that the
following series converges

o(x) = Z(x,uk>6k

keK

It follows from Theorem 13.19 that ¢ is linear and it is not hard to see that it is
also bijective. Notice that ¢(uy,) = 6;, and so ¢ takes the Hilbert basis B for H
to the Hilbert basis O for ¢*(K).
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Notice also that
lo(2) 1 = (d(x), () = Y |, u)|” = = Jlz|?

keK

Z(mu@uk

keK

and so ¢ is an isometric isomorphism. We have proved the following theorem.

Theorem 13.29 If H is a Hilbert space of Hilbert dimension k and if K is any
set of cardinality k then H is isometrically isomorphic to (*(K). O

The Riesz Representation Theorem

We conclude our discussion of Hilbert spaces by discussing the Riesz
representation theorem. As it happens, not all linear functionals on a Hilbert
space have the form “take the inner product with...,” as in the finite-
dimensional case. To see this, observe that if y € H then the function

fy(x) = (z,y)

is certainly a linear functional on H. However, it has a special property. In
particular, the Cauchy-Schwarz inequality gives, for all x € H

[fy(@)] = [z, )] < [l llllyll

or, for all x #£ 0,
|fy(@)]

< lyll
]
Noticing that equality holds if x = y, we have

IRIAC
o Il

= |yl

This prompts us to make the following definition, which we do for linear
transformations between Hilbert spaces (this covers the case of linear
functionals).

Definition Let 7: Hy — Hy be a linear transformation from Hy to Hy. Then T is
said to be bounded if

wplr@l
z#£0 ||£L'||

< o0

If the supremum on the left is finite, we denote it by ||| and call it the norm of
.0
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Of course, if f: H — F is a bounded linear functional on H then

11 = sup L@

The set of all bounded linear functionals on a Hilbert space H is called the
continuous dual space, or conjugate space, of H and denoted by H*. Note
that this differs from the algebraic dual of H, which is the set of all linear
functionals on H. In the finite-dimensional case, however, since all linear
functionals are bounded (exercise), the two concepts agree. (Unfortunately,
there is no universal agreement on the notation for the algebraic dual versus the
continuous dual. Since we will discuss only the continuous dual in this section,
no confusion should arise.)

The following theorem gives some simple reformulations of the definition of
norm.

Theorem 13.30 Let 7: Hy — Hy be a bounded linear transformation.
) |7l = sup [[7(2)]

Jall=1
2) |7l = sup [|7(2)]
=<1
3) |7l =inf{c e R| ||7(2)|| < c||z|| for all x € H} O

The following theorem explains the importance of bounded linear
transformations.

Theorem 13.31 Let 7: Hy — Hs be a linear transformation. The following are
equivalent:

1) 1 is bounded

2) T is continuous at any point xy € H

3) T is continuous.

Proof. Suppose that 7 is bounded. Then

[7(z) = 7(z0)l| = lI7(x = xo)|| < [|7l[[l& = ol| — 0

as x — xy. Hence, 7 is continuous at xy. Thus, 1) implies 2). If 2) holds then for
any y € H, we have

I7(x) = 7|l = [I7(z = y + @0) = 7(x0)[| = O

as x — y, since 7 is continuous at o and x — y + o — x( as y — x. Hence, 7
is continuous at any y € H and 3) holds. Finally, suppose that 3) holds. Thus, 7
is continuous at 0 and so there exists a 6 > 0 such that

]l <& = [lr(x)] <1
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In particular,

[r(x)ll _ 1
[z =6 = <<
lzf|  — 6
and so
[r@éx)ll _ 1 _ lr@) _ 1
I =1 =Wl =0= Thaal” =57 Tl =3

Thus, 7 is bounded. ]
Now we can state and prove the Riesz representation theorem.

Theorem 13.32 (The Riesz representation theorem) Let H be a Hilbert
space. For any bounded linear functional f on H, there is a unique zy € H
such that

f(x) = (z,20)

Jorall x € H. Moreover, ||z|| = || f||-
Proof. If f =0, we may take z; =0, so let us assume that f # 0. Hence,
K = ker(f) # H and since f is continuous, K is closed. Thus

H=KoK*

Now, the first isomorphism theorem, applied to the linear functional f: H — F,
implies that H /K ~ F (as vector spaces). In addition, Theorem 3.5 implies that
H/K ~ K+ and so K* ~ F. In particular, dim(K*) = 1.

For any z € K+, we have
e K= f(z)=0=(x,2)
Since dim(K*) = 1, all we need do is find a 0 # 2 € K* for which
f(z) =(z2)

for then f(rz)=rf(z)=r(z,2) ={(rz,z) for all r € F, showing that
f(z) = (x,2) forz € K as well.

Butif 0 # z € K+ then
_ f(=)

T

has this property, as can be easily checked. The fact that ||zl = ||f|| has
already been established. O
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Exercises

1.

10.

11.

12.

Prove that the sup metric on the metric space Cla,b] of continuous
functions on [a, b] does not come from an inner product. Hint: let f(¢) = 1
and g(t) = (t — a)/(b — a) and consider the parallelogram law.

Prove that any Cauchy sequence that has a convergent subsequence must
itself converge.

Let V' be an inner product space and let A and B be subsets of V. Show
that

a) ACB= Bt CAt

b) A" isaclosed subspace of V

c) [cspan(4)]t = At

Let V be an inner product space and S C V. Under what conditions is
GLLil _ glo

Prove that a subspace S of a Hilbert space H is closed if and only if
S =8+

Let V be the subspace of > consisting of all sequences of real numbers,
with the property that each sequence has only a finite number of nonzero
terms. Thus, V' is an inner product space. Let K be the subspace of V
consisting of all sequences x = (x,) in V with the property that
Yz, /n = 0. Show that K is closed, but that K-+ # K. Hint: For the latter,
show that K+ = {0} by considering the sequences u = (1,...,—n,...),
where the term —n is in the nth coordinate position.

Let O = {uy,us, ...} be an orthonormal set in H. If z = Xrpuy, converges,
show that

o0
2 2
[EIREEN
k=1

Prove that if an infinite series

converges absolutely in a Hilbert space H then it also converges in the
sense of the “net” definition given in this section.

Let {r; | k € K} be a collection of nonnegative real numbers. If the sum
on the left below converges, show that

E TR = sup E TL
JCK

keK T e ke

Find a countably infinite sum of real numbers that converges in the sense of
partial sums, but not in the sense of nets.

Prove that if a Hilbert space H has infinite Hilbert dimension then no
Hilbert basis for H is a Hamel basis.

Prove that ¢2(K) is a Hilbert space for any nonempty set K.



13.

14.
15.
16.
17.
18.

19.
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Prove that any linear transformation between finite-dimensional Hilbert
spaces is bounded.

Prove that if f € H* then ker(f) is a closed subspace of H.

Prove that a Hilbert space is separable if and only if hdim(H) < ;.

Can a Hilbert space have countably infinite Hamel dimension?

What is the Hamel dimension of /2(N)?

Let 7 and o be bounded linear operators on H. Verify the following:

a) |7l = |rllI 7]l

b) |7+l < l7l| + [lo]|

) |lroll < I7lllle]l

Use the Riesz representation theorem to show that H* ~ H for any Hilbert
space H.



Chapter 14
Tensor Products

In the preceding chapters, we have seen several ways to construct new vector
spaces from old ones. Two of the most important such constructions are the
direct sum U @ V and the vector space £L(U, V') of all linear transformations
from U to V. In this chapter, we consider another very important construction,
known as the tensor product.

Universality

We begin by describing a general type of universality that will help motivate the
definition of tensor product. Our description is strongly related to the formal
notion of a universal arrow (or universal element) in category theory, but we
will be somewhat less formal to avoid the need to formally define categorical
concepts. Accordingly, the terminology that we shall introduce is not standard
(but does not contradict any standard terminology).

Referring to Figure 14.1, consider a set A and two functions f and g, with
domain A.

f

A\

X< O

A

a

Figure 14.1

Suppose that this diagram commutes, that is, that there exists a unique function
7: 5 — X for which

g=T1of

What does this say about the relationship between the functions f and g?
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Let us think of the “information” contained in a function h: A — B to be the
way in which h distinguishes elements of A using labels from B. The
relationship above implies that

g(a) # g(b) = f(a) # f(b)

This can be phrased by saying that whatever ability ¢ has to distinguish
elements of A is also possessed by f. Put another way, except for labeling
differences, any information contained in g is also contained in f. This is
sometimes expressed by saying that g can be factored through f.

If 7 happens to be injective, then the only difference between f and g is the
values of the labels. That is, the two functions have equal ability to distinguish
elements of A. However, in general, 7 is not required to be injective and so f
may contain more information than g.

Suppose now that for all sets X in some family S of sets that includes .S and for
all functions g: A — X in some family F of functions that includes f, the
diagram in Figure 14.1 commutes. This says that the information contained in
every function in F is also contained in f. In other words, f captures and
preserves the information in every member of F. In this sense, f: A — S is
universal among all functions g: A — X in F.

Moreover, since f is a member of the family F, we can also say that f contains
the information in F but no more. In other words, the information in the
universal function f is precisely the same as the information in the entire family
F. In this way, a single function f: A — S (more precisely, a single pair (5, f))
can capture a concept, as described by a family of functions, such as the
concepts of basis, quotient space, direct sum and bilinearity (as we will see)!

Let us make a formal definition.

Definition Referring to Figure 14.2, let A be a set and let S be a family of sets.
Let F be a family of functions from A to members of S. Let H be a family of
Sfunctions on members of S. We assume that H has the following structure:

1) H contains the identity function for each member of S

2) H is closed under composition of functions

3) Composition of functions in 'H is associative.

We also assume that for any T € H and f € F, the composition T o f is defined
and is a member of F.



Tensor Products 339

A ; > S, T2
2 &
f; S,
Figure 14.2

Let us refer to 'H as the measuring set and its members as measuring
functions.

A pair (S, f: A — S), where S € S and f € F has the universal property for
F as measured by H, or is a universal pair for (F,H), if for any X € S and
any g: A — X in F, there is a unique 7: S — X in H for which the diagram in
Figure 14.1 commutes, that is,

g=r7of

Another way to express this is to say that any g € F can be factored through
f, or that any g € F can be lifted to a functionT € Hon S. O

Universal pairs are essentially unique, as the following describes.

Theorem 14.1 Let (S, f: A — S) and (T,g: A — T) be universal pairs for
(F,H). Then there is a bijective measuring function 1 € H for which
n(S)=T.

Proof. With reference to Figure 14.3, there are unique measuring functions
7:8 — T and o: T — S for which

g=7of
f=oo0g

Hence,

g=(to0)og
f=(ooT)of

However, referring to the third diagram in Figure 14.3, both o 7:.S — S and
the identity map ¢: S — S are members of H that make the diagram commute.
Hence, the uniqueness requirement implies that o o 7 = ¢. Similarly 700 =1
and so 7 and o are inverses of one another, making = o the desired
bijection. [
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Figure 14.3

Now let us look at some examples of the universal property. Let Vect(F") denote
the family of all vector spaces over the base field F. (We use the term family
informally to represent what in set theory is formally referred to as a class. A
class is a “collection” that is too large to be considered a set. For example,
Vect(F) is a class.)

Example 14.1 (Bases: the universal property for set functions from a set A into
a vector space, as measured by linearity) Let A be a nonempty set. Let
S = Vect(F') and let F be the family of set functions with domain A. The
measuring set H is the family of linear transformations.

If V, is the vector space with basis A, that is, the set of all formal linear
combinations of members of A with coefficients in F, then the pair
(Vy4, j: A — V) where j is the injection map j(a) = a, is universal for (F, H).
To see this, note that the condition that g € F can be factored through j

g=70]

is equivalent to the statement that 7(a) = g(a) for each basis vector a € A. But
this uniquely defines a linear transformation 7. Note also that Theorem 14.1
implies that if (W,k: A — W) is also universal for (F,H), then there is a
bijective measuring function from V4 to W, that is, W and V, are
isomorphic. [

Example 14.2 (Quotient spaces and canonical projections: the universal
property for linear transformations from V whose kernel contains a particular
subspace K of V, as measured by linearity) Let V be a vector space with
subspace K. Let S = Vect(F'). Let F be the family of linear transformations
with domain V' whose kernel contains K. The measuring set H is the family of
linear transformations. Then Theorem 3.4 says precisely that the pair
(V/K,mV — V/K), where 7 is the canonical projection map, has the
universal property for F as measured by H. [

Example 14.3 (Direct sums: the universal property for pairs (f,q) of linear
maps with the same range, where f has domain U and g has domain V', as
measured by linearity) Let U and V be vector spaces and consider the ordered
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pair (U,V). Let S=Vect(F). A member of F is an ordered pair
(f:U - W,g:V — W) of linear transformations, written

(f,9):(U,V) =W
for which
(f,9)(u,v) = f(u) + g(v)

The measure set H is the set of all linear transformations. For 7 € H and
(f,g9) € F, we set

To(f,g)=(rof,Tog)
We claim that the pair (U BV, (41, j2): (U,V) — U BV), where
Ji(u) = (u,0)
J2(v) = (0,v)
are the canonical injections, has the universal property for (F,H).

To see this, observe that for any function (f,g): (U,V) — W, that is, for any
pair of linear transformations f: U — W and ¢g: V' — W, the condition

(f,9) =70 (j1,]2)
is equivalent to
(f:9) = (Toj1,70]2)
or
fu) 4+ g(v) = 7(u,0) + 7(0,v) = 7(u,v)

But the condition 7(u,v) = f(u) + g(v) does indeed define a unique linear
transformation 7: U BV — W. (For those familiar with category theory, we
have essentially defined the coproduct of vector spaces, which is equivalent to
the product, or direct sum.)]

It should be clear from these examples that the notion of universal property is,
well, universal. In fact, it happens that the most useful definition of tensor
product is through its universal property.

Bilinear Maps
The universality that defines tensor products rests on the notion of a bilinear

map.

Definition Let U, V and W be vector spaces over F. Let U XV be the
cartesian product of U and V' as sets. A set function
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ffUXV W
is bilinear if it is linear in both variables separately, that is, if
flru+ su',v) =rf(u,v) + sf(u,v)
and
flu,rv+ sv') = rf(u,v) + sf(u,v)

The set of all bilinear functions from U xV to W is denoted by
homp(U,V;W). A4 bilinear function f:U xV — F, with values in the base
field F, is called a bilinear form on U x V. [

It is important to emphasize that, in the definition of bilinear function, U x V is
the cartesian product of sets, not the direct product of vector spaces. In other
words, we do not consider any algebraic structure on U x V when defining
bilinear functions, so equations like

(z,y) + (2,w) = (T +y, 2 + w)
and
r(z,y) = (rz,ry)

are false.

In fact, if V' is a vector space, we have two classes of functions from V' x V' to
W, the linear maps £(V x V, W) where V x V is the direct product of vector
spaces, and the bilinear maps hom(V, V; W), where V' x V is just the cartesian
product of sets. We leave it as an exercise to show that these two classes have
only the zero map in common. In other words, the only map that is both linear
and bilinear is the zero map.

We made a thorough study of bilinear forms on a finite-dimensional vector
space V' in Chapter 11 (although this material is not assumed here). However,
bilinearity is far more important and far reaching than its application to metric
vector spaces, as the following examples show. Indeed, both multiplication and
evaluation are bilinear.

Example 14.4 (Multiplication is bilinear) If A is an algebra, the product map
u: A x A — A defined by

w(a,b) = ab

is bilinear. Put another way, multiplication is linear in each position. [

Example 14.5 (Evaluation is bilinear) If V and W are vector spaces, then the
evaluation map ¢: L(V, W) x V' — W defined by
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¢(fv) = f(v)

is bilinear. In particular, the evaluation map ¢:V* x V — F defined by
o(f,v) = f(v) is a bilinear formon V* x V. O

Example 14.6 If IV and W are vector spaces, and f € V* and g € W* then the
product map ¢: V' x W — F' defined by

¢(v,w) = f(v)g(w)

is bilinear. Dually, if v € V and w € W then the map A: V* x W* — F' defined
by

A(f,9) = fv)g(w)

is bilinear. (]

It is precisely the tensor product that will allow us to generalize the previous
example. In particular, if 7 € L(U, W) and o € L(V, W) then we would like to
consider a “product” map ¢: U x V — W defined by

d(u,v) = f(u) ? g(v)

The tensor product ® is just the thing to replace the question mark, because it
has the desired bilinearity property, as we will see. In fact, the tensor product is
bilinear and nothing else, so it is exactly what we need!

Tensor Products

Let U and V be vector spaces. Our guide for the definition of the tensor product
U ® V will be the desire to have a universal property for bilinear functions, as
measured by linearity. Put another way, we want U ® V' to embody the notion
of bilinearity but nothing more, that is, we want it to be universal for bilinearity.

Referring to Figure 14.4, we seek to define a vector space 7" and a bilinear map
t:U x V — T so that any bilinear map f with domain U x V can be factored
through ¢. Intuitively speaking, ¢ is the most “general” or “universal” bilinear
map with domain U x V.

t bilinear

UXV — > T

|

|

T linear
f biinear

v
W

Figure 14.4
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Definition Let U x V' be the cartesian product of two vector spaces over F'. Let
S = Vect(F'). Let

F = {homp(U,V; W} | W € S}

be the family of all bilinear maps from U XV to a vector space W. The
measuring set H is the family of all linear transformations.

A pair (T,t:U xV — T) is universal for bilinearity if it is universal for
(F,H), that is, if for every bilinear map g:U x V — W, there is a unique
linear transformation 7:U @ V. — W for which

g=Tot O
Let us now turn to the question of the existence of a universal pair for
bilinearity.
Existence I: Intuitive but Not Coordinate Free

The universal property for bilinearity captures the essence of bilinearity and
nothing more (as is the intent for all universal properties). To understand better
how this can be done, let B={e;|i€ I} be a basis for U and let
C={fj|j€ J} be abasis for V. Then a bilinear map ¢ on U x V is uniquely
determined by assigning arbitrary values to the “basis” pairs (e;, f;). How can
we do this and nothing more?

The answer is that we should define ¢ on the pairs (e;, f;) in such a way that the
images t(e;, f;) do not interact and then extend by bilinearity.

In particular, for each ordered pair (e;, f;), we invent a new formal symbol, say
e; ® fj and define T to be the vector space with basis

D:{@@fj‘eqjeg,ijC}

Then define the map ¢ by setting t(e;, f;) = e; ® f; and extending by bilinearity.
This uniquely defines a bilinear map ¢ that is as “universal” as possible among
bilinear maps.

Indeed, if g: U x V' — W is bilinear, the condition g = 7 o t is equivalent to
(e ® f;) = g(ei, f7)

which uniquely defines a linear map 7: T'— W. Hence, (T, t) has the universal
property for bilinearity.
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A typical element of T is a finite linear combination
n
> aiiler ® fr,)
ij=1

and ifu = )" aje; andv =) G, f; then

u®v=tu,v) = t(z e,y @'fj) = _aibi(e;® f;)

Note that, as is customary, we have used the notation u ® v for the image of any
pair (u,v) under ¢. Strictly speaking, this is an abuse of the notation ® as we
have defined it. While it may seem innocent, it does contribute to the reputation
that tensor products have for being a bit difficult to fathom.

Confusion may arise because while the elements u; ® v; form a basis for T (by
definition), the larger set of elements of the form u ® v span T, but are
definitely not linearly independent. This raises various questions, such as when
a sum of the form ) u; ® v, is equal to 0, or when we can define a map 7 on T
by specifying the values 7(u ® v) arbitrarily. The first question seems more
obviously challenging when we phrase it by asking when a sum of the form
> t(ui,v;) is 0, since there is no algebraic structure on the cartesian product
U x V, and so there is nothing “obvious” that we can do with this sum. The
second question is not difficult to answer when we keep in mind that the set
{u ® v} is not linearly independent.

The notation ® is used in yet another way: 1" is generally denoted by U @ V'
and called the tensor product of U and V. The elements of U ® V' are called
tensors and a tensor of the form uw ® v is said to be decomposable. For
example, in R* ® R?, the tensor (1,1) ® (1,2) is decomposable but the tensor
(1,1) ® (1,2) + (1,2) ® (2, 3) is not.

It is also worth emphasizing that the tensor product ® is not a product in the
sense of a binary operation on a set, as is the case in rings and fields, for
example. In fact, even when V = U, the tensor product © ® u is not in U, but
rather in U ® U. It is wise to remember that the decomposable tensor u ® v is
nothing more than the image of the ordered pair (u, v) under the bilinear map ¢,
as are the basis elements ¢; ® f;.

Existence II: Coordinate Free

The previous definition of tensor product is about as intuitive as possible, but
has the disadvantage of not being coordinate free. The following customary
approach to defining the tensor product does not require the choice of a basis.

Let Fyr«v be the vector space over F' with basis U x V. Let S be the subspace
of Fy«y generated by all vectors of the form
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r(u,w) + s(v,w) — (ru + sv,w) (14.1)
and
r(u,v) + s(u,w) — (u, v + sw) (14.2)

where r,s € F' and w,v and w are in the appropriate spaces. Note that these
vectors are 0 if we replace the ordered pairs by tensors according to our
previous definition.

The quotient space

F
UV = UxV

is also called the tensor product of U and V. The elements of U ® V have the
form

(Zn‘(ui,vi)) +5= Zm[(uu vi) + 8]

However, since r(u,v) — (ru,v) € S and r(u,v) — (u,rv) € S, we can absorb
the scalar in either coordinate, that is,

r[(u,v) + 8] = (ru,v) + S = (u,rv) + 5
and so the elements of U ® V' can be written simply as
> l(wi,vi) + 8]

It is customary to denote the coset (u,v) + S by v ® v and so any element of
U ® V has the form
D ui®v

as before. Finally, the map t: U x V' — U ® V is defined by
t(u,v) =u®v
The proof that the pair (U @ V,t:U x V — U ® V) is universal for bilinearity
is a bit more tedious when U ® V' is defined as a quotient space.
Theorem 14.2 Let U and V' be vector spaces. The pair
UV, ttUxV -URV)

has the universal property for bilinearity, as measured by linearity.
Proof. Consider the diagram in Figure 14.5. Here Fyy«y is the vector space with
basis U x V.
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t

T

UXV —L> R — "> UV

| -
P
-

f EG T
e
w
Figure 14.5

Since t(u,v) = u ® v = 7 o j(u, v), we have
t=moy

The universal property of vector spaces described in Example 14.1 implies that
there is a unique linear transformation o: Fyy«y — W for which

coj=1

Note that o sends any of the vectors (14.1) and (14.2) that generate S to the zero
vector and so S C ker(c). For example,

olr(u, w) + s(v,w) — (ru + sv, w)]
= orj(u, w) + sj(v,w) — j(ru + sv,w)]
= roj(u,w) + soj(v,w) — oj(ru + sv,w)
=rf(u,w) + sf(v,w) — f(ru+ sv,w)
=0

and similarly for the second coordinate. Hence, we may apply Theorem 3.4 (the
universal property described in Example 14.2), to deduce the existence of a
unique linear transformation 7: U ® V' — W for which

TOT =0
Hence,
Tot=Tomoj=ocoj=f
As to uniqueness, if 7 ot = f then ¢/ = 7’ o 7 satisfies
doj=7oroj=7ot=f
The uniqueness of o then implies that ¢/ = o, which in turn implies that
T/O’/T:O'/ZO':TO’/T

and the uniqueness of 7 implies that 7/ = 7. O

We now have two definitions of tensor product that are equivalent, since under
the second definition the tensors
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(ei, fj) + S =ei® f;

form a basis for Fyyy /S, as we will prove a bit later. Accordingly, we no
longer need to make a distinction between the two definitions.

Bilinearity on U x V' Equals Linearity onU Q@ V'

The universal property for bilinearity says that to each bilinear function
f:U xV — W, there corresponds a unique /inear function m:U @ V. — W.
This establishes a correspondence

¢:hom(U,V; W) - LUV, W)

given by ¢(f) = 7. In other words, ¢(f):U @ V — W is the unique linear
map for which

() (u®v) = f(u,v)
Observe that ¢ is linear, since if f, g € hom(U, V; W) then
[rg(f) + 5¢(9)l(u @ v) = 7f(u,v) + s9(u,v) = (rf + sg)(u,v)
and so the uniqueness part of the universal property implies that
r¢(f) + s¢(g) = o(rf + s9)

Also, ¢ is surjective, since if :U ®V — W is any linear map then
f=70t:U xV — W is bilinear and by the uniqueness part of the universal
property, we have ¢(f) = 7. Finally, ¢ is injective, for if ¢(f) =0 then
f = ¢(f) ot =0. We have established the following result.

Theorem 14.3 Let U, V and W be vector spaces over F. Then the map
¢:hom(U,V; W) — LUV, W), where ¢(f) is the unique linear map
satisfying f = ¢(f) ot, is an isomorphism. Thus,

hom(U,V; W) = LUV, W) O

Armed with the definition and the universal property, we can now discuss some
of the basic properties of tensor products.

When Is a Tensor Product Zero?

Let us consider the question of when a tensor ) u; ® v; is zero. The universal
property proves to be very helpful in deciding this question.

First, note that the bilinearity of the tensor product gives
0Rv=04+0)v=00v+0®v
and so 0 ® v = 0. Similarly, u ® 0 = 0.
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Now suppose that
Z U; @ v; = 0

where we may assume that none of the vectors u; and v; are 0. According to the
universal property of the tensor product, for any bilinear function
f:U xV — W, there is a unique linear transformation 7:U @ V. — W for
which 7 ot = f. Hence

0= T(Zui ®vi) = Z(Tot)(uiavi> = Zf(uz‘,vi)

The key point is that this holds for any bilinear function f:U x V' — W. One
possibility for f is to take two linear functionals o € U* and (8 € V*and
multiply them

f(u,v) = a(u)b(v)

which is easily seen to be bilinear and gives

> alu)B(v) =0

i

If, for example, the vectors u; are linearly independent, then we can consider the
dual vectors u;, for which u; (u;) = 6; ;. Setting a = uj, gives

0= ZUZ;(Uz')ﬂ(Ui) = B(vk)

for all linear functionals 3 € V*. This implies that v;, = 0. We have proved the
following useful result.

Theorem 14.4 If wi,...,u, are linearly independent vectors in U and
vy, ...,y are arbitrary vectors in V then

Zui ®v;=0=v;,=0foralli
In particular, u ® v = 0 if and only ifu =0 orv=10.0

The next result says that we can get a basis for the tensor product U ® V' simply
by “tensoring” any bases for each coordinate space. As promised, this shows
that the two definitions of tensor product are essentially equivalent.

Theorem 14.5 Let B = {u; | i € I} be a basis for U and let C = {v; | j€ J}
be a basis for V. Then the set

D={u@ujliel, jeJ}
is a basis forU Q V.
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Proof. To see that the D is linearly independent, suppose that
Z rij(u;®@uv;) =0
(]
This can be written
Z u; ® (Z ri,jvj> =0
i J

and so, by Theorem 14.4, we must have

Z T,V = 0

J

for all 7 and hence r;; =0 for all ¢ and j. To see that D spans U ® V, let
u®uveU®V.Thensincew =Y ru; andv =y s;v;, we have

u®v—Zrul Zs v;
= er(w ®Zs]v]>
—Zrl(z ul®v,))
= risi(u; ® v))
iJ

Hence, any sum of elements of the form u ® v is a linear combination of the
vectors u; ® vj, as desired. [
Corollary 14.6 For finite-dimensional vector spaces,

dim(U ® V) = dim(U) - dim(V') O

Coordinate Matrices and Rank

If B={u;|ie1}isabasis for U and C = {v; | j € J} is a basis for V, then
any vector z € U ® V has a unique expression as a sum

z = ZZ r,;_]-(uz- ® ’Uj)

i€l jeJ

where only a finite number of the coefficients r; ; are nonzero. In fact, for a
fixed z € U ® V, we may reindex the bases so that

Z—ZZT,JUJL@U

i=1 j=
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where none of the rows or columns of the matrix R = (r; ;) consists only of 0's.
The matrix R = (r; ;) is called a coordinate matrix of z with respect to the
bases B and C.

Note that a coordinate matrix R is determined only up to the order of its rows
and columns. We could remove this ambiguity by considering ordered bases,
but this is not necessary for our discussion and adds a complication since the
bases may be infinite.

Suppose that W = {w; | i € I} and X = {z; | j € J} are also bases for U and
V', respectively and that

c d

z = ZZ si,j(wi & xj)

i=1 j=1

where S = (s; ;) is a coordinate matrix of z with respect to these bases. We
claim that the coordinate matrices R and .S have the same rank, which can then
be defined as the rank of the tensor z ¢ U @ V.

Each wq,...,w, is a finite linear combination of basis vectors in 5, perhaps
involving some of w1, ..., u, and perhaps involving other vectors in B. We can
further reindex B so that each w; is a linear combination of the vectors
U, ..., U, Where a < n and set

U, = span(uy, ..., uy,)
Next, extend {wy, ..., w.} to a basis W' = {wy,...,We, Wet1, ..., wy} for U,.
(Since we no longer need the rest of the basis VWV, we have commandeered the
symbols w41, ... , wy,, for simplicity.) Hence

n
w; = E a;pup fori=1,...,n
h=1

where A = (a; ) is invertible of size n x n.

Now repeat this process on the second coordinate. Reindex the basis C so that

the subspace V,,, = span(vy,...,v,,) contains x1,...,x, and extend to a basis
X' ={xy,...,x4, %411, ..., %y} for V,,. Then
m
zj= ) by forj=1,....,m
=1

where B = (b; ) is invertible of size m x m.
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Next, write

nom

ZZ’I“,JUJL@U

i=1 j=

by setting 7; ; = 0 for i > a or j > b. Thus, the n x m matrix R; = (r; ;) comes
from R by adding n — a rows of 0's to the bottom and then m — b columns of
0's. In particular, R; and R have the same rank.

The expression for z in terms of the basis vectors wy, ..., w,. and x1,..., T, can
also be extended using 0 coefficients to

n m

ZZ 857, w; ®a:J

i=1 j=

where the n x m matrix S; = (s; ;) has the same rank as S.

Now at last, we can compute

n o m n o m m
E E SLJ w; ®xJ E E Sij E aj hUp & E b/kvk

i=1 j= i=1 j=

= zn:zzz a; 1,5i bk (up ® vE)

i=1 j=1 h=1 k=1
n m m n

= ZZZZ ahlst,/ Jk U}I ® Uk)

=1k=1 j=1 i=
n m m

—ZZZ (A'S1)n,b;k(up @ vy)

=1k=1j=
n m

—ZZ (A'S1B)p i (un @ vi)

=1k=1

and so

n m m

ZZ rij(ti ® v;) ZZ (A"S1B)pi(un @ vy)

i=1 j= h=1k=1
It follows that R; = A'S; B. Since A and B are invertible, we deduce that
tk(R) = rk(Ry) = 1k(S1) = rk(59)

In block terms

R O S 0
R1:|:O O:| and Sl:|:0 O:|

and
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t
At — |:Aa,c *:| and B = |:Bd7b *:|
* k k

*

Then R; = A!S; B implies that, for the original coordinate matrices,
R= AflﬁcSBd_;,
where rk(A! ) > rk(R) and rk(Bgp) > rk(R).

We shall soon have use for the following special case. If

=Y weu=Y wen (143)
=1 i=1

then, in the preceding argument,a =b =c=d =rand R = S = I, and

I, 0 I, 0
0 o] and 51_[0 0]

Hence, the equation R = AZ’CSBd,b becomes

|

I.=A'.B,

and we further have
T
w; = g a;pup fori=1,...,r
h=1
where A, , = (a;,) and
T
T = g bjrvpforj=1,...,r
k=1

where B, , = (bjx).
The Rank of a Decomposable Tensor

Recall that a tensor of the form v ® v is said to be decomposable. If {u; | i € I'}
is a basis for U and {v; | j € J} is a basis for V' then any decomposable vector
has the form

U U= Z risj(u; ® v;)
Y]

Hence, the rank of a decomposable vector is 1. This implies that the set of
decomposable vectors is quite “small” in U ® V, as long as neither vector space
has dimension 1.
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Characterizing Vectors in a Tensor Product

There are several very useful representations of the tensors in U @ V.

Theorem 14.7 Let {u; | i € I} be a basis for U and let {v; | j € J} be a basis
for V. By a “unique” sum, we mean unique up to order and presence of zero

terms. Then
1) Everyz € U ®V has a unique expression as a finite sum of the form

> riui ®;
i

where r; ; € F.
2) Everyz € U ®V has a unique expression as a finite sum of the form

Zui & Y;
i

wherey; € V.
3) Every z € U ® V has a unique expression as a finite sum of the form

ZIi @ v;
i

where x; € U.
4) Every nonzero z € U @V has an expression of the form

n
Z Ti D Yi
i=1

where {x;} CU and {y;} CV are linearly independent sets. As to
uniqueness, n is the rank of z and so it is unique. Also, we have

T T
Zx,;@y,— = Zw@-@zi
i=1 i=1

where {w;} C U and {z;} CV are linearly independent sets, if and only if
there exist v X v matrices A = (a; j) and B = (b; ;) for which A'B = I and

r r
w; = E ai,jxj and Zi = E bl‘yjyj
J=1 J=1

fork=1,...r
Proof. Part 1) merely expresses the fact that {u; ® v;} is a basis for U @ V.
From part 1), we write

Z T @ Vj = Z = Zuz D Yi
i, i

i

i ® Y i
i
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which is part 2). Uniqueness follows from Theorem 14.4. Part 3) is proved
similarly. As to part 4), we start with the expression from part 2)

n
Zui & Yi
=1

where we may assume that none of the y;'s are 0. If the set {y;} is linearly
independent, we are done. If not, then we may suppose (after reindexing if
necessary) that

n—1

Yn = Z TiYi
=1

Then

n n—1 n—1
Zui QY = Zui RYi + (Un ® Zﬁ%)
i—1 i—1 i=1

n—1 n—1
= Zui ®yit+ Z(Tﬂtn ®Yi)
i=1 i=1

n—1

= Z(W + riun) ® i

i=1

But the vectors {u; +rju, |1 <i<n—1} are linearly independent. This
reduction can be repeated until the second coordinates are linearly independent.
Moreover, the identity matrix [, is a coordinate matrix for z and so
n =rk(I,) =1k(z). As to uniqueness, one direction was proved earlier; see
(14.3) and the other direction is left to the reader. O

Defining Linear Transformations on a Tensor Product

One of the simplest and most useful ways to define a linear transformation ¢ on
the tensor product U ® V is through the universal property, for this property
says precisely that a bilinear function f on U x V' gives rise to a unique (and
well-defined) linear transformation on U ® V. The proof of the following
theorem illustrates this well. It says that a linear functional on the tensor product
is nothing more or less than a tensor product of linear functionals.

Theorem 14.8 Let U and V' be finite-dimensional vector spaces. Then
UV = UV)"
via the isomorphism 7:U* @ V* — (U ® V')* given by
T(f ©@g)(u®v) = f(u)g(v)

Proof. Informally, for fixed f and g, the function (u,v) — f(u)g(v) is bilinear
in u and v and so there is a unique linear map ¢, taking u ® v to f(u)g(v).
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The function (f,g) — ¢y, is bilinear in f and g since, as functions,
Gaf+bgh = aPfn + boyy and so there is a unique linear map 7 taking f ® g to

b9
A bit more formally, for fixed f and g, the map Fy ,: U x V — F' defined by
Fry(u,v) = f(u)g(v)

is bilinear and so the universal property of tensor products implies that there
exists a unique linear functional ¢y , on U ® V' for which

br.g(u®v) = Frg(u,v) = f(u)g(v)
Next, the map G: U* x V* — (U ® V)* defined by
G(f.9) =drg
is bilinear since, for example,

G(rf +s9,h)(u®v) = ¢rpisgn(u®v)
= (rf +sg)(u) - h(v)
= rf(u)h(v) + sg(u)h(v)
= (résn + sogn)(u,v)
= (rG(f,h) + sG(g,h))(u®@v)

and so
G(rf +sg,h) =rG(f,h)+sG(g,h)

which shows that GG is linear in its first coordinate. Hence, the universal
property implies that there exists a unique linear map

UV - UeV)
for which
T(f®@g)=G(f.9) =91y
that is,
T(f ©g)(u®v) = ¢py(u@v) = f(u)g(v)

Finally, we must show that 7 is bijective. Let {b;} be a basis for U, with dual
basis {;} and let {¢;} be a basis for V, with dual basis {~;}. Then

T(ﬁi & ’7])(bu & Cv) = 51‘(%)%‘(011) = 6i,u6j,v = 6(7?,]'),(u,v)

and so {7(8; ®v;)} C (U ® V)* is the dual basis to the basis {b, ® c,} for
U ® V. Thus, 7 takes the basis {3; ® ,} for U* ® V* to the basis {7(3; ® v;)}
and is therefore bijective. [
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Combining the isomorphisms of Theorem 14.3 and Theorem 14.8, we have, for
finite-dimensional vector spaces U and V/,

U'@V*'= (U®V) =hom(U,V; F)

The Tensor Product of Linear Transformations

We wish to generalize Theorem 14.8 to arbitrary linear transformations. Let
7€ LU,U’) and o € L(V,V’). While the product 7(u)o(v) does not make
sense, the tensor product 7(u) ® o(v) does and is bilinear in v and v

f(u,v) = 7(u) @ o (v)

The same informal argument that we used in the proof of Theorem 14.8 will
work here. Namely, the expression 7(u) ® o(v) € U’ ® V' is bilinear in u and v
and so there is a unique linear map, say (1 © 0):U @ V' — U’ ® V' for which

(r&0)(u®v) = r{u) ® o(v)
Since T @0 € LU @ V,U' ® V'), we have a function
G LU, U x LV, V') = LUV, U V')
defined by
o(r,0) =700
But ¢ is bilinear, since

((a7 +bp) © 0)(u,v) = (a7 + bp)(u) © o (v)
= (a7(u) + bp(u)) © o(v)
= a[r(u) ® a(v)] + b[p(u) ® o(v)]
= (T ©0)(u,v) + b(n © 0)(u,v)
= (a(r© o) +b(n © 0))(u, v)
and similarly for the second coordinate. Hence, there is a unique linear
transformation

0: LU, U@ LV, V)= LUV, U V')
satisfying
O(r®o)=T00
that is,
O(r®o)](u®v)=T1(u) ®oc(v)

To see that 6 is injective, if (7 ® o) = 0 then 7(u) @ o(v) =0 for all u € U
andv e V.If o =0 then  ® 0 = 0. If o # 0, then there is a v € V for which
o(v) #0. But 7(u) ® o(v) =0 implies that one of the factors is 0 and so
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7(u) = 0 for all uw € U, that is, 7 = 0. Hence, 7 ® o = 0. In either case, we see
that 6 is injective.

Thus, 6 is an embedding (injective linear transformation) and if all vector spaces
are finite-dimensional, then

dim(L(U,U") @ L(V, V")) =dim(L({U @ V,U' @ V"))
and so @ is also surjective and hence an isomorphism.
The embedding of L(U,U’) ® L(V,V') into L(U ® V,U’' ® V') means that

each 7 ® o can be thought of as the linear transformation 7 © ¢ from U ® V' to
U' ® V', defined by

(TO0)(u@v) =7(u) ®a(v)

In fact, the notation 7 ® o is often used to denote both the tensor product of
vectors (linear transformations) and the linear map 7 ® o, and we will do this as
well. In summary, we can say that the tensor product 7 ® o of linear
transformations is a linear transformation on tensor products.

Theorem 14.9 The linear transformation
0: LU, UNYR LV, V)= LUV, U V')
defined by 0(t ® o) = T ©® o where
(too)(uev)="1(u)® o)

is an embedding (injective linear transformation), and is an isomorphism if all
vector spaces are finite-dimensional. Thus, the tensor product T ® o of linear
transformations is (via this embedding) a linear transformation on tensor
products. O

There are several special cases of this result that are of importance.

Corollary 14.10 Let us use the symbol X < Y to denote the fact that there is
an embedding of X into Y that is an isomorphism if X and Y are finite-
dimensional.

1) Taking U’ = F gives

U e LV,V)S LUV, V)
where
(f®o)(u®v) = f(u)o(v)
for f € U*.



Tensor Products 359

2) TakingU' = F and V' = F gives
UV S UV)
where
(f@g)(uv) = flu)gv)
3) Taking V =F and noting that L(F,V')~V' and U® F =~ U gives
(letting W = V')
LU, UYQW < LU, U @ W)
where
(T@w)(u) = 7(u) ®w
4) TakingU' = F andV = F gives (lettingW = V")
U*@W < L(U,W)
where

(f @w)(u) = f(u)w O

Change of Base Field

The tensor product gives us a convenient way to extend the base field of a
vector space. (We have already discussed the complexification of a real vector
space.) For convenience, let us refer to a vector space over a field F' as an F'-
space and write Vp. Actually, there are several approaches to “upgrading” the
base field of a vector space. For instance, suppose that K is an extension field of
F,thatis, F' C K.If {b;} is a basis for V then every « € Vp has the form

xr = Zrib,—

where r; € F. We can define an K-space Vi simply by taking all formal linear
combinations of the form
xr = Za,—b,—

where a; € K. Note that the dimension of Vi as a K-space is the same as the
dimension of V as an F'-space. Also, Vi is an F'-space (just restrict the scalars
to F) and as such, the inclusion map j:Vp — Vi sending z € Vp to
j(z) = x € Vg, is an F-monomorphism.

The approach described in the previous paragraph uses an arbitrarily chosen
basis for Vr and is therefore not coordinate free. However, we can give a
coordinate—free approach using tensor products as follows. Since K is a vector
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space over F', we can consider the tensor product
Wr=K® pVp

It is customary to include the subscript F' on ® r to denote the fact that the
tensor product is taken with respect to the base field F'. (All relevant maps are
F-bilinear and F-linear.) However, since V is not a K -space, the only tensor
product that makes sense in K ® Vp is the F'-tensor product and so we will drop
the subscript F'.

The vector space Wy is an F'-space by definition of tensor product, but we may
make it into a K -space as follows. For o € K, the temptation is to “absorb” the
scalar « into the first coordinate

a(f@v) = (af)®v
But we must be certain that this is well-defined, that is, that
BRv=70w= (af)®v=(ay) Quw

This becomes easy if we turn to the universal property for bilinearity. In
particular, consider the map f,,: (K X Vr) — (K ® V) defined by

fa(ﬂvv) = (aﬂ) X v

This map is obviously well-defined and since it is also bilinear, the universal
property of tensor products implies that there is a unique (and well-defined!) F'-
linear map 7,: (K ® V) — (K ® V) for which

Ta(f©0v) = (af) @ v
Note also that since 7, is F'-linear, it is additive and so
Ta[(B @) + (v @ w)] = Ta(B © V) + Ta(y ® w)
that is,
a[(fev)+ (y@w)] = a(f®v)+aly@w)

which is one of the properties required of a scalar multiplication. Since the other
defining properties of scalar multiplication are satisfied, the set K ® Vp is
indeed a K -space under this operation (and addition), which we denote by Wi

To be absolutely clear, we have three distinct vector spaces: the F'-spaces Vi
and Wy = K ® Vr and the K-space Wi = K ® Vp, where the tensor product
in both cases is with respect to F. The spaces W and Wi are identical as sets
and as abelian groups. It is only the “permission to multiply by” that is different.
Even though in Wy we can multiply only by scalars from F', we still get the
same set of vectors. Accordingly, we can recover Wy from Wy simply by
restricting scalar multiplication to scalars from F'.
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It follows that we can speak of “F'-linear” maps 7 from Vp into Wi, with the
expected meaning, that is,

T(ru + sv) = rr(u) + s7(v)

for all scalars r, s € F' (not in K).

If the dimension of K as a vector space over F' is d then
dim(Wp) = dim(K ® Vp) = dim(K) - dim(Vp) = d - dim(Vp)

As to the dimension of W, it is not hard to see that if {b;} is a basis for Vg
then {1 ® b;} is a basis for Wx. Hence

even when V7 is infinite-dimensional.

The map p: Ve — Wy defined by p(v) =1 ® v is easily seen to be injective
and F'-linear and so W contains an isomorphic copy of V. We can also think
of 1 as mapping Vp into Wy, in which case p is called the K -extension map of
Ve. This map has a universal property of its own, as described in the next
theorem.

Theorem 14.11 The K-extension map p: Vi — Wy has the universal property
Jor the family of all F-linear maps with domain Vi and range a K-space, as
measured by K-linear maps. In particular, for any F-linear map f:Vp — Y,
where Y is a K-space, there exists a unique K-linear map 7 Wy — 'Y for
which the diagram in Figure 14.6 commutes, that is,

Top=f
Proof. If suchamap 7: K ® Vg — W is to exist then it must satisfy
T(B®v) = pr(1®v) = fru(v) = Bf(v) (14.4)

This shows that if 7 exists, it is uniquely determined by f. As usual, when
searching for a linear map 7 on a tensor product such as Wi = K ® Vi, we
look for a bilinear map. Let g: (K X Vr) — Y be defined by

9(8;v) = Bf(v)

Since this is bilinear, there exists a unique F'-linear map 7 for which (14.4)
holds. It is easy to see that 7 is also K -linear, since if &« € K then

Tla(B®@v)] = T(ef ®v) = aff(v) = ar(B @ v) U
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V. > W,

e

Figure 14.6

Theorem 14.11 is the key to describing how to extend an F'-linear map to a K-
linear map. Figure 14.7 shows an F-linear map 7: V' — W between F'-spaces V'
and W. It also shows the K-extensions for both spaces, where K ® V' and
K ® W are K-spaces.

Vv ——> W
My Hw
KQV ———> KW

Figure 14.7

If there is a unique K-linear map 7 that makes the diagram in Figure 14.7
commute, then this would be the obvious choice for the extension of the F'-
linear map w to a K -linear map.

Consider the F-linear map o = (uy o7):V — K ® W into the K-space
K ®W. Theorem 14.11 implies that there is a unique K-linear map
T-K®V — K®W for which

Touy =0
that is,
TOUy =pworT
Now, T satisfies
FB@v) = (1 ©0)
= B(T o pv)(v)
= B(puw o 7)(v)
B(l®7(v))
B @ T(v)
(tk ®T)(B® V)

andso7T = 1g ® T.
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Theorem 14.12 Let V and W be F-spaces, with K-extension maps py and
ww, respectively. (See Figure 14.7.) Then for any F-linear map 7:V — W, the
map T = 1 @ T is the unique K-linear map that makes the diagram in Figure
14.7 commute, that is, for which

JoT=Tov O

Multilinear Maps and Iterated Tensor Products

The tensor product operation can easily be extended to more than two vector
spaces. We begin with the extension of the concept of bilinearity.

Definition If Vi,...,V,, and W are vector spaces over F, a function
f:Vix - xV, — W is said to be multilinear if it is linear in each variable
separately, that is, if

/
f(Uh...,Uk,h’l"’U-i-S’U,UkJrl,... Jun) =
/
Tf(ulv ey Uk—1, Uy Ut 1y - - - 7u7l) + Sf(uly ey UR—1,V , Uk41,y - - - 7“’!1)
forall k =1,...,n. A multilinear function of n variables is also referred to as

an n-linear function. The set of all n-linear functions as defined above will be
denoted by hom(Vy, ..., V,; W). A multilinear function from Vi X --- x V,, to
the base field F is called a multilinear form or n-form. (]

Example 14.7

1) If A is an algebra then the product map pu: A X --- x A — A defined by
w(ai,...,a,) = aj---a, is n-linear.

2) The determinant function det: M,, — F' is an n-linear form on the columns
of the matrices in M,,. (I

We can extend the quotient space definition of the tensor product to n-linear
functions as follows.

Let B; = {e; | j € Ji} be a basis for V; for i = 1,...,n. For each ordered n-
tuple (e1,,,-..,€n,,), Wwe invent a new formal symbol €1, ® --- ® e,,;, and
define T to be the vector space with basis

D={e;, ® R en,, | ex € Bi}

Then define the map ¢ by setting t(e1,,...,€n4,) = €15 ® - @ €y, and
extending by multilinearity. This uniquely defines a multilinear map ¢ that is as
“universal” as possible among multilinear maps.

Indeed, if ¢g: Vi x --- x V,, = W is multilinear, the condition g= 7ot is
equivalent to
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T(eri © - @ eni,) = gleri, - eni,)
which uniquely defines a linear map 7: T'— W. Hence, (T, t) has the universal

property for bilinearity.

Alternatively, we may take the coordinate-free quotient space approach as
follows.

Definition Let V1, ..., V,, be vector spaces over F' and let T' be the subspace of
the free vector space F on Vq x --- X V,,, generated by all vectors of the form

T(Uh ey Up—1, Uy Ukt 1,y - - - ,Un) + 5(”17 7vk—laulvvk+la v a/Un)
— (V15 Vp_1, U+ SU Vi1, ., V)
Jor all r,s € F, u,u' €U and vy,...,v, € V. The quotient space F|T is
called the tensor product of V1, ..., V,, and denoted by V1 @ --- @ V,,. O

As before, we denote the coset (vi,...,v,) +7T by v1 ® --- ® v, and so any
element of V) ® --- ® V,, is a sum of decomposable tensors, that is,

Zvil ® - Qu;,

where the vector space operations are linear in each variable.
Let us formally state the universal property for multilinear functions.

Theorem 14.13 (The universal property for multilinear functions as
measured by linearity) Let Vi, ..., V, be vector spaces over the field F'. The
pair (Vi ® --- @ V,,, t), where

tVixxV,=Vi® -V,
is the multilinear map defined by
t(Ul,...,U,L):U1®"'®’Un

has the following property. If f: V1 X --- x V,, — W is any multilinear function
from Vi X -+ X V,, to a vector space W over F' then there is a unique linear
transformation T: V1 ® --- ® V,, — W that makes the diagram in Figure 14.8
commute, that is, for which

Tot=f

Moreover, Vi ® --- @ V,, is unique in the sense that if a pair (X, s) also has this
property then X is isomorphicto Vi ® --- @ V,,. O
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VeV, b S v,@.-8V,
T
Y
W
Figure 14.8

Here are some of the basic properties of multiple tensor products. Proof is left to
the reader.

Theorem 14.14 The tensor product has the following properties. Note that all
vector spaces are over the same field F'.
1) (Associativity) There exists an isomorphism

TV V) eWe oW, -V -0V, eW - W,
for which
T[(U1®“'®Un)®(w1®"'®wm)]=U1®"'®Un®w1®"'®wm
In particular,
UV)oWaUQ(VeW)rUVeW

2) (Commutativity) Let  be any permutation of the indices {1,...,n}. Then
there is an isomorphism

oVi® - QV, = Vi) ® - Q Vo
for which
oV ® -+ ® V) = Vr(1) ® -+ @ VUn()
3) There is an isomorphism p1: FF @V — V for which
p(rev)=rv
and similarly, there is an isomorphism py:V & F — V for which
p(v®r)=rv
Hence, FV =V xV ®F.O
The analog of Theorem 14.3 is the following.
Theorem 14.15 Let Vi, ..., V,, and W be vector spaces over F. Then the map

¢:hom(Vy, ..., Vi W) = L(V1 ® -+ @ V,,, W), defined by the fact that ¢(f) is
the unique linear map for which f = ¢(f) o t, is an isomorphism. Thus,
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hom(Vy,..., Vs W)= L(V1 ®@ - Q@ V,, W)

Moreover, if all vector spaces are finite-dimensional then
dimfhom(V4, ..., Vs W)] = dim(W) - [ [dim(V) O
i=1

Theorem 14.9 and its corollary can also be extended.

Theorem 14.16 The linear transformation
0: L(U,U)® - @ L(U,U) = LU, @ - @U, U @--®U,)
defined by
0@ @) (u1 @ Quyp) =71(u1) @+ & Tn(uy)

is an embedding, and is an isomorphism if all vector spaces are finite-
dimensional. Thus, the tensor product 11 ® --- @ T, of linear transformations is
(via this embedding) a linear transformation on tensor products. Two important
special cases of this are

U@ @U S (U@ @ Uy,)*

where
(i® @ fu)(u ® - @uy) = fi(ur) - fulun)
and
Ui @U@V < LU @ - @U,V)
where

(Ai® @ 0)(u1 @ @uy) = fi(uy)--fu(u)v O

Tensor Spaces

Let V' be a finite-dimensional vector space. For nonnegative integers p and g,
the tensor product

qu<V>:\V®"'®VJ® V@ --V* :V®p®<v*)®q

p factors q factors

is called the space of tensors of type (p, g), where p is the contravariant type
and g is the covariant type. If p = ¢ = 0 then TP(V') = F/, the base field. Here
we use the notation V" for the n-fold tensor product of V' with itself. We will
also write V' *" for the n-fold cartesian product of V' with itself.
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Since all vector spaces are finite-dimensional, V' and V** are isomorphic and so
(V) =V e (V)™ ~ (V) @ V)" ~homp((V7)™ x VX, F)
This is the space of all multilinear functionals on

Vix oo x V' x Vx--xV

p factors q factors

In fact, tensors of type (p, q) are often defined as multilinear functionals in this
way.
Note that
dim(T7(V')) = [dim(V)]P*a
Also, the associativity and commutativity of tensor products allows us to write
TIV)RT(V) =T (V)
at least up to isomorphism.

Tensors of type (p, 0) are called contravariant tensors

™V)=T)(V)=V®---QV

p factors
and tensors of type (0, ¢) are called covariant tensors

T,(V)=T)(V)=V'®--- V"

q factors

Tensors with both contravariant and covariant indices are called mixed tensors.

In general, a tensor can be interpreted in a variety of ways as a multilinear map
on a cartesian product, or a linear map on a tensor product. (The interpretation
we mentioned above that is sometimes used as the definition is only one
possibility.) We simply need to decide how many of the contravariant factors
and how many of the covariant factors should be “active participants” and how
many should be “passive participants.”

More specifically, consider a tensor of type (p, ¢), written
Ul®"'®Um®"'®’l)p®f1®"'®fn®"'®fq Equ(V)

where m < p and n < ¢. Here we are choosing the first m vectors and the first
n linear functionals as active participants. This determines the number of
arguments of the map. In fact, we define a map from the cartesian product
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Vix..ox V" x Vx--xV,

m factors n factors

to the tensor product

VooV oV e eV

p—m factors q—n factors

of the remaining factors by

(V® QU fi® & f)(hi, ..., b, T1, ..., Tp)
= hl(vl)"'hm(vm)fl(xl)'"fn(xn)vm+1 X &® Up ® fn+1 X ® fq

In words, the first group v; ® - -- ® vy, of (active) vectors interacts with the first
set hy, ..., hy, of arguments to produce the scalar hy(vy)---hy,(vy,). The first
group f1 ® ---® f, of (active) functionals interacts with the second group
Z1,...,x, of arguments to produce the scalar fi(x;)---f,(z,). The remaining
(passive) vectors vp41 ® --- ®v, and functionals f,1; ®---® f, are just
“copied” to the image vector.

It is easy to see that this map is multilinear and so there is a unique linear map
from the tensor product

Ve -V elVe -V

m factors n factors

to the tensor product

Ve -V el gV

p—m factors q—n factors

defined by

('Ul®"'®Up®f1®"'®fq)(h1®“‘®hm®$1®“'®$n)
= h1(v1) - (Um) f1(21) - fr(Tn) Vg1 @ - Q0 ® frn @ -+ @ f

(What justifies the notation v; ® --- ® v, ® fi1 ® --- ® f, for this map?)

Let us look at some special cases. For a contravariant tensor of type (p, 0)
v ® - @u, e Ty(V)
we get a linear map

VR -V 2V -V

m factors p—m factors

(where m < p) defined by
(Ul X ® vp)(hl @ hm) = hl(vl)' : 'hm(vm)varl Q- QU
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For a covariant tensor of type (0, q)
heofeT)(V)
we get a linear map from

V-V _>y*®...®v*

n factors q—n factors

(where n < g) defined by
(i@ 8 f) @1 © @ 22) = fi(wn)ful@n) fon & ® fy

The special case n = ¢ gives a linear functional on V9, that is, each element of
(V*)®4 is a distinct member of (V®?)*, whence the embedding

Vf‘@...@{/&* <, (V1®...®V;J)*
that we described earlier.
Let us consider some small values of p and ¢. For a mixed tensor v ® f of type

(1,1) here are the possibilities. When m = 0 and n = 1 we get the linear map
(v® f):V — V defined by

(v® f)(w) = f(w)v
When m = 1 and n = 0 we get the linear map (v ® f): V* — V* defined by
(v®@ f)(h) = h(v)f

Finally, when m =n =1 we get a multilinear form (v® f):V* xV — F
defined by

(v® f)(h, w) = h(v) f(w)

Consider also a tensor f® g of type (0,2). When n=¢=2 we get a
multilinear functional f ® g: (V x V') — F defined by

(f ©@ 9)(v,w) = f(v)g(w)

This is just a bilinear form on V. When n =1 we get a multilinear map
(f ®g):V — V* defined by

(f®g)(v) = f(v)g

Contraction

Covariant and contravariant factors can be “combined” in the following way.
Consider the map

hi VP (V)0 — TPH(V)
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defined by
h(vi,...,0p, f1, - fo) = i) (02 @ - @0, @ f1 @ -+ ® f,)
This is easily seen to be multilinear and so there is a unique linear map
0:TP(V) — TP (V)
defined by
@R, i@ f)=filv) (2@ ®v,® fi®-® f,)

This is called the contraction in the contravariant index 1 and covariant index
1. Of course, contraction in other indices (one contravariant and one covariant)
can be defined similarly.

Example 14.8 Consider the tensor space 7}'(V'), which is isomorphic to £(V)
via the fact that

(v® f)(w) = flw)v

For p = ¢ = 1, the contraction takes the form
O(v® f) = f(v)

Now, for v # 0, the operator v ® f has kernel equal to ker(f), which has
codimension 1 and so there is a nonzero vector uw €V for which
V = (u) @ ker(f).
Now, if f(v) # 0 then V = (v) & ker(f) and

(v® f)(v) = flv)v

and so v is an eigenvector for the nonzero eigenvalue f(v). Hence,
V = &) @ & and so the trace of v ® f is precisely f(v). Since the trace is
linear, we deduce that the trace of any linear operator on V' is the contraction of
the corresponding vector in 73 (V). O

The Tensor Algebra of V
Consider the contravariant tensor spaces
TV(V)=T0(V) =V

For p = 0 we take T°(V') = F. The external direct sum
T(V)=@P1(V)

of these tensor spaces is a vector space with the property that
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TM(V)Y@TYV) =T"YV)

This is an example of a graded algebra, where T? (V') are the elements of grade
p. The graded algebra T'(V) is called the tensor algebra over V. (We will
formally define graded structures a bit later in the chapter.)
Since

T(V) =V @ eV =TIV)

—_——— ——
q factors

there is no need to look separately at 7;,(V').

Special Multilinear Maps

The following definitions describe some special types of multilinear maps.

Definition
1) A multilinear map f:V" — W is symmetric if interchanging any two
coordinate positions changes nothing, that is, if

Fui, .o 005, 0) = (01,000, 05,000, 04, U)

for any i # j.
2) A multilinear map f:V" — W is antisymmetric or skew-symmetric if
interchanging any two coordinate positions introduces a factor of —1, that

is, if

for, o vy, 0n) = = f(U1, 0, Uy e, Uy, )
fori # j.
3) A multilinear map f:V" — W is alternate or alternating if
flor,...;v,) =0

whenever any two of the vectors v; are equal. I
As in the case of bilinear forms, we have some relationships between these
concepts. In particular, if char(F') = 2 then
alternate = symmetric < skew-symmetric
and if char(F') # 2 then

alternate < skew-symmetric

A few remarks about permutations, with which the reader may very well be
familiar, are in order. A permutation of the set N = {1,...,n} is a bijective
function m: N — N. We denote the group (under composition) of all such
permutations by .S,,. This is the symmetric group on n symbols. A cycle of
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length k is a permutation of the form (41,42, ..., ), which sends i; to s, 42 to
i3,...,0p—1 to ix and 7 to ¢;. All other elements of N are left fixed. Every
permutation is the product (composition) of disjoint cycles.

A transposition is a cycle (i, j) of length 2. Every cycle (and therefore every
permutation) is the product of transpositions. In general, a permutation can be
expressed as a product of transpositions in many ways. However, no matter how
one represents a given permutation as such a product, the number of
transpositions is either always even or always odd. Therefore, we can define the
parity of a permutation m € .S,, to be the parity of the number of transpositions
in any decomposition of 7 as a product of transpositions. The sign of a
permutation is defined by

sg(m) = (~1)P0

If sg(m) = 1 then 7 is an even permutation and if sg(7) = —1 then 7 is an odd
permutation. The sign of  is often written (—1)".

With these facts in mind, it is apparent that f is symmetric if and only if
flo,. 0,) = f(Un(mm 7U7T(77.))
for all permutations 7 € .S,, and that f is alternating if and only if
flor, .o 0) = (*Uﬂf(vw(l), ‘e ,Uw(n))
for all permutations 7 € S,,.

Graded Algebras

We need to pause for a few definitions that are useful when discussing tensor
algebra. An algebra A over F' is said to be a graded algebra if as a vector space
over I, A can be written in the form

A= é A;
i=0
for subspaces A; of A, and where multiplication behaves nicely, that is,
AiA; C Ay
The elements of A; are said to be homogeneous of degree i. If a € A is written
a=a;+--+a;
for a;, € A;,, i # ij, then q;, is called the homogeneous component of a of

degree 1.

The ring of polynomials F'[z] provides a prime example of a graded algebra,
since
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where F}[x] is the subspace of F'[x] consisting of all scalar multiples of z".

More generally, the ring F[z1, ..., z,] of polynomials in several variables is a
graded algebra, since it is the direct sum of the subspaces of homogeneous
polynomials of degree i. (A polynomial is homogeneous of degree i if each
term has degree i. For example, p = xlxg + x1z923 1S homogeneous of degree
3.)

Graded Ideals

A graded ideal ] in a graded algebra A = Q) A; is an ideal I for which, as a
subspace of A,

I=InA4)
1=0

1

(Note that 7 N A; is not, in general, an ideal.) For example, the ideal I of F[z]
consisting of all polynomials with zero constant term is graded. However, the
ideal

J = (1+z) = {pl)(1+z)|px) € Flz]}

generated by 1 + z is not graded, since Fj[x] contains only monomials and so
J N Fj[x] = {0}.

Theorem 14.17 Let A be a graded algebra. An ideal I of A is graded if and
only if it is generated by homogeneous elements of A.

Proof. If I is graded then it is generated by the elements of the direct summands
IN A;, which are homogeneous. Conversely, suppose that I = (a;, | k € K)
where each ay, is homogeneous. Any u € I has the form

u = E U;;V;
i

where u;,v; € A. Since A is graded, each u; and v; is a sum of homogeneous
terms and we can expand u;a;v; into a sum of homogeneous terms of the form
eia; f; where e; and f; (and a;) are homogeneous. Hence, if

deg(e;a; f;) = deg(e;) - deg(a;) - deg(fi) =k
then e;a; f; € A N I and so
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Izé(]ﬂAi)

3

is graded. O]

If I is a graded ideal in A, then the quotient ring A/ is also graded, since it is
easy to show that

~

NA+T
:g:% i

Moreover, for x,y € [ and a; € A;,

(a5 +-2) + s +3) + 1] = (a + Dlag + 1) = agag + 1 € B5T

The Symmetric Tensor Algebra

We wish to study tensors in T?(V') for p > 1 that enjoy a symmetry property.
Let S, be the symmetric group on {1,...,p}. For each o € S, the multilinear
map f,: V*P — TP(V) defined by

Jo(V1,000,0p) = Vo) ® - @ Vg(p)
determines (by universality) a unique linear operator A, on T?(V") for which
Ar(V1 ® - @ Vp) = Vg(1) @ +++ @ Vg
Let B = {ey,...,e,} be abasis for V. Since the set
B={e;,®---®e, | e € B}

is a basis for 7?(V) and A, is a bijection of B, it follows that )\, is an
isomorphism of T?(V'). A tensor ¢t € T?(V') is symmetric if A\, (t) = ¢ for all
permutations o € S),.

A word of caution is in order with respect to the definition of A,. The
permutation A\, permutes the coordinate positions in a decomposable tensor, not
the indices. Suppose, for example, that p = 2 and o = (12). If {e;, 2} is a basis
for V then

Aazy(e1 @ep) = e ® ey

because )\, permutes the positions, not the indices. Thus, the following is not
true

Aaz)(e1 ® €2) = eq1) ® €q(1) = €2 ® €3

The set of all symmetric tensors
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STY(V)={t e T?(V) | \s(t) = t forallo € S,}
is a subspace of T?(V).

To study ST?(V') in more detail, let ey, ..., e, be a basis for T?(V'). Any tensor
v € T?(V') has the form

n
v = E iy, iy @ @€,

U1y yip=1

where «;, .. i # 0. It will help if we group the terms in such a sum according to
the multiset of indices. Specifically, for each nonempty subset S of indices
{1,...,n} and each multiset M = {i1,...,4,} of size p with underlying set S,
let G consist of all possible decomposable tensors

ekl®...®ekp

where (ki,...,kp) is a permutation of {iy,...,4,}. For example, if
M ={2,2,3} then

Gy = {62®€2®€3;€2®63®627€3®62®62}

Now, ignoring coefficients, the terms in the expression for v can be organized
into the groups Gj;. Let us denote the set of terms of v (without coefficients)
that lie in Gy by Gy (v). For example, if

V=126 R ey ®eg3+ 3es ®ez3®es+ e3® ez ® e

then

Gpo3y(v) ={ea®es ®e3, e @e3 ®ea}
and

Graz(v) ={es®@ez®er}

Further, let Sj;(v) denote the sum of the terms in v that belong to Gj/(v)
(including the coefficients). For example,

S2231(v) = 2e2 ®ex @ €3+ 3ea ® e3 @ €9
Thus,

v = Z SM(’U)

multisets M

Note that each permutation A, is a permutation of the elements of G, for each
multiset M. It follows that v is a symmetric tensor if and only if the following
conditions are satisfied:



376 Advanced Linear Algebra

1) (All or none) For each multiset M of size p with underlying set
S C{1,...,n}, we have

G]\I(U) == @ or G]\/[ (U) = G]u

2) If Gp(v) = Gy, then the coefficients in the sum Sy (v) are the same and
SO

S]\,{(U) = Oé]u(’l)) . Zt

teGy

where oy (v) is the common coefficient.

Hence, for a symmetric tensor v, we have

v= Yy (aM(v) Zt)

multisets M teG

Now, symmetric tensors act as though the tensor product was commutative. Of
course, it is not, but we can deal with this as follows.

Let 7:T?(V) — Fplei, ..., ey] be the function from 7%(V') to the vector space
F,lei,...,ey] of all homogeneous polynomials of degree p in the formal
variables ey, ..., e,, defined by

T(E Qi i, iy & 7 ®€i,,) = E Qi i, €0y €

In this context, the product in F)[ei, ..., e,] is often denoted by the symbol V ,
so we have

T(E Q... €0 ® - @ ez‘,}) = ai, e Ve Ver)

It is clear that 7 is well-defined, linear and surjective. We want to use 7 to
explore the properties of symmetric tensors, first as a subspace of 7?(V') and
then as a quotient space. (The subspace approach is a bit simpler, but works
only when char(F) = 0.)

The Case char(F') =0

Note that 7 takes every member of a group GG, to the same monomial, whose
indices are precisely M. Hence, if v € STP?(V') is symmetric then

3 (aM(v) 3 T(t>>

multisets M teGy

= Z (O‘M(U”GMD(GYII\/“'Veip)

i <<,

7(v)
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(Here we identify each multiset M with the nondecreasing sequence
7; < --- <4, of its members.)

As to the kernel of 7, if 7(v) = 0 for v € STP(V) then s (v)|G | = 0 for all
multisets M and so, if char(F') = 0, we may conclude that a,/(v) = 0 for all
multisets M, that is, v = 0. Hence, if char(F") = 0, the restricted map 7|g7»(y) is
injective and so it is an isomorphism. We have proved the following.

Theorem 14.18 Let V be a finite-dimensional vector space over a field F' with
char(F) = 0. Then the vector space ST? (V') of symmetric tensors of degree p is
isomorphic to the vector space of homogeneous polynomials Fleq, ..., ey], via
the isomorphism

T(Zail,...,ipeil X ® ez‘p> = Zail,...,ip(eil VeV O
The vector space ST?(V) of symmetric tensors of degree p is often called the
symmetric tensor space of degree p for V. However, this term is also used for

an isomorphic vector space that we will study next.

The direct sum

ST(V) = é STP(V)
p=0

is sometimes called the symmetric tensor algebra of V', although this term is
also used for a slightly different (but isomorphic) algebra that we will define
momentarily.

We can use the vector space isomorphisms described in the previous theorem to

move the product from the algebra of polynomials Fle,...,e,] to the
symmetric tensor space ST (V). In other words, if char(F') = 0 then ST'(V) is a
graded algebra isomorphic to the algebra of polynomials Fley, ..., e,].

The Arbitrary Case

We can define the symmetric tensor space in a different, although perhaps
slightly more complex, manner that holds regardless of the characteristic of the
base field. This is important, since many important fields (such as finite fields)
have nonzero characteristic.

Consider again the kernel of the map 7, but this time as defined on all of T?(V'),
not just STP(V). The map 7 sends elements of different groups G, (v) to
different monomials in F,[eq, ..., e,), and so v € ker(7) if and only if

T(SM(U)) =0

Hence, the sum of the coefficients of the elements in Gj/(v) must be 0.
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Conversely, if the sum of the coefficients of the elements in Gy (v) is 0 for all
multisets M, then v € ker(7).

Suppose that M = {i4,...,4,} is a multiset for which
t=e;, ® - ®e, € Gyv)

Then each decomposable tensor in Gj/(v) is a permutation of ¢ and so Sy (v)
may be written in the form

Sy(v) = Bei, ® - Qe + Z Qi (€, ® - ®e;,)
i

where the sum is over a subset of the symmetric group S,, corresponding to the
terms that appear in Sy, (v) and where

B+ Z a; =0
Substituting for (3 in the expression for Sy, (v) gives

Sy (v) = Z iAo (e ®---®e;) — (6, @~ De)]

i

It follows that v is in the subspace I, of T?(V') generated by tensors of the form
Ao (t) — t, that is

L= X\(t)—t|teT"(V),0 €8,
and so ker(7) C I,,. Conversely,
T(Ao(ek’ ®-® ekp) - (ekJ ®---® ekp)) =0

and so I, C ker(7).

Theorem 14.19 Let V be a finite-dimensional vector space over a field F'. For
p > 1, the surjective linear map T: T?(V') — Flei, ..., e,] defined by

T(E Qiy,..,iy €3 @+ @ eip) = E A B A

has kernel
L=\(t)—t|teT"(V),0 €8,
and so
TP (V
( ) %Fp[eb"'aen]
I,

The vector space TP (V') /1 is also referred to as the symmetric tensor space of’
degree p of V. The ideal of T (V') defined by
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I={t) —t|teT(V),0€S,,p>1)

being generated by homogeneous elements, is graded, so that

where Iy = {0}. The graded algebra

T(V)  STPV)+1
I @ 1

i=0

is also called the symmetric tensor algebra for V and is isomorphic to
Fley,...,e,]. O

Before proceeding to the universal property, we note that the dimension of the
symmetric tensor space STP(V') is equal to the number of monomials of degree
p in the variables ey, ... , e, and this is

dim(STP(V,)) = (n +p— 1)

p

The Universal Property for Symmetric p-Linear Maps

The vector space Fy[z1,...,x,] of homogeneous polynomials, and therefore
also the isomorphic spaces of symmetric tensors ST?(V) and T7(V)/I,, have
the universal property for symmetric p-linear maps.

Theorem 14.20 (The universal property for symmetric multilinear maps, as
measured by linearity) Let V' be a finite-dimensional vector space. Then the
pair (Fplxy, ..., x,],6: VP — Flzy, ..., x,]), where

t(vi,...,vp) =1 V-V,

has the universal property for symmetric p-linear maps with domain VP, as
measured by linearity. That is, for any symmetric p-linear map f:V>*P — U
where U is a vector space, there is a unique linear map 7: Fyz1, ..., z,] = U
for which

T(or V- V) = f(vr,...,0p)

for any vectors v; € V.
Proof. The universal property requires that

T(ei, V---Ve) = flei,...,e€i,)

and this does indeed uniquely define a linear transformation 7, provided that it
is well-defined. However,
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e, V---Ve, =e;V---Vej
if and only if the multisets {e; ,...,e; } and {ej,...,e; } are the same, which
implies that f(e;,...,e;,) = f(ej,...,e;,), since f is symmetric. [J
The Symmetrization Map

When char(F') = 0, we can define a linear map S:T?(V) — STP?(V), called
the symmetrization map, by

(Since char(F') = 0 we have p! # 0.)
Since A A, = A\, We have
1 1 1
)‘T(S(t)) = *'Z )‘T)‘U(t) = *,Z ATU(t) = *,Z Aa(t) = S(t)
D €S, D oES), p: €S,

and so S(t) is, in fact, symmetric. The reason for the factor 1/p! is that if v is a
symmetric tensor, then A, (v) = v and so

that is, the symmetrization map fixes all symmetric tensors.

It follows that for any tensor ¢t € T? (V')
S(t) = S(S(t) = S(t)

Thus, S is idempotent and is therefore the projection map of TP(V) onto
im(S) = ST?(V)

The Antisymmetric Tensor Algebra: The Exterior Product
Space

Let us repeat our discussion for antisymmetric tensors. Before beginning
officially, we want to introduce a very useful and very simple concept.

Definition Let E = {¢; | i € I} be a set, which we refer to as an alphabet. 4
word, or string over E of finite length p > 0 is a sequence w = x:---x,, where
x; € E. There is one word of length 0 over E, denoted by ¢ and called the
empty word. Let W,(E) be the set of all words over E of length p and let
W(E) be the set of all words over E (of finite length).



Tensor Products 381

Concatenation of words is done by placing one word after another: If
V=Y Yg then wv = x1---TpY1- - Yq. Also, ew = w = we.

If the alphabet E is an ordered set, we say that a word w over E is in
ascending order if each e; € E appears at most once in w and if the order of
the letters in w is that given by the order of E. (For example, eze, is in
ascending order but ejes and eges are not.) The empty word is in ascending
order by definition. Let A,(E) be the set of all words in ascending order over E
of length p and let A(E) be the set of all words in ascending order over E. [

We will assume throughout that char(F') # 2. For each o € S, the multilinear
map f,: V*P — TP(V) defined by

Jo(vi,es0p) = (=1)70501) @ -+ @ Vg(y)

where (—1)7 is the sign of o, determines (by universality) a unique linear
operator A, on T?(V') for which

)\a(vl K& UP) = (_1)07}0(1) K& v(r(p)
Note that if v; = v; for some ¢ # j, then for o = (3, j), we have

)\(y',j)('Ul®"'®Ui®"'®vj®"'®vp)
:_U]®'”®Uj®...®vi®'”®v[)
:7U1®"'®”@®"'®Uj®"'®vp

and since char(F') # 2, we conclude that \;)(v1 ® --- ® v),) = 0.

Let B = {ey,...,e,} be abasis for V. Since the set
B = {67;] & .- ®€7jp | € € B}

is a basis for 7?(V) and A, is a bijection of B, it follows that )\, is an
isomorphism of TP?(V). A tensor t€TP(V) is antisymmetric if
Ao (t) = (—1)7t for all permutations o € S),.

The set of all antisymmetric tensors
ASP(V) ={t € T*(V) | Ao(t) = (—1)"t forall o € S}
is a subspace of T?(V').

Letey,...,e, be abasis for T?(V'). Any tensor v € T?(V') has the form

n
v = E Qi€ Q- @ €,

U150 lp=1

where «;, i # 0. As before, we define the groups Gis(v) and the sums
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Sy (v). Each permutation A\, sends an element ¢ € G to another element of
G, multiplied by (—1)°. It follows that v is an antisymmetric tensor if and only
if the following hold:

1) If M is a multiset of size p with underlying set S C {1,...,n} and if at
least one element of M has multiplicity greater than 1, that is, if M is not a
set, then G/ (v) = 0.

2) For each subset M of size p of {1,...,n}, we have

Gyw)=0 or Guyv)=Gy

3) If Gy(v) =Gy, then since M is a set, there is a unique member
u=e; ®---®e;, of Gy for which i; <--- <4, If o,; denotes the
permutation in .S, for which A, , takes u to ¢, then

SM(W) = OLM(U) . Z Sg(Jng)t

teGy

where oy (v) is the absolute value of the coefficient of .

Hence, for an antisymmetric tensor v, we have

v=>y" (aM(v)Z sg(Tus )t)

M teGyy
Next, we need the counterpart of the polynomials Fj[ei,...,e,] in which
multiplication acts anticommutatively, that is, e;e; = —eje;. To this end, we

define a map ¢: W, (E) — A,(E) U {¢} as follows.

For t = e;---e;, let ¢(t) = e if ¢ has any repeated variables. Otherwise, there is
exactly one permutation of positions that will reorder ¢ in ascending order. If the
resulting word in ascending order is u, denote this permutation by o ,,. Set

o(t) = Sg(ot,u)at,U(t) = sg(oru)u

We can now define our anticommutative “polynomials.”

Definition Let E = (ey,...,e,) be a sequence of independent variables. Let
F; [€1,-..,en] be the vector space over F generated by all words over E in

ascending order. For p =0, this is Fe, which we identify with F. Define a
multiplication on the direct sum

oo

F-=Fle,...,ea =@ F,

p=0

as follows. For monomials f = x1---x), € F; and g =y,---y, € F set
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fg= 91 zpy1--y,)

and extend by distributivity to F~. The resulting multiplication makes
F~le,...,e,] into a (noncommutative) algebra over F. O

It is customary to use the notation A for the product in F'~[ey,...,e,]. This
product is called the wedge product or exterior product. We will not name the
algebra F'~, but we will name an isomorphic algebra to be defined soon.

Now we can define a function 7: T?(V') — F[e1, ..., e,] by

T(Zail,“qi,,eil Q- ® eip) = Zail,“.,@(ﬁ(@il ARRERAY=D)
It is clear that 7 is well-defined, linear and surjective.
The Case char(F) =0

Just as with the symmetric tensors, if char(F') # 0, we can benefit by restricting
7 to the space AT?(V). Let

s=e¢€;,® - ®e;, and t=e, Q@ Qe

belong to the same group G, and suppose that u = ¢;; ® --- @ ¢;, € Gy is in
ascending order, that is, i; < --- < 4,

If v € AT?(V) is antisymmetric, then

() =) (aM(v)Z Sg(Uu,t)T(t)>

M teGyr

= Z (aM (U)Z Sg(UU,t)Sg(Ut,u)u>
M

teGr

)

teGr

= ZO&]\/[(U”G]\HU
M

Now, if 7(v) = 0 for v € ATP(V) then a(v)|Gyr| = 0 for all sets M and so,
if char(F') = 0, we may conclude that «);(v) = 0 for all sets M, that is, v = 0.
Hence, if char(F') = 0, the restricted map 7| 47s(y) is injective and so it is an
isomorphism. We have proved the following.

Theorem 14.21 Let V be a finite-dimensional vector space over a field F' with
char(F) = 0. Then the vector space AT? (V') of antisymmetric tensors of degree
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p is isomorphic to the vector space F, [e1, ..., e,], via the isomorphism

T(Zail,.u,z‘pei, Q- Q eip) = Zaij.,..,ipei. N Nej, a

The vector space AT?(V') of antisymmetric tensors of degree p is called the
antisymmetric tensor space of degree p for V or the exterior product space
of degree p over V.

The direct sum

AT (V) = é AT?(V)
p=0

is called the antisymmetric tensor algebra of V' or the exterior algebra of V.

We can use the vector space isomorphisms described in the previous theorem to
move the product from the algebra F'~[ey, ..., e,] to the antisymmetric tensor
space AT (V). In other words, if char(F') = 0 then AT (V') is a graded algebra
isomorphic to the algebra F~[ey, ..., e,].

The Arbitrary Case

We can define the antisymmetric tensor space in a different manner that holds
regardless of the characteristic of the base field.

Consider the kernel of the map 7, as defined on all of T?(V'). Suppose that
v € ker(7). Since 7 sends elements of different groups Gj;(v) to different
monomials in Fley, ..., e,], it follows that 7 must send each sum Sy (v) to 0

T(SM(’U)) =0

Hence, the sum of the coefficients of the elements in Gj/(v) must be 0.
Conversely, if the sum of the coefficients of the elements in G, (v) is O for all
multisets M, then v € ker(7).

Suppose that M = {i1,...,,} is a set for which
u=¢e; R Qe € Gy (v)
Then
Su(v) = Be, @ @ei, + Y ai(=1)7 A (e, @ ®e;)

where the sum is over a subset of the symmetric group S,, corresponding to the
terms that appear in Sj;(v) and where
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B+ ai(-1)" =0

Substituting for 3 in the expression for Sy, (v) gives
Su(v) = Y ail(-1)" Ao es @ @ ey) — (e ® D)
It follows that v is in the subspace I, of T?(V") generated by tensors of the form
(=1)7A,(t) — t, that is
I,={((-1)°X(t) =t |t eT?(V),0 €8,)
and so ker(7) C I,,. Conversely,
T(Ao(er, @ @ep,) = (e @---@ep,)) =0

and so I, C ker(7).

Theorem 14.22 Let V' be a finite-dimensional vector space over a field F. For
p > 1, the surjective linear map T: TP(V') — F[e1, ..., e,] defined by

7’( E iy, iy @ @ 62‘,7) = E iy, i€ N N e,

has kernel
L= {((-1)X\(t) =t |t € T?(V),0 € S,)
and so
P
a (V) ~ F_[elv"'ven,]
I,

The vector space TP(V)/I is also referred to as the antisymmetric tensor
space of degree p of V or the exterior algebra of degree p of V. The ideal of
T(V') defined by

I={(=1)"A(t) =t [t e TP(V),0 € Sp,p > 1)

being generated by homogeneous elements, is graded, so that

o0 o0
1= =1,
p=1 p=0

where 1y = {0}. The graded algebra
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is also called the antisymmetric tensor space of V or the exterior algebra of
V' and is isomorphic to F~ [ey, ..., e,). O

The isomorphic exterior spaces AT?(V') and T?(V')/I, are usually denoted by
APV and the isomorphic exterior algebras AT(V) and T'(V)/I are usually
denoted by AV

Before proceding to the universal property, we note that the dimension of the
exterior tensor space A\”(V') is equal to the number of words of length p in

ascending order over the alphabet E = {ej, ..., e,} and this is
. P n
am(A' ) = (")

The Universal Property for Antisymmetric p-Linear Maps

The vector space I, [v1,...,2,] and therefore also the isomorphic spaces of
antisymmetric tensors A”(V') and T?(V)/I,, have the universal property for
symmetric p-linear maps.

Theorem 14.23 (The universal property for antisymmetric multilinear
maps, as measured by linearity) Let V' be a finite-dimensional vector space
over a field F. Then the pair

(Fy w1,y m,, 0 VP — EN [y, 20))

where
t(v1,...,vp) =1 Ao Ay

has the universal property for antisymmetric p-linear maps with domain V *?,
as measured by linearity. That is, for any antisymmetric p-linear map
[V = U where U is a vector space, there is a unique linear map
T Ey [T, ... 2] — U for which

T(or A Avp) = fur, ..., vp)

for any vectors v; € V.

Proof. Since f is antisymmetric, it is completely determined by the fact that it is
alternate and by its values on ascending words e; A---Ae;, where
i1 < --- < 1. Accordingly, we can define 7 by

T(ei, Ao Neiy) = flei,---,ei,)

and this does indeed uniquely define a well-defined linear transformation 7. (]
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The Determinant
The universal property for antisymmetric multilinear maps has the following

corollary.

Corollary 14.24 Let V be a vector space of dimension n over a field F. Let
E = (e1,...,e,) be an ordered basis for V. Then there is a unique
antisymmetric n-linear form d: V" — F for which

d(ey,...,en) =1

Proof. According to the universal property for antisymmetric n-linear forms, for
every such form f: V" — F, there is a unique linear map 74: \"V — F for
which

Ti(er A+ Nep) = fler,...,en) =1

But the dimension of A"V is () =1 and {e; A -+ A e} is a basis for \"(V).
Hence, there is only one linear map o: \"V — F with o(e; A--- Ae,) = 1. It
follows that if f and g are two such forms, then

fler,...,en) =ocler A= ANey) = gler, ..., en)

and the antisymmetry of f and g imply that f and g agree on every permutation
of (e1,...,ey,). Since f and g are multilinear, we must have f = g. OI

We now wish to construct the unique antisymmetric form d guaranteed by the
previous result. For any v € V, write [v]g; for the ith coordinate of the
coordinate matrix [v]g. Thus,

v = Z [’U] E,iei

i
For clarity, and since we will not change the basis, let us write [v]; for [v]z .

Consider the map d: V*" — F defined by
d(vr, .., v0) = > (1) 1l [Onl o)

oEeS,

Then d is multilinear since
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d(avy +buy, ..., v,) = Y (=1)7[avs + bualeqy[Vn]om)
=) _(=1)(alvi]oqy + blur]o) - [va]om
=a) (=) [v1)oq)[Oalowm)
+0> (=1) [u]oq): - [Vnlom)

=ad(v1,...,v,) + bd(uq,ve,...,v,)
and similarily for any coordinate position.
The map d is alternating, and therefore antisymmetric since char(F) # 2. To

see this, suppose for instance that v; = ve. For any permutation o € S, let
0(1) = a and 0(2) = b. Then the permutation o’ = (ab)o satisfies

1) Forxz #1landz # 2,0 (z) = o(x)
2) o'(1) = (ab)o(1) = (ab)(a) = b = o(2)
3) 0'(2) = (ab)o(2) = (ab)(b) = a = o(1).

Hence, 0’ # o and it is easy to check that (¢’) = o. It follows that if the sets
{o,0'} and {p, p'} intersect, then they are identical. In other words, the distinct
sets {0, 0’} form a partition of S,,.

Hence,
d(vi,v1, ., 00) = > (1) 0o Vil [Vnlowm)
S
- Z {(1)0[01]0(1) [vi]o@) - [Un]om)
pairs {o,0'}
+ (=17 [iowvilo@ - [valom
But
il [vilo@ = 1]om(viloe
and since (—1)” = —(—1)7, the sum of the two terms involving the pair {o, o’}
is 0. Hence, d(vy,v1,...,v,) = 0. A similar argument holds for any coordinate

pair.
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Finally, we have

der,....en) = > (=1)[er)oqy[enl ot

og€eSs,

= Z (_1)061,0(1)' . '6n,a(n)

og€eS,
=1
Thus, the map d is indeed the unique antisymmetric n-linear form on V*" for

which d(ey, ..., e,) = 1.

Given the ordered basis E = (ey,...,e,), we can view V as the space F" of
coordinate vectors and view V *" as the space M,,(F') of n X n matrices, via the
isomorphism

[Ul]l e [Un]l
(V1. 0,) — :
[Ul]n e ['Un,]n,

where all coordinate matrices are with respect to F.

With this viewpoint, d becomes an antisymmetric n-form on the columns of a
matrix A = (a; ;) given by

d(A) = Z (_1)(7@1,0’(1)' *Qpo(n)

c€eS,
This is called the determinant of the matrix A.
Properties of the Determinant

Let us explore some of the properties of the determinant function.

Theorem 14.25 If A € M, (F) then d(A) = d(A").
Proof. We know that

d(A) = Z (_1)0a1,a(1)' **Qpo(n)

o€eS,

which can be written in the form

d(A) = Z (_1)00’0’1(0(1))70(1)' *Qg-1(g(n)),0(n)

o€S,

But we can reorder the factors in each term so that the second indices are in
ascending order, giving
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d(A) = Z (_1)00'0’1 (1),1°" " Go=1(n),n

as desired. O
Theorem 14.26 If A, B € M, (F) then d(AB) = d(A)d(B).
Proof. Consider the map f4: M,,(F) — F defined by
fa(X) = d(AX)
We can consider f4 as a function on the columns of X and write
far (XM X0y 5 (AXW L AXM)) - d(AX)

Now, this map is multilinear since multiplication by A is distributive and the
determinant is multilinear. For example, let y € F™ and let X’ come from X by
replacing the first column by y. Then

fa@XV +by, ..., X" = (aAXY 4 pAy, ..., AX™)
— ad(AX) + bd(AX)
= afa(X) +bfa(X")

The map f4 is also alternating since d is alternating and interchanging two
coordinates in (X, ... X)) is equivalent to interchanging the corresponding
columns of AX.

Thus, f4 is an antisymmetric n-linear form and so must be a scalar multiple of
the determinant function, say f4(X) = vd(X). Then

d(AX) = fa(X) = vd(X)
Setting X = I, gives d(A) =~ and so
d(AX) =d(A)d(X)
as desired. O
If P € M,(F) is invertible, then PP~! = I,, and so
d(P)yd(P™) =1
which shows that d(P) # 0 and d(P~!) = 1/d(P).
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But any matrix A € M,,(F') is equivalent to a diagonal matrix

A=PDQ

where P and @ are invertible and D is diagonal with 1's and 0's on the main
diagonal. Hence,

d(A) = d(P)d(D)d(Q)

and so if d(A) # 0 then d(D) # 0. But this can happen only if D = I,,, whence
A is invertible. We have proved the following.

Theorem 14.27 A matrix A € M,,(F) is invertible if and only if d(A) # 0.0

Exercises

1.

2.

10.

11.

Show that if 7: W — X is a linear map and b: U x V' — W is bilinear then
70b:U x V — X is bilinear.

Show that the only map that is both linear and n-linear (for n > 2) is the
Zero map.

Find an example of a bilinear map 7:V xV — W whose image
im(7) = {7(u,v) | u,v € V} is not a subspace of W.

Prove that the universal property of tensor products defines the tensor
product up to isomorphism only. That is, if a pair (X,s:U x V — X) has
the universal property then X is isomorphicto U @ V.

Prove that the following property of a pair (W,g:U x V — W) with g
bilinear characterizes the tensor product (U @ V,t:U xV — U ® V) up
to isomorphism, and thus could have been used as the definition of tensor
product: For a pair (W,¢:U x V — W) with g bilinear if {u;} is a basis
for U and {v;} is a basis for V' then {g(u;, v;)} is a basis for W.

Provethat U@ V =V @ U.

Let X and Y be nonempty sets. Use the universal property of tensor
products to prove that Fxyy ~ Fx ® Fy.

Let u,w' €U and v, € V. Assuming that u® v# 0, show that
u®v =1 ®° ifand only if u' = ru and v' = r~'v, for r # 0.

Let B = {b;} be a basis for U and C = {¢;} be a basis for V. Show that any
function f:U xV — W can be extended to a linear function
f:U ®V — W. Deduce that the function f can be extended in a unique
way to a bilinear map ?: U xV — W. Show that all bilinear maps are
obtained in this way.

Let Sy, S5 be subspaces of U. Show that

(51®V)Q(SQ®V)%(51052)®V

Let SCU and T CV be subspaces of vector spaces U and V,
respectively. Show that

(SOV)NURT)~S®T
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12. Let 51,5, C U and T1,T, C V be subspaces of U and V, respectively.
Show that

(Sl & Tl) n (Sg ® Tg) ~ (Sl N 52) & (T1 ® T2)

13. Find an example of two vector spaces U and V' and a nonzero vector
x € U ® V that has at least two distinct (not including order of the terms)
representations of the form

n
T = g U; ® v;
i=1

where the w;'s are linearly independent and so are the v;'s.

14. Let tx denote the identity operator on a vector space X. Prove that
v Oty = tyew.

15. Suppose that 7:U —V, 7:V — W and 0:U' — Vi, o09: Vi — W',
Prove that

(pom)® (02001) = (12 ®03)0 (11 ®oy)

16. Connect the two approaches to extending the base field of an F'-space V' to
K (at least in the finite-dimensional case) by showing that
F"® pK ~ (K)".

17. Prove that in a tensor product U ® U for which dim(U) > 2 not all vectors
have the form v ® v for some w,v € U. Hint: Suppose that u,v € U are
linearly independent and consider u ® v + v ® w.

18. Prove that for the block matrix

A B
=13 2
0 C block

we have d(M) = d(A)d(C).
19. Let A, B € M,(F). Prove that if either A or B is invertible, then the
matrices A + aB are invertible except for a finite number of o's.

The Tensor Product of Matrices

20. Let A = (a;;) be the matrix of a linear operator 7 € L(V') with respect to
the ordered basis A = (u1,...,u,). Let B = (b; ;) be the matrix of a linear
operator o € L(V) with respect to the ordered basis B = (v1,...,vy).
Consider the ordered basis C = (u; ® v;) ordered by lexicographic order,
that is u; ® v; < uy @ v if ¢ < £ or i = £ and j < k. Show that the matrix
of 7 ® o with respect to C is

alle (lLQB cee alm,B

a1B  apsB -+ ax,B
A®B= " '. v

a'rL,lB an,QB T an,nB

block



21.
22.
23.
24.

25.
26.

27.

28.
29.

30.
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This matrix is called the tensor product, Kronecker product or direct
product of the matrix A with the matrix B.

Show that the tensor product is not, in general, commutative.

Show that the tensor product A ® B is bilinear in both A and B.

Show that A ® B = 0 ifand only if A =0 or B = 0.

Show that

a) (A B)' =A'"® B!

b) (A® B)*=A*® B* (when F' = C)

Show that if u, v € F™ then (as row vectors) u'v = u’ ® v.

Suppose that A, ,, Bpq, Cni and D,, are matrices of the given sizes.
Prove that

(A® B)(C ® D) = (AC) ® (BD)

Discuss the case k = r = 1.
Prove that if A and B are nonsingular, then so is A ® B and

(Ao B)'=A"'e B!

Prove that trf(A ® B) = tr(A) - tr(B)

Suppose that F' is algebraically closed. Prove that if A has eigenvalues
Al,---, A, and B has eigenvalues pig,...,u, both lists including
multiplicity then A ® B has eigenvalues {\;ju; |7 <n,j<m}, again
counting multiplicity.

Prove that det(A,,, ® By,m) = (det(A;,,))" (det(By,m))"-



Chapter 15
Positive Solutions to Linear Systems:
Convexity and Separation

Given a matrix A € M,,,(R) consider the homogeneous system of linear
equations

Ar =0

It is of obvious interest to determine conditions that guarantee the existence of
positive solutions to this system, in a manner made precise by the following
definition.

Definition Let v = (ay, ..., a,) € R™. Then
1) v is nonnegative, written v > 0 if

a; > 0foralli=1,....n
(Note that the term positive is also used in the literature for this property.)

The set of all nonnegative vectors in R" is the nonnegative orthant in R".
2) wis strictly positive, written v > 0 if v is nonnegative but not 0, that is, if

a; >0foralli=1,...,nandaj > 0 forat leastone j =1,...,n
The set R of all strictly positive vectors in R" is the strictly positive

orthant in R".
3) wis strongly positive, written v > 0 if

a; >0foralli=1,....n

The set R} of all strongly positive vectors in R" is the strongly positive
orthant in R".[J

We are interested in conditions under which the system Az = 0 has strictly
positive or strongly positive solutions. Since the strictly and strongly positive
orthants in R” are not subspaces of R", it is difficult to use strictly linear
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methods in studying this issue: we must also use geometric methods, in
particular, methods of convexity.

Let us pause briefly to consider an important application of strictly positive

solutions to the system Az =0. If X = (z1,...,2,) is a strictly positive
solution then so is the vector
1 1
II= ZmiX = Z—xi(xl,...,:rn) = (M1,...,7n)

which is a probability distribution. Note that if we replace “strictly” with
“strongly” then the probability distribution has the property that each probability
is positive.

Now, the product AIl is the expected value of the columns of A with respect to
the probability distribution II. Hence, Az = 0 has a strictly (strongly) positive
solution if and only if there is a strictly (strongly) positive probability
distribution for which the columns of A have expected value 0. If these columns
represent the payoffs from a game of chance then the game is fair when the
expected value of the columns is 0. Thus, Az =0 has a strictly (strongly)
positive solution if and only if the “game” A, where in the strongly positive
case, all outcomes are possible, is fair.

As another (related) example, in discrete option pricing models of mathematical
finance, the absence of arbitrage opportunities in the model is equivalent to the
fact that a certain vector describing the gains in a portfolio does not intersect the
strictly positive orthant in R". As we will see in this chapter, this is equivalent
to the existence of a strongly positive solution to a homogeneous system of
equations. This solution, when normalized to a probability distribution, is called
a martingale measure.

Of course, the equation Az = 0 has a strictly positive solution if and only if
ker(A) contains a strictly positive vector, that is, if and only if

ker(A) = RowSpace(A)™*

meets the strictly positive orthant in R™. Thus, we wish to characterize the
subspaces S of R" for which S+ meets the strictly positive orthant in R", in
symbols

SENART #0
for these are precisely the row spaces of the matrices A for which Az = 0 has a

strictly positive solution. A similar statement holds for strongly positive
solutions.

Looking at the real plane R?, we can divine the answer with a picture. A one-
dimensional subspace S of R? has the property that its orthogonal complement
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St meets the strictly positive orthant (quadrant) in R? if and only if S is the z-

axis, the y-axis or a line with negative slope. For the case of the strongly

positive orthant, S must have negative slope. Our task is to generalize this to

R™.

This will lead us to the following results, which are quite intuitive in R? and R?
StNRL, # pifandonly if SNRY = () (15.1)

and

StNRY #Pifand only if SNRY, = 0) (15.2)

Let us apply this to the matrix equation Az = 0. If S = RowSpace(A) then
S+ = ker(A) and so we have

ker(A) NR" . # ) if and only if RowSpace(A) N R’ =0

and
ker(A) NR’ # 0 if and only if RowSpace(A) "R, =0
Now,
RowSpace(A) NR! = {vA | vA > 0}
and

RowSpace(A) NRY} | = {vA | vA > 0}
and so these statements become

Az = 0 has a strongly positive solution if and only if {vA | vA >0} =0

and

Az = 0 has a strictly positive solution if and only if {vA | vA > 0} =0

We can rephrase these results in the form of a theorem of the alternative, that is,
a theorem that says that exactly one of two conditions holds.

Theorem 15.1 Let A € M,,, ,(R).

1)  Exactly one of the following holds:
a) Au = 0 for some strongly positive u € R"
b) vA > 0for somev € R™

2)  Exactly one of the following holds:
a) Au = 0 for some strictly positive u € R"
b) vA >0 for somev € R™. [

Before proving statements (15.1) and (15.2), we require some background.
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Convex, Closed and Compact Sets

We shall need the following concepts.

Definition
1) Letxy,...,z; € R™ Any linear combination of the form

tixy + - 4ty

where t1 + -+t = 1,0 < t; <1 is called a convex combination of the
vectors T, ..., Ty.

2) A subset X CR" is convex if whenever x,y € X then the entire line
segment between x and y also lies in X, in symbols

{szx+ty|s+t=1,0<st<1}CX

3) A subset X CR" is closed if whenever (x,) is a convergent sequence of
elements of X, then the limit is also in X. Simply put, a subset is closed if it
is closed under the taking of limits.

4) A subset X C R" is compact if it is both closed and bounded.

5) Asubset X C R" is aconeifx € X implies that ax € X foralla > 0. O

We will also have need of the following facts from analysis.

1) A continuous function that is defined on a compact set X in R" takes on its
maximum and minimum values at some points within the set X.

2) A subset X of R" is compact if and only if every sequence in X has a
subsequence that converges in X.

Theorem 15.2 Let X and Y be subsets of R". Define
X+Y={a+blaeX, beY}

1) If X andY are convex thensois X +Y

2) If X is compact andY is closed then X +Y is closed.

Proof. For 1) let zy + o and 1 + y; be in X + Y. The line segment between
these two points is

t(xo+yo) + (1 —t)(z1+11)
= tl’o =+ (1 — t)l’l +ty() + (1 — t)yl
eX+Y

where 0 <t < 1andso X + Y is convex.

For part 2) let =, +y, be a convergent sequence in X + Y. Suppose that
Ty + Yn — 2. We must show that z € X + Y. Since x, is a sequence in the
compact set X, it has a convergent subsequence x,, whose limit = lies in X.
Since a,, + b,, — z and a,,, — x we can conclude thatb,, — z — z. Since Y is
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closed, we must have z—z €Y and so z=z+(z—2z)€ X+Y, as
desired.

Convex Hulls
We will have use for the notion of convex hull.

Definition The convex hull of a set S = {x1,..., 2} of vectors in R" is the

smallest convex set in R" that contains the vectors x1,...,x,. We denote the
convex hull of S by C(S). O

Here is a characterization of convex hulls.

Theorem 15.3 Let S = {x1, ...,z } be a set of vectors in R™. Then the convex

hull C(S) is the set A of all convex combinations of vectors in S, that is,
CS)=A={tim+ - +terp |0<t; < 1,5t =1}

Proof. First, we show that A is convex. Let

X =t + -+t
Y =s1x1+ - + spxp

be convex combinations of S and leta +b = 1,0 < a,b < 1. Then

aX +bY =a(tixy + -+ + trxy) + b(s121 + -+ + spxy)
= (at; + bsy)z1 + - + (aty + bsg)xk

But this is also a convex combination of the vectors in S because
0 < at; + bs; < (a+ b)max(s;,t;) = max(s;, ¢;) <1
and
k k k

Z(ati +bs;) = aZti + sz,,; =a+b=1

i=1 i=1 i=1
Thus,

X YeA=aX+bY €A

which says that A is convex. Since S C A, we have C(S) C A. Clearly, if D is
a convex set that contains S then D also contains A. Hence A C C(S). O

Theorem 15.4 The convex hull C(S) of a finite set S = {x1,...,x;} of vectors
in R™ is a compact set.
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Proof. Let

D= {(tl,...,tk) | 0<t; < 1andZtL:1}
i

and define a function f: D — R" as follows. If t = (¢, ..., ) then
f(t) =ty + -+ oy

To see that f is continuous, let s = (sy,...,s;) and let M = max(||«;||). For

€ >0,if||s — t|| < e/kM then
€
i— Gl < ls—t| < —
|si —til < lls —tll < —~

and so

1(8) = FOI = [I(s1 = t)@s + -+ 4 (s — t) |
<lsi = tallleall + - + sk — il [l
< EM||s — ]

=€

Finally, since f maps the compact set D onto C(.S), we deduce that C(S) is
compact. [

Linear and Affine Hyperplanes

We next discuss hyperplanes in R”. A linear hyperplane in R" is an (n — 1)-
dimensional subspace of R™. As such, it is the solution set of a linear equation
of the form

ax1+ - +a,x, =0
or
<N,CL’> =0

where N = (ay,...,a,) is nonzero and xz = (z1,...,2,). Geometrically
speaking, this is the set of all vectors in R" that are perpendicular (normal) to
the vector V.

An (affine) hyperplane is a linear hyperplane that has been translated by a
vector. Thus, it is the solution set to an equation of the form

ar(xy — b))+ -+ an(x, —b,) =0
or
a1z + -+ apTy = arhy + - --anby,

or finally
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(N,z) = (N,B)
where B = (by,...,by).

Let us write H(N,b), where N € R" and b € R, to denote the hyperplane

H(N,b) ={x e R" | (N,z) = b}
Note that the hyperplane

H(N,|IN|*) = {x € R" | (N,z) = |N|*}
contains the point N, which is the point of H(V,b) closest to the origin, since
Cauchy's inequality gives
INI* = (N, z) < [N ]l[|]

and so || N|| < ||z| forall z € H(N,|[N||*). Moreover, any hyperplane has the
form H(N, || N||?) for any appropriate vector N.
A hyperplane defines two (nondisjoint) closed half-spaces

H(N,b) ={x eR" | (N,z) > b}

H_(N,b) ={z e R" | (N,z) <b}
and two (disjoint) open half-spaces

HL(N,b) ={z e R" | (N,z) > b}

H?(N,b) ={x e R" | (N,z) < b}
It is not hard to show that

H(N,b)NH_(N,b) = H(N,b)
and that H% (N, b), H° (N, b) and H(N, b) are pairwise disjoint and

HE(N,b)U H2(N,b) UH(N,b) =R"

Definition The subsets X andY of R" are strictly separated by a hyperplane

H(N,b) if X lies in one open half-space determined by H(N,b) and Y lies in
the other. Thus, one of the following holds:

1) (N,x)<b< (N,y)forallz € X,yeY
2) (N,y)<b< (N,z)forallz e X,yeY.O

Note that 1) holds for NV and b if and only if 2) holds for — N and —b, and so we
need only consider one of the conditions to demonstrate that two sets X and Y
are not stricctly separated. In particular, suppose that 1) fails for all N and b.
Then the condition
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(=N,y) < =b < (=N,z)

also fails and so 1) and 2) both fail for all NV and b and X and Y are not strictly
separated.

The following type of separation is stronger than strict separation.

Definition The subsets X and Y of R" are strongly separated by a hyperplane
H(N,Db) if there is an e > 0 for which one of the following holds:

) (Nyz)<b—e<b4+e<(N,y)forallr € X,yeY
2) (N,y)<b—e<e+b< (N,z)forallz e X,yeYO

Note that, as before, we need only consider one of the conditions to show that
two sets are not strongly separated.

Separation

Now that we have the preliminaries out of the way, we can get down to some
theorems. The first is a well known separation theorem that is the basis for
many other separation theorems. It says that if a closed convex set C' in R™ does
not contain a vector b, then C can be strongly separated from b by a hyperplane.

Theorem 15.5 Let C' be a closed convex subset of R".

1) C contains a unique vector N of minimum norm, that is, there is a unique
vector N € C' for which

INVI] <]

forallz € C,x # N.
2) If C does not contain the origin then C lies in the closed half-space

(N,z) > |N||* >0

where N # 0 is the vector in C of minimum norm. Hence, 0 and C' are
strongly separated by the hyperplane H(N, ||N||*/2).
3) Ifb ¢ C then b and C are strongly separated.
Proof. For part 1), we first show that C' contains a vector N of minimum norm.
Recall that the Euclidean norm (distance) is a continuous function. Although C'
need not be compact, if we choose a real number s such that the closed ball

By(0) = {z e R" | [|2]| < s}

intersects C, then that intersection C' = C' N B;(0) is both closed and bounded
and so is compact. The distance function therefore achieves its minimum on C”,
say at the point N € C' C C. It is clear that if for some v € C we have
|v]| < [|N]| then v € By (0) € C’, which is a contradiction to the minimality
of N. Hence, N is a vector of minimum norm in C'. Let us write | N|| = a.
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Suppose now that x # N is another vector in C' with ||z|| = a. Since C is
convex, the line segment from N to z must be contained in C'. In particular, the
vector z = (1/2)(x 4+ N) is in C. Since x cannot be a scalar multiple of N, the
Cauchy-Schwarz inequality is strict

(N,2) < [N[l] = a®

Hence
1
212 = Zllz + NP
1
= Z(IINII2 +2(N,z) + [|lz[1*)

= S(@+ (N,2))
<a’

But this contradicts the minimality of @ and so x = N. Thus, C' has a unique
vector of minimum norm.

For part 2), if there is an « € C' for which
(N,z) < |N|* =a®

then again setting z = (1/2)(x + N) € C we find that z has norm less than a,
which is not possible. Hence,

2
(N, z) > ||N]]

forallz € C.

For part 3), if b ¢ C is not the origin, then 0 is not in the closed convex set
C—{b}={c—-b|ceC}
Hence, by part 2), there is a nonzero N € C for which
(N,z) > [N|P

for all x € C — {b}. But as = ranges over C' — {b}, the vector z — b ranges
over C' so we have

(N,z—b) > |N|?
for all z € C'. This can be written
(N, @) > [IN|*+ (N,b)

for all z € C. Hence
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(N,b) < [N|* +(N,b) < (N, z)

from which it follows that b and C' are strongly separated. [1

The next result brings us closer to our goal by replacing the origin with a
subspace S disjoint from C. However, we must strengthen the requirements on
C abit.

Theorem 15.6 Let C' be a compact convex subset of R™ and let S be a subspace
of R" such that C N S = 0. Then there exists a nonzero N € S+ such that

2
(N, z) > [|N]|

for all z: € C. Hence, the hyperplane H(N,||N||*/2) strongly separates S and
C.

Proof. Consider the set S + C, which is closed since S is closed and C' is
compact. It is also convex since S and C are convex. Furthermore, 0 ¢ S + C
because if 0 = s + c thenc = —s would be in C' N S = 0.

According to Theorem 15.5, the set S + C' can be strongly separated from the
origin. Hence, there is a nonzero N € R" such that

(N,z) > |N|?
forallx = s+c €5+ C, thatis,
(N, )+ (N,c) = (N,s+¢) > |N|?

for all s € S and ¢ € C. Now, if (N,s) is nonzero for any s € S, we can
replace s by an appropriate scalar multiple of s to make the left side negative,
which is impossible. Hence, we must have (N,s) =0 for all s € S. Thus,
N € S+ and

(N,c) > |N|?
forall ¢ € C, as desired. (I

We can now prove (15.1) and (15.2).

Theorem 15.7 Let S be a subspace of R". Then

1) SNRY =0ifandonly if S*NR?, # 0

2) SNRY, =0 ifand only if S* NR" # ()

Proof. For part 1), it is clear that there cannot exist vectors v € R}, and
v € R} that are orthogonal. Hence, SNR" and S+ NR", cannot both be
nonempty, so if S*NR%, #0 then SNR? =0. The converse is more
interesting.



Positive Solutions to Linear Systems: Convexity and Separation 405

Suppose that S N R’ = (). A good candidate for an element of S* NR", would
be a normal to a hyperplane that separates .S’ from a subset of R"}. Note that our
theorems do not allow us to separate S from R’}, because it is not compact. So
consider instead the convex hull A of the standard basis vectors €1, ..., €, in R",

A:{t161+"'+tn€n|0§ti S 1,2151:1}

It is clear that A is convex and A C R” and so AN S = (. Also, A is closed
and bounded and therefore compact. Hence, by Theorem 15.6, there is a
nonzero vector N = (ay, ..., a,) € S* such that

(N,8) > | N|?
for all 6 € A. Taking 6 = ¢; gives
a; = (N,&) 2 |N|* >0

and so N € S NR', which is therefore nonempty.

To prove part 2), again we note that there cannot exist vectors v € R, and
v € R" that are orthogonal. Hence, SNR", and S+ NR" cannot both be
nonempty, so if S* NR” # () then SNR'}, = (.
To prove that

SNRY, =0=STNR} #0

note first that a subspace contains a strictly positive vector N if and only if it
contains a strictly positive vector whose coordinates sum to 1.

Let B={Bj,..., By} be a basis for S and consider the matrix
M = (mi;) = (Bi| By | -+ | By)
whose columns are the basis vectors in B. Let the rows of M be denoted by
Ry,..., R,. Note that R; € R¥, where k = dim(S).
Now, S+ contains a strictly positive vector N = (ay, ..., a,) if and only if

aRi+--+a, R, =0

the convex hull C' of the vectors Ry, ..., R, in RF. Hence,

ST NRY #Pifand only if 0 € C

for coefficients a; > 0 satisfying Xa; = 1, that is, if and only if 0 is contained in

Thus, we wish to prove that

SARL, =0 =0eC

or, equivalently,
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0£C=SNR", #0

Now we have something to separate. Since C' is closed and convex, it follows
from Theorem 15.5 that there is a nonzero vector B = (by,...,b;) € R* for
which

(B,z) > ||B|* >0
for all x € C'. Consider the vector
v=bB1+--+b,B, €S
The ith coordinate of v is
bimiy + -+ bymy = (B, R;) > | B> > 0

and so v is strongly positive. Hence, v € S NR’} and so this set is nonempty.
This completes the proof. [

Nonhomogeneous Systems
We now turn our attention to nonhomogeneous systems
Ax =10

The following lemma is required.

Lemma 15.8 Let A € M, ,(R). Then the set
C={Ay|yeR"y >0}

is a closed, convex cone.
Proof. We leave it as an exercise to prove that C' is a convex cone and omit the
proof that C is closed. [J

Theorem 15.9 (Farkas's lemma) Let A € M,,,,(R) and let b € R™ be
nonzero. Then exactly one of the following holds:

1) There is a strictly positive solution u € R" to the system Ax = b.

2) There is a vector v € R™ for which vA < 0 and (v,b) > 0.

Proof. Suppose first that 1) holds. If 2) also holds, then

(vA)u = v(Au) = (v,b) >0

However, vA < 0 and u > 0 imply that (vA)u < 0. This contradiction implies
that 2) cannot hold.

Assume now that 1) fails to hold. By Lemma 15.8, the set
C={Ay|yeR",y >0} CR"

is closed and convex. The fact that 1) fails to hold is equivalent to b ¢ C.
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Hence, there is a hyperplane that strongly separates b and C. All we require is
that b and C' be strictly separated, that is, for some o € R and v € R™

(v,z) < a < (v,b) forallz € C

Since 0 € C' it follows that & > 0 and so (v, b) > 0. Also, the first inequality is
equivalent to (v, Ay) < a, that s,

(Alv,y) < «

for all y € R,y > 0. We claim that this implies that A’v cannot have any
positive coordinates and thus vA < 0. For if the ith coordinate (A'v); is
positive, then taking y = Ae; for A > 0 we get

)\(At’U)y; <«
which does not hold for large A. Thus, 2) holds. [

In the exercises, we ask the reader to show that the previous result cannot be
improved by replacing vA < 0 in statement 2) with vA < 0.

Exercises

1. If A is an m X n matrix prove that the set {Az |z € R",z >0} is a
convex cone in R™.

2. If A and B are strictly separated subsets of R” and if A is finite, prove that
A and B are strongly separated as well.

3. Let V be a vector space over a field F' with char(F') # 2. Show that a
subset X of V is closed under the taking of convex combinations of any
two of its points if and only if X is closed under the taking of arbitrary
convex combinations, that is, for all n > 1

n

n
T1,...,T, € X, Z’MZLOST’,‘S 1:>Z’r‘7jili7jEX

1=1 i=1

4. Explain why an (n — 1)-dimensional subspace of R” is the solution set of a
linear equation of the form a,x; + --- + a,x, = 0.
5. Show that

H,(N,b) NH_(N,b) = H(N,b)
and that HS (N, b), H° (N, b) and H(N, b) are pairwise disjoint and
HL(N,b)U HZ(N,b) UH(N,b) =R"

6. A function T:R" — R™ is affine if it has the form T'(v) = 7(v) + b for
b € R™, where 7 € L(R",R™). Prove that if C C R" is convex then so is
T(C) CR™.
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10.

11.

12.

13.

14.
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Find a cone in R? that is not convex. Prove that a subset X of R" is a
convex cone if and only if z,y € X implies that Az 4+ py € X for all
A pe > 0.

Prove that the convex hull of a set {x1,...,z,} in R" is bounded, without
using the fact that it is compact.

Suppose that a vector z € R” has two distinct representations as convex
combinations of the vectors wq,...,v,. Prove that the vectors
vy — V1, ...,0, — v; are linearly dependent.

Suppose that C' is a nonempty convex subset of R" and that H(N,b) is a
hyperplane disjoint from C'. Prove that C' lies in one of the open half-spaces
determined by H (N, b).

Prove that the conclusion of Theorem 15.6 may fail if we assume only that
C' is closed and convex.

Find two nonempty convex subsets of R? that are strictly separated but not
strongly separated.

Prove that X and Y are strongly separated by H (N, ) if and only if

(N,2') > bforallz’ € X, and (N,y') < b forally €Y,

where X, = X 4+ eB(0,1) and Y; =Y + eB(0, 1) and where B(0, 1) is the
closed unit ball.

Show that Farkas's lemma cannot be improved by replacing vA <0 in
statement 2) with vA < 0. Hint: A nice counterexample exists for
m=2,n=3.



Chapter 16
Affine Geometry

In this chapter, we will study the geometry of a finite-dimensional vector space
V', along with its structure-preserving maps. Throughout this chapter, all vector
spaces are assumed to be finite-dimensional.

Affine Geometry

The cosets of a quotient space have a special geometric name.

Definition Let S be a subspace of a vector space V. The coset
v+S={v+s|seS}

is called a flat in V' with base S. We also refer to v+ S as a translate of S.
The set A(V) of all flats in V is called the affine geometry of V. The
dimension dim(A(V)) of A(V) is defined to be dim(V'). O

Here are some simple yet useful observations about flats.

1) A flat X =2+ S is a subspace if and only if = 0, that is, if and only if
X=5.

2) A subset X is a flat if and only if for any x € X the translate S = —x + X
is a subspace.

3) fX=z+Sisaflatand0 € z+ X thenz+ X = S.

Definition 7wo flats x =x+ S and Y =y + T are said to be parallel if
S CTorT CS. This is denoted by X || Y. O

We will denote subspaces of V' by the letters S,7,... and flats in V by
X, Y,....

Here are some of the basic intersection properties of flats.
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Theorem 16.1 Let S and T be subspaces of V and let X =x+ S and
Y =y+Tbeflatsin V.
1) The following are equivalent:
agr+S=y+5S
brey+S
cgr—yes
2) The following are equivalent:
a) w+ X CY forsomew eV
b)) v+ S CT forsomeveV
¢ SCT
3) The following are equivalent:
a) w+ X =Y forsomew eV
b) v+ S =T forsomeveV
¢ S=T
49 XNY#), SCT&XCY
5) XNY#0, S=T&X=Y
6) IX||YthenXCY,YCXorXNnY =10
7) X || Y if and only if some translation of one of these flats is contained in
the other.
Proof. We leave proof of part 1) for the reader. To prove 2), if 2a) holds then
—y4+w+ x+ S C T and so 2b) holds. Conversely, if 2b) holds then

y+tv—z+(x+S)Cy+T=Y

and so 2a) holds. Now, if 2b) holds then v=v+0€T and so
S C —v+T CT, which is 2c¢). Finally, if S C T then just take v = 0 to get
2b). Part 3) is proved in a similar manner.

For part 4), we know that w + X C Y for some w € V. However, ifz € XNY
then w+2€Y and so we —z24+Y =Y, whence X CY. Part 5) follows
similarly. We leave proof of 6) and 7) to the reader. O

Part 1) of the previous theorem says that, in general, a flat can be represented in
many ways as a translate of the base S. If X = x4 .5, then z is called a flat
representative, or coset representative of X. Any element of a flat is a flat
representative.

On the other hand, if t + S =y + 7T then x —y+ S =T and the previous
theorem tells us that S = T'. Thus, the base of a flat is uniquely determined by
the flat and we can make the following definition.

Definition 7he dimension of a flat x + S is dim(S). A flat of dimension k is
called a k-flat. A O-flat is a point, a 1-flat is a line and a 2-flat is a plane. A flat
of dimension dim(A(V')) — 1 is called a hyperplane. O
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Affine Combinations
Ifr; € Fand vy + --- + r, = 1 then the linear combination
T+ -+ Xy,
is referred to as an affine combination of the vectors x1, ..., z,.
Our immediate goal is to show that, while the subspaces of V' are precisely the
subsets of V' that are closed under the taking of linear combinations, the flats of

V' are precisely the subsets of V' that are closed under the taking of affine
combinations.

First, we need the following.

Theorem 16.2 If char(F') # 2, then the following are equivalent for a subset X

of V.

1) X is closed under the taking of affine combinations of any two of its points,
that is,

zyeX=>rr+1-ryeX
2) X is closed under the taking of arbitrary affine combinations, that is,
T1, e €X, M+t =1=>r+ - +rmr, € X

Proof. It is clear that 2) implies 1). For the converse, we proceed by induction
on n > 2. Part 1) is the case n = 2. Assume the result true for n — 1 and
consider the affine combination

Z=7T21+ -+ 1y

If one of ry or ry is different from 1, say r; # 1 then we may write

T2 Ty 4 e+ Tn T )
1 " 2 1— r n
and since the sum of the coefficients inside the large parentheses is 1, the
induction hypothesis implies that this sum is in X. Then 1) shows that z € X.
On the other hand, if ry = 7o = 1 then since char(F’) # 2, we may write

z:rller(lfrl)(

1 1
z=2 |:25E1 + 2I2:| + 7133+ o+ TRy,

and since 1) implies that (1/2)x; + (1/2)z9 € X, we may again deduce from
the induction hypothesis that z € X. In any case, z € X and so 2) holds. O

Note that the requirement char(F') # 2 is necessary, for if F' = Z, then the
subset
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X = {(Oa 0), (1,0), (0, 1)}
satisfies condition 1) but not condition 2). We can now characterize flats.
Theorem 16.3

1) A subset X of V is aflat in'V if and only if it is closed under the taking of
affine combinations, that is, if and only if

Ty, ., € X, 4+ +rp=1=>re 4+ +rpze, € X

2) Ifchar(F') # 2, a subset X of 'V is a flat if and only if © contains the line
through any two of its points, that is, if and only if

ryeX=re+(l-rjyeX

Proof. Suppose that X =z + Sisa flatand z4,...,2, € X. Thenz; = x + s,
for s; € S and so if Xr; = 1, we have

Zrixi :Zri(m—l—si) :x—l—ZmSi cx+S
i i i

and so X is closed under affine combinations. Conversely, suppose that X is
closed under the taking of affine combinations. It is sufficient (and necessary) to
show that for a given xy € X, the set S = —x(y + X is a subspace of V. But if

—xg+x1,—Tg+ T2 €S

then for any 71,70 € F'

ri(—zo + 1) + ra(—xo + 22) = —(r1 + ro)xo + 171 + r2T2
= —Xg9 + [(1 -7 — Tz)xo +rixy + 7“21‘2]
€ —xp+ X

Hence, S is a subspace of V. Part 2) follows from part 1) and Theorem 16.2. [J
Affine Hulls

The following definition gives the analog of the subspace spanned by a
collection of vectors.

Definition Let C' be a nonempty set of vectors in V. The affine hull of C,
denoted by hull(C), is the smallest flat containing C. O

Theorem 16.4 The affine hull of a nonempty subset C' of V' is the affine span
of C, that is, the set of all affine combinations of vectors in C

n n
hull(C) = {Zr,,;m,,;‘n >1, x1,...,x, € C, Zn = 1}
i=1 i=1
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Proof. According to Theorem 16.3, any flat containing C' must contain all affine
combinations of vectors in C'. It remains to show that the set X of all affine
combinations of C'is a flat, or equivalently, that for any y € X, the set

S=X—-y

is a subspace of V. To this end, let

n n n
y= E T0:i%i, Y1 = E 1% and oy = E 72T
i=1 i=1 i=1

where z; € C and Xr(; = Xry; = Xro; = 1. Hence, any linear combination of
11 — y and yo — y has the form

z=s(y1 —y) +t(y2 — y)

n n
= SZTLNH =+ tzrzﬂz —(s+ty
=1 i=1

n
= Z(Sﬁ,i +tr)ri —(s+t—1ly—y
i=1

n

= Z(Srl:i + t’l‘z}i — (S +t— 1)’/“0#).1% -y

i=1

But, since Xry; = Xry; = Xry; = 1, the sum of the coefficients of x; is equal
to 1 and so the sum is an affine sum, which shows that z € S. Hence, S is a
subspace of V. [J

The affine hull of a finite set of vectors is denoted by hull{zy,...,z,}. We
leave it as an exercise to show that for any ¢

hull{zy,...,z,} (16.1)
=2+ (T1 — Tiy oo, Timl — Tiy Tig1 — Tiy oo, Ty — Tj)

where () denotes the subspace spanned by the vectors within the brackets. It
follows that

dim(hull{zy,...,z,}) <n -1

The affine hull of a pair of distinct points is the line through those points,
denoted by

zy={rz+(1-rjy|lreF}=y+(x—y)

The Lattice of Flats

Since flats are subsets of V, they are partially ordered by set inclusion.
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Theorem 16.5 The intersection of a nonempty collection C = {x; + S; | i € K}
of flats in 'V is either empty or is a flat. If the intersection is nonempty, then

ﬂ(wi +5;) = l’+msi
iceK ieK

for any vector x in the intersection. In other words, the base of the intersection
is the intersection of the bases.
Proof. If

i€k
then z; + S; = x + S; forall i € K and so

€K €K €K

Definition The join of a nonempty collection C = {x; + S; | i € K} of flats in
V' is the smallest flat containing all flats in C. We denote the join of the
collection C of flats by \/C, or by

\V (@i +5;)

ieK
The join of two flats is written (x + S) V (y + T). O
Theorem 16.6 Let C = {x; + S; | i € K} be a nonempty collection of flats in
the vector space V.

1) \/C is the intersection of all flats that contain all flats in C.
2) \/Cishull(JC), where | JC is the union of all flats in C. O

Theorem 16.7 Let X =z + S andY =y + T be flats in V. Then
1)
XVY=z+{(z—y)+5+7)
2) IfXNY #0 then
XVY =z+(S+1T)
Proof. For part 1), let
XVY=(x+S)V(y+T)=2+U

for some z € V and subspace U of V. Of course, S+ 7T C U. But since
xz,y € z+ U, we also have x —y € U. (Note that z — y is not necessarily in
S+T)

Let W={(x—y)+S+T. Then W CU and sox+W Cz+U =X VY.
On the other hand
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X=x+SCz+W

and

Y=y+T=x—(x—y)+TCax+W
andso X VY C o+ W.Thus, X VY =z + W, as desired.
For part 2), if X N'Y = () then we may take the flat representatives for X and Y
to be any element z € X NY, in which case part 1) gives

XVY =z4+{(z2=—2)+8S4+T)=2+5+T

andsincex € X VY wealsohave X VY =z + S+ 7.0

We can now describe the dimension of the join of two flats.

Theorem 16.8 Let X =z + S andY =y+ T beflatsinV.
D IfXNY #0 then
dim(X VY) =dim(S + T) = dim(X) + dim(Y) — dim(X NY)
2) IfXNY =0 then
dim(XVY)=dim(S+T)+1
Proof. According to Theorem 16.7,if X N'Y # () then
XVY=24+5+T
and so by definition of the dimension of a flat
dim(X VYY) =dim(S +7T)
On the other hand, if X N Y = () then
XVY=o+@—-—y)+5S+T
and since dim({(z — y)) = 1, we get
dim(XVY)=dim(S+T)+1
Finally, we have
dim(S + T) = dim(S) + dim(7T") — dim(S N T)

Therefore, if z€ (x+S)N(y+T) thenz+S=2+S and y+ T =2+T
and so

dim(SNT)=dim(z+[SNT])
=dim([z+ S| N[z +T])
=dim(X NY) O
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Affine Independence

We now discuss the affine counterpart of linear independence.

Theorem 16.9 Let X = {x1,...,x,} be a nonempty set of vectors in V. The
following are equivalent:

1) H=hull{z,...,xz,} has dimensionn — 1.
2) The set

{361 —iﬁia---,a?ifl—$1733i+1—$i,~~,$n—$i}

is linearly independent for all i =1, ... n.
3) x¢hull{zy,..., 21, %i41,..., 2o} foralli=1,...,n.
4) If¥rjx; and Xs;x; are affine combinations then

er:cj = Zsjajj = r;=s;forall j
J J

A set X ={x1,...,x,} of vectors satisfying any (any hence all) of these
conditions is said to be affinely independent.

Proof. The fact that 1) and 2) are equivalent follows directly from (16.1). If 3)
does not hold, we have

hull{xl, ceey LZ]‘,L} = hull{a:l, ooy Lj—1y Ljt1y e - ,.Tn}
where by (16.1), the latter has dimension at most n — 2. Hence, 1) cannot hold

and so 1) implies 3).

Next we show that 3) implies 4). Suppose that 3) holds and that ¥r;z; = ¥s;x;.
Setting t; = r; — s; gives

Z t_jx_j = 0and Z tj =0
J J
But if any of the ¢;'s are nonzero, say ¢; # 0 then dividing by ¢; gives

1+ Z (tj/tl)l‘j =0

j>1
or

p= =y (tj/t)x;

>1
where

_Z(tj/tl) =1

J>1
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Hence, x; € hull{zs,...,z,}. This contradiction implies that ¢; = 0 for all j,
that is, r; = s; for all 5. Thus, 3) implies 4).

Finally, we show that 4) implies 2). For concreteness, let us show that 4) implies
that {x — x1,..., 2, — 21} is linearly independent. Indeed, if as,...,a, € F
and Ya; = o then

Zaj(xj —x1)=0= Zozja:j =ar; = (1 —a)z; + Zajxj =1

J22 J>2 J>2

But the latter is an equality between two affine combinations and so
corresponding coefficients must be equal, which implies that o; = 0 for all
j=2,...,n. This shows that 4) implies 2). (I

Affinely independent sets enjoy some of the basic properties of linearly
independent sets. For example, a nonempty subset of an affinely independent set
is affinely independent. Also, any nonempty set X contains an affinely
independent set.

Since the affine hull H = hull(X) of an affinely independent set X is not the
affine hull of any proper subset of X, we deduce that X is a minimal affine
spanning set of its affine hull.

Note that if H = hull(X) where X = {x1,...,x,} is affinely independent then
for any i, the set

{$1—$i,~~~,$i71—$1,$i+1 _mia"'axn_xi}

is a basis for the base subspace of H. Conversely, if H =2+ S # S and
B ={by,...,b,} is a basis for S then

B ={z,z+by,...,0+b,}

is affinely independent and since hull(B’) has dimension 7 and is contained in
z + S we must have B’ = H. This provides a way to go between “affine bases”
B’ of a flat and linear bases B of the base subspace of the flat.

Theorem 16.10 If X is a flat of dimension n then there exist n + 1 vectors
T1, ..., Tny1 for which every vector x € X has a unique expression as an affine
combination

T =712+ + Tp1Tptl

The coefficients r; are called the barycentric coordinates of x with respect to
the vectors x1, ..., Ty1. O

Affine Transformations

Now let us discuss some properties of maps that preserve affine structure.
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Definition A function f:V — V that preserves affine combinations, that is, for
which

Zri =1=f (Zh‘xi) = Z’“if(xi)

7

is called an affine transformation (or affine map, or affinity). O

We should mention that some authors require that f be bijective in order to be
an affine map. The following theorem is the analog of Theorem 16.2.

Theorem 16.11 If char(F') # 2 then a function f:V —V is an dffine
transformation if and only if it preserves affine combinations of any two of its
points, that is, if and only if

flre+ (1 =r)y) =rf(z)+ 1 -7)f(y) O

Thus, if char(F’) # 2 then a map f is an affine transformation if and only if it
sends the line through x and y to the line through f(z) and f(y). It is clear that
linear transformations are affine transformations. So are the following maps.

Definition Let v € V. The affine map T,,: V — V defined by
T(zx)=xz+v
Jorall x € V, is called translation by v. O
It is not hard to see that any map of the form “linear operator followed by

translation,” that is, T, o 7, where 7 € L(V'), is affine. Conversely, any affine
map must have this form.

Theorem 16.12 A function f:V — V is an affine transformation if and only if
it is a linear operator followed by a translation,

f=T,0o1

wherev € V andt € L(V).

Proof. We leave proof that 7T;, o 7 is an affine transformation to the reader.
Conversely, suppose that f is an affine map. If we expect f to have the form
T, o then f(0) will equal T, o 7(0) = T;,(0) = v. So let v = f(0). We must
show that 7 = T_y(g) o f is a linear operator on V. However, forany z € V

7(z) = f(x) = f(0)

and so
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T(ru + sv) = f(ru+ sv) — f(0)
= f(ru+sv+ (1 —r—15)0) — f(0)
=rf(u) +sf(v) + (1 —r—s)f(0) - f(0)
= rr(u) + s7(v)

Thus, 7 is linear. [

Corollary 16.13

1)  The composition of two affine transformations is an affine transformation.

2)  An dffine transformation f =T, o T is bijective if and only if T is bijective.

3) The set aff(V') of all bijective affine transformations on'V is a group under
composition of maps, called the affine group of V. O

Let us make a few group-theoretic remarks about aff(1"). The set trans(V') of all
translations of V' is a subgroup of aff(V). We can define a function
¢:aff(V) — L(V) by

o(Tyor)=71

It is not hard to see that ¢ is a well-defined group homomorphism from aff(V")
onto L(V'), with kernel trans(V'). Hence, trans(V') is a normal subgroup of
aff(V') and

aff(V)
trans(V) £V)

Projective Geometry

If dim(V') = 2, the join (affine hull) of any two distinct points in V' is a line. On
the other hand, it is not the case that the intersection of any two lines is a point,
since the lines may be parallel. Thus, there is a certain asymmetry between the
concepts of points and lines in V. This asymmetry can be removed by
constructing the projective plane. Our plan here is to very briefly describe one
possible construction of projective geometries of all dimensions.

By way of motivation, let us consider Figure 16.1.
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A

<Y>

A

Note that H is a hyperplane in a 3-dimensional vector space V' and that 0 ¢ H.
Now, the set A(H) of all flats of V' that lie in H is an affine geometry of
dimension 2. (According to our definition of affine geometry, H must be a
vector space in order to define A(H ). However, we hereby extend the definition
of affine geometry to include the collection of all flats contained in a flat of V)

Figure 16.1

Figure 16.1 shows a one-dimensional flat X and its linear span (X), as well as a
zero-dimensional flat Y and its span (Y'). Note that, for any flat X in H, we
have

dim({X)) = dim(X) + 1

Note also that if L; and L, are any two distinct lines in H, the corresponding
planes (L and (L) have the property that their intersection is a line through the
origin, even if the lines are parallel. We are now ready to define projective
geometries.

Let V be a vector space of any dimension and let H be a hyperplane H in V not
containing the origin. To each flat X in H, we associate the subspace (X) of V
generated by X. Thus, the linear span function from P: A(H) — S(V') maps
affine subspaces X of H to subspaces (X) of V. The span function is not
surjective: Its image is the set of all subspaces that are not contained in the base
subspace K of the flat H.

The linear span function is one-to-one and its inverse is intersection with H
PYU)=UNnH

for any subspace U not contained in K.
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The affine geometry A(H) is, as we have remarked, somewhat incomplete. In
the case dim(H ) = 2 every pair of points determines a line but not every pair of
lines determines a point.

Now, since the linear span function P is injective, we can identify A(H) with
its image P(A(H)), which is the set of all subspaces of V' not contained in the
base subspace K. This view of A(H) allows us to “complete” A(H) by
including the base subspace K. In the three-dimensional case of Figure 16.1, the
base plane, in effect, adds a projective line at infinity. With this inclusion, every
pair of lines intersects, parallel lines intersecting at a point on the line at infinity.
This two-dimensional projective geometry is called the projective plane.

Definition Let V' be a vector space. The set S(V') of all subspaces of V is
called the projective geometry of V. The projective dimension pdim(S) of
S € §(V) is defined as

pdim(S) = dim(S) — 1

The projective dimension of P(V) is defined to be pdim(V) = dim(V') — 1. 4
subspace of projective dimension 0 is called a projective point and a subspace
of projective dimension 1 is called a projective line. [J

Thus, referring to Figure 16.1, a projective point is a line through the origin and,
provided that it is not contained in the base plane K, it meets H in an affine
point. Similarly, a projective line is a plane through the origin and, provided that
it is not K, it will meet H in an affine line. In short,

span(affine point) = line through the origin = projective point
span(affine line) = plane through the origin = projective line

The linear span function has the following properties.

Theorem 16.14 The linear span function P: A(H) — S(V') from the affine
geometry A(H) to the projective geometry S(V') defined by P(X) = (X)
satisfies the following properties:

1) The linear span function is injective, with inverse given by

PYU)=UNH

for all subspaces U not contained in the base subspace K of H.

2) The image of the span function is the set of all subspaces of V' that are not
contained in the base subspace K of H.

3) XCVYifandonlyif (X) C(Y)

4) If X; are flats in H with nonempty intersection then

span(ﬂXi> = ﬂ span(X;)

ieK ieK



422 Advanced Linear Algebra

5)  For any collection of flats in H,
span (\/ Xi> = EBspan(Xi)
i€eK i€k
6) The linear span function preserves dimension, in the sense that
pdim(span(X)) = dim(X)

7) X ||Y if and only if one of (X)NK and (Y)NK is contained in the
other.

Proof. To prove part 1), let x+ S be a flat in H. Then x € H and so

H = x + K, which implies that S C K. Note also that (z + S) = (z) + S and

ze€(x+SyNH=((o)+S)Nx+K)=z=re+s=z+k

for some s € S, k€ K and r € F. This implies that (1 —r)z € K, which
implies that either x € K or r = 1. But € H implies z ¢ K and so r =1,
which implies that z = x 4+ s € z + S. In other words,

(z+S)NHCz+S
Since the reverse inclusion is clear, we have

(x+SYNH=2+S
This establishes 1).

To prove 2), let U be a subspace of V' that is not contained in K. We wish to
show that U is in the image of the linear span function. Note first that since
U € K and dim(K) = dim(V') — 1, we have U + K =V and so

dim(U N K) = dim(U) + dim(K) — dim(U + K) = dim(U) — 1
Now, let 0 # x € U — K. Then

t¢ K= (z)+ K=V
=rex+keHforsomeO#rel, ke K
=>rreH

Thus, rxz € U N H for some 0 # r € F. Hence, the flat rz 4+ (U N K) lies in H
and

dim(re + (UNK)) =dim(U NK) =dim(U) — 1

which implies that span(rz + (U N K)) = (rz) + (U N K) lies in U and has
the same dimension as U . In other words,

span(rez + (UNK))=(re) + UNK)=U

We leave proof of the remaining parts of the theorem as exercises. [
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Exercises

1.

10.

11.

12.

13.

14.

15.

16.

Show that if zy,...,z, €V then the set S = {Xrz;|Xr; =0} is a

subspace of V.

Prove that hull{zy,...,x,} = @1 + (za — x1, ..., T — 21).

Prove that the set X = {(0,0), (1,0), (0,1)} in (Z3)? is closed under the

formation of lines, but not affine hulls.

Prove that a flat contains the origin 0 if and only if it is a subspace.

Prove that a flat X is a subspace if and only if for some x € X we have

re € X forsome 1 #£r € F.

Show that the join of a collection C = {x; + S, | i € K} of flats in V' is the

intersection of all flats that contain all flats in C.

Is the collection of all flats in V' a lattice under set inclusion? If not, how

can you “fix” this?

Suppose that X = 2z + .5 and Y = y + T Prove that if dim(X) = dim(Y")

and X || Ythen S =T.

Suppose that X =z + 5 and Y =y + T are disjoint hyperplanes in V.

Show that S = T.

(The parallel postulate) Let X be a flat in V and v ¢ X. Show that there is

exactly one flat containing v, parallel to X and having the same dimension

as X.

a) Find an example to show that the join X VY of two flats may not be
the set of all lines connecting all points in the union of these flats.

b) Show that if X and Y are flats with X NY # () then X VY is the
union of all lines 7y where x € X andy € Y.

Show that if X || Y and X N'Y = () then

dim(X VY) = max{dim(X), dim(Y)} + 1

Let dim(V') = 2. Prove the following:

a) The join of any two distinct points is a line.

b) The intersection of any two nonparallel lines is a point.

Let dim(V') = 3. Prove the following:

a) The join of any two distinct points is a line.

b) The intersection of any two nonparallel planes is a line.

¢) The join of any two lines whose intersection is a point is a plane.

d) The intersection of two coplanar nonparallel lines is a point.

e) The join of any two distinct parallel lines is a plane.

f) The join of a line and a point not on that line is a plane.

g) The intersection of a plane and a line not on that plane is a point.

Prove that f:V — V is a surjective affine transformation if and only if
f=1o0T,forsomew € Vandr e L(V).

Verify the group-theoretic remarks about the group homomorphism
¢: aff(V') — L(V') and the subgroup trans(V') of aff(V).



Chapter 17
Operator Factorizations: QR and Singular
Value

The QR Decomposition

Let V' be a finite-dimensional inner product space over F, where F' =R or
F = C. Let us recall a definition.

Definition A linear operator T on V is upper triangular with respect to an
ordered basis B = (v1,...,v,) if the matrix [7|p is upper triangular, that is, if
foralli=1,...,n

7(v;) € (v, ..., v;)

The operator T is upper triangularizable if there is an ordered basis with
respect to which T is upper triangular. O

Given any orthonormal basis B for V, it is possible to find a unitary operator v
for which v7 is upper triangular with respect to B. In matrix terms, this is
equivalent to the fact that any matrix A can be factored into a product A = QR
where () is unitary (orthogonal) and R is upper triangular. This is the well
known QR factorization of a matrix. Before proving this fact, let us repeat one
more definition.

Definition For a nonzero v € V, the unique operator H, for which

Hyp = —v, (I{r)|(r)L =1
is called a reflection or a Householder transformation. [J

According to Theorem 10.11, if ||v|| = ||w|| # 0, then H,_,, is the unique
reflection sending v to w, that is, H,_,,(v) = w.
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Theorem 17.1 (QR-Factorization of an operator) Let T be a linear operator
on a finite-dimensional real or complex vector space V. Then for any ordered
orthonormal basis B = (u1,...,u,) for V, there is a unitary (orthogonal)
operator v and an operator p that is upper triangular with respect to B, that is,

p(u;) € (uy, ... u;)
foralli =1,...,n, for which

T=VOop

Moreover, if T is invertible, then p can be chosen with positive eigenvalues, in
which case both p and v are unique.
Proof. Let b; = ||7'U,L|| If £1 = Tuy — byuy then

(le © T)(ul) = (HTUI_blul © T)(ul) =biu; € <u1>

where, if 7 is invertible then b, is positive.

Assume for the purposes of induction that, for a given 1 < k < n, we have
found reflections H,,, ..., H,, for which, setting H*) = H, ---H,,

(H® o myu; € (u, ..., u;)
for all ¢ < k. Assume also that if 7 is invertible, the coefficient of w; in
(H® o 1)u, is positive.

We seek a reflection H. for which

Lr+1

(Ho, o HY o 7)u; € (ur, ... ;)

ket

for i <k+1 and for which, if 7 is invertible, the coefficient of wu; in
(H,, o H®) o ), is positive.
Note that if zx+1 € (Upt1,-..,u,) then H,

2., 18 the identity on (uy, ..., u;) and
so, at least for ¢ < k we have

(H

L+1

o H® oT)u; € Hy ((ur, ..., ui)) = (u, ..., u)

as desired. But we also want to choose x; so that

(Hyy 0 HY o Tupas € (ug, ..., wprn)
Let us write
(HU€> oT)Upy1 =V + W
where v € (uq,...,u;) and w € (ugt1, ..., u,). We can accomplish our goal by

reflecting w onto the subspace (uy1). In particular, let ;1 = w — ||w]||ugs1.
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Since xj41 € (Upt1,...,Un), the operator H,, , is the identity on (uy, ..., ux)

and so as noted earlier

k41

(H,

Tk+1

o HW o r)u; € (i, ..., u;), fori < k
Also
(H

T+1

o H(k> © T)Uk:Jrl = Hu,v—HwHukH(v + w)
= v+ [|wlup1 € (ur, ... upt1)

and if 7 is invertible, then w # 0 and so ||w|| > 0. Thus, we have found H *+1)
and by induction,

p = Hwn...leT

is upper triangular with respect to B, which proves the first part of the theorem.
It remains only to prove the uniqueness statement.

Suppose that 7 is invertible and that 7 = v p; = 15p, and that the coefficients
of u; in pyu; and pou; are positive. Then p = v5 11y = papy?t is both unitary and
upper triangular with respect to B and the coefficient of u; in pu; is positive.
We leave it to the reader to show that ; must be the identity and so 14 = v, and
p1=p2. 0

Here is the matrix version of the preceding theorem.

Theorem 17.2 (The QR factorization) Any real or complex matrix A can be
written in the form A = QR where @ is unitary (orthogonal) and R is upper
triangular. Moreover, if A is nonsingular then the diagonal entries of R may be
taken to be positive, in which case the factorization is unique.

Proof. According to Theorem 17.1, there is a unitary (orthogonal) operator U
for which [Ut4]¢e = R is upper triangular. Hence

A= [TA]g = [U*]gR = QR

where @ is a unitary (orthogonal) matrix. (]

The QR decomposition has important applications. For example, a system of
linear equations Az = w can be written in the form

QRx =u
and since Q' = Q*, we have

Rx =Q'u

This is an upper triangular system, which is easily solved by back substitution
that is, starting from the bottom and working up.
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Singular Values

Let U and V be finite-dimensional inner product spaces over C or R. The
spectral theorem can be of considerable help in understanding the relationship
between a linear transformation 7 € L(U,V) and its adjoint 7 € L(V,U).
This relationship is shown in Figure 17.1. (We assume that U and V' are finite-
dimensional.)

im(t) im(t)
T > 3\
U | ¢ @54 Vi
T*
TS
ONB of u @s. |V ONB of
eigenvectors< B S T ' eigenvectors
for t*t . - for tt*
ur+1 %0 e Vr+1
un Tﬁo z Vm )

e
A A
ker(t) ker(t")
Figure 17.1

We begin with a simple observation: If 7 € L(U,V) then 7°7 € L(U) is a
positive Hermitian operator. Hence, if r = rk(7) = rtk(7*7) then U has an

ordered orthonormal basis B = (uq, ..., Uy, Uri1,...,U,) of eigenvectors for
77, where the corresponding (not necessarily unique) eigenvalues satisfy

)\1 Z Z /\r > 0:>\r+1 = :An,
The numbers s; = ++/\;, for i = 1,...,r are called the singular values of
and for¢ =1,...,n we have

U = stuy

where s; = 0 for¢ > r.

It is not hard to show that (u,41,...,u,) is an ordered orthonormal basis for
ker(r) and so (ui,...,u,) is an ordered orthonormal basis for ker(7)*
= im(7*). For if ¢ > r then

(Tui, Tu;) = (T Tusu) =0
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and so 7(u;) = 0, that is, u; € ker(7). On the other hand, if x = Ya;u; is in
ker(7) then

0= {r(@), 7(@)) = (Y air(w), Y ajr(u)) = 3 [a?]s

and so a; = 0 for ¢ < rand so ker(7) C (Ups1,...,Up).

We can achieve some “symmetry” here between 7 and 7 by setting
v; = (1/s;)7Tu; for each i < r, giving

siv; 17T
TUW; =

0 t>r
and
Sy 1<
s = i b=
! 0 i>r
The vectors vy, ..., v, are orthonormal, since if 4, j < r then
1 1, S;
Vi, Vj) = ——(TU;, TU;) = —— (T T, Uj) = — (U4, uj) = 6;j
(0,03) = S 7) = o ) = ) = 8,
Hence, (v1,...,v,) is an orthonormal basis for im(7) = ker(7*)*, which can be
extended to an orthonormal basis C = (vy,...,v,) for V, the extension
(Vr41, ... ,vm) being an orthonormal basis for ker(7*). The vectors w; are called

the right singular vectors for 7 and the vectors v; are called the left singular
vectors for 7.

Moreover, since
* _ 2
TT U = §TU; = S;v;

the vectors vy,...,v, are eigenvectors for 77* with the same eigenvalues
\; = s? as for 7*7. This completes the picture in Figure 17.1.

Theorem 17.3 Let U and V' be finite-dimensional inner product spaces over C
or R and let T € L(U,V') have rank r. Then there is an ordered orthonormal

basis B = (u1,..., U, Upt1,...,Uy) of U and an ordered orthonormal basis
C=(v1y...,Vr,Upt1,..., ) of V with the following properties:

1) B, = (ui,...,u,) is an orthonormal basis for ker(t)* = im(7*)

2)  (Ups1, ..., Uy) is an orthonormal basis for ker(T)

3) C, = (vi,...,v,) is an orthonormal basis for ker(7*)* = im(7)

4) (Vpy1,.-., V) is an orthonormal basis for ker(T*)

5) The operators T and T* behave “symmetrically” on B, and C,, specifically,
fori<r,
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T(U7) = S;V;
(i) = sy

where s; > 0 are called the singular values of .
The vectors u; are called the right singular vectors for T and the vectors v; are
called the left singular vectors for . O

The matrix version of the previous discussion leads to the well known singular
value decomposition of a matrix. The matrix of 7 under the ordered
orthonormal bases B = (u1,...,u,) and C = (v1,...,vy,) is

[T]c = X = diag(s1, s2,...,5,0,...,0)

Given any matrix A € M,,,, of rank r, let 7 = 74 be multiplication by A. Then
A =r4le, e, where &, and &, are the standard bases for U and V,
respectively. By changing orthonormal bases to 3 and C we get

A= [Tale, e, = Mce,[TalscMe, 5 = PEQ"

where P = Mcg, is unitary (orthogonal for F' = R) with ith column equal to
[vi]e, and @ = Mp ¢, is unitary (orthogonal for F' = R) with ith column equal
to [uile, .

n

As to uniqueness, if A = PXQ* is a singular value decomposition then
A"A = (PEQ")"PEQ" = QX*EQ"

and since ¥*Y = diag(s?, s3,...,52,0,...,0), it follows that s? is an eigenvalue

)ery
of A*A. Hence, since s; > 0, we deduce that the singular values are uniquely

determined by A.

We state without proof the following uniqueness facts. For a proof, the reader
may wish to consult reference [HJ1]. If n < m and if the eigenvalues \; are
distinct then P is uniquely determined up to multiplication on the right by a
diagonal matrix of the form D = diag(z1, ..., z,,) with |z;| = 1. If n < m then
@ is never uniquely determined. If m = n = r then for any given P there is a
unique . Thus, we see that, in general, the singular value decomposition is not
unique.

The Moore—Penrose Generalized Inverse

Singular values lead to a generalization of the inverse of an operator that applies
to all linear transformations. The setup is the same as in Figure 17.1. Referring
to that figure, we are prompted to define a linear transformation 7: V' — U by

n Ly, fori<r
T U = Si

0 fori >r
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for then
<T+T>|<7L1,»..,111»> =1
(T+T)|<’ur+17u,7u”> = O
and
(TT+)|(7;I,<..7@,.> =1
(TT+) (V5o sUm) —

Hence, if n=m =1 then 77 = 7~!. The transformation 71 is called the
Moore—Penrose generalized inverse or Moore—Penrose pseudoinverse of 7.
We abbreviate this as MP inverse.

Note that the composition 77 is the identity on the largest possible subspace of
U upon which any composition of the form o7 could be the identity, namely,
the orthogonal complement of the kernel of 7. A similar statement holds for the
composition 77", Hence, 77 is as “close” to an inverse for 7 as is possible.

We have said that if 7 is invertible then 7+ = 7!, More is true: If 7 is injective
then 777 = ¢ and so 77 is a left inverse for 7. Also, if 7 is surjective then 77 is
a right inverse for 7. Hence the MP inverse 7" generalizes the one-sided
inverses as well.

Here is a characterization of the MP inverse.

Theorem 17.4 Let 7€ L(U,V). The MP inverse 7 of T is completely
characterized by the following four properties:

) mrtr=r1

2) trtrrt =1t

3) 77 is Hermitian

4) 7T is Hermitian

Proof. We leave it to the reader to show that 7+ does indeed satisfy conditions
1)-4) and prove only the uniqueness. Suppose that p and o satisfy 1)-4) when
substituted for 7. Then

p=pTp
= (p7)p
=T7'p"p
= (to7)"p"p

* K __k %

=101 p"p
= (o7)"7"p"p
=oTTp"p
=oTpTp
=oTp
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and

oc=o0T0
=o(r0)"
=oo'T"
=oo*(TpT)"
— oot T
=oo* 1" (1p)*
=od*T TP
=oT0Tp
=o7p

which shows that p = . I
The MP inverse can also be defined for matrices. In particular, if A € M, ,,(F)
then the matrix operator 74 has an MP inverse 7. Since this is a linear

transformation from F™ to F', it is just multiplication by a matrix 7 = 7.
This matrix B is the MP inverse for A and is denoted by A™.

Since TX = 74+ and T4 = TaTB, the matrix version of Theorem 17.4 implies
that A" is completely characterized by the four conditions

1) AATA=A
2) ATAAt = AT
3) AAT is Hermitian
4) At A is Hermitian
Moreover, if
A=U2Uy
is the singular value decomposition of the matrix A then
AT =UY'Uf

where Y’ is obtained from X by replacing all nonzero entries by their
multiplicative inverses. This follows from the characterization above and also
from the fact that, fori < r

UZZ/UI*’UZ' = UQZ’@L = Si_lUZEz' = Sz-_l'l.l,,j
and for¢ > r

UQZ,Ul*Uj = UQZIEZ‘ =0
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Least Squares Approximation

Let us now discuss the most important use of the MP inverse. Consider the
system of linear equations

Ax =

where A € M, ,,(F'). (As usual, F' = C or F' = R.) Of course, this system has a
solution if and only if v € im(74). If the system has no solution, then it is of
considerable practical importance to be able to solve the system

Ax =7

where ¥ is the unique vector in im(7y4) that is closest to v, as measured by the
unitary (or Euclidean) distance. This problem is called the linear least squares
problem. Any solution to the system Ax = is called a least squares solution
to the system Ax = v. Put another way, a least squares solution to Ax = v is a
vector x for which || Az — v|| is minimized.

Suppose that w and z are least squares solutions to Az = v. Then
Aw=7= Az

and so w — z € ker(A). (We will write A for 74.) Thus, if w is a particular least
squares solution, then the set of all least squares solutions is w + ker(A).
Among all solutions, the most interesting is the solution of minimum norm.
Note that if there is a least squares solution w that lies in ker(A)*, then for any
z € ker(A), we have

2 2 2 2
l[w+ 2] = [Jw]|” + [[2]" = [wl]

and so w will be the unique least squares solution of minimum norm.

Before proceeding, we remind the reader of our discussion related to the
projection theorem (Theorem 9.12) to the effect that if S is a subspace of a
finite-dimensional inner product space V, then the best approximation to a
vector v € V' from within S is the unique vector v € S for whichv — o L S.

Now we can see how the MP inverse comes into play.

Theorem 17.5 Let A € M, ,(F'). Among the least squares solutions to the
system

Ax =7

there is a unique solution of minimum norm, given by A*v, where A" is the MP
inverse of A.

Proof. A vector w is a least squares solution if and only if Aw = 9. Using the
characterization of the best approximation ¥, we see that w is a solution to
Aw = if and only if
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Aw —v L im(A)
Since im(A)* = ker(A*) this is equivalent to
A" (Aw—v) =0
or
A"Aw = A

This system of equations is called the normal equations for Az =v. Its
solutions are precisely the least squares solutions to the system Ax = v.

To see that w = A'wv is a least squares solution, recall that, in the notation of
Figure 17.1

o 1 <r
Ad v = {0 i>r
and so
Afv; i <r
* +000) — v — 1 — A%,
A*A(A v,,)—{o Z,>T—Av,
and since C = (v, ..., vy,,) is a basis for V' we conclude that A" v satisfies the

normal equations.

Finally, since Av € ker(A)*, we deduce by the preceding remarks that A v is
the unique least squares solution of minimum norm. [J

Exercises

OR-Factorization

1. Suppose that p is unitary and upper triangular with respect to an
orthonormal basis BB and that the coefficient of u; in pu; is positive. Show
that 1 must be the identity.

2. Assume that 7 is a nonsingular operator on a finite-dimensional inner
product space. Use the Gram—Schmidt process to obtain the QR-
factorization of 7.

3. Prove that for reflections, H, = H, if and only if w is a scalar multiple of v.

4. For any nonzero v € F", show that the reflection H, is given by

.

2
Hv = In - LU2
[[o]

5. Use the QR factorization to show that any matrix that is similar to an upper
triangular matrix is also similar to an upper triangular matrix via a unitary
(orthogonal) matrix.
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Let S,7€ L(V) and suppose that ST =71S5. Let Ay,...,\, be the
eigenvalues for S and pq, ..., 1, be the eigenvalues for 7. Show that the
eigenvalues of S + 7 are

AL iy ey An T+ i,

where (iy,...,4,) is a permutation of (1,...,n). Hence, for commuting
operators,

o(S+71)Ca(S)+oa(r)

Let S,7€ L(V) be commuting operators. Let Aj,...,\, be the
eigenvalues for S and pg,...,u, be the eigenvalues for 7. Using the
previous exercise, show that if all of the sums \; + u; are nonzero, then
S + 7 is invertible.
Let J be the matrix

Lo 10
T=1§ :
1 0 0

that has 1's on the diagonal that moves up from left to right and 0's
elsewhere. Find J ! and J*. Compare J A with A. Compare A.J with A.
Compare J AJ* with A. Show that any upper triangular matrix is unitarily
equivalent to a lower triangular matrix.

If 7€ L(V)and B = (u1,...,u,) is a basis for which

TU; € <U1,...,’LL7;>
then find a basis C = (x1, ..., x,) for which
Tx; € (Tiy..., Tn)

(Cholsky decomposition) We have seen that a linear operator 7 is positive
if and only if it has the form 7 = o*o for some operator . Using the QR-
factorization of o, prove the following result, known as the Cholsky
decomposition. A linear operator 7 € L(V') is positive if and only if it has
the form 7 = p*p where p is upper triangularizable. Moreover, if 7 is
invertible then p can be chosen with positive eigenvalues, in which case the
factorization is unique.

Singular Values

11.

12.

Let 7 € £(U). Show that the singular values of 7* are the same as those of
T.
Find the singular values and the singular value decomposition of the matrix
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31
=[]
Find A*.
13. Find the singular values and the singular value decomposition of the matrix
1 20
A= [2 0 2]

Find A™. Hint: is it better to work with A*A or AA*?

14. Let X = (z1 22 -+ x,)" be a column matrix over C. Find a singular value
decomposition of X.

15. Let A € My, ,,(F') and let B € My, 4y min(F) be the square matrix

0 A
p=la 0]
A 0 block

Show that, counting multiplicity, the nonzero eigenvalues of B are
precisely the singular values of A together with their negatives. Hint: Let
A =U;XUs be a singular—value decomposition of A and try factoring B
into a product U SU* where U is unitary. Do not read the following second
hint unless you get stuck. Second Hint: verify the block factorization

o[ 4]0 5]

Uy, 0|2 O0||Uf ©
What are the eigenvalues of the middle factor on the right? (Try €; + €,,41
and €; — €,41.)

16. Use the results of the previous exercise to show that a matrix
A € M, (F), its adjoint A*, its transpose A’ and its conjugate A all have
the same singular values. Show also that if U and U’ are unitary then A and
U AU’ have the same singular values.

17. Let A € M, (F) be nonsingular. Show that the following procedure
produces a singular-value decomposition A = U; XU of A.

a) Write A=UDU* where D = diag(\,...,\,) and the \'s are
positive and the columns of U form an orthonormal basis of
eigenvectors for A. (We never said that this was a practical procedure.)

b) Let X = diag()\}/ S A 2) where the square roots are nonnegative.

AlsoletU; = U and Uy = A*UX L.
18. If A = (a; ;) is an n x m matrix then the Frobenius norm of A is

1/2
[AllF = (Z a?,J)
6J

Show that || A% = 3" s? is the sum of the squares of the singular values of
A.



Chapter 18
The Umbral Calculus

In this chapter, we give a brief introduction to an area called the umbral
calculus. This is a linear-algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject, emphasizing the algebraic aspects
rather than the applications. For more on the umbral calculus, may we suggest
The Umbral Calculus, by Roman [1984]?

One bit of notation: The lower factorial numbers are defined by

(n)p=nn—-1)-(n—k+1)

Formal Power Series

We begin with a few remarks concerning formal power series. Let F denote the
algebra of formal power series in the variable ¢, with complex coefficients.
Thus, F is the set of all formal sums of the form

f(t) = f:aktk (18.1)
k=0

where a;, € C (the complex numbers). Addition and multiplication are purely
formal

i aptt + i bt = i (a + by,)t"
k=0 k=0 k=0
and
00 00 00 k
tF bpt") = i) t*
(o) (o m) = 2 (3o ties)

The order o(f) of f is the smallest exponent of ¢ that appears with a nonzero
coefficient. The order of the zero series is defined to be + co. Note that a series
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f has a multiplicative inverse, denoted by f~!, if and only if o(f) = 0. We
leave it to the reader to show that

o(fg) = o(f) +o(g)
and
o(f +g) > min{o(f),0(g)}

If f. is a sequence in F with o(f;) — oo as k — 0 then for any series

g(t) = Z bet"
5=0

we may substitute f;. for t* to get the series
o0
h(t) = Z bi. fi.(t)
k=0

which is well-defined since the coefficient of each power of ¢ is a finite sum. In
particular, if o( f) > 1 then o( f*) — oo and so the composition

(g0 1)) = g(F(1) = 3 bef* (1)
k=0

is well-defined. It is easy to see that o(g o f) = o(g)o(f).

If o( f) = 1 then f has a compositional inverse, denoted by f and satisfying
(fo)t)=(fof)(t)=t

A series f with o(f) = 1 is called a delta series.

The sequence of powers f* of a delta series f forms a pseudobasis for F, in the
sense that for any g € F, there exists a unique sequence of constants ay for
which

g(t) =Y arfH(t)
k=0
Finally, we note that the formal derivative of the series (18.1) is given by
af(t) = f'(t) =D kayt*
k=1

The operator 3, is a derivation, that is,

0i(fg) = 0i(f)g + f0:(9)
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The Umbral Algebra

Let P = CJ[z] denote the algebra of polynomials in a single variable  over the
complex field. One of the starting points of the umbral calculus is the fact that
any formal power series in F can play three different roles: as a formal power
series, as a linear functional on P and as a linear operator on P. Let us first
explore the connection between formal power series and linear functionals.

Let P* denote the vector space of all linear functionals on P. Note that P~ is the
algebraic dual space of P, as defined in Chapter 2. It will be convenient to
denote the action of L € P* on p(z) € P by

(L | p(z))

(This is the “bra-ket” notation of Paul Dirac.) The vector space operations on P*
then take the form

(L+ M | p(x)) = (L |p(x)) + (M | p(x))
and
(rL | p(x)) = r(L | p(z)), reC

Note also that since any linear functional on P is uniquely determined by its
values on a basis for P, the functional L € P* is uniquely determined by the
values (L | ") forn > 0.

Now, any formal series in F can be written in the form
0=yt
— k!
and we can use this to define a linear functional f(t) by setting
(f(@) [ 2") = an
for n > 0. In other words, the linear functional f(¢) is defined by
I OIES
k=0 k!

where the expression f(t) on the left is just a formal power series. Note in
particular that

<tk | ") = nlb, x
where 0, is the Kronecker delta function. This implies that
(t" | p(x)) = p*)(0)

and so t* is the functional “kth derivative at 0.” Also, t° is evaluation at 0.
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As it happens, any linear functional L on P has the form f(¢). To see this, we
simply note that if

then
(fr@®) | 2") =(L]=z")

for all n > 0 and so as linear functionals, L = f1(¢).
Thus, we can define a map ¢: P* — F by ¢(L) = f1(¢).

Theorem 18.1 The map ¢: P* — F defined by ¢(L) = fL(t) is a vector space
isomorphism from P* onto F.
Proof. To see that ¢ is injective, note that

Fr(t) = far(t) = (L | 2") = (M | 2") foralln > 0= L = M

Moreover, the map ¢ is surjective, since for any f € F, the linear functional
L = f(t) has the property that ¢(L) = f1(t) = f(¢). Finally,

>\ (rL + sM | mk>tk

o(rL 4+ sM) = )
k=0 :
oy ey ROy
—7“925( )+ so(M) O

From now on, we shall identify the vector space P* with the vector space F,
using the isomorphism ¢: P* — F. Thus, we think of linear functionals on P
simply as formal power series. The advantage of this approach is that F is more
than just a vector space—it is an algebra. Hence, we have automatically defined
a multiplication of linear functionals, namely, the product of formal power
series. The algebra F, when thought of as both the algebra of formal power
series and the algebra of linear functionals on P, is called the umbral algebra.

Let us consider an example.

Example 18.1 For a € C, the evaluation functional ¢, € P* is defined by

(€a | p(x)) = p(a)
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In particular, (¢, | ") = a” and so the formal power series representation for
this functional is

© K

foy =yl S

k=0 k=0

which is the exponential series. If ¢” is evaluation at b then

eatebt — e((H—b)t

and so the product of evaluation at a and evaluation at b is evaluation at
a+b.0

When we are thinking of a delta series f € F as a linear functional, we refer to
it as a delta functional. Similarly, an invertible series f € F is referred to as an
invertible functional. Here are some simple consequences of the development
so far.

Theorem 18.2
1) Forany f € F,

0 ok
k=0 :
2) Foranype P,
el )
p(z) 2

3) Forany f,g€ F,

4) o(f(t)) > degp(x) = (f() | p(x)) =0
5) Ifo(fr) =kforallk >0 then

(> ah®]p@) = Y arlhil®) | pla)
k=0 k>0

where the sum on the right is a finite one.
6) Ifo(fy)=kjorallk >0 then

(fe@) | p(x)) = (fr(t) | a(@)) for all k = 0 = p(z) = q(x)
7) Ifdeg pip(x) = k for all k > 0O then
(f(t) | pe(x)) = (9(t) | pr(@)) for all k > 0 = f(t) = g(t)
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Proof. We prove only part 3). Let

ik—k and g(t) :iﬁtj
k=0

=
Then
< 1 -
SHED !

and applying both sides of this (as linear functionals) to 2" gives

gty 127 =32 (7 b

k=0

The result now follows from the fact that part 1) implies aj, = (f(t) | 2*) and
bk = <g(t) | Inik)' O

We can now present our first “umbral” result.

Theorem 18.3 For any f(t) € F and p(z) € P,
(f(t) | zp(x)) = (B:f (1) | p(x))

Proof. By linearity, we need only establish this for p(z) = z”. But, if

then

= Ap+1
= (f(t) [ 2" O

Let us consider a few examples of important linear functionals and their power
series representations.

Example 18.2
1) We have already encountered the evaluation functional %, satisfying

(" | p(x)) = p(a)
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2) The forward difference functional is the delta functional e — 1,
satisfying

(e =1 p(x)) = p(a) — p(0)

3) The Abel functional is the delta functional te®, satisfying
(te" | p(x)) = p'(a)

4) The invertible functional (1 — t)~! satisfies
(=0 1 pe) = [ pwe " du
0
as can be seen by setting p(z) =z" and expanding the expression

(1—t)!

5) To determine the linear functional f satisfying
(70) [ pta)) = [ wdu

we observe that

2 (f(t) | F . a . eat™ —1

The inverse t/(e® — 1) of this functional is associated with the Bernoulli
polynomials, which play a very important role in mathematics and its
applications. In fact, the numbers

x'?L>

t
B
e —1

are known as the Bernoulli numbers. []

Formal Power Series as Linear Operators

We now turn to the connection between formal power series and linear
operators on P. Let us denote the kth derivative operator on P by t*. Thus,

tp(a) = p"(z)

We can then extend this to formal series in ¢

i k—" (18.2)
k=0
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by defining the linear operator f(t): P — P by

FOp() = 30 % p(a)) = 3 )

k=0 """ k>0

the latter sum being a finite one. Note in particular that

n

ft)z" =" (Z)aw*’“ (18.3)

With this definition, we see that each formal power series f € F plays three
roles in the umbral calculus, namely, as a formal power series, as a linear
functional and as a linear operator. The two notations (f(¢) | p(z)) and
f(t)p(z) will make it clear whether we are thinking of f as a functional or as an
operator.

It is important to note that f = ¢ in F if and only if f = g as linear functionals,
which holds if and only if f = g as linear operators. It is also worth noting that

[f D)g@)]p(x) = f()[g(t)p(x)]
and so we may write f(t)g(¢)p(x) without ambiguity. In addition,
fF®)g()p(x) = g(t)f(t)p(x)
forall f,g € Fandp € P.
When we are thinking of a delta series f as an operator, we call it a delta

operator. The following theorem describes the key relationship between linear
functionals and linear operators of the form f(¢).

Theorem 18.4 If f, g € F then
(f)g(t) | p(x)) = {f(t) | g(t)p(x))

Jor all polynomials p(x) € P.
Proof. If f has the form (18.2) then by (18.3),

n n i ,
(@ | sty = (O3 (7 )ae"™ ) =an = (f(#) |27 (18.4)
k=0 k
By linearity, this holds for x™ replaced by any polynomial p(x). Hence,

applying this to the product fg gives

(F®Og(®) | p(x)) = (| F(B)g(t)p(2)) O
= (" | f®)[gt)p(@)]) = (f (1) | 9(t)p(2))

Equation (18.4) shows that applying the linear functional f(¢) is equivalent to
applying the operator f(t) and then following by evaluation at z = 0.
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Here are the operator versions of the functionals in Example 18.2.

Example 18.3
1) The operator e satisfies

o0 k n
e an — kz:;%thn _ ;(Z)akxn—k’ — (J] + a)n
and so
e"'p(z) = p(z + a)

for all p € P. Thus e is a translation operator.

2) The forward difference operator is the delta operator e — 1, where

(e" = Dp(z) = p(z + a) — p(a)

3) The Abel operator is the delta operator te®

, where
te"" p(x) = p'(x + a)

4) The invertible operator (1 — t)~! satisfies

(1— 1) 'pla) = / " ple + u)edu

5) The operator (e — 1)/t is easily seen to satisfy

e —1
t

o) = [ oty

445

O

We have seen that all linear functionals on P have the form f(¢), for f € F.
However, not all linear operators on P have this form. To see this, observe that

deg [f(t)p(z)] < deg p(x)

but the linear operator ¢: P — P defined by ¢(p(z)) = zp(z) does not have

this property.

Let us characterize the linear operators of the form f(¢). First, we need a lemma.

Lemma 18.5 If T is a linear operator on P and T f (t) = f(t)T for some delta

series f(t) then deg(T'p(x)) < deg(p(x)).
Proof. For any m > 0

deg(Tx™) — 1 =deg(f(t)Tx™) = deg(T f(t)z™)

and so
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deg(Tz™) = deg(Tf(t)z™) + 1

Since deg(f(t)x™) = m — 1 we have the basis for an induction. When m =0
we get deg(7'1) = 1. Assume that the result is true for m — 1. Then

deg(Tx™) =deg(Tf(t)z")+1<m—-14+1=m |

Theorem 18.6 The following are equivalent for a linear operator T: P — P.

1) T has the form f(t), that is, there exists an f € F for which T = f(t), as
linear operators.

2) T commutes with the derivative operator, that is, Tt = tT.

3) T commutes with any delta operator ¢(t), that is, Th(t) = h(t)T.

4) T commutes with any translation operator, that is, Te™ = e“T.

Proof. It is clear that 1) implies 2). For the converse, let

0 (40 | Tk
() = ST

k=0 k!

Then
{g(t) | «") = (" | Tz")
Now, since T commutes with ¢, we have
" | Ta®y = (t° | t"Ta®)
0| Tt k)

(
(
(k)" | T2*")
(
(

k)u(t” | g(t)a" ")
t" | g(t)a")

and since this holds for all n and k we get T' = g(t). We leave the rest of the
proof as an exercise. [

Sheffer Sequences

We can now define the principal object of study in the umbral calculus. When
referring to a sequence s, (z) in P, we shall always assume that deg s,(xz) =n
forall n > 0.

Theorem 18.7 Let f be a delta series, let g be an invertible series and consider
the geometric sequence

g9, 9f, 9% 9f°, ...

in F. Then there is a unique sequence s,(x) in P satisfying the orthogonality
conditions
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(g FF() | sul(2)) = 0l (18.5)

Joralln,k > 0.
Proof. The uniqueness follows from Theorem 18.2. For the existence, if we set

sp(x) = Z an jTj
=0
and
GOS0 = bt
i=k

where by, , # 0 then (18.5) is

oo . n
n!(sn,,k = <Z bk,it% Zan,jxj>
ik =0
o n )
=> bk,ian:j@l‘xﬁ
i=k =0
n
= bk,z’an,ii!
i=k
Taking k = n we get
1
Qpp = 77—
bn,n

For k = n — 1 we have
0= bnfl.nflan,nfl(n - 1)' + bn,fl,nan,nn!

and using the fact that a,, =1/b,, we can solve this for a,,—1. By
successively taking k=n,n—1,n—2,... we can solve the resulting
equations for the coefficients a,, ;, of the sequence s,,(z). O

Definition The sequence s, (x) in (18.5) is called the Sheffer sequence for the
ordered pair (g(t), f(t)). We shorten this by saying that s,(x) is Sheffer for
(9(t), f(1))- O

Two special types of Sheffer sequences deserve explicit mention.

Definition The Sheffer sequence for a pair of the form (1, f(t)) is called the
associated sequence for f(t). The Sheffer sequence for a pair of the form
(g(t),t) is called the Appell sequence for g(t). O
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Note that the sequence s, () is Sheffer for (g(¢), f(¢)) if and only if
(g F () | su(2)) = nléns

which is equivalent to
(FE(0) [ g(t)sn(w)) = nlbns

which, in turn, is equivalent to saying that the sequence p,(x) = g(t)s,(z) is
the associated sequence for f(t).

Theorem 18.8 The sequence s,(x) is Sheffer for (g(t), f(t)) if and only if the
sequence p,(x) = g(t)s,(x) is the associated sequence for f(t). O

Before considering examples, we wish to describe several characterizations of
Sheffer sequences. First, we require a key result.

Theorem 18.9 (The expansion theorems) Let s, () be Sheffer for (g(t), f(t)).
1) Foranyh € F,

OM8
w
»
=
2
~
=
~
-
—~
~
S~—"

2) Foranyp€ P,

(g(t)f " (t) | p(x)
k!

(]

ple) = su(@)

k>0

Proof. Part 1) follows from Theorem 18.2, since

(3 LD ) = 30 D,
k=0 . k=0 ’

= (h(t) | sn(2))

8.

)
Part 2) follows in a similar way from Theorem 18.2. O

We can now begin our characterization of Sheffer sequences, starting with the
generating function. The idea of a generating function is quite simple. If r,, () is
a sequence of polynomials, we may define a formal power series of the form

ot a) = S

k=0

This is referred to as the (exponential) generating function for the sequence
rn(x). (The term exponential refers to the presence of k! in this series. When
this is not present, we have an ordinary generating function.) Since the series is
a formal one, knowing ¢(¢, x) is equivalent (in theory, if not always in practice)
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to knowing the polynomials r,(x). Moreover, a knowledge of the generating
function of a sequence of polynomials can often lead to a deeper understanding
of the sequence itself, that might not be otherwise easily accessible. For this
reason, generating functions are studied quite extensively.

For the proofs of the following characterizations, we refer the reader to Roman
[1984].

Theorem 18.10 (Generating function)
1) The sequence p,(x) is the associated sequence for a delta series f(t) if and

only if

euf®) — S~ Pr(Y)

/
— k!

where f(t) is the compositional inverse of f(t).
2) The sequence s, (x) is Sheffer for (g(t), f(t)) if and only if

71 ey?(t) _ i Sk (y) tk
g(f(1)) = k!
The sum on the right is called the generating function of s, (z).

Proof. Part 1) is a special case of part 2). For part 2), the expression above is
equivalent to

1 Sk (Y)
76915 — t
o) ; )
which is equivalent to
, < si(y )
=gl

But if s,,(x) is Sheffer for (f(t), g(¢)) then this is just the expansion theorem for
e¥t. Conversely, this expression implies that

sk(y) (g @) | sn())

suly) = (e | sa(@) = >_ =

k=0

and so (g(t)f*(t) | su(x)) = n'é,x, which says that s,(z) is Sheffer for
(f,9).-00

We can now give a representation for Sheffer sequences.

Theorem 18.11 (Conjugate representation)
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1) A sequence p,(x) is the associated sequence for f(t) if and only if
£)* 2
e Z ACMES
2) A sequence s,(x) is Sheffer for (g(t), f(t)) if and only if
=3 LlaGOy 0" |27

Proof. We need only prove part 2). We know that s,(z) is Sheffer for
(g(t), f(t)) if and only if

o Sk ()
g(?( -2 k!

k=0

But this is equivalent to

L0 | o) — (S0 ]
<g(f(t>)e e > - <k:0 e} =)

Expanding the exponential on the left gives

o0

f Ok |z, =\ ,
Xg il >yk,:<kz_;k]§!y)th

Replacing y by = gives the result. (]

Sheffer sequences can also be characterized by means of linear operators.

Theorem 18.12 (Operator characterization)

1) A sequence p,(x) is the associated sequence for f(t) if and only if
a) pn(o) = 5'”,0
b)  f()pn(x) = npn-1(x) forn = 0

2) A sequence s, (x) is Sheffer for (g(t), f(t)), for some invertible series g(t)
if and only if

f(t)sn(x) = nsn—l(x)

foralln > 0.
Proof. For part 1), if p, () is associated with f(¢) then

pu(0) = (" | pu(@)) = (f (1) | pu(z)) = 01800

and



The Umbral Calculus 451

<f(t)k+1 | pu())

= n!(sn,kJrl
=n(n—1)16,—1

=n(f®)" | po_1(x))

and since this holds for all £ > 0 we get 1b). Conversely, if 1a) and 1b) hold
then

<f(t)k | f(t)pa(2))

(fO" | pula)) :< If() n(2))
( )k(Sn k,0
n'énk

and so p,(x) is the associated sequence for f(t).

As for part 2), if s, (z) is Sheffer for (g(t), f(¢)) then
(GO F " | f(B)su(@) = (gOF ) | sula)

= nlén,k-‘rl
=n(n—1)0p_14

=n(gt)f ()" | sn-1(2))
and so f(t)s,(x) = ns,—1(x), as desired. Conversely, suppose that
F@)sn(z) = nsp—1(x)

and let p,(x) be the associated sequence for f(¢). Let T be the invertible linear
operator on V' defined by

TSn(l') = pn(x)
Then
Tf(t)sn(x) =nTs, 1(z ) = NPp— 1(33) ( )pn( ) = f(t)Tsn(x)

and so Theorem 18.5 implies that 7" = g(t) for some invertible series g(¢). Then

)

(9O F @) | sa(2)) = (F(O)" | 9(t)sn(2))
(" | f() pu(2))
(

(n

n)kpn k( )
) n—k,0
n'énk

and so s, (z) is Sheffer for (g(t), f(¢)). O

We next give a formula for the action of a linear operator h(¢) on a Sheffer
sequence.
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Theorem 18.13 Let s,,(x) be a Sheffer sequence for (g(t), f(t)) and let p,(x)
be associated with f(t). Then for any h(t) we have

n

A(t)sa() =Y (1) (h(®) | se(@)p-i(a)

k=0

Proof. By the expansion theorem

we have

which is the desired formula. [J

Theorem 18.14

1) (The binomial identity) 4 sequence p,(z) is the associated sequence for a
delta series f(t) if and only if it is of binomial type, that is, if and only if it
satisfies the identity

n

n
pu(z+y) = Z( ) P (Y) Pk ()
ok
forally € C.
2) (The Sheffer identity) 4 sequence s,(x) is Sheffer for (g(t), f(t)), for
some invertible g(t) if and only if

n

su@+y) = () Py)sai(a)

k=0

Jor all y € C, where p,(z) is the associated sequence for f(t).
Proof. To prove part 1), if p,(z) is an associated sequence then taking
h(t) = e¥" in Theorem 18.13 gives the binomial identity. Conversely, suppose
that the sequence p,(x) is of binomial type. We will use the operator
characterization to show that p,(z) is an associated sequence. Taking
xz =y =0wehave forn =0

Po(0) = po(0)po(0)
and so py(0) = 1. Also,
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P1(0) = po(0)p1(0) + p1(0)po(0) = 2p1(0)
and so p;(0) = 0. Assuming that p;(0) = 0 fori = 1,...,m — 1 we have
Pm(0) = po(0)Pm(0) + P (0)po(0) = 2p(0)
and so p,,(0) = 0. Thus, p,(0) = 6,,0.

Next, define a linear functional f(¢) by
(f(®) | pu(@)) = 602

Since (f(t) | 1) = (f() | po(z)) =0 and (f(t) | pi(2)) =170 we deduce
that f(t) is a delta series. Now, the binomial identity gives

()1l =3 () ) [ poci(a)

k=0

kno (Z) Di(Y) b1
= npn-1(y)
and so
(€ | f(t)pa(@)) = (" | npn1(@))
and since this holds for all y, we get f(¢)p,(z) = np,_1(x). Thus, p,(z) is the

associated sequence for f(t).

For part 2), if s,(z) is a Sheffer sequence then taking h(t) = e’ in Theorem
18.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity
holds, where p,(x) is the associated sequence for f(¢). It suffices to show that
9(t)sn(z) = pn(x) for some invertible g(¢). Define a linear operator 7' by

Tsp(x) = pu(x)
Then
'Ts,(x) = e po(x) = palz +y)
and by the Sheffer identity
Tesn() = 3 () W Ts0-sla) = 32 mlwpa-s(a)

and the two are equal by part 1). Hence, 7' commutes with ¢ and is therefore
of the form ¢(t), as desired. O
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Examples of Sheffer Sequences

We can now give some examples of Sheffer sequences. While it is often a
relatively straightforward matter to verify that a given sequence is Sheffer for a
given pair (g(t), f(t)), it is quite another matter to find the Sheffer sequence for
a given pair. The umbral calculus provides two formulas for this purpose, one of
which is direct, but requires the usually very difficult computation of the series
(f(t)/t)~™. The other is a recurrence relation that expresses each s, (z) in terms
of previous terms in the Sheffer sequence. Unfortunately, space does not permit
us to discuss these formulas in detail. However, we will discuss the recurrence
formula for associated sequences later in this chapter.

Example 18.4 The sequence p,(x) = z" is the associated sequence for the delta
series f(t) = t. The generating function for this sequence is

and the binomial identity is the well known binomial formula

n

(@+y)" =) (Z) akyr

k=0
Example 18.5 The lower factorial polynomials
(@) =x(x—1)(x—n+1)
form the associated sequence for the forward difference functional
fit)y=e" -1

discussed in Example 18.2. To see this, we simply compute, using Theorem
18.12. Since (0)o is defined to be 1, we have (0),, = §,,¢. Also,

(e = 1)(2)n = (z + 1), — (2),
=[z+Dz(z-1)(z—n+2)]—[z(x—1)-(x —n+1)]
=z(z—1)(z—n+2)[(z+1)— (z —n+1)]
=nz(z—1)(x —n+2)

= n(z)n—l

The generating function for the lower factorial polynomials is

evlog(1+t) _ Z (Y £k

!
— k!
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which can be rewritten in the more familiar form
(Y
14 ¢) = ( ) %
(1+1) ; L

Of course, this is a formal identity, so there is no need to make any restrictions
on t. The binomial identity in this case is

n

@+ )= () ) @nwis

k=0

which can also be written in the form

x + "/

( n y) - ;(k) (ngk)

This is known as the Vandermonde convolution formula.
Example 18.6 The Abel polynomials

Ap(z;0) = 2(x — an)"?
form the associated sequence for the Abel functional

f(t) =te™

also discussed in Example 18.2. We leave verification of this to the reader. The
generating function for the Abel polynomials is

_ o0 k-1
T — Zy(y - C?k) ik
=0 k!

Taking the formal derivative of this with respect to y gives

?(t)ey?(t) — i k(y - a’) (y — ak)k_l tk

prd k!

which, 1or y = U, glves a formula for the composmona mverse of the series
hich, f 0, gi formula for th itional i f th i
f(t) = te™,

- o (—a) R
=) 2L ¢F
=2 5

k=1

Example 18.7 The famous Hermite polynomials H,(z) form the Appell
sequence for the invertible functional

gt) ="
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We ask the reader to show that s,, () is the Appell sequence for g(t) if and only
if 5, (x) = g(t)~'a". Using this fact, we get

2 1., : .
H,(z) = e t2pn — Z(_i)k (1)2r 2k

!
=0 k!

The generating function for the Hermite polynomials is

eyt—t/2 _ ZHK('Q) £k
— k!

and the Sheffer identity is

n

Hy(z+y) = 2 (k)Hk.(m)yn*k

We should remark that the Hermite polynomials, as defined in the literature,
often differ from our definition by a multiplicative constant. []

Example 18.8 The well known and important Laguerre polynomials e )(x)
of order @ form the Sheffer sequence for the pair

t
H=01-t)"" ft)= —
o(t) = (1= 1), fl1) =
It is possible to show (although we will not do so here) that

n

L) =S (4

k=0
The generating function of the Laguerre polynomials is

(@)
%eyt/({,—l) _ ZM i
(1 —=t)* k!

As with the Hermite polynomials, some definitions of the Laguerre polynomials
differ by a multiplicative constant. [

We presume that the few examples we have given here indicate that the umbral
calculus applies to a significant range of important polynomial sequences. In
Roman [1984], we discuss approximately 30 different sequences of polynomials
that are (or are closely related to) Sheffer sequences.

Umbral Operators and Umbral Shifts

We have now established the basic framework of the umbral calculus. As we
have seen, the umbral algebra plays three roles: as the algebra of formal power
series in a single variable, as the algebra of all linear functionals on P and as the
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algebra of all linear operators on P that commute with the derivative operator.
Moreover, since F is an algebra, we can consider geometric sequences

9, 9f, 9% 9f>, ...

in F, where o(g) =0 and o(f) = 1. We have seen by example that the
orthogonality conditions

(g (1) | (@) = iy

define important families of polynomial sequences.

While the machinery that we have developed so far does unify a number of
topics from the classical study of polynomial sequences (for example, special
cases of the expansion theorem include Taylor's expansion, the Euler-
MacLaurin formula and Boole's summation formula), it does not provide much
new insight into their study. Our plan now is to take a brief look at some of the
deeper results in the umbral calculus, which center around the interplay between

operators on P and their adjoints, which are operators on the umbral algebra
F =P

We begin by defining two important operators on P associated with each
Sheffer sequence.

Definition Let s,(x) be Sheffer for (g(t), f(t)). The linear operator
Ag,p: P — P defined by

Ag.f (") = 8n(2)

is called the Sheffer operator for the pair (g(t), f(t)), or for the sequence
sn(x). If pp(2) is the associated sequence for f(t), the Sheffer operator
)

)‘f(xn) = pn(x

is called the umbral operator for f(t), or for p,(x). O

Definition Let s,(x) be Sheffer for (g(t), f(t)). The linear operator
04.5: P — P defined by

Og.1[5n(®)] = spy1(7)

is called the Sheffer shift for the pair (¢(t), f(t)), or for the sequence s, (x). If
pn(x) is the associated sequence for f(t), the Sheffer operator

ef [pn(x)] = Pnt1()
is called the umbral shift for f(t), or for p,(x). O
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It is clear that each Sheffer sequence uniquely determines a Sheffer operator and
vice versa. Hence, knowing the Sheffer operator of a sequence is equivalent to
knowing the sequence.

Continuous Operators on the Umbral Algebra

It is clearly desirable that a linear operator 7' on the umbral algebra F pass
under infinite sums, that is, that

(S ach) = S alfi(e) (18.6)
k=0 k=0

whenever the sum on the left is defined, which is precisely when o( f;(t)) — oo
as k — oo. Not all operators on F have this property, which leads to the
following definition.

Definition A4 linear operator T on the umbral algebra F is continuous if it
satisfies (18.6). O

The term continuous can be justified by defining a topology on F. However,
since no additional topological concepts will be needed, we will not do so here.
Note that in order for (18.6) to make sense, we must have o(T[f(t)]) — oo. It
turns out that this condition is also sufficient.

Theorem 18.15 A linear operator 7" on F is continuous if and only if
o(fr) = 00 = o(T(fr)) — o0 (18.7)

Proof. The necessity is clear. Suppose that (18.7) holds and that o(f},) — co.
For any m > 0, we have

<T§;akfk(t) 17”> = <T§;akfk(t)

) (T i)

k>m

x”> (18.8)

Since

0 (Zwﬁ:(ﬂ) — 00
k>m
(18.7) implies that we may choose m large enough so that

O(TZakfk(t)) >n
fe>m

and

o(T[fr(t)]) >nfork >m
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Hence, (18.8) gives

<T§: a fr(t)
=0

m

:c"> = <TAZ: ar fr(t) ‘x”>
g

= (> aTlA)
k=0

ST
k=0

which implies the desired result. O
Operator Adjoints

If 7:'P — P is a linear operator on P then its (operator) adjoint 7* is an
operator on P* = F defined by

T h()] = h(t) o7
In the symbolism of the umbral calculus, this is
(T*h(t) | p(x)) = (h(t) | Tp(2))

(We have reduced the number of parentheses used to aid clarity.)
Let us recall the basic properties of the adjoint from Chapter 3.

Theorem 18.16 For 7,0 € L(P),
1) (t+o0)*=17"40"

2) (rr)* =rr* foranyr € C
3 (ro) =o"7"
4) (7Y = ()7 for any invertible T € L(P) o

Thus, the map ¢: L(P) — L(F) that sends 7: P — P to its adjoint 7°: F — F
is a linear transformation from £(P) to L(F). Moreover, since 7 = 0 implies
that (h(t) | 7p(x)) =0 for all h(t) € F and p(x) € P, which in turn implies
that 7 = 0, we deduce that ¢ is injective. The next theorem describes the range
of ¢.

Theorem 18.17 A4 linear operator T € L(F) is the adjoint of a linear operator
L € L(P) if and only if T is continuous.

Proof. First, suppose that ' = 7" for some 7 € L(P) and let o(f(t)) — oo. If
n > 0 then for all 0 < ¢ < n we have

(T fu(t) | 2') = (fu(t) | T2')

and so it is only necessary to take k large enough so that o(fi(t)) > deg 7(z%)
for all 0 < ¢ < n, whence
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(T fr(®) | 2) =0

for all 0 <i<n and so o(7* fx(t)) > n. Thus, o(7* f1(t)) — oo and 7* is
continuous.

For the converse, assume that T is continuous. If 7" did have the form 7* then

<Ttk | z™) = <7'th | 2"y = (tk | 72™)

and since
th | T
T = < |k' >II\
k>0 ’
we are prompted to define T by
Ttk | )
Tt = < k|' >"Ek
k>0 :

This makes sense since o(T#") — oo as k — oo and so the sum on the right is a
finite sum. Then
(Tt" | ")

<,7_><tm | .’E"> _ <tm | T£E7L> _ Z o <tm | l’k> — <Ttm | xn>
k>0 :

which implies that 7't = 7*¢™ for all m > 0. Finally, since 7" and 7 are both
continuous, we have T' = 7. [0

Umbral Operators and Automorphisms of the Umbral Algebra

Figure 18.1 shows the map ¢, which is an isomorphism from the vector space
L('P) onto the space of all continuous linear operators on F. We are interested
in determining the images under this isomorphism of the set of umbral operators
and the set of umbral shifts, as pictured in Figure 18.1.
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Automorphisms
of &

Surjective
Derivations
on ¥

A—>X

Il

Continuous linear
operatorson 7

Figure 18.1

Let us begin with umbral operators. Suppose that A; is the umbral operator for
the associated sequence p, (z), with delta series f(¢) € F. Then

AFF@F 2" = (F@OF [ Ap2") = (F(O" | pal@)) = nlbyp = (" ]| 2")
for all k and n. Hence, A} f(¢)" = ¢* and the continuity of A} implies that
AF = F(0)
More generally, for any h(t) € F,
AFR(t) = h(F(1)) (189)
In words, A} is composition by f(@).

From (18.9), we deduce that A is a vector space isomorphism and that

A lg@®h()] = g(F(@)R(F () = AFg(t) A h(t)

Hence, )\; is an automorphism of the umbral algebra F. It is a pleasant fact that

this characterizes umbral operators. The first step in the proof of this is the
following, whose proofis left as an exercise.

Theorem 18.18 If T is an automorphism of the umbral algebra then T
preserves order, that is, o(T f(t)) = o(f(t)). In particular, T is continuous. O

Theorem 18.19 A4 linear operator X on P is an umbral operator if and only if
its adjoint is an automorphism of the umbral algebra F. Moreover, if \; is an
umbral operator then
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Afh(t) = h(f(t))

for all h(t) € F. In particular, X} f(t) = t.

Proof. We have already shown that the adjoint of A; is an automorphism
satisfying (18.9). For the converse, suppose that A* is an automorphism of F.
Since A\ is surjective, there is a unique series f(t) for which A\* f(¢) =t.
Moreover, Theorem 18.18 implies that f(¢) is a delta series. Thus,

by = (| 2") = (N F(O)F | 2") = (F(1)" | Az")

which shows that A\z" is the associated sequence for f(¢) and hence that A is an
umbral operator. []

Theorem 18.19 allows us to fill in one of the boxes on the right side of Figure
18.1. Let us see how we might use Theorem 18.19 to advantage in the study of
associated sequences.

We have seen that the isomorphism A — A maps the set I/ of umbral operators
on P onto the set aut(F) of automorphisms of F = P*. But aut(F) is a group
under composition. So if

Apra" — py(x) and Ag: 2" — ¢, ()
are umbral operators then since
(AgoAp)" =Af oAy

is an automorphism of F, it follows that the composition Aj o Ay is an umbral
operator. In fact, since

(Ag o Ap) " f(g(t)) = Af o AJf(g(t)) = A f(t) =1t
we deduce that A; o Ay = Ajoq. Also, since
Ajodr=Xg=NM=1
we have )\;1 = A7
Thus, the set U of umbral operators is a group under composition with
Ag O Af = Afog
and
At =g

Let us see how this plays out with respect to associated sequences. If the
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associated sequence for f(t) is

n
pn(m) = an,kxk
k=0

then A\p:2™ — p,(z) and so Apoy = Ajo Ay is the umbral operator for the
associated sequence

n n
(/\y 0 )‘f)xn = A\gpu(T) = mek)‘x/xk = an,kq}v(x)
k=0 k=0
This sequence, denoted by

pu@@) = 3 pusar(e) (18.10)
k=0

is called the umbral composition of p,(x) with g,(x). The umbral operator

)\? = )\;1 is the umbral operator for the associated sequence r,(x) = Sk
where

)\f_-lm” =r,(x)
and so

n
" = Z T,k Dk (LU)
k=0

Let us summarize.

Theorem 18.20
1) The set U of umbral operators on P is a group under composition, with

-1
)\g o )\f = )\fog and )\f = )\7
2) The set of associated sequences forms a group under umbral composition
n
Dn (Q(x)) = Z pn,ka(m)
k=0
In particular, the umbral composition p,(q(x)) is the associated sequence
for the composition f o g, that is
Afog: " — pu(g())

The identity is the sequence x™ and the inverse of p,(x) is the associated
sequence for the compositional inverse f(t).
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3) LetA\; € Uand g(t) € F. Then as operators
Arg(t) = X7 'g(t)Af

4) Let\; € Uand g(t) € F. Then

Arg(f(#)

which gives the desired result. Part 4) follows immediately from part 3) since Ay
is composition by f. O

Sheffer Operators
If s, (x) is Sheffer for (g, f) then the linear operator A, ; defined by
Ag.s (") = sn(2)

is called a Sheffer operator. Sheffer operators are closely related to umbral
operators, since if p, () is associated with f(¢) then

sn(t) = g7 (Opu(a) = g7 (t)Apz”
and so
Nt =g (t)As
It follows that the Sheffer operators form a group with composition
ot 0 Ak =g HONRTHE) A
=g (ORI (FO)A M

= [g(t)h(f ()] Aros
= Ag(hof)kof

and inverse
_1 o o
Agt = A ()7

From this, we deduce that the umbral composition of Sheffer sequences is a
Sheffer sequence. In particular, if s,(x) is Sheffer for (g,f) and
t,(x) = St xa" is Sheffer for (h, k) then
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)\gfo)\hk ZtnkAgfx

= Ztn,ksk(I)

k=0

= tn(s(z))
is Sheffer for (g - (h o f),k o f).
Umbral Shifts and Derivations of the Umbral Algebra

We have seen that an operator on P is an umbral operator if and only if its
adjoint is an automorphism of F. Now suppose that 6y € L(P) is the umbral
shift for the associated sequence p,(x), associated with the delta series
f(t) € F. Then

(OF F@)" | pa(@)) = (F@O)° | Oppu())
(

F@OF | pusi (x))
= (Tl 1)'6n+1 k
k( - 1)'671A 1

= (kf(6)*"" | pa(2))
and so
07 F(t)" = kf(t)"! (18.11)
This implies that
OF[F O ()] = 0F[F(O1F () + F(O 07 ()] (18.12)
and further, by continuity, that
07 [g()h ()] = [0 g(1)]h(t) + g(£)[07 9(1)] (18.13)

Let us pause for a definition.

Definition Let A be an algebra. A linear operator 0 on A is a derivation if
0(ab) = (0a)b + adb
foralla,b e A. O

Thus, we have shown that the adjoint of an umbral shift is a derivation of the
umbral algebra F. Moreover, the expansion theorem and (18.11) show that 9;

is surjective. This characterizes umbral shifts. First we need a preliminary result
on surjective derivations.
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Theorem 18.21 Let O be a surjective derivation on the umbral algebra F. Then
dc = 0 for any constant ¢ € F and o(Of(t)) = o(f(t)) — 1, if o(f(¢)) > 1. In
particular, 0 is continuous.

Proof. We begin by noting that

01 =912 =91 4+ 91 = 201

and so dc = c01 = 0 for all constants ¢ € F. Since 0 is surjective, there must
exist an h(t) € F for which

Oh(t) =1
Writing h(t) = ho + thi(t), we have
1 =9lho + thi(t)] = (Ot)ha(t) + tOh1(t)

which implies that o(9t) = 0. Finally, if o(h(t)) = k > 1 then h(t) = t*hy(t),
where o(h;(t)) = 0 and so

o[Oh(t)] = o[0t"hy(t)] = o[t"Oh(t) + kt"  hi(t)dt] = k — 1 |

Theorem 18.22 A linear operator 6 on P is an umbral shift if and only if its
adjoint is a surjective derivation of the umbral algebra F. Moreover, if 0y is an
umbral shift then 07 = Oy is derivation with respect to f(t), that is,

0F F(0)" = kf(t)"

Jorall k > 0. In particular, 05 f(t) = 1.
Proof. We have already seen that ¢} is derivation with respect to f(¢). For the

converse, suppose that 6* is a surjective derivation. Theorem 18.21 implies that
there is a delta functional f(¢) such that 8 f(¢) = 1. If p,(z) is the associated
sequence for f(t) then

(fO)F | Opa(x)) =

(
(
= (k
(
(

Hence, 0p,,(z) = pps1(x), that is, & = 0 is the umbral shift for p,,(z). O

We have seen that the fact that the set of all automorphisms on F is a group
under composition shows that the set of all associated sequences is a group
under umbral composition. The set of all surjective derivations on F does not
form a group. However, we do have the chain rule for derivations!



The Umbral Calculus 467

Theorem 18.23 (The chain rule) Let 0 and 0, be surjective derivations on F.
Then

= (9,f(t))9y
Proof. This follows from
Oy f (1) = kf(£)" 10, f () = (9,£(1))s f (1)

and so continuity implies the result. [J
The chain rule leads to the following umbral result.

Theorem 18.24 If 0 and 0, are umbral shifts then
O, =0700,f(t)
Proof. Taking adjoints in the chain rule gives
6,= 070 (9,F(1))" = 6700, f(1) O

We leave it as an exercise to show that 9, f(t) = [0rg(t)]"!. Now, by taking
g(t) =t in Theorem 18.24 and observing that 6;2" = 2" and so 0, is
multiplication by z, we get

0 = xdpt = x[0,f ()] " = x[f' ()]

Applying this to the associated sequence p,(x) for f(t) gives the following
important recurrence relation for p, ().

Theorem 18.25 (The recurrence formula) Let p,(x) be the associated
sequence for f(t). Then

1) anrl(m) = x[f/(j)]_lpn(x>

2) pra(x) = 2Af[f (1)) 2"

Proof. The first part is proved. As to the second, using Theorem 18.20 we have

pn+1() [()]1 () o

== .%')\f[f
= zAf[f (1)) 2"

Example 18.9 The recurrence relation can be used to find the associated
sequence for the forward difference functional f(t) = e’ — 1. Since f/(t) = €',
the recurrence relation is

pn,Jrl(x) = xe_tpn(x) = xpn(x - 1)
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Using the fact that po(x) = 1, we have
m(x) =z, pp(z) =z(x - 1), ps(x) =2(z — 1)(z —2)
and so on, leading easily to the lower factorial polynomials
() =2(z—1)(x—n+1)=(z), O
Example 18.10 Consider the delta functional
F(t) = log(1 + 1)

Since f(t) = e! — 1 is the forward difference functional, Theorem 18.20 implies
that the associated sequence ¢,(x) for f(t) is the inverse, under umbral
composition, of the lower factorial polynomials. Thus, if we write

on(z) = 2": S(n, k:)ar;lc
E=0

then

n

2" = "S(n, k) (z)

k=0

The coefficients S(n, k) in this equation are known as the Stirling numbers of
the second kind and have great combinatorial significance. In fact, S(n, k) is
the number of partitions of a set of size n into k blocks. The polynomials ¢,,(x)
are called the exponential polynomials.

The recurrence relation for the exponential polynomials is
P (x) = 2(1+ 1)dn(2) = 2(¢n(2) + ¢,,(2))

Equating coefficients of 2* on both sides of this gives the well known formula
for the Stirling numbers

S(n+1,k) = S(n,k—1) + kS(n, k)

Many other properties of the Stirling numbers can be derived by umbral
means. [J

Now we have the analog of part 3) of Theorem 18.20.

Theorem 18.26 Let 0 be an umbral shift. Then
07g(t) = g(t)0; — Org(t)
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Proof. We have

(f5() 167 g(O)pu(a)) = (67 g
] = g(0)0F ¥ (t) | pul))
]| pul@)) = (kg(0) F*71 () | pal))
)0;pa(x)) — (kfFH(E) | g(t)pa(2))
6)0spa(x)) — (07 F5(t) | 9(t)pa())
)05pa()) = (f5(t) | O59(t)pu(x))

from which the result follows. OJ

If f(t) = ¢ then 0is multiplication by  and 07 is the derivative with respect to
t and so the previous result becomes

g(t) = g(t)x —xg(t)

as operators on P. The right side of this is called the Pincherle derivative of
the operator g(t). (See [Pin].)

Sheffer Shifts
Recall that the linear map
Gf[sn( )] = sn-H(x)
where s,(x) is Sheffer for (g(t), f(t)) is called a Sheffer shift. If p,(x) is
associated with f () then g(¢)s,(z) = p,(x) and so
97 (t)pn-‘rl (l‘) = 0!17f [gil(t)pn(x)]
and so
05,1 = g7 (t)079(t)
From Theorem 18.26, the recurrence formula and the chain rule, we have
Og.r = 9~ (H)059(t)
=g ' (t)[g(t)0; — 07 g(t)]
=07 — g (H)9r9(t)
=07 — g~ (t)9rg(t)
— 0, — g (DOt 9(1)
=a[f' )] =g O] ()

“[ S0 lrm

We have proved the following.
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Theorem 18.27 Let 0, y be a Sheffer shift. Then
— g

D Oy = |- %] 7

2) spyi(x) = [:B —fﬂ } )s,,(;v) O

The Transfer Formulas
We conclude with a pair of formulas for the computation of associated

sequences.

Theorem 18.28 (The transfer formulas) Let p, () be the associated sequence

Jor f(t). Then

D pue) = po(H0)
2 pale) = (L2) "
Proof. First we show that 1) and 2) are equivalent. Write g(¢) = f(¢)/t. Then

f't)gH) ™" 2" = [tg(t)]'g(t) " a"

n

8

— g(t) e +tg( ) ( ) —n—1 "

— g(t) nxn 4 ,ng( ) (t) n—1 P 1
=g(t) "z [()"fc

=g(t)"z" — [g(t) "z ()’"]fv"’1
— .’Eg(t) n = 1

To prove 1), we verify the operation conditions for an associated sequence for
the sequence q,(x) = f'(t)g(t)™""'z". First, when n > 1 the fourth equality
above gives

(" | gu(2)) = (° | f'(t)g(t) ™" "2")
= (" | g(®)™"a" — [g(t)"'=")
= (g™ [ ") = ([g®&)™"' | ")
= (g(t)"" [ ") = (g(t)" | ="
=0

If n = 0 then (£° | ¢,(x)) = 1 and so, in general, we have (£ | ¢,(z)) = 8, as
required.

For the second required condition,

f)an(x) = f) ' (£)g(t) " 2"
= tg(t)f'(H)g(t) ™" *a"
= nf (g(0) "t
= N4n-1 (CL’)

Thus, g,,(x) is the associated sequence for f(t). O



The Umbral Calculus 471

A Final Remark

Unfortunately, space does not permit a detailed discussion of examples of
Sheffer sequences nor the application of the umbral calculus to various classical
problems. In [Roml], one can find a discussion of the following polynomial
sequences:

The lower factorial polynomials and Stirling numbers
The exponential polynomials and Dobinski's formula
The Gould polynomials

The central factorial polynomials

The Abel polynomials

The Mittag—Leffler polynomials

The Bessel polynomials

The Bell polynomials

The Hermite polynomials

The Bernoulli polynomials and the Euler—Maclaurin expansion
The Euler polynomials

The Laguerre polynomials

The Bernoulli polynomials of the second kind

The Poisson—Charlier polynomials

The actuarial polynomials

The Meixner polynomials of the first and second kinds
The Pidduck polynomials

The Narumi polynomials

The Boole polynomials

The Peters polynomials

The squared Hermite polynomials

The Stirling polynomials

The Mahler polynomials

The Mott polynomials

and more. In [Rom1], we also find a discussion of how the umbral calculus can
be used to approach the following types of problems:

The connection constants problem

Duplication formulas

The Lagrange inversion formula

Cross sequences

Steffensen sequences

Operational formulas

Inverse relations

Sheffer sequence solutions to recurrence relations
Binomial convolution
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Finally, it is possible to generalize the classical umbral calculus that we have
described in this chapter to provide a context for studying polynomial sequences
such as those of the name Gegenbauer, Chebyshev and Jacobi. Also, there is a
g-version of the umbral calculus that involves the q-binomial coefficients (also
known as the Gaussian coefficients)

<n) _ (1-q)---(1-q")

k/q (1—q)(1=g")1—=q)(1—q")

in place of the binomial coefficients. There is also a logarithmic version of the
umbral calculus, which studies the harmonic logarithms and sequences of

logarithmic type. For more on these topics, please see [LR], [Rom2] and
[Rom3].

Exercises

1. Prove that o(fg) = o(f) + o(g), forany f,g € F.

2. Prove that o(f + ¢g) > min{o(f),0(g)}, forany f,g € F.

3. Show that any delta series has a compositional inverse.

4. Show that for any delta series f, the sequence f ¥ is a pseudobasis.

5. Prove that 9, is a derivation.

6. Show that f € F is a delta functional if and only if (f|1) =0 and

(f | ) #0.

Show that f € F is invertible if and only if (f | 1) # 0.

Show that (f(at) | p(z)) = (f(t) | p(ax)) for any a€ C, f€ F and

peP.

9. Show that (te” | p(x)) = p'(a) for any polynomial p(z) € P.

10. Show that f = g in F if and only if f = g as linear functionals, which
holds if and only if f = g as linear operators.

11. Prove that if s,(x) is Sheffer for (g(¢), f(t)) then f(t)s,(z) = ns,—1(x).
Hint: Apply the functionals g(t) f*(t) to both sides.

12. Verify that the Abel polynomials form the associated sequence for the Abel
functional.

13. Show that a sequence s, (z) is the Appell sequence for g(¢) if and only if
sp(z) = g(t) Lo

14. If f is a delta series, show that the adjoint A jf of the umbral operator Ay is a

* N

vector space isomorphism of F.

15. Prove that if T is an automorphism of the umbral algebra then 7" preserves
order, that is, o(T' f(t)) = o(f(t)). In particular, T is continuous.

16. Show that an umbral operator maps associated sequences to associated
sequences.

17. Let p,(x) and ¢, () be associated sequences. Define a linear operator o by
a: pp(x) — gp(x). Show that « is an umbral operator.

18. Prove that if Oy and &, are surjective derivations on F then

0,f(t) = [0pg(t)] "
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Sheffer sequence 447

Sheffer shift 457

sign 372

signature 269

similar 9,66,142

similarity classes 66,142

simple 120

simultaneously diagonalizable 177

singular 246

singular value decomposition 430

singular values 430

size 1

space 359

span 42,96

spectral resolution 173

spectral theorem for normal
operators 227

spectrum 156

sphere 286

splits 158

square summable functions 329

standard basis 43,58,113

standard inner product 182

standard topology 68

standard vector 43

Stirling numbers of the second
kind 468

strictly diagonally dominant 179

strictly positive 198,395

strictly positive orthant 395

strictly separated 401

string 380

strongly positive 52,198,395

strongly positive orthant 198,395

strongly separated 402

structure theorem for normal



matrices 222
structure theorem for normal
operators 221
structure theorem for normal
operators: complex case 216
structure theorem for normal
operators: real case 220
subfield 53
subgroup 17
submatrix 2
submodule 96
submodule spanned 96
subring 18
subspace 35,240,286
subspace generated 42
subspace spanned 42
sum 14,37
sup metric 284
support 6,38
surjection 6
surjective 6
Sylvester's law of inertia 269
symmetric 2,207,239,371,374
symmetric group 371
symmetric tensor algebra 377,379
symmetric tensor space 377,378
symmetrization map 380
Symmetry 7,181,185,274,283
symplectic basis 253
symplectic geometry 240
symplectic group 252
symplectic transformation 252
symplectic transvection 261

tensor algebra 371

tensor product 345,346,364,393
tensors 345

tensors of type 366

third isomorphism theorem 81,102
topological space 287
topological vector space 69
topology 287

torsion element 99

torsion module 99

total subset 318

totally degenerate 246

Index 481

totally isotropic 246
totally ordered set 11
totally singular 246
trace 176
translate 409
translation 418
translation operator 445
transpose 2
transposition 372
triangle inequality
183,185,283,307

umbral algebra 440

umbral composition 463

umbral operator 457

umbral shift 457

uncountable 12

underlying set |

unipotent 282

unique factorization domain 26

unit 25

unit vector 183

unitarily diagonalizable 205

unitarily equivalent 212

unitarily similar 212

unitarily upper triangularizable
165

unitary 208

unitary metric 284

unitary similarity classes 212

universal 271

universal for bilinearity 344

universal pair for 339

upper bound 10,11

upper triangular 4,161,425

upper triangularizable 161,425

Vandermonde convolution formula
455

vector space 33,147

vectors 33

wedge product 383

weight 35

with respect to 192

with respect to the bases 62



482 Index

Witt index 278

Witt's cancellation theorem
260,275

Witt's extension theorem 260,277

word 380

zero divisor 22
zero element 17
zero subspace 36
Zomn's lemma 11



