
GrafanaCloud
Anthony Woods
co-founder/cto

GrafanaCloud platform requirements
● Scalable for customers, but also scalable for our SRE!

● Fault tolerance and automated recovery

● Service discovery

● Horizontal Scaling

● Resource management

● Isolation between tenants

…. Kubernetes to the rescue; we’re all in!

Kubernetes: our not so secret weapon
● A consistent platform for on-prem and SaaS deployments

○ Shippable SaaS

● Fully managed options reduce SRE burden

○ GKE (Google Kubernetes Engine)

● Also run vanilla K8s on bare metal

○ Packet.net

● Or wherever our customers want us to be

○ Eg. Azure AKS, AWS EKS, colo, for GrafanaCloud Private Deployments

Hosted Grafana
● A fully dedicated Grafana instance running the latest stable release

● One-Click installation of plugins from grafana.com

● Custom domain and authentication

● Anything config setting possible

● Who better to support it than the core Grafana team?

Hosted Grafana

Hosted Grafana Instance Dashboard

Hosted Metrics
● Unlimited* Scale

● Support for large metric volume (hundreds of millions of DPM)

● Fast query response times to support alerting

● Tunable for different workloads (eg. retention, cache, redundancy)

● Fault tolerant

Hosted Metrics

Hosted Metrics - core components
GrafanaLabs metrictank: https://github.com/grafana/metrictank

○ Query engine compatible with Graphite and PromQL
Keeps most data cached in memory for exceptionally fast query times

○ Compresses and aggregates data then saves it to the backend store
Inspired by Facebook Gorilla (similar algo as Prometheus and InfluxDB) < 2 bytes per point

Apache Kafka: https://kafka.apache.org/

○ Distributed Queue
Provides resilience; we always need to accept data

Apache Cassandra: http://cassandra.apache.org/ or Google Bigtable

○ Long term storage of metric data.
○ Horizontally scalable

https://github.com/grafana/metrictank
https://kafka.apache.org/
http://cassandra.apache.org/

Hosted Metrics - Components

Hosted Metrics Customer Dashboard

Cache Performance

+
Kubernetes Bigtable

Google Cloud Bigtable
Misha Brukman

Product Manager

How do we …

… run containerized workloads at scale?

Need: Deploy, scale and upgrade microservices quickly and efficiently

Google Kubernetes Engine

Solution: Borg, Kubernetes (open source)

… build a petabyte-scale analytics database?

Need: Massive data index files took weeks to rebuild. We needed random read/write access

Google Cloud Bigtable

Solution: Bigtable

Technologies to support Google products

2012 20142002 2004 2006 2008 2010

GFS

MapReduce

Bigtable

Dremel Flume

Spanner

Colossus

MillWheel

F1

TensorFlow

Megastore

Borg

2016

Imagine what you can build ...

… when scale is a solved problem

1 Billion users

Technologies to support Google products

2012 20142002 2004 2006 2008 2010

GFS

MapReduce

Bigtable

Dremel Flume

Spanner

Colossus

MillWheel

F1

TensorFlow

Megastore

Borg

2016

Now available on Google Cloud Platform

Big Data

Compute

Compute
Engine

App Engine Kubernetes
Engine

Storage & Databases

Storage Cloud SQLBigtable

Machine Learning

Spanner Datastore

BigQuery Pub/Sub Dataflow Dataproc Datalab Speech APIML Engine Translate APIVision API

Google Cloud Bigtable

Google Cloud Bigtable

Learns and adjusts to access patterns

Seamless scalability for throughput

Built-in support for time series

Fully-managed NoSQL database

Bigtable data model
● NoSQL (no-join) distributed key-value store, designed to scale-out
● has only one index (the row-key)
● supports atomic single-row transactions
● unwritten cells in do not take up any space

Column-Family-1 Column-Family-2

Row Key Column-Qualifier-1 Column-Qualifier-2 Column-Qualifier-1 Column-Qualifier-2

r1 r1, cf1:cq1 r1, cf1:cq2 r1, cf2:cq1 r1, cf2:cq2

r2 r2, cf1:cq1 r2, cf1:cq2 r2, cf2:cq1 r2, cf2:cq2

3D database structure enables time series
● every cell is versioned (default is timestamp on server)
● garbage collection retains latest version (configurable)
● expiration (optional) can be set at column-family level
● periodic compaction reclaims unused space from cells

Row Key CF:CQ

“r1” value @ time(latest)

value @ time(previous)

value @ time(earliest available)

Bigtable high-level architecture

Clients

Processing Bigtable node Bigtable node Bigtable node

LB / proxy

Bigtable separates processing from storage

Clients

Processing

Storage Colossus file system

Bigtable node Bigtable node Bigtable node

Bigtable learns access patterns...

Clients

Processing

Storage

Colossus file system

Bigtable node Bigtable node Bigtable node

A B C D E

…and rebalances, without moving data

Clients

Processing

Storage

Bigtable node Bigtable node Bigtable node

A B C D E

Bigtable provides seamless resizing

Clients

Processing

Storage

Colossus file system

Bigtable node Bigtable node Bigtable node

A B C D E

Bigtable node

Bigtable provides linear scalability in performance

Node Node Node

Nodes

80,000

60,000

40,000

20,000

Bigtable nodes

6420
0

RPS

8

Bigtable provides linear scalability in performance

400,000

300,000

200,000

100,000

403020100
0

Nodes

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Bigtable nodes

RPS

Bigtable provides linear scalability in performance

4,000,000

3,000,000

2,000,000

1,000,000

4003002001000
0

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node Node Node Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node

Node Node Bigtable nodes

RPS

Single digit ms at the 99%

● Native scheduler protects serving
path from compactions

● No garbage collection
● Very fast tablet reassignment

Great long tails

Google Cloud Bigtable

Learns and adjusts to access patterns

Seamless scalability for throughput

Built-in support for time series

Fully-managed NoSQL database

Metrictank
Dieter Plaetinck

Principal Engineer

Project
Not product

Data store
Not database

Genesis

(not the band)

Requirements for Worldping TSDB
● Large scale (millions of points per second)
● Long term storage, rollups
● Resource efficient (cpu, memory, disk)
● Multi-tenant
● Open source
● Operationally friendly
● Proven technology
● Compatible with Graphite (or pluggable into Graphite)

??

Didn’t want to write yet
another TSDB

??

● github.com/dgryski/go-tsz
● NSQ (later Kafka)
● Cassandra
● (Elasticsearch for index)

Didn’t want to write yet
another TSDB

● Sept 23, 2015 : First prototyping
● Dec 2015: Worldping production

Do we really want our own TSDB?
● 2016: Ad-hoc hosted metrics alpha’s

Do we really want our own TSDB?
● Early 2017: Grafanacloud v1

Looks like it
● Early 2018: Grafanacloud v2

OK then. Can we add prometheus?

Timeline

metrictank
● service that reads from queue, compresses data to chunks. saves to DB
● Saves rollups
● Satisfies queries from memory and DB
● Input: Kafka (graphite, Prometheus, OpenTSDB, …)
● Input: direct Carbon, prometheus
● Whisper import
● Graphite function api (mix built-in and graphite-web)
● PromQL
● Can be deployed as eventually consistent cluster

Integrating
Not replacing

Input options
● Kafka (carbon-relay-ng graphite, Prometheus, OpenTSDB, …)
● Plain carbon, prometheus (!!)
● Whisper importer

Storage options
● Cassandra
● Bigtable
● (CosmosDB?)

Output options
● Graphite api
● Prometheus api
● ...

Data
● Chunk ringbuffer in memory
● LRU chunk cache in memory
● Storage plugin for persistence (Cassandra, …)
● Can reach ~100% memory hit rate

Metadata (index)
● Plugin (Cassandra, …) for persistence
● Full in-memory copy
● Built-in expression handling, searching, tag index, autocomplete, etc

Improve on Graphite
https://grafana.com/blog/2016/03/03/25-graphite-grafana-and-statsd-gotchas/

● Seamless changing of native data resolution
● Better support for churn (shortlived data)
● Multiple rollup functions, choice at query time (WIP)
● Automatic interval detection (WIP)

Worse than Graphite
● Data must be mostly-ordered. No rewrite support
● No xFilesFactor yet

Clustering

HA (replication)

&

horizontal scaling (partitioning/sharding)

Clustering: HA (replication)
● Simply run # replicas desired (via orchestrator)
● Primary role (via config/orchestrator or API, not automatic)
● kafka/NSQ for tracking save state
● Kafka data backfill reduces time-to-ready

Clustering: horizontal scaling (partitioning)
● Shard assignment tied to input (via config/orchestrator)
● Shard deterministically derived from metric name & metadata
● Index per node only for shards it “owns”
● Gossip for membership
● Queries can hit any instance, scatter+merge
● Kafka-lag based ready-state, priority, and min-available-shards

Clustering limitation 1

primary status per instance, not shard

node A B C D

shards 0 1 0 1 2 3 2 3

Clustering limitation 1

primary status per shard

node A B C D

shards 0 1 0 2 1 3 2 3

Clustering limitation 2
● Rigid sharding scheme. Can’t add/remove shards at will.
● => (live) cluster migration

Clustering trade-offs
● https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-o

r-ap.html
● Kafka : very tuneable. Ours tuned for consistency -> buffering client side

(rare)
● Cassandra : Eventually consistent. Tunable consistency latency trade-off
● eventually consistent. Everything streams in. Even when talking to MT directly
● Don’t need transactions for monitoring data
● MT read instances depend on writers saving to Cassandra

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Use whatever makes sense for you
That’s why Grafana supports graphite, influxDB, prometheus, cloudwatch, ….

That’s why metrictank supports Cassandra, Bigtable, ….

Tools
mt-aggs-explain

mt-explain

mt-index-cat

mt-index-migrate

mt-kafka-mdm-sniff

mt-kafka-mdm-sniff-out-of-order

mt-replicator-via-tsdb

mt-schemas-explain

mt-split-metrics-by-ttl

mt-store-cat

mt-update-ttl

mt-view-boundaries

mt-whisper-importer-reader

mt-whisper-importer-writer

Tools
mt-index-cat -prefix statsd.prod -tags none -max-age 12h cass 'GET
http://metrictank/render?target=lowestCurrent(sumSeries({{.Name |
pattern}}),2)&from=-30min\nAuthorization: Bearer foo\n\n' \

| ./vegeta attack -rate 5 | ./vegeta report

Fun under the hood stuff
● Golang issue #14812 GC bug
● Metrictank PR #136 Buffer reuse, custom json encoder, etc
● Golang contexts
● Jaeger tracing (opentracing)
● Automated chaos testing with docker-compose and pumba/tc
● profiletrigger

https://github.com/golang/go/issues/14812
https://github.com/grafana/metrictank/pull/136

Metrictank use cases
Large scale graphite installations

Long term storage prometheus

SaaS without vendor lock-in

Favor known database

Conclusion

● Try it out, but beware
● Or try GrafanaCloud (SaaS or Private Deployment)

Integrate with
ecosystem
Not divide and
conquer

Azure Cosmos DB
Anko Duizer

Sr. Technical Director for Global Cloud ISVS, Microsoft

Azure + OSS + Grafana: Years in Review

May 17

Announcing Azure
Cosmos DB

Dec 2016

July 2017

May 2017

October 2017

November 2017

Nov 17

Grafana plugin for Azure Monitor
and Application InsightsJul 17

Joined Cloud Native Computing
Foundation as Platinum Member

Nov 17

Azure Databricks

Apache Cassandra API in
Azure Cosmos DB

Joined MariaDB Foundation

MariaDB,
PostgreSQL &
MySQL on Azure

Dec 16

Joined Linux Foundation
as a platinum sponsor &
board member

2018

Oct 17

Azure Container Service AKS
(managed Kubernetes)

Upcoming

GrafanaCloud on Azure

Metrictank & Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Column-family
Document

Graph

Turnkey global distribution

Elastic scale out
of storage & throughput

Guaranteed low latency at the 99th percentile

Comprehensive SLAs

Five well-defined consistency models

Table API

Key-value

