

Grails 3 - Step By Step
Greenfield applications made right with Grails 3

Cristian Olaru

© 2016 Cristian Olaru

Contents

How this book is organized . i
First part - Grails 3 Essentials . i
Second part - Practical example with Grails 3 . ii

Introduction to Grails 3 . iii
Some history . iii

Java history . iv
Java EE history . v
Spring history . v
Groovy History . v
Grails History . vi

Grails application architecture . viii
A classical layered architecture . viii

New technologies inside Grails 3 . x
Spring Boot . x
Gradle . xi
Gorm . xi
LogBack . xii

Important aspects of Grails . xii
Plugins . xii
Profiles . xiv

How this book is organized
We try to describe here how a complete greenfield application can be implemented with Grails
3 in a fast way using profiles and plugins - and we do this in the sample application that
accompanies this book. You can find news about this book on its peresentation site located
here: www.grailsthreebook.com¹. This book is not a replacement of the Grails 3 Reference
Documentation² which is a complete description of Grails 3³, made by the creators of the
framework.

The source code used in this book is part of this sample application which is a free project hosted
on GitHub on this location https://github.com/colaru/mvp-application⁴ and is exposed online
here http://application.eu-central-1.elasticbeanstalk.com⁵. If a source code fragment is included
in this book, then it is taken from this project. We use BDD or other specification by example
techniques for describing the sample application specification. The application code is tested in
a TDD style using automated unit, integration and functional tests.

The sample application is based on a multi project Gradle build so the application can be
automatically built using Gradle - the build tool used by Grails 3. The sample application
is available online and the deployment is done automatically to AWS cloud in a Continuous
Deployment style using Jenkins.

We use links to various external resources in this book (you will see them in the page’s footers),
because this book is intended to be in electronic format from the beginning. The reader can use
these links for consulting external references in an easy way.

The book has two parts.

First part - Grails 3 Essentials

An introduction to application development with Grails 3; we describe the main application that
will be implemented in the second part of the book

Chapter 1 is an introduction to the framework. You will find here some history of the framework
and a lot of links to the Grails resources; it is presenting the classical three layered architecture
for a web application provided by Grails 3

Chapter 2 describes how to start your work with Grails 3 framework and how to install all the
tools for a free working environment - free as much as possible because you have to pay some
money for the best tools on the market

¹https://grailsthreebook.com
²http://docs.grails.org/latest
³https://grails.org
⁴https://github.com/colaru/mvp-application
⁵http://application.eu-central-1.elasticbeanstalk.com

i

https://grailsthreebook.com/
http://docs.grails.org/latest
http://docs.grails.org/latest
https://grails.org/
https://github.com/colaru/mvp-application
http://application.eu-central-1.elasticbeanstalk.com/
https://grailsthreebook.com/
http://docs.grails.org/latest
https://grails.org/
https://github.com/colaru/mvp-application
http://application.eu-central-1.elasticbeanstalk.com/

How this book is organized ii

Chapter 3 presents the project we want to implement as an example; it is presenting also the
way we choose to work on implementing the sample application, based on BDD, TDD and CI,
CD; it shows how the main application is split in parts based on Grails 3 profiles

Second part - Practical example with Grails 3

A practical implementation of a greenfield application with Grails 3; the application is composed
from multiple parts corresponding to various Grails 3 profiles

Chapter 4 describes the implementation of the application admin portal that will be used in
Intranet by the site administrators, based on a classical Grails 3 Web Profile

Chapter 5 describes the implementation of the application site exposed to the Internet to the
customers, that is based on Grails 3 Angular Profile

Chapter 6 describes a REST web API exposed with Grails 3 Rest Profile and consumed by a
mobile hybrid application created with Ionic (can be published in Google Play, Apple Store and
Windows Store)

Chapter 7 describes a Microservice developed with Grails 3 Micro Profile

Introduction to Grails 3
Grails is a full stack Web framework, covering all the aspects of a modern web application
development. Its plugins system is unique in the Java world - you can divide your application
into complete functional modules, containing presentation and business logic. Because it runs in
JVM, it has access to the entire Java ecosystem. Because is written in Groovy, it has access to all
Groovy libraries and tools.

The main site for Grails 3 is grails.org⁶. Here is the definition of Grails on the official site:

Grails is a powerful web framework for the Java platform, aimed at multiplying de-
velopers’ productivity, thanks to Convention-over-Configuration, sensible defaults,
and opinionated APIs. It integrates smoothly with the JVM, allowing you to be
immediately productive, whilst providing powerful features, including integrated
ORM, Domain-Specific Languages, runtime and compile-time meta-programming,
and Asynchronous programming.

If you have developed multiple applications over time, you have recognized a set of principles
and good practices that can be reused. You don’t want to start from scratch each time you build
your new application. Grails has good technical principles that make it a good starter for your
new applications. With Grails, you have an established architecture from the beginning, and you
can implement new features in an easy way, using scaffolding and the plugins ecosystem. And
this is more valuable when you have to get to the market first, before your competitors.

Some history

Grails 3 is based on a stack of other technologies Java⁷, Spring⁸, Groovy⁹, Hibernate¹⁰, Sitemesh¹¹.
We try here to show the history of these technologies and how they are used in Grails 3.

⁶https://grails.org/index.html
⁷https://www.oracle.com/java
⁸https://spring.io
⁹http://groovy-lang.org
¹⁰http://hibernate.org
¹¹http://wiki.sitemesh.org

iii

https://grails.org/index.html
https://www.oracle.com/java
https://spring.io/
http://groovy-lang.org/
http://hibernate.org/
http://wiki.sitemesh.org/
https://grails.org/index.html
https://www.oracle.com/java
https://spring.io/
http://groovy-lang.org/
http://hibernate.org/
http://wiki.sitemesh.org/

Introduction to Grails 3 iv

Technologies inside Grails

Java history

First it was Java, and was created by Sun Microsystems¹² and its father was James Gosling¹³.
Java came with the idea of JVM - Java Virtual Machine that lets youWrite once, Run everywhere.
Everywheremeans on any operating system. Youwrite the code compiled to a byte code runnable
by a virtual machine. And the virtual machine specification has an implementation for virtually
any operating system.

Because Sun was bought by Oracle, now Java is in Oracle’s portfolio. Java is used by millions
of developers (Oracle claims 10 million) and is the number one TIOBE¹⁴ index of most used
languages in the world.

Why was Java such a strong language from the beginning? Some clues:

• It was totally object-oriented from the beginning and let people think everything is an
object (this is the name of a chapter from one of the best Java books Thinking in Java -
TIJ¹⁵) written by Bruce Eckel¹⁶.

• It eliminates the pointers and memory deallocation, letting this be handled by the JVM
and the garbage collector; the GC is constantly improved by the Oracle team. G1 GC¹⁷ is
the most advanced GC these days.

• It has multithreading inside from the beginning.
• It has exceptions handling inside.
• It has modularity inside, represented by packages and the possibility of packaging libraries
in .jar files that can be reused between projects; there are a lot of libraries on the market,
and as proof, you can search a Maven global repo¹⁸

¹²https://en.wikipedia.org/wiki/Sun_Microsystems
¹³https://en.wikipedia.org/wiki/James_Gosling
¹⁴http://www.tiobe.com/tiobe_index
¹⁵http://mindview.net/Books/TIJ4
¹⁶https://twitter.com/bruceeckel
¹⁷http://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
¹⁸https://mvnrepository.com/

https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/James_Gosling
http://www.tiobe.com/tiobe_index
http://mindview.net/Books/TIJ4
http://mindview.net/Books/TIJ4
https://twitter.com/bruceeckel
http://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
https://mvnrepository.com/
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/James_Gosling
http://www.tiobe.com/tiobe_index
http://mindview.net/Books/TIJ4
https://twitter.com/bruceeckel
http://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
https://mvnrepository.com/

Introduction to Grails 3 v

Java EE history

After this was the Java EE (known in the past as J2EE or JEE) – an attempttomake it easy to create
enterprise applications (compared to other 2 profiles Java SE for desktop applications and Java
ME for mobile applications). The language and Java EE is specified by a committee named JCP¹⁹
Java Community Process, which is responsible for creating JSRs, specifications implemented by
various vendors. A reference implementation for any specification is proof the specification can
be implemented.

For example, the last specification for the Java Servlet is JSR 315: JavaTM Servlet 3.0 Specifica-
tion²⁰ and the reference implementation for this standard is Oracle GlassFish 3.x (RI)²¹. Grails
embeds by default inside, in DEV mode, a Tomcat²² server and you can see what version of Java
Servlet is implemented on each Tomcat version²³.

Here are the Java EE Full Platform Compatible Implementations²⁴ on different Java EE versions.
The current version is Java EE 7, and here is the official tutorial²⁵

Spring history

But the Java EE standards were too de jure for the Java community, compared to a lot of
frameworks that emerged in the Java open source space, considered more the facto standards
like: Struts for Web, Hibernate for persistence, etc. And then Spring Framework was born as
a response to this committee style and specification centric style of driving the Java future -
Rod Johnson²⁶ and others put the foundation, and Juergen Hoeller²⁷ is now responsible for the
framework as part of the Pivotal portfolio. The framework introduced Dependency Injection
and reaffirmed the power of POJOs (Plain Old Java Objects) - in contrast to EJBs (Enterprise
Java Beans) which were at version 2 when Spring emerged - things have improved in EJB 3.

In time, these two technologies are evolving in parallel. For example, Java EE adopted the DI
in its CDI, some implementations of JPA wrap Hibernate. Spring embraces annotations for
configurations, instead of XMLs, as in Java EE. And Spring Framework has integration with
some JSRs and is based on some technologies provided by Java EE.

The main documentation for Spring Framework is the reference documentation²⁸.

Groovy History

Java is an imperative style programming language and, compared with functional programming
languages, it suffers from accidental complexity as Venkat Subramaniam²⁹ says.

¹⁹https://www.jcp.org/en/home/index
²⁰https://jcp.org/en/jsr/detail?id=315
²¹https://glassfish.java.net
²²http://tomcat.apache.org
²³http://tomcat.apache.org/whichversion.html
²⁴http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
²⁵https://docs.oracle.com/javaee/7/tutorial
²⁶https://twitter.com/springrod
²⁷https://spring.io/team/jhoeller
²⁸http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle
²⁹https://twitter.com/venkat_s

https://www.jcp.org/en/home/index
https://jcp.org/en/jsr/detail?id=315
https://jcp.org/en/jsr/detail?id=315
https://glassfish.java.net/
http://tomcat.apache.org/
http://tomcat.apache.org/whichversion.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
https://docs.oracle.com/javaee/7/tutorial
https://twitter.com/springrod
https://spring.io/team/jhoeller
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle
https://twitter.com/venkat_s
https://www.jcp.org/en/home/index
https://jcp.org/en/jsr/detail?id=315
https://glassfish.java.net/
http://tomcat.apache.org/
http://tomcat.apache.org/whichversion.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
https://docs.oracle.com/javaee/7/tutorial
https://twitter.com/springrod
https://spring.io/team/jhoeller
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle
https://twitter.com/venkat_s

Introduction to Grails 3 vi

Imperative code is packed with accidental complexity.

Groovy is a functional programing language that is bringing functional style to Java program-
ming. It introduces the notion of closure which is the idea of function as a main citizen of your
code. It is also a scripting language because it has the characteristic of incorporating a lot of
semantics in a short syntax.

The official Groovy site is groovy-lang.org³⁰. Here is the definition of Groovy on the official site:

Apache Groovy is a powerful, optionally typed and dynamic language, with
static-typing and static compilation capabilities, for the Java platform aimed at
improving developer productivity thanks to a concise, familiar and easy to learn
syntax. It integrates smoothly with any Java program, and immediately delivers
powerful features to your application, including scripting capabilities, Domain-
Specific Language authoring, runtime and compile-time meta-programming and
functional programming.

Some characteristics of Groovy

• it was a way to get functional programming into JVM; it introduced closure to the Java
world long before the Lambda Expressions in Java 8³¹

• it is compiled to Java bytecode that is running in JVM (there is a groovyc compiler that is
compiling Groovy code to Java bytecode in the same way the javac compiler is doing with
Java code)

• Groovy scriptlet can be embedded in Java code and the resulted mixture is still working
after compilation

• is enriching the Java classes with other convenient methods resulting in a new API named
GDK³²

Grails History

This is a timeline created by Matt Raible³³ where he tries to describe the history of Web
Frameworks³⁴.

³⁰http://www.groovy-lang.org
³¹http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
³²http://www.groovy-lang.org/gdk.html
³³https://twitter.com/mraible
³⁴https://raw.githubusercontent.com/mraible/history-of-web-frameworks-timeline/master/history-of-web-frameworks-timeline.png

http://www.groovy-lang.org/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.groovy-lang.org/gdk.html
https://twitter.com/mraible
https://raw.githubusercontent.com/mraible/history-of-web-frameworks-timeline/master/history-of-web-frameworks-timeline.png
https://raw.githubusercontent.com/mraible/history-of-web-frameworks-timeline/master/history-of-web-frameworks-timeline.png
http://www.groovy-lang.org/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.groovy-lang.org/gdk.html
https://twitter.com/mraible
https://raw.githubusercontent.com/mraible/history-of-web-frameworks-timeline/master/history-of-web-frameworks-timeline.png

Introduction to Grails 3 vii

A history of Web frameworks

As you can see in this diagram the Grails framework was born in 2008 with its first GA release.
Grails 2 was released in 2011. And Grails 3 was first released in 2015.

What makes Grails a good choice from the multitude of frameworks for building Web applica-
tions

• Grails is a full stack web framework in the sense that you can create an entire application
using it. It covers the web presentation, business domain and database persistence aspects
of your application. Not alone, but integrating the right technologies for this: Java, Spring,
Hibernate. And all of these are linked by Groovy language with is used for configuring
your application - the DSL for configurations are Groovy based (now in Grails 3 you will
have the option to use YAML also)

• conventions over configurations
– for creating a service, it is enough to place a groovy file containing a class without
state in /service folder without annotating it with @Service or mark it in a config-
uration file like in Spring or annotate with @Stateless for a EJB 3 stateless session
bean

– for creating an entity, it is enough to place a POJO class in a /domain folder and no
@Entity annotation like in JPA or Hibernate or declaring it in configuration files

• scaffolding for generating a seed application or a variety of elements starting from domain
objects; it can be static (generating the corresponding files in filesystem) or dynamic
(generating just proxies in memory)

• environments inside from the beginning like TEST, DEV, PROD (or a custom one) letting
you take different actions in runtime based on the given environment

• testing inside the framework (unit - in isolation using mocking, integration, functional)
using JUnit³⁵, Spock³⁶ and Geb³⁷

• static resources served in an optimized way (asset pipeline plugin replacing resources
plugin)

• asynchronous features based on plugins in first versions and directly inside in version 3
using Reactor³⁸

³⁵http://junit.org
³⁶http://spockframework.org
³⁷http://www.gebish.org
³⁸https://projectreactor.io

http://junit.org/
http://spockframework.org/
http://www.gebish.org/
https://projectreactor.io/
http://junit.org/
http://spockframework.org/
http://www.gebish.org/
https://projectreactor.io/

Introduction to Grails 3 viii

• dynamic reload of classes and resources in runtime based on spring-loaded³⁹ technology
and on the fly reloading in Tomcat (dev mode); no server restarts are needed in develop-
ment or products like JRebel

• and many more…

Also, the history of the companies that stay before the framework is interesting. First it was
supported by G2One Inc a company founded by the Groovy and Grails project leads, Guillaume
Laforge and Graeme Rocher. It was acquired by SpringSource (first Interface 21) which was on
background of Spring Framework. SpringSource was acquired by VMWare and transferred to
the Pivotal portfolio. In 2015 at SpringOne conference in Washington the end of support from
Pivotal to Grails and Groovy was announced and Grails is now supported by OCI and Groovy
was adopted by Apache Foundation.

G2One Inc⁴⁰ -> SpringSource⁴¹ -> VMware⁴² -> Pivotal⁴³ -> OCI⁴⁴

We present here a list of the main contributors to the framework and the plugins ecosystem (not
all are working currently on this):

• Graeme Roche⁴⁵ - the father of framework with more than 10 years of development
• Jeff Scott Brown⁴⁶ - Cofounder, implementer of Rest API and Grails books writer
• Burt Beckwith⁴⁷ - Security guy (Spring security and other security plugins)
• Marc Palmer⁴⁸ - Resources plugins (replaced by asset pipeline suite of plugins)
• Alvaro Sanchez⁴⁹ - Rest security plugin

Here is the contributors list for Grails core Git repository⁵⁰ Here is the reference documentation⁵¹

Grails application architecture

A classical layered architecture

If we are talking about the architecture of a Grails 3 application, we should express this in
architectural design patterns. And the right place to find architectural design patterns is this
book Patterns Of Enterprise Application Architecture⁵² written by Martin Fowler⁵³. His catalog

³⁹https://github.com/spring-projects/spring-loaded
⁴⁰https://www.crunchbase.com/organization/g2one#/entity
⁴¹https://www.crunchbase.com/organization/springsource#/entity
⁴²https://www.crunchbase.com/organization/vmware#/entity
⁴³https://www.crunchbase.com/organization/pivotal#/entity
⁴⁴https://www.ociweb.com/products/grails/
⁴⁵https://twitter.com/graemerocher
⁴⁶https://twitter.com/jeffscottbrown
⁴⁷https://twitter.com/burtbeckwith
⁴⁸https://twitter.com/marcpalmerdev
⁴⁹https://twitter.com/alvaro_sanchez
⁵⁰https://github.com/grails/grails-core/graphs/contributors
⁵¹http://docs.grails.org/latest/guide/single.html
⁵²http://martinfowler.com/books/eaa.html
⁵³http://martinfowler.com

https://github.com/spring-projects/spring-loaded
https://www.crunchbase.com/organization/g2one#/entity
https://www.crunchbase.com/organization/springsource#/entity
https://www.crunchbase.com/organization/vmware#/entity
https://www.crunchbase.com/organization/pivotal#/entity
https://www.ociweb.com/products/grails/
https://twitter.com/graemerocher
https://twitter.com/jeffscottbrown
https://twitter.com/burtbeckwith
https://twitter.com/marcpalmerdev
https://twitter.com/alvaro_sanchez
https://github.com/grails/grails-core/graphs/contributors
http://docs.grails.org/latest/guide/single.html
http://martinfowler.com/books/eaa.html
http://martinfowler.com/
http://martinfowler.com/eaaCatalog
http://martinfowler.com/eaaCatalog
https://www.crunchbase.com/organization/g2one#/entity
https://www.crunchbase.com/organization/springsource#/entity
https://www.crunchbase.com/organization/vmware#/entity
https://www.crunchbase.com/organization/pivotal#/entity
https://www.ociweb.com/products/grails/
https://twitter.com/graemerocher
https://twitter.com/jeffscottbrown
https://twitter.com/burtbeckwith
https://twitter.com/marcpalmerdev
https://twitter.com/alvaro_sanchez
https://github.com/grails/grails-core/graphs/contributors
http://docs.grails.org/latest/guide/single.html
http://martinfowler.com/books/eaa.html
http://martinfowler.com/

Introduction to Grails 3 ix

of design patterns⁵⁴ is available online. We will use a set of patterns from this book but other
patterns are used inside the Grails integrated frameworks.

First of all, a Grails application is a classical three layered architecture composed from presen-
tation, domain and data source layers.

Grails layered architecture

In a Grails application, the layers are represented by:

• Presentation Layer - is a classical Model View Controller - MVC⁵⁵ represented by Spring
MVC framework⁵⁶. The Spring MVC framework is wrapped by Grails which has some
specific elements. In Grails, the C are the Grails controllers, the V are the Grails GSP views
(rendered from layouts, templates and tag libraries), and theM are the domain entities (the
entities are part of the domain layer but are reused in this layer). Also, the Spring MVC
framework is based on Servlet API, JSPs, tag libraries and is responsible for interaction
with the user via HTTP 1 (or 2)

• Domain Layer - Is split between a Services Layer⁵⁷ which are Spring singletons beans and
a Domain Model⁵⁸ of entities which are the mappers to the database

• Data Source Layer - represented by GORM framework and domain entities which are
classical Active Record⁵⁹. Gorm offers access to Sql databases and is based on Hibernate
which is based also on Java JDBC API and uses SQL for queries.

Grails three layered architecture

⁵⁴http://martinfowler.com/eaaCatalog
⁵⁵http://martinfowler.com/eaaCatalog/modelViewController.html
⁵⁶http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
⁵⁷http://martinfowler.com/eaaCatalog/serviceLayer.html
⁵⁸http://martinfowler.com/eaaCatalog/domainModel.html
⁵⁹http://martinfowler.com/eaaCatalog/activeRecord.html

http://martinfowler.com/eaaCatalog/modelViewController.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/activeRecord.html
http://martinfowler.com/eaaCatalog
http://martinfowler.com/eaaCatalog/modelViewController.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/activeRecord.html

Introduction to Grails 3 x

Because it is a technology stack, we have to deal with a lot of knowledge and abstraction.

Layer Presentation
Layer

Domain Layer Data Source
Layer

Patterns MVC Service Layer &
Domain Model

Active Record

Frameworks and
libraries

Spring MVC Spring Beans, DI,
Transactions

GORM
(Hibernate and
NoSql)

Java technologies Servlets, JSP, tag
libraries

POJO JDBC

Basic technologies HTML and HTTP - SQL

Some observations

• The domain/persistence entities are used in the entire Grails application from presentation
to the persistence with different roles; they are primary persistence objects having state
and persistence methods (CRUD operations but also finders generated dynamically by the
Grails framework) but you can choose to enrich them with other functionality because
they are part of the domain layer

• Dependency injection⁶⁰ (which is coming from Spring) is used for injecting services in
other services and in controllers

• The services layer acts as a façade or as an API to the layer in front of it; typically, on this
layer we will offer the ACID transactional support

• Controllers from the MVC is responsible just for managing the user interaction flow and
will not contain any logic; the place for logic is in the services (and eventually in the
domain entities)

New technologies inside Grails 3

Grails 3 is a rewrite of Grails 2 and now is based on Spring Boot and not just on Spring framework.
The old build system (Gant scripts) are replaced with Gradle with is already used by Spring Boot.
This migration has a downside - all the plugins have to be migrated to the new Grails version.
The good thing is that the most important plugins were already beien migrated by the Grails
community. And a set of plugins are not needed anymore because they can be replaced with
Gradle plugins and Spring starters.

Spring Boot

You can access the reference documentation for SpringBoot⁶¹.

Some advantages from having Spring Boot as your Grails 3 heart

⁶⁰http://www.martinfowler.com/articles/injection.html
⁶¹http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle

http://www.martinfowler.com/articles/injection.html
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle
http://www.martinfowler.com/articles/injection.html
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle

Introduction to Grails 3 xi

• All Spring Boot starters⁶² (starter is the SpringBoot plugin system) are available for your
application

• In SpringBoot⁶³ you can have both Java and Groovy source files
• Some new technologies like websockets and reactive (Reactor project) are available now
to your Grails application via Spring Boot

Gradle

In Grails 3, the old Gant⁶⁴ scripts were replaced with Gradle build tool. You can access the Gradle
main site⁶⁵. The Gradle user guide⁶⁶ is also available. Gradle is the third generation build tool for
Java after Ant⁶⁷ andMaven⁶⁸ and has inside all the accumulated experience from its predecessors.
As an example of its importance, Gradle was chosen by Google as the de facto build tool for
Android projects.

We try to enumerate here just a part of the advantages that come with Gradle

• All Gradle plugins⁶⁹ are now available for you and can now be used in a variety of aspects
of building

• The main scripting language in Grails is (still) Groovy, the same scripting language used
in Grails. In this way, it will be simple for you to improve your build system whenever
you like.

• Gradle is now offering the possibility to create multi projects builds for Grails 3 and this
feature was impossible in the past

Gorm

Starting with Grails 3 the database persistence part of the framework named Gorm⁷⁰ was
extracted completely outside the framework by the Grails team and was redesigned to be
a wrapper over both Sql and NoSql databases. Also, starting with Gorm 4, this persistence
framework can be used outside of Grails applications (in other Spring Boot applications for
example).

In the new Gorm with Hibernate integration (which was the default persistence mechanism
in Grails 1 and 2), you can still have support to the main SQL databases on market: MySql⁷¹,
Oracle⁷², Postgresql⁷³, MsSql Server⁷⁴, etc. Also the framework is now offering support for other

⁶²https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters
⁶³https://projects.spring.io/spring-boot
⁶⁴https://gant.github.io/
⁶⁵https://gradle.org
⁶⁶https://docs.gradle.org/current/userguide/userguide.html
⁶⁷http://ant.apache.org
⁶⁸https://maven.apache.org
⁶⁹https://plugins.gradle.org
⁷⁰http://gorm.grails.org/latest
⁷¹https://www.mysql.com
⁷²https://www.oracle.com/database/index.html
⁷³https://www.postgresql.org
⁷⁴https://www.microsoft.com/en-us/sql-server

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters
https://projects.spring.io/spring-boot
https://gant.github.io/
https://gradle.org/
https://gradle.org/
https://docs.gradle.org/current/userguide/userguide.html
http://ant.apache.org/
https://maven.apache.org/
https://plugins.gradle.org/
http://gorm.grails.org/latest
https://www.mysql.com/
https://www.oracle.com/database/index.html
https://www.postgresql.org/
https://www.microsoft.com/en-us/sql-server
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters
https://projects.spring.io/spring-boot
https://gant.github.io/
https://gradle.org/
https://docs.gradle.org/current/userguide/userguide.html
http://ant.apache.org/
https://maven.apache.org/
https://plugins.gradle.org/
http://gorm.grails.org/latest
https://www.mysql.com/
https://www.oracle.com/database/index.html
https://www.postgresql.org/
https://www.microsoft.com/en-us/sql-server

Introduction to Grails 3 xii

persistence technologies like the NoSql databases: MongoDB⁷⁵, Neo4j⁷⁶, Cassandra⁷⁷, Redis⁷⁸.
And the trend of Gorm is to use non-blocking drivers and to offer as reactive an approach as
possible.

LogBack

LogBack is the most modern logging framework successor of Log4j and it comes to Grails 3
because was chosen as the logging framework for Spring Boot. You can access the LogBack main
site⁷⁹.

Important aspects of Grails

Plugins

Plugins were a main feature of Grails from the beginning of the framework. Here is the list of
Grails 3 plugins⁸⁰. Even the framework itself in his core is a bunch of essential internal plugins.
In fact, Grails is an aggregator for its plugins. If you look in a web profile of a Grails application
you can see the default Grails plugins that are declared for this profile (will be different plugins
for different profiles)

1 dependencies {

2 compile "org.springframework.boot:spring-boot-starter-logging"

3 compile "org.springframework.boot:spring-boot-autoconfigure"

4 compile "org.grails:grails-core"

5 compile "org.springframework.boot:spring-boot-starter-actuator"

6 compile "org.springframework.boot:spring-boot-starter-tomcat"

7 compile "org.grails:grails-dependencies"

8 compile "org.grails:grails-web-boot"

9 compile "org.grails.plugins:cache"

10 compile "org.grails.plugins:scaffolding"

11 compile "org.grails.plugins:hibernate5"

12 compile "org.hibernate:hibernate-core:5.1.2.Final"

13 compile "org.hibernate:hibernate-ehcache:5.1.2.Final"

14 console "org.grails:grails-console"

15 profile "org.grails.profiles:web"

16 runtime "com.bertramlabs.plugins:asset-pipeline-grails:2.11.6"

17 runtime "com.h2database:h2"

18 testCompile "org.grails:grails-plugin-testing"

19 testCompile "org.grails.plugins:geb"

⁷⁵https://www.mongodb.com
⁷⁶https://neo4j.com
⁷⁷http://cassandra.apache.org
⁷⁸http://redis.io
⁷⁹http://logback.qos.ch
⁸⁰https://grails.org/plugins.html

https://www.mongodb.com/
https://neo4j.com/
http://cassandra.apache.org/
http://redis.io/
http://logback.qos.ch/
http://logback.qos.ch/
https://grails.org/plugins.html
https://grails.org/plugins.html
https://www.mongodb.com/
https://neo4j.com/
http://cassandra.apache.org/
http://redis.io/
http://logback.qos.ch/
https://grails.org/plugins.html

Introduction to Grails 3 xiii

20 testRuntime "org.seleniumhq.selenium:selenium-htmlunit-driver:2.47.1"

21 testRuntime "net.sourceforge.htmlunit:htmlunit:2.18"

22 }

Here we try to enumerate some plugins and let you understand how many technologies can be
accessible in such a simple way

• internal plugins
– Hibernate plugin⁸¹ is the plugin with the GORM implementation for Hibernate 5
persistence framework⁸²

– Asset Pipeline⁸³ it is responsible for rendering in an optimal way (unification in one
file, compression, minification, and cache-digests) for static resource in Web pages;
it is a replacement for the old Resources plugin⁸⁴ from Grails <2.x and there are other
plugins⁸⁵ responsible for other aspects of serving resources: compile of CSS fromLESS
and SASS, trans-piling of Javascript from CoffeeScript

• external plugins
– Spring Security Core Plugin⁸⁶ is the plugin responsible for the security of the Grails
applications; it is based on Spring Security⁸⁷ library and it has a lot of companion
plugins for other aspects of security - for example Spring Security REST Plugin⁸⁸ for
REST API security

– Quartz plugin for Grails⁸⁹ is the plugin responsible with scheduling jobs based on a
well known Java library Quartz⁹⁰; you can use it with another plugin Quartz Monitor
Grails Plugin⁹¹ responsible for monitoring the list of jobs

– Mail plugin⁹² is the plugin that can be used to send emails via a configurable SMTP
server

– Elastic Search plugin⁹³ will let you implement search for your site; your data is
indexed using Elastic Search⁹⁴ library

– Audit Logging plugin⁹⁵ can be used for auditing your application activity

About plugin’s benefits

• should be declared in configuration files and are resolved as dependencies in a Maven, Ivy,
Gradle style

⁸¹http://plugins.grails.org/plugin/hibernate5
⁸²http://hibernate.org
⁸³http://plugins.grails.org/plugin/asset-pipeline-grails
⁸⁴https://grails.org/plugin/resources
⁸⁵http://plugins.grails.org/q/asset%20pipeline
⁸⁶http://plugins.grails.org/plugin/spring-security-core
⁸⁷http://projects.spring.io/spring-security
⁸⁸http://plugins.grails.org/plugin/spring-security-rest
⁸⁹http://plugins.grails.org/plugin/quartz
⁹⁰http://www.quartz-scheduler.org
⁹¹http://plugins.grails.org/plugin/org.grails.plugins:quartz-monitor
⁹²http://plugins.grails.org/plugin/mail
⁹³http://plugins.grails.org/plugin/elasticsearch
⁹⁴https://www.elastic.co
⁹⁵http://plugins.grails.org/plugin/audit-logging

http://plugins.grails.org/plugin/hibernate5
http://hibernate.org/
http://hibernate.org/
http://plugins.grails.org/plugin/asset-pipeline-grails
https://grails.org/plugin/resources
http://plugins.grails.org/q/asset%20pipeline
http://plugins.grails.org/q/asset%20pipeline
http://plugins.grails.org/plugin/spring-security-core
http://projects.spring.io/spring-security
http://plugins.grails.org/plugin/spring-security-rest
http://plugins.grails.org/plugin/quartz
http://www.quartz-scheduler.org/
http://plugins.grails.org/plugin/org.grails.plugins:quartz-monitor
http://plugins.grails.org/plugin/org.grails.plugins:quartz-monitor
http://plugins.grails.org/plugin/mail
http://plugins.grails.org/plugin/elasticsearch
https://www.elastic.co/
http://plugins.grails.org/plugin/audit-logging
http://plugins.grails.org/plugin/hibernate5
http://hibernate.org/
http://plugins.grails.org/plugin/asset-pipeline-grails
https://grails.org/plugin/resources
http://plugins.grails.org/q/asset%20pipeline
http://plugins.grails.org/plugin/spring-security-core
http://projects.spring.io/spring-security
http://plugins.grails.org/plugin/spring-security-rest
http://plugins.grails.org/plugin/quartz
http://www.quartz-scheduler.org/
http://plugins.grails.org/plugin/org.grails.plugins:quartz-monitor
http://plugins.grails.org/plugin/mail
http://plugins.grails.org/plugin/elasticsearch
https://www.elastic.co/
http://plugins.grails.org/plugin/audit-logging

Introduction to Grails 3 xiv

• expose Grails constructs like services, controllers, views, entities, et cetera
• come with configurations that must be added to main app configuration file
• easy to integrate Java, Groovy and even client side JavaScript libraries into Grails
applications

Profiles

Profiles were introduced in Grails 3 and now we can create different types of applications, not
just the main type that was available till now, based on a server side HTML rendered interface
using technologies like Gsp (based on a MVC framework on the server side). Now we can create
a Grails 3 application that is just exposing a web service API without a classical server side
rendered Web interface. Also, we can create a rich client directly from the server side - using
scaffolding in the same way we have done till now for the classical type.

This is in accord with the global trend of IT industry these days which is trying to break the
monolith application into small pieces, introducing the concept of Miroservices⁹⁶. In these days,
Java EE is creating a new Microprofile⁹⁷ for microservices in addition to their Full Profile and
Web Profile.

You can see very clear the evolution of software architecture in the last decades in a tweet from
Benoit Hediard⁹⁸:

⁹⁶http://martinfowler.com/articles/microservices.html
⁹⁷http://microprofile.io
⁹⁸https://twitter.com/benorama

http://martinfowler.com/articles/microservices.html
http://microprofile.io/
https://twitter.com/benorama
http://martinfowler.com/articles/microservices.html
http://microprofile.io/
https://twitter.com/benorama

Introduction to Grails 3 xv

Software architecture evolution

Another reason for this profiles movement is the need to expose just Web services and not a
HTML based Web interface. And this is more valuable in the context of the mobile application
and the mobile first⁹⁹ approach in developing applications. That’s why a new set of server side
rendering technologies were introduced in Grails 3 like Grails Views¹⁰⁰ that are rendering JSON
and XML from domain objects.

Here you have the complete list of Grails 3 profiles¹⁰¹. Here is the Git official repository for Grails
3 profiles¹⁰².

These are the profiles introduced in Grails 3

• angular - A profile for creating applications using AngularJS
• rest-api - Profile for REST API applications

⁹⁹http://blogs.atlassian.com/2012/01/modern-principles-in-web-development
¹⁰⁰http://views.grails.org/latest/
¹⁰¹https://github.com/grails-profiles
¹⁰²https://github.com/grails/grails-profile-repository/tree/master/profiles

http://blogs.atlassian.com/2012/01/modern-principles-in-web-development
http://views.grails.org/latest/
https://github.com/grails-profiles
https://github.com/grails/grails-profile-repository/tree/master/profiles
https://github.com/grails/grails-profile-repository/tree/master/profiles
http://blogs.atlassian.com/2012/01/modern-principles-in-web-development
http://views.grails.org/latest/
https://github.com/grails-profiles
https://github.com/grails/grails-profile-repository/tree/master/profiles

Introduction to Grails 3 xvi

• base - The base profile extended by other profiles
• angular2 - A profile for creating Grails applications with Angular 2
• plugin - Profile for plugins designed to work across all profiles
• profile - A profile for creating new Grails profiles
• react - A profile for creating Grails applications with a React frontend
• rest-api-plugin - Profile for REST API plugins
• web - Profile for Web applications
• web-plugin - Profile for Plugins designed for Web applications
• webpack - A profile for creating applications with node-based frontends using webpack

Some details about the most important profiles that will be used in the application built in this
book

• web - is a profile for creating classical Grails applications with a server side MVC
framework in the same way it was in Grails 1 and 2; the presentation web interface is
rendered on the server side

• rest-api - is a profile for creating applications that are exposing REST APIs; don’t have a
Web presentation and no MVC is needed

• angular(2) - is a profile for creating applications with a rich client based on AngularJS¹⁰³(1
or 2 versions) Javascript framework where MVC is located on client side (JavaScript) and
the communication with the server side is via REST

¹⁰³https://angularjs.org

https://angularjs.org/
https://angularjs.org/

	Table of Contents
	How this book is organized
	First part - Grails 3 Essentials
	Second part - Practical example with Grails 3

	Introduction to Grails 3
	Some history
	Java history
	Java EE history
	Spring history
	Groovy History
	Grails History

	Grails application architecture
	A classical layered architecture

	New technologies inside Grails 3
	Spring Boot
	Gradle
	Gorm
	LogBack

	Important aspects of Grails
	Plugins
	Profiles

