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We introduce GRAMPS, a programming model that generalizes concepts from modern real-time graphics pipelines by exposing a model of execution containing

both fixed-function and application-programmable processing stages that exchange data via queues. GRAMPS allows the number, type, and connectivity of

these processing stages to be defined by software, permitting arbitrary processing pipelines or even processing graphs. Applications achieve high performance

using GRAMPS by expressing advanced rendering algorithms as custom pipelines, then using the pipeline as a rendering engine. We describe the design of

GRAMPS, then evaluate it by implementing three pipelines, that is, Direct3D, a ray tracer, and a hybridization of the two, and running them on emulations of

two different GRAMPS implementations: a traditional GPU-like architecture and a CPU-like multicore architecture. In our tests, our GRAMPS schedulers run

our pipelines with 500 to 1500KB of queue usage at their peaks.
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1. INTRODUCTION

Current GPUs are able to render complex, high-resolution scenes
in real time using Z-buffer rasterization-based techniques. How-
ever, the real-time photorealistic rendering problem is not solved,
and there remains interest in advanced rendering algorithms such
as ray tracing, REYES, and combinations of these with the tra-
ditional graphics pipeline. Unfortunately, these advanced ren-
dering pipelines perform poorly when implemented on current
GPUs.

While the earliest GPUs were simple, application-configurable
engines, the history of high-performance graphics over the past three
decades has been the co-evolution of a pipeline abstraction (the tra-
ditional graphics pipeline) and the corresponding driver/hardware
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devices (GPUs). In the recent past, the shading stages of the pipeline
became software programmable. Prior to the transition, developers
controlled shading by toggling and configuring an assortment of
fixed options and parameters, but the widespread innovation in shad-
ing techniques led to an increasingly complex matrix of choices. In
order to accommodate the trend towards more general shading, re-
searchers and then graphics vendors added programmable shading
to the graphics pipeline.

We see an analogy between the evolution from fixed to pro-
grammable shading and the current changes for enabling and config-
uring pipeline stages. After remaining static for a long time, there are
a variety of new pipeline topologies available and under exploration.
Direct3D 10 added new geometry and stream-output stages [Blythe
2006]. The Xbox 360 added a new stage for tessellation (future
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iterations of Direct3D will likely follow). We believe that future
rendering techniques and increasing nongraphical usage will moti-
vate more new pipeline stages and configuration options. As was true
with preprogrammable shading, these new abilities are currently all
delivered as predefined stage and pipeline options to be toggled and
combined. Looking forward, we instead propose a programmably
constructed graphics pipeline.

Our system, GRAMPS, is a programming model designed for fu-
ture GPUs. It is motivated by the requirements of rendering applica-
tions, but provides a general set of abstractions for building parallel
applications with both task- and data-level parallelism. GRAMPS
derives key ideas from OpenGL/Direct3D, but does not specify a
pipeline with a fixed sequence of stages. Instead it allows appli-
cations to create custom pipelines. Pipelines can contain common
fixed or programmable stages, but in arbitrary topologies. Thus,
GRAMPS itself is not a rendering pipeline, but is a model and
toolkit that allows rendering pipelines—and any applications than
can be formulated as asynchronously communicating independent
pipelines or state machines—to be programmably constructed and
run.

The specific goals of the GRAMPS are as follows.

—High Performance. An implementation of a traditional graphics
pipeline, built as a layer above GRAMPS, should give up little
performance over a native implementation. Advanced rendering
pipelines should have high absolute performance, making effi-
cient use of the underlying computation engine, special-function
units, and memory resources.

—Large Application Scope. It should be possible to express a wide
range of advanced rendering algorithms using the GRAMPS ab-
straction. Developers should find GRAMPS more convenient and
more effective than using roll-your-own approaches.

—Optimized Implementations. The GRAMPS model should pro-
vide sufficient opportunity (and clarity of intent) for implemen-
tations to be tuned in support of it.

While GRAMPS was conceived to fit future revisions of current
GPU designs, we believe it is also a useful model for program-
ming a very different, more general-purpose throughput-oriented
“GPU” like Intel’s Larrabee [Seiler et al. 2008]. As such, a fur-
ther goal of GRAMPS is that it provide an effective abstrac-
tion for a range of alternate architectures, achieving the itemized
goals already mentioned while also affording improved application
portability.

Our primary contribution is the GRAMPS programming model,
with its central tenet of computation as a graph of stages operating
asynchronously and exchanging data via queues. To demonstrate
the plausibility and applicability of this approach, we evaluate it in
several ways. First, in Section 4, we demonstrate application scope
by implementing three rendering pipelines, namely Direct3D, a
packet ray tracer, and a pipeline extending Direct3D to add ray
traced shadow computations, using the GRAMPS abstraction.
Second, in Section 5, we demonstrate implementation scope by
describing two GRAMPS implementations: one on a traditional
GPU-like infrastructure modeled after NVIDIA’s 8-series archi-
tecture; and the other on an alternate architecture patterned after
Intel’s Larrabee. Then, in Section 6, we measure and analyze the
behavior of our renderers on our implementations to show how
our initial work with GRAMPS progresses towards its goals. Of
course, the ultimate validation of whether GRAMPS achieves its
goals can come only if optimized systems inspired by its program-
ming model, concepts, and constructs become widespread and
successful.

2. BACKGROUND AND RELATED WORK

2.1 Throughput Architectures

An increasing number of architectures aim to deliver high perfor-
mance to application domains, such as rendering, that benefit from
parallel processing. These architectures omit hardware logic that
maximizes single-threaded performance in favor of many simple
processing cores that contain large numbers of functional units.

The most widely available, and most extreme, examples of such
architectures are GPUs. NVIDIA’s 200-series [Lindholm et al. 2008]
and ATI’s HD 4800-series [AMD 2008a] products are built around
a pool of highly multithreaded programmable cores tuned to sus-
tain roughly a teraflop of performance when performing shading
computations. GPUs provide additional computing capabilities via
fixed-function units that perform tasks such as rasterization, texture
filtering, and frame buffer blending.

Commodity high-throughput processing is no longer unique to
GPUs. The CELL Broadband Engine [Pham et al. 2005], deployed
commercially in the Playstation 3, couples a simplified PowerPC
core with eight ALU-rich in-order cores. SUN’s UltraSPARC T2
processor [Kongetira et al. 2005] features eight multithreaded cores
that interact via a coherent shared address space. Intel has demon-
strated a prototype 80-core “terascale” processor, and recently an-
nounced plans to productize Larrabee, a cache-coherent multicore
X86-based GPU [Seiler et al. 2008].

This landscape of high-performance processors presents interest-
ing choices for future rendering system architects. GPUs constitute
a simple-to-use, heavily tuned platform for rasterization-based real-
time rendering but offer only limited benefits for alternative graphics
algorithms. In contrast, increasingly parallel CPU-based throughput
architectures offer the flexibility of CPU programming; neverthe-
less, implementing an advanced rendering system that leverages
multicore, multithreaded, and SIMD processing is a daunting task.

2.2 Programming Models

Real-time graphics pipelines. OpenGL and Direct3D [Segal and
Akeley 2006; Blythe 2006] provide developers a simple, vendor-
agnostic interface for describing real-time graphics computations.
More importantly, the graphics pipeline and programmable shad-
ing abstractions exported by these interfaces are backed by highly
tuned GPU-based implementations. By using rendering-specific ab-
stractions (e.g., vertices, fragments, and pixels) OpenGL/Direct3D
maintain high performance without introducing difficult concepts
such as parallelism, threads, asynchronous processing, or synchro-
nization. The drawback of these design decisions is limited flexi-
bility. Applications must be restructured to conform to the pipeline
that OpenGL/Direct3D present. A fixed pipeline makes it difficult
to implement many advanced rendering techniques efficiently. Ex-
tending the graphics pipeline with domain-specific stages or data
flows to provide new functionality has been the subject of many pro-
posals [Blythe 2006; Hasselgren and Akenine-Möller 2007; Bavoil
et al. 2007].

Data-parallel programming on GPUs. General-purpose inter-
faces for driving GPU execution include low-level native frame-
works such as AMD’s CAL [AMD 2008b], parallel programming
languages such as NVIDIA’s CUDA [NVIDIA 2007], and third-
party programming abstractions layered on top of native inter-
faces [Buck et al. 2004; McCool et al. 2004; Tarditi et al. 2006].
These systems share two key similarities that make them poor can-
didates for describing the mixture of both regular and highly dy-
namic algorithms that are present in advanced rendering systems.
First, with the exception of CUDA’s support for filtered texture
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access, they expose only the GPU’s programmable shader execu-
tion engine (i.e., rasterization, compositing, and Z-buffering units
are not exposed). Second, to ensure high GPU utilization, these
systems model computation as large data-parallel batches of work.
Describing computation at large batch granularity makes it difficult
to efficiently couple regular and dynamic execution.

Parallel CPU programming. Basic threading libraries (e.g.,
POSIX threads) and vector instruction intrinsics are available for all
modern CPU systems. They constitute fundamental building blocks
for any parallel application, but place the entire burden of achiev-
ing good performance on application developers. Writing software
using these primitives is known to be very difficult and a success-
ful implementation for one machine often does not carry over to
another. Due to these challenges, high-level parallel abstractions,
such as Intel’s Thread Building Blocks [Intel 2008], which provides
primitives such as work queues, pipelines, and threads, are becoming
increasingly important. We highlight Carbon [Kumar et al. 2007] as
an example of how generic high-level abstractions permit hardware
acceleration of dynamic parallel computations.

2.3 Streaming

There is a wide range of work under the umbrella of generic “stream
computing”: processors, architectures, programming models, and
compilation techniques [Kapasi et al. 2002; Dally et al. 2003; Thies
et al. 2002]. Streaming research seeks to build maximally efficient
throughput-oriented platforms by embracing principles such as data-
parallel execution, high levels of (producer-consumer) memory lo-
cality, software management of the system memory hierarchy, and
asynchronous bulk communication. In general, streaming research
has focused on intensive static compiler analysis to perform key
optimizations like data prefetching, blocking, and scheduling of
asynchronous data transfers and kernel execution. Static analysis
works best for regular programs that exhibit predictable data ac-
cess and tightly bounded numbers of kernel inputs and outputs [Das
et al. 2006]. Irregular computations are difficult to statically sched-
ule because program behavior is not known at compile time. Un-
fortunately, graphics pipelines contain irregular components, and
standard offline stream compilation techniques are insufficient for
high performance.

GRAMPS embraces many of the same concepts and principles
as streaming, but makes the fundamental assumption that applica-
tions are dynamic and irregular with unpredictable data-dependent
execution. Thus, GRAMPS inherently requires a model where data
locality and efficient aggregate operations can be identified and syn-
thesized at runtime. GRAMPS’s stateful thread stages meet this need
by enabling applications to explicitly aggregate and queue data dy-
namically. In addition, they are more pragmatically aligned with the
capabilities of commodity processors and multicore systems than
traditional stream kernels.

We believe that GRAMPS and previous streaming work are com-
plementary. A natural GRAMPS extension would permit appli-
cations to identify stages with predictable data flow during pro-
gram initialization. In these cases GRAMPS could employ upfront
streaming-style analysis and transformations that simplify or elim-
inate runtime logic.

2.3.1 Streaming Rendering. Prior research has explored using
stream processors/streaming languages for rendering. Owens et al.
implemented both REYES and OpenGL on Imagine [2002], Chen
et al. implemented an OpenGL-like pipeline on Raw [2005], and
Purcell introduced a streaming formulation of ray tracing [2004].
Each of these systems suffered from trying to constrain the dynamic

irregularity of rendering in predictable streaming terms. Both the
Imagine and Raw implementations redefined and recompiled their
pipelines for each scene and frame they rendered. Additionally, they
manually prerendered each frame to tune their implementations and
offset the dynamic characteristics of rendering. Streaming ray trac-
ing has always struggled with load-balancing [Foley and Sugerman
2005; Horn et al. 2007]. Initial multipass versions tried depth culling
and occlusion queries, with mixed success. Follow-up single-pass
techniques used branches, but suffered from divergent control flow
and varying shader instance running times.

In the four to six years since those systems were first built, ren-
dering algorithms and implementations have become significantly
more dynamic: Branching in shaders is routine, as is composing
final frames from large numbers of off-screen rendering passes.
With GRAMPS, we have set out to create a model whose runtime
scheduling and on-demand instancing of data-parallel kernels can
adaptively handle the variance in rendering workloads, without man-
ual programmer intervention or redefining the execution graph. Ad-
ditionally, the aforementioned rendering systems considered only
homogeneous hardware: custom Imagine and Raw processors and
GPU shader cores. They would struggle to incorporate specialized
rasterization units, for example, whereas the GRAMPS model con-
sciously includes heterogeneity.

3. GRAMPS DESIGN

GRAMPS is a General Runtime/Architecture for Multicore Parallel
Systems. It defines a programming model for expressing render-
ing pipelines and other parallel applications. It exposes a small,
high-level set of primitives designed to be simple to use, to exhibit
properties necessary for high-throughput processing, and to permit
optimized hardware implementations. We intend for GRAMPS im-
plementations to involve various combinations of software and un-
derlying hardware support, similar to how OpenGL/Direct3D APIs
permit flexibility in an implementation’s choice of driver and GPU
hardware responsibilities. However, unlike OpenGL/Direct3D, we
envision GRAMPS as a lower-level abstraction upon which graphics
application toolkits and domain-specific abstractions (e.g., OpenGL
or Direct3D) are built.

GRAMPS is organized around the basic concept of application-
defined computation stages executing in parallel and communicating
asynchronously via queues. We believe that this relatively simple
producer-consumer parallelism is fundamental across a broad range
of throughput applications. Unlike a GPU pipeline, where inter-
stage queues specifically hold vertices, fragments, and primitives,
GRAMPS graph execution is decoupled from detailed application-
specific semantics. GRAMPS refines and extends this model with
the abstractions of shader stages and queue sets to allow applications
to further expose data-parallelism within a stage.

The following sections describe the primary abstractions used by
GRAMPS computations: graphs, stages, queues, and data buffers.
We highlight the role of each of these abstractions in building effi-
cient graphics pipelines.

3.1 Execution Graphs

The execution, or computation, graph is the GRAMPS analog of
the GPU pipeline. It organizes the execution of shaders/kernels and
threads into stages and limits data flow into and out of stages to
access to first-class queues and buffers. In addition to specifying
the basic information required for GRAMPS to initialize and start
the application, the graph provides valuable information about a
computation that is essential to scheduling. An application specifies
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Fig. 1. Simplified GRAMPS graphs for a rasterization-based pipeline (left) and ray tracer (right). The ray tracing graph contains a loop. The early stages are

automatically instanced for parallelism, while the Blend stages are both singletons to provide frame buffer synchronization.

its graph to GRAMPS via a programmatic “driver” interface that is
modeled after Direct3D 10’s interface for creating and configuring
shaders, textures, and buffer objects.

Figure 1 shows two examples of GRAMPS graphs excerpted from
our actual renderers in Section 4. The first example illustrates part
of a conventional 3D pipeline containing stages for rasterization,
fragment shading, and frame buffer blending. The second example
comes from a ray tracer and highlights that GRAMPS accepts full
graphs, not just DAGs or pipelines.

GRAMPS supports general computation graphs to provide flex-
ibility for a rich set of rendering algorithms. Graph cycles inher-
ently make it possible to write applications that feedback endlessly
through stages and amplify queued data beyond the ability of any
system to manage. Thus, GRAMPS, unlike OpenGL/Direct3D, does
not guarantee that all legal programs robustly make forward progress
and execute to completion. Instead, we designed GRAMPS to en-
compass a larger set of applications that run well, at the cost of
allowing some that do not.

Forbidding cycles would allow GRAMPS to guarantee forward
progress; at any time it could stall a stage that was overactively
producing data until downstream stages could drain outstanding
work from the system, at the expense of excluding some irregular
workloads. For example, both the formulation of ray tracing and
the proposed Direct3D extension described in Section 4 contain cy-
cles in their graph structure. Sometimes cycles can be eliminated
by “unrolling” a graph to reflect a maximum number of iterations,
bounces, etc. However, not only is unrolling cumbersome for devel-
opers, it is awkward in irregular cases, such as when different rays
bounce different numbers of times according to local material prop-
erties. While handling cycles increases the scheduling burden for
GRAMPS, it remains possible to effectively execute many graphs
that contain them. We believe that the flexibility that graphs provide
over pipelines and DAGs outweighs the cost of making applica-
tions take responsibility for ensuring they are well behaved. The
right strategy for notifying applications and allowing them to re-
cover when their amplification swamps the system is an interesting
avenue for future investigation.

3.2 Stages

GRAMPS stages correspond to nodes in the execution graph and
are the analog of GPU pipeline stages. The fundamental reason to
partition computation into stages is to increase performance. Stages
operate asynchronously and therefore expose parallelism. More im-
portantly, stages encapsulate phases of computation and indicate
computations that exhibit similar execution or data access charac-
teristics (typically SIMD processing or memory locality). Grouping

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Rast

Machine 2 Machine 1
8 Programmable Cores 6 Programmable Cores + Rast 

Rast Rast Rast

BlendShade

Shade

ShadeShade BlendShade

Shade Shade Shade Shade

Rast

Fig. 2. Execution of the rasterization pipeline (top of Figure 1) on a machine

with 8 cores and on a machine with 6 cores and a HW rasterizer. Instanced

stage execution enables GRAMPS to utilize all machine resources. Each

processing resource is labeled with the stage it is assigned to execute.

these computations together yields opportunities for efficient pro-
cessing. GRAMPS stages are useful when the benefits of coherent
execution outweigh the costs of deferred processing.

A GRAMPS stage definition consists of the following compo-
nents.

—Type: either shader, thread, or fixed-function.

—Program: either program code for a shader/thread or configuration
parameters for a fixed-function unit.

—Queues: input, output, and “push” queue bindings.

—Buffers: random-access, fixed-size data bindings.

We expect GRAMPS computations to run on platforms with sig-
nificantly larger numbers of processing resources than computation
phases. Thus, GRAMPS executes multiple copies of a stage’s pro-
gram in parallel (each operating on different input queue data) to
fill an entire machine. We refer to each executing copy of a stage
program as an instance. Phases that require serial processing (ini-
tialization is a common example) execute as singleton stages. The
diagram at left in Figure 2 illustrates execution of the three-stage
rasterization pipeline on a machine with eight cores. Each core is
labeled by the stage instance it executes. GRAMPS fills the ma-
chine with instances of Rast and Shade stage programs. In this
simple example, Blend is serialized to preserve consistent and glob-
ally ordered frame buffer update (the Blend stage executes as a
singleton).

GRAMPS supports three types of stages that correspond to dis-
tinct sets of computational characteristics. A stage’s type serves as a
hint facilitating work assignment, resource allocation, and computa-
tion scheduling. We strove for a minimal number of simple abstrac-
tions and concluded that fixed-function processing and GPU-style
shader execution constituted two unique classes of processing. To
support wider varieties of rendering techniques, we chose to add an
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additional, general-purpose, and stateful stage type, rather than aug-
ment the existing shader concept with features that risked decreasing
its simplicity and performance.

Shaders. Shader stages define short-lived, run-to-completion
computations akin to traditional GPU shaders. They are designed as
an efficient mechanism for running data-parallel regions of an appli-
cation. Like GPU shaders, GRAMPS shader programs are written to
operate per-element, which makes them stateless and enables multi-
ple instances to run in parallel. GRAMPS manages queue inputs and
outputs for shader instances automatically, which simplifies shader
programs and allows the scheduler to guarantee they can run to com-
pletion without blocking. Unlike GPU shaders, GRAMPS shaders
may use a special “push” (Section 3.3) operation for conditional
output. As a result of these properties, GRAMPS shader stages
are suitable for large-scale automatic instancing and wide-SIMD
processing for many of the same reasons as GPU shaders [Blythe
2006]. And, also like GPUs, GRAMPS actually creates and sched-
ules shader instances in packets, that is, many-instance groups, de-
spite their element-wise programming model, in order to amortize
overhead and better map to hardware.

Threads. Thread stages are best described as traditional CPU-style
threads. They are designed for task-parallel, serial, and other regions
of an application best suited to large per-element working sets or
operations dependent on multiple elements at once (e.g., reductions
or resorting of data). Unlike shaders, thread stages are stateful and
thus must be manually parallelized and instanced by the application
rather than automatically by GRAMPS. They explicitly manipulate
queues and may block, either when input is not yet available or
where too much output has not yet been consumed. Thread stages
are expected to most likely fill one of two roles: repacking data
between shader stages, and processing bulk chunks of data where
sharing/reuse or cross-communication make data-parallel shaders
inefficient.

Fixed-function. GRAMPS allows stages to be implemented by
fixed-function or specialized hardware units. Just like all other
stages, fixed-function stages interoperate with the rest of GRAMPS
by exchanging data via queues. Applications configure these units
via GRAMPS by providing hardware-specific configuration infor-
mation at the time of stage specification.

3.3 Queues

GRAMPS stages communicate and exchange data via queues that
are built up of work packets. Stages asynchronously produce and
consume packets using GRAMPS intrinsics. Each queue in a
GRAMPS graph also specifies its capacity in packets. As alluded
to in the discussion of graphs with cycles, there are two possible
strategies for queue growth: enforce a preset maximum capacity
and report errors on overflow, or grow without bounds (at least until
all available memory is exhausted). Our current implementations
treat capacity as a hard limit, but we are also interested in treating
it as a scheduling hint in conjunction with an overflow mechanism
for handling spilling.

To support applications with ordering requirements (such as
OpenGL/Direct3D), GRAMPS queues are strictly FIFO by default.
Maintaining FIFO order limits parallelism within instanced stages
and incurs costs associated with tracking and buffering out-of-order
packets. GRAMPS permits execution graphs to tag any queue as
unordered when the application does not require FIFO ordering.

3.3.1 Packets. GRAMPS queues contain homogeneous collec-
tions of data packets that adhere to one of two formats. A queue’s
packet format is defined when the queue is created.

—Opaque. Opaque packets are for bundles of work/data that
GRAMPS has no need to interpret. The application graph spec-
ifies only the size of Opaque packets so they can be enqueued
and dequeued by GRAMPS. The layout of an Opaque packet’s
contents is entirely defined and interpreted by the logic of stages
that produce and consume it.

—Collection. Collection packets are for queues with at least one
end that is bound to a shader stage. Although GRAMPS shader
instances operate individually on data elements, GRAMPS dis-
patches groups of shader instances simultaneously. Together, a
group of shader instances process all the elements in a Collection
packet. Collection packets contain a set of independent elements
plus a shared header. The application graph specifies sizes for the
overall packet, the header, and the elements. GRAMPS defines the
layout of system-interpreted fields in the packet header (specif-
ically, the first word is a count of valid elements in the packet).
The remainder of the header and internal layout of elements are
application defined and opaque to GRAMPS.

The inclusion of thread stages influenced our decision to compose
queues using packets rather than adopt an element-based abstrac-
tion. Thread stages produce and consume data in units of packets
that may contain data in any form (not just collections of elements).
Additionally, by giving threads a view on queue data that spans
multiple elements, GRAMPS provides a mechanism for threads to
produce Collection-format packets and use the header for interele-
ment sharing. We commonly size packets to multiples of a machine’s
SIMD width and store data aligned for vector hardware.

GRAMPS provides three intrinsics for queue manipulation:
reserve, commit, and push. reserve and commit operate on
packets, while push provides a method for shaders to enqueue in-
dividual elements and have GRAMPS coalesce them into complete
packets.

3.3.2 Queue Manipulation: Thread/Fixed Stages. Thread and
fixed-function stages always operate on queues via reserve and
commit, which operate in-place. reserve returns the caller a
“window” that is a reference to one or more contiguous packets.
GRAMPS guarantees the caller exclusive access to this region of
the queue until it receives a corresponding commit notification. An
input queue commit indicates that packet(s) have been consumed
and can be reclaimed. Output queue commit operations indicate the
packet(s) are now available for downstream stages.

The queue reserve-commit protocol allows stages to perform
in-place operations on queue data and allows GRAMPS to man-
age queue access and underlying storage. Queue windows permit
various strategies for queue implementation and add a degree of
indirection that enables customized implementations for systems
with distributed address spaces, explicit prefetch, or local store
capabilities.

3.3.3 Queue Manipulation: Shader Stages. Shaders do not ex-
plicitly perform these operations, but GRAMPS transparently ar-
ranges for shader inputs and outputs to be manipulated in-place
using the same underlying mechanisms. As shader input packets
arrive in a queue, GRAMPS internally obtains corresponding out-
put packet reservations. Once the requisite reservations are obtained,
GRAMPS runs the packet’s worth of shader instances. Each instance
receives a reference to the shared packet header and to one element
in each of the prereserved input and output packets. When all of the
instances have completed, GRAMPS internally commits the inputs
and outputs. By prereserving shader packets, GRAMPS guarantees
that the commit order of output packets corresponds exactly to the
order of input packets, and preserves order across stages.
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Fig. 3. Replacing the Blend input queue from Figure 1 with a queue set

enables parallel instancing.

Input and output prereservation reflects GRAMPS shaders’ an-
tecedents in GPUs, but GRAMPS offers shaders one operation that
significantly extends their flexibility. In addition to fixed inputs and
outputs, shaders can dynamically insert elements into unordered
output queues using push. GRAMPS accumulates pushed elements
into Collection packets. It coalesces as full a packet as possible,
sets the element count in the header, and enqueues the packet for
downstream consumption.
push allows heavily instanced independent shader programs to

build dense packets despite variable, conditional, and potentially
sparse output from any single instance. As opposed to in-place
reserve and commit, push copies its data into a temporary buffer
maintained by GRAMPS. Not only is packet coalescing simplified
by the copy, it also allows a shader instance to push in a single
atomic operation. Also, push is a simpler operation than reserve
and commit, which is consistent with the lightweight, simple nature
of shader execution.

3.4 Queue Sets

The rasterization pipeline example from Figure 1 serializes frame
buffer updates through a singleton Blend stage. Performant ren-
derers typically parallelize frame buffer operations using checker-
boarding or tiling to subdivide the screen into disjoint regions.
Nonoverlapping regions modify different frame buffer pixels and are
thus free of relative ordering constraints. Processing within each re-
gion can be serialized as a simple method to ensure correct fragment
ordering while different regions can be run in parallel. In the exam-
ple, Blend’s single input queue makes it impossible for GRAMPS
to distinguish which elements (fragments) can be processed in par-
allel. The application author could potentially increase parallelism
by creating separate queues and Blend threads per screen region.
Manual replication of queues and stages would not only be tedious,
but also preclude the automatic instancing and queue management
benefits of shader stages.

GRAMPS provides queue sets to enable this idiom for applica-
tions using shaders. A queue set functions like N subqueues bundled
together as a single logical queue. GRAMPS instances shaders to
process different subqueues independently, but ensures that at most
one packet per subqueue is consumed at a time.

Stages add data into an output queue set (via reserve or push)
by explicitly specifying the subqueue to manipulate. On an input
queue set, reserve takes only the logical queue. GRAMPS is free
to select any subqueue as a source of packets to satisfy the reserve.
Figure 3 shows the example rendering pipeline recast with a queue
set between its Shade and Blend stages. With this modification,
Shade now inserts fragments into subqueues based on pixel location.
Multiple instances of Blend process different subqueues and update
the frame buffer in parallel.

3.5 Buffers

GRAMPS buffers are untyped random-access memory objects that
are bound to stages and fill a similar roll to GPU constant buffers,
unfiltered textures, and render buffers. The application sizes and
optionally initializes buffer contents during graph setup in a man-
ner similar to creating and binding Direct3D 10 pipeline resources.
A stage buffer binding specifies one of the following permissions:
read-only, write-only, read-write (local), or read-write (coherent).
Read-write (local) access provides no guarantee when (or if) mod-
ifications will become visible to any other instance or stage. Read-
write (coherent) is reserved for full shared memory, but is currently
unsupported and unimplemented by GRAMPS. Like queues, pro-
grams access buffers via reserve/ commit windows. Buffer win-
dows make it possible to implement GRAMPS on machines without
a unified memory model and provide GRAMPS with explicit notifi-
cations of active memory regions. An implementation may leverage
these notifications to trigger optimizations such as bulk prefetch on
reserve or cache flushes on commit.

3.6 Summary

We summarize the process of describing and running a GRAMPS
computation into three key steps. First, an application creates
GRAMPS stages, queues, and buffers. Next, the queues and buffers
are bound to stages, forming a computation graph. Last, GRAMPS
executes the computation defined by this graph to completion.

The abstractions available for graph creation embody key
GRAMPS ideas. Most importantly, computation graphs are fully
programmable, not a configuration of predefined stages and data
flows. GRAMPS permits arbitrary graph topologies by allowing for
variable numbers of stages and allowing these stages to be program-
matically wired together via explicitly named queues.

Second, GRAMPS embraces the need to dynamically aggregate
work at runtime to achieve high performance in the face of irreg-
ularity. GRAMPS queues consist of packets, not individual data
elements. Mechanisms like push and direct thread-stage packet ma-
nipulation allow for dynamic work aggregation into packets sized
for high-throughput processing.

Last, GRAMPS embraces both workload and system implemen-
tation heterogeneity. Shader stages and Collection packet queues
permit specialization for the case of data-parallel execution. In ad-
dition, fixed-function stages allow GRAMPS computations to lever-
age special-purpose hardware when present.

4. GRAPHICS PIPELINES USING GRAMPS

In this section we describe three example rendering systems framed
in terms of GRAMPS: a simplified Direct3D pipeline, a packet-
based ray tracer, and a hybrid that augments the simplified Direct3D
pipeline with additional stages used for ray tracing.

4.1 Direct3D

The GRAMPS graph corresponding to our sort-last formulation of
a simplified Direct3D pipeline is shown at the top of Figure 4. A
major challenge of a Direct3D implementation is exposing high
levels of parallelism while preserving Direct3D fragment ordering
semantics.

The pipeline’s front-end consists of several groups of Input As-
sembly (IA) and Vertex Shading (VS) stages that operate in parallel
on disjoint regions of the input vertex set. Currently, we manually
create these groups; built-in instancing of subgraphs is a potentially
useful future addition to GRAMPS. Each IA/VS group produces an
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Fig. 4. GRAMPS graphs corresponding to Direct3D and ray tracing rendering pipelines. The two stages added to the Direct3D graph (labeled “Ray Tracing

Extension”) provide the ability to cast and trace rays from fragment shader programs.

ordered stream of post-transform primitives. Each input is assigned
a sequence number so that these streams can be collected and totally
ordered by a singleton ReOrder (RO) stage before being delivered
to the fixed-function rasterizer (Rast).

The pipeline back-end starts with a Pixel Shader (PS) stage that
processes fragments. After shading, fragment packets are routed
to the appropriate subqueue in the output queue set based on their
screen space position, much like described in Section 3.4. The queue
set lets GRAMPS instance the Output Merger while still guaran-
teeing that fragments are blended into the frame buffer atomically
and in the correct order. Note that Rast facilitates this structure by
scanning out packets of fragments that never cross the screen space
routing boundaries.

Notice that the Direct3D graph contains no stages that correspond
to fixed-function texture filtering. While a GRAMPS implementa-
tion is free to provide dedicated texturing support (as modern GPUs
do through special instructions), special-purpose operations that oc-
cur within a stage are considered part of its internal operation, not
part of the GRAMPS programming abstraction or any GRAMPS
graph.

4.2 Ray Tracer

Our implementation of a packet-based ray tracer maps natural com-
ponents of ray tracing to GRAMPS stages (bottom of Figure 4).
With the exception of Tiler and Blend, whose performance needs
are satisfied by singleton thread stages, all graph stages are instanced
shader stages. All queues in the packet tracer graph are unordered.

A ray tracer performs two computationally expensive operations:
ray-scene intersection and surface hit point shading. Considered
separately, each of these operations is amenable to wide-SIMD pro-
cessing and exhibits favorable memory access characteristics. Be-
cause recursive rays are conditionally traced, SIMD utilization can
drop severely if shading directly invokes intersection [Boulos et al.
2007].

Our implementation decouples these operations by making In-
tersect, Shadow Intersect, and Shade separate graph stages. Thus,

each of the three operations executes efficiently on batches of in-
puts from their respective queues. To produce these batches of work,
the ray tracer leverages the GRAMPS queue push operation. When
shading yields too few secondary rays to form a complete packet,
execution of Intersect (or Shadow Intersect) is delayed until more
work is available. Similarly, if too few rays from Intersect need
shading, they won’t be shaded until a sufficiently sized batch is
available. This strategy could be extended further using more com-
plex GRAMPS graphs. For example, separating Intersect into a full
subgraph could allow for rays to be binned at individual BVH nodes
during traversal.

Lastly, the ability to cast ray tracing as a graph with loops, rather
than a feed-forward pipeline, allows for an easy implementation of
both max-depth ray termination and also ray tree attenuation termi-
nation by tracking depth/attenuation with each ray [Hall and Green-
berg 1983]. While reflections to a fixed maximal depth could also
be modeled with a statically unrolled pipeline, this is an awkward
implementation strategy and does not permit ray tree attenuation.

4.3 Extended Direct3D

By formally constructing execution graphs that are decoupled
from hardware, GRAMPS creates an opportunity for specialized
pipelines. Our third renderer extends the Direct3D pipeline to form
a new graph that adds ray traced effects (top of Figure 4, including
the shaded portion). We insert two additional stages, Trace and PS2,
between PS and OM and allow Extended Direct3D Pixel Shaders to
push rays in addition to performing standard local shading. Trace
performs packetized ray-scene intersection and pushes the results to
a second shading stage (PS2). Like PS, PS2 is permitted to send its
shaded output to OM, or to generate additional rays for Trace (the
Extended Direct3D graph contains a loop). We introduced PS2 as a
distinct stage to retain the ability to specialize PS shading computa-
tions for the case of high coherence (fragments in a packet from Rast
all originate from the same input triangle) and to separate tracing
from shading, as explained before.
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Fig. 5. The CPU-like and GPU-like simulator configurations: different mixtures of XPU fat (blue) and micro (orange) cores plus a fixed function rasterizer.

Boxes within the cores represent hardware thread slots.

There are two other important characteristics of our Extended
Direct3D renderer. Our implementation uses a pre-initialized early-
Z buffer from a prior Z-only pass to avoid unnecessary ray-scene
queries. In addition, early-Z testing is required to generate correct
images because pixel contributions from the PS2 stage can arrive out
of triangle draw order (input to PS2 is an unordered push queue).

Note that while this example uses push only for the purposes of
building ray and shading packets, other natural uses include han-
dling fragment repacking when coherence patterns change, or as
a mechanism for efficiently handling a constrained form of data
amplification or compaction.

5. IMPLEMENTATION

We developed a machine simulator to serve as the basis for our
preliminary evaluation of GRAMPS. The simulation environment
provides two types of programmable cores (referred to as XPUs)
and a monolithic fixed-function rasterizer. All XPU cores have a
MIPS64 architecture [MIPS Technologies 2005] extended with a
vector instruction set. XPU microcores are intended to resemble
current GPU shader cores and execute efficiently under the load of
many lightweight threads. Each microcore supports up to 24 inde-
pendent hardware thread execution slots and features 16-wide SIMD
vector units. XPU fat cores are general-purpose cores optimized for
throughput. They are in-order, four-threaded processors with the
same 16-wide vector units as the microcores. Both cores can exe-
cute one thread per clock. Compiled XPU shader program binaries
utilize vector instructions to simultaneously process multiples of
16 elements within a single thread. Thus, each XPU microcore is
capable of hardware-interleaved execution of 384 shader instances.

We run our simulation environment in two different hardware
configurations (Figure 5). The GPU-like configuration contains one
fat core, four microcores, and a fixed-function rasterizer, and is
envisioned as an evolution of current GPUs. The CPU-like config-
uration consists of the rasterizer plus eight fat cores, mimicking
a more general-purpose many-core implementation. This choice
of machine configurations allows us to explore two GRAMPS
scheduler implementations employing different levels of hardware
support.

5.1 Scheduling

The goal of the GRAMPS scheduler is to maximize machine utiliza-
tion. Specifically, it seeks to synthesize at runtime what streaming
systems arrange during up-front compilation: aggregated batches
of parallel work with strong data locality. Recall that the queues
of a GRAMPS computation graph are intended to delineate such
coherency groupings. The GRAMPS scheduler then balances the

need to accumulate enough work to fill all available cores against
the storage overheads of piling up undispatched packets and the
computational overhead of making frequent scheduling decisions.
GRAMPS’s generality creates a significant scheduling disadvantage
compared to a native GPU or other single pipeline-specific sched-
uler: GRAMPS lacks semantic knowledge of, and any scheduling
heuristics based on, stage internals and the data types passed be-
tween them. The GRAMPS abstractions are designed to give an
implementer two primary hints to partially compensate: the topol-
ogy of the execution graph, and the capacity of each queue.

Our current scheduling algorithm assigns each stage a static pri-
ority based upon its proximity in the graph to sink nodes (stages
with no output queues) and distance from source nodes (stages with
no input queues). In a pipeline or DAG, this gives the start(s) lowest
weight and the end(s) highest weight, which predisposes the sched-
uler towards draining work out of the system and keeping queue
depths small. In graphs with cycles, the top node (stage closest to
an input) has higher priority than the bottom, to prevent the back-
wards looping queue starving and growing deep. Additionally, the
scheduler maintains an “inspect” bitvector containing a field for
each graph stage. A stage’s inspectable bit is set whenever a new
input packet is available or output packet consumed (in case it was
blocked on a full output queue). Its bit is cleared whenever the sched-
uler next inspects the stage and either dispatches all available input
or determines the stage is not truly runnable.

Our scheduler is organized hierarchically in tiers. The top tier
(tier-N) has system-wide responsibilities for notifying idle cores
and fixed-function units when they should look for work. The cores
themselves then handle the lower levels of scheduling.

5.1.1 Fat Core Scheduling. Since we intended fat cores to re-
semble CPUs and be suitable for arbitrary threads, the GRAMPS
fat-core scheduling logic is implemented directly in software. It is
organized as a fast, simple tier-0 that manages a single thread slot
and a more sophisticated tier-1 that is shared per-core.

Tier-1 updates and maintains a prioritized work list of runnable
instances based upon the inspect bitvector. It also groups shader
instances for launch and issues the implicit reserve and commit
operations on their behalf. Tier-1 runs asynchronously at a parame-
terized period (one million cycles in our experiments). However, if
a tier-0 scheduler finds the list of runnable instances empty (there is
no work to dispatch), tier-0 will invoke tier-1 before idling its thread
slot.

Tier-0 carries out the work of loading, unloading, and preempting
instances on individual thread slots. It makes no “scheduling” deci-
sions other than comparing the current thread’s priority to the front
of the work list at potential preemption points. For thread stages,
premption points include queue manipulations and terminations.
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Table I. The Teapot, Courtyard, and Fairy Test Scenes

Triangles Fragments/Tri

Teapot 6,230 67.1

Courtyard 31,375 145.8

Fairy 174,117 36.8
Courtyard uses character models from Unreal Tournament 3. Fairy is a com-

plex scene designed to stress modern ray tracers.

For shader stages, preemption is possible only between instance
invocations.

5.1.2 Microcore Scheduling. In the GPU-like configuration, all
shader work is run on microcores. Similar to current GPU designs,
microcores rely on a hardware-based scheduling unit to manage
their numerous simple thread contexts (see Figure 5). This unit is
functionally similar to combined fat-core tier-1 and tier-0’s, with two
significant differences: A single hardware tier-1 is shared across all
microcores, and it is invoked on demand at every shader instance
termination rather than asynchronously.

When data is committed to shader queues, the microcore sched-
uler identifies (in order of stage priority) input queues with sufficient
work, then prereserves space in the corresponding stage’s input and
output queues. It associates this data with new shader instances and
assigns the instances to the first unused thread slot in the least-
loaded microcore. When shader instances complete, the scheduler
commits their input and output data, then attempts to schedule a
new shader instances to fill the available thread slot. The microcore
scheduler also takes care of coalescing elements generated via push
into packets.

6. EVALUATION

We conducted a preliminary evaluation of GRAMPS with respect
to our stated design goals. We exercised the CPU- and GPU-like
GRAMPS implementations using the three rendering pipelines de-
scribed in Section 4. Each pipeline was used to render the three
scenes described in Table I at 1024 × 1024 resolution. The ray
tracer casts shadow rays and one bounce of reflection rays off all
surfaces. Extended Direct3D casts only shadow rays. The scenes
vary in both overall complexity and distribution of triangle size, re-
quiring GRAMPS to dynamically balance load across graph stages.

As explained in Section 5.1, our primary focus was our implemen-
tations’ ability to find parallelism and to manage queues (especially
in the context of loops and the use of push). Specifically, we mea-
sure the extent to which GRAMPS keeps core thread execution slots
occupied with active threads, and the depth of queues during graph
execution.

Our measurements are conducted with two simplifying assump-
tions: First, although our implementations seek to minimize the
frequency at which scheduling operations occur, we assign no cost
to the execution of the GRAMPS scheduler or for possible con-
tention in access to shared queues. Second, we incorporate only a
simple memory system model: a fixed access time of four cycles for
fat cores and 100 cycles for microcores. Given these assumptions,
we use thread execution-slot occupancy as our performance met-

ric rather than ALU utilization (ALUs may be underutilized due to
memory stalls or low SIMD efficiency even if a slot is filled). Slot
occupancy is convenient because it directly reflects the scheduler’s
ability to recognize opportunities for parallelism. At the same time,
it is less dependent on the degree of optimization of thread/shader
programs, which is not a need unique to GRAMPS nor a focus in
our prototype system. We agree that a future detailed evaluation of
a highly optimized GRAMPS implementation would require these
factors to be better approximated.

Figure 6 is a visualization from the simulator while running
the CPU-like configuration of the ray tracer. As expected, the
cost of the computation is dominated by ray-scene intersection
and shading. Note that the mapping of instances onto cores is
highly dynamic as data flows through the queues. Table II sum-
marizes the overall simulation statistics. Note that on GPU-like
configurations, we focus on the occupancy of the microcores that
run shader work (the fat core in the GPU-like configuration is
rarely used, as our graphs perform a majority of computation in
shaders).

Both GRAMPS implementations maintained high thread-slot oc-
cupancy with all of the renderers. With the exception of rendering
the Fairy using Direct3D, the GRAMPS scheduler produced occu-
pancy above 87% (small triangles in the Fairy scene bottleneck the
pipeline in RO, limiting available parallelism; see GPU-like fat core
occupancy in Table II).

Our emulations maintained high occupancy while keeping worst-
case queue footprint low. In all experiments queue sizes remained
small enough to be contained within the on-chip memories of mod-
ern processors. The ray tracer, despite a graph loop for reflection
rays and heavy use of push, had by far the smallest queue footprint.
This was the direct result of using entirely unordered queues. With
ordered queues, when instances complete out of order, as happens
from time to time, GRAMPS cannot make their output available
downstream or reclaim it until the missing stragglers arrive.

While the GRAMPS graphs we present and evaluate perform
well, our experiences proved that choosing a good graph for a ren-
dering pipeline can make a major difference. The GRAMPS con-
cepts permit graphs that do not run well, and even good graphs
profit from considerable tuning. For example, our initial Direct3D
graph, which used a single shader stage to handle both PS and OM,
exhibited large queue memory consumption.

Although our first Direct3D graph used a queue set to respect OM
ordering requirements while still enabling parallel processing of dis-
tinct screen space image tiles, this formulation caused all PS work
for a single tile to be serialized. Thus, the graph suffered from load
imbalance (and corresponding queue backup) when one tile, and
thus one subqueue, had a disproportionate number of fragments.
Separating PS and OM into unique graph stages and connecting
these stages using a queue set allowed shading of all fragments
(independent of screen location) to be performed in parallel. This
modification reduced queue footprints by over two orders of mag-
nitude. Similarly, in the ray tracer, limiting the maximum depth of
the queue between the sampler and the camera while leaving the
others effectively unbounded reduced the overall footprint by more
than an order of magnitude.

In the same vein, although the general graph structure is the same
across our two simulation configurations, we made slight tuning
customizations as a function of how many machine thread slots
were available. In the GPU-like configuration of Direct3D/Extended
Direct3D, we increased the number of OM input subqueues to enable
additional parallelism. We also set the capacities on several critical
Direct3D queues and, as mentioned earlier, the ray tracer’s sample
queue based on the maximum number of machine threads.
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Fig. 6. Ray tracing the Teapot scene on the CPU-like simulator. As work is enqueued, the GRAMPS scheduler dynamically assigns stage instances to hardware

thread slots, as shown on the bottom.

Table II. Simulation Results: Core Thread-Slot Occupancy and Peak Memory Footprint of All Graph queues

CPU-like Configuration GPU-like Configuration

Fat Core Peak Queue Fat Core Micro Core Peak Queue

Occup (%) Size (KB) Occup (%) Occup (%) Size (KB)

Teapot D3D 87.8 510 13.0 95.9 1,329

Ext. D3D 90.2 582 0.5 98.8 1,264

Ray Tracer 99.8 156 3.2 99.9 392

Courtyard D3D 88.5 544 9.2 95.0 1,301

Ext. D3D 94.2 586 0.2 99.8 1,272

Ray Tracer 99.9 176 1.2 99.9 456

Fairy D3D 77.2 561 20.5 81.5 1,423

Ext. D3D 92.0 605 0.8 99.8 1,195

Ray Tracer 100.0 205 0.8 99.9 537

7. FUTURE WORK

This article introduces the GRAMPS programming model: an ab-
straction for expressing advanced rendering pipelines. It articulates
three design goals for GRAMPS: high performance, large applica-
tion scope, and optimized implementation flexibility.

We have demonstrated that pipelines with variable numbers
of outputs and with cycles can be efficiently implemented using
GRAMPS. These abstractions are very powerful and we used them
to build and combine rasterization and ray-tracing-based renderers.

Our prototype implementation of GRAMPS suggests that imple-
mentations can be optimized for different hardware configurations.
The performance and resource consumption of our prototypes is
encouraging. With well-designed execution graphs, the hardware
utilization is high and the queue storage overhead low.

We restate that GRAMPS itself does not provide a graphics
pipeline abstraction or a specific machine organization. Rather,
it is a programming model that permits a large class of render-
ers to run on a variety of high-performance many-core chips. In
this context there are three clear avenues for future work. First,
the GRAMPS abstractions must continue to be refined and the

graph scheduling problem should be studied in detail. For exam-
ple, we have no experience with scheduling complicated graph
structures such as those containing nested loops. Second, evolv-
ing a modern graphics pipeline abstraction like Direct3D to incor-
porate software-defined stages and data flows, without sacrificing
its graphics-domain specific benefits (i.e., convenience and abstrac-
tion portability), remains unsolved. Last, the ideas in GRAMPS
can be used to build applications beyond rendering. GPU and
CPU architects are struggling to find a point of convergence that
best combines the traits of both architectures. GRAMPS seems
to provide a natural example for informing the design of such
systems.
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