
Chapter 14

Graphical User Interfaces

So far, we have developed programs that interact with the user through the command line, where the user has to call a

Python program by typing its name and adding the sequence of arguments.

Having a visual environment for the program variables and results extremely simplify the interaction between the

user and the application. This kind of environments are known as a Graphical User Interfaces (GUI). Graphical

interfaces are present in various types of devices and platforms, such as web form or a smartphone application. Most,

if not all, graphical user interface based applications use an event management based architecture. Applications

operated by command line perform data input and output at specific times and circumstances established within the

program. However, every time we interact with an application graphically, the program does not know beforehand

when actions will occur. The user may enter data, press a key, move the mouse, or click on any widget within the

interface. Therefore, the code must be written to respond to all these events. It is always possible to design a graphical

interface from the beginning to the end by interacting directly with each pixel. Never the less, there are now optimized

modules that provide generic graphical elements such as buttons, bars, text boxes, and calendars. These modules

greatly facilitate the development of graphical interfaces. In this course, we will focus on the use of PyQt.

14.1 PyQt

PyQt is a Python library that includes several modules that help with the development of graphical interfaces, here we

describe some of the modules included in PyQt:

• QtCore: includes non-GUI functionalities like file and directory management, time, and URLs, among others.

• QtGui: includes visual components such as buttons, windows, drop-down lists, etc.

292 CHAPTER 14. GRAPHICAL USER INTERFACES

• QtNetwork: provides classes to program graphical applications based on TCP/IP, UDP, and some other network

protocols.

• QtXml: includes XML file handling functionalities.

• QtSvg: provides classes to display vector graphics files (SVG).

• QtOpenGL: contains functions for 3D and 2D graphics rendering using OpenGL.

• QtSql: includes functionalities for working with SQL databases.

To create a window we use the QtGui module. The first step is to build the application that will contain the window

and all its elements or Widgets. This procedure is done through the QApplication class, which includes event loop,

application initialization and closing, input arguments handling, among other responsibilities. For every application

that PyQt uses, there is only one QApplication object regardless of the number of windows that this application

has.

1 # codes_1.py

2

3 from PyQt4 import QtGui

4

5

6 class MiForm(QtGui.QWidget):

7 # The next line defines the window geometry.

8 # Parameters: (x_top_left, y_top_left, width, height)

9 self.setGeometry(200, 100, 300, 300)

10 self.setWindowTitle('My First Window') # Optional

11

12

13 if __name__ == '__main__':

14 app = QtGui.QApplication([])

15 form = MiForm()

16 form.show()

17 app.exec_()

The QtGui.QWidget class from which the MyForm class descends, is the base class for all objects in PyQt. The

constructor for this class has no default parents, in which case corresponds to an empty window. We also have to

define the window properties, so far only defined in memory. To display the window on the screen, we must use the

14.1. PYQT 293

show() method. Finally, the exec_() method executes the main loop to perform the event detection. The result of

the above code corresponds to the clear interface as shown in Figure 14.1.

Figure 14.1: Example of an empty window generated by PyQt.

In PyQt there are useful objects or Widgets to control information input and output in graphical interfaces. These are

labels and text boxes. Labels are used to display form variables or static strings. In PyQt these are represented by the

QLabel class. Text boxes also allow text handling in the interface, primarily as a means of entering data into the

form. In PyQt interface they are created by QLineEdit class:

1 # codes_2.py

2

3 from PyQt4 import QtGui

4

5

6 class MiForm(QtGui.QWidget):

7 def __init__(self):

8 super().__init__()

9 self.init_GUI()

10

11 def init_GUI(self):

12 # Once the form is called, this method initializes the

13 # interface and all of its elements and Widgets

14

15 self.label1 = QtGui.QLabel('Text:', self)

16 self.label1.move(10, 15)

17

294 CHAPTER 14. GRAPHICAL USER INTERFACES

18 self.label2 = QtGui.QLabel('This label is modifiable', self)

19 self.label2.move(10, 50)

20

21 self.edit1 = QtGui.QLineEdit('', self)

22 self.edit1.setGeometry(45, 15, 100, 20)

23

24 # Adds all elements to the form

25 self.setGeometry(200, 100, 200, 300)

26 self.setWindowTitle('Window with buttons')

27

28

29 if __name__ == '__main__':

30 app = QtGui.QApplication([])

31

32 # A window that inherits from QMainWindow is created

33 form = MiForm()

34 form.show()

35 app.exec_()

The code above clarifies how to use Labels and LineEdits within the GUI. Figure 14.2 shows the results.

Figure 14.2: Example of a QLabel within a Widget.

PyQt also includes several useful graphical objects to control the interface. The most basic is the

PushButton(label, father, function) element, which embeds a button in the window. The result

14.1. PYQT 295

generated by the code below is a window with a button as shown in the Figure 14.3.

1 # codes_3.py

2

3 from PyQt4 import QtGui

4

5

6 class MyForm(QtGui.QWidget):

7 def __init__(self):

8 super().__init__()

9 self.init_GUI()

10

11 def init_GUI(self):

12 # Once the form is called, this method initializes the

13 # interface and all of its elements and Widgets

14 self.label1 = QtGui.QLabel('Text:', self)

15 self.label1.move(10, 15)

16

17 self.label2 = QtGui.QLabel('Write the answer here', self)

18 self.label2.move(10, 50)

19

20 self.edit1 = QtGui.QLineEdit('', self)

21 self.edit1.setGeometry(45, 15, 100, 20)

22

23 # The use of the & symbol at the start of the text within

24 # any button or menu makes it so the first letter is shown

25 # in bold font. This visualization may depend on the used

26 # platform.

27 self.button1 = QtGui.QPushButton('&Process', self)

28 self.button1.resize(self.button1.sizeHint())

29 self.button1.move(5, 70)

30

31 # Adds all elements to the form

32 self.setGeometry(200, 100, 200, 300)

33 self.setWindowTitle('Window with buttons')

34 self.show()

296 CHAPTER 14. GRAPHICAL USER INTERFACES

35

36

37 if __name__ == '__main__':

38 app = QtGui.QApplication([])

39

40 # A window that inherits from QMainWindow is created

41 form = MyForm()

42 form.show()

43 app.exec_()

Figure 14.3: A simple window with a button.

Main Window

Windows created by QWidget correspond to windows that may contain other Widgets. PyQt offers a more complete

type of window called MainWindow. It creates the standard skeleton of an application including a status bar, toolbar,

and menu bar, as shown in the Figure 14.4.

The status bar allows us to display application status information. To create this, the statusBar()method (belongs

to QApplication class) is used. Messages in the status bar are updated when the user interacts with the rest of

the application. The menu bar is a typical part of a GUI-based application. It corresponds to a group of structured

and logically grouped commands inside of menus. The toolbar provides quick access to the most frequently used

commands. Finally, the Central Widget or core content area corresponds to the body of the window. It may contain

any Widget in QtGui, as well as one of the forms created in the previous examples. To add this Widget or form to

14.1. PYQT 297

Figure 14.4: Diagram of the classic MainWindow layout.

the central Widget, the setCentralWidget(Widget) method must be used. The next example shows how to

integrate the elements described in the main window:

1 # codes_4.py

2

3 from PyQt4 import QtGui

4

5

6 class MainForm(QtGui.QMainWindow):

7 def __init__(self):

8 super().__init__()

9

10 # Configures window geometry

11 self.setWindowTitle('Window with buttons')

12 self.setGeometry(200, 100, 300, 250)

13

14 # Action definitions

15 see_status = QtGui.QAction(QtGui.QIcon(None), '&Change '

16 'Status', self)

17 see_status.setStatusTip('This is a test item')

298 CHAPTER 14. GRAPHICAL USER INTERFACES

18 see_status.triggered.connect(self.change_status_bar)

19

20 exit = QtGui.QAction(QtGui.QIcon(None), '&Exit', self)

21 # We can define a key combination to execute each command

22 exit.setShortcut('Ctrl+Q')

23 # This method shows the command description on the status bar

24 exit.setStatusTip('End the app')

25 # Connects the signal to the slot that will handle this event

26 exit.triggered.connect(QtGui.qApp.quit)

27

28 # Menu and menu bar creation

29 menubar = self.menuBar()

30 file_menu = menubar.addMenu('&File') # first menu

31 file_menu.addAction(see_status)

32 file_menu.addAction(exit)

33

34 other_menu = menubar.addMenu('&Other Menu') # second menu

35

36 # Includes the status bar

37 self.statusBar().showMessage('Ready')

38

39 # Sets the previously created form as the central widged

40 self.form = MyForm()

41 self.setCentralWidget(self.form)

42

43 def change_status_bar(self):

44 self.statusBar().showMessage('Status has been changed')

45

46

47 class MyForm(QtGui.QWidget):

48 def __init__(self):

49 super().__init__()

50 self.init_GUI()

51

52 def init_GUI(self):

14.1. PYQT 299

53 self.label1 = QtGui.QLabel('Text:', self)

54 self.label1.move(10, 15)

55

56 self.label2 = QtGui.QLabel('Write the answer here', self)

57 self.label2.move(10, 50)

58

59 self.edit1 = QtGui.QLineEdit('', self)

60 self.edit1.setGeometry(45, 15, 100, 20)

61

62 self.button1 = QtGui.QPushButton('&Process', self)

63 self.button1.resize(self.button1.sizeHint())

64 self.button1.move(5, 70)

65

66 self.setGeometry(200, 100, 200, 300)

67 self.setWindowTitle('Window with buttons')

68 self.show()

69

70 def button_pressed(self):

71 sender = self.sender()

72 self.label3.setText('Signal origin: {0}'.format(sender.text()))

73 self.label3.resize(self.label3.sizeHint())

74

75 def button1_callback(self):

76 self.label2.setText('{}'.format(self.edit1.text()))

77 self.label2.resize(self.label2.sizeHint())

78

79

80 if __name__ == '__main__':

81 app = QtGui.QApplication([])

82

83 form = MainForm()

84 form.show()

85 app.exec_()

300 CHAPTER 14. GRAPHICAL USER INTERFACES

14.2 Layouts

Layouts allow a more flexible and responsive way to manage and implement Widget distribution in the interface

window. Each Widget’s move(x, y) method allows absolute positioning of all objects in the window. However, it

has limitations, such as; Widget position does not change if we resize the window, and Application’s look will vary on

different platforms or display settings.

To avoid redoing the window for better distribution, we use box layouts. Two basic types allow Widget horizontal

and vertical alignment: QtGui.QHBoxLayout() and QtGui.QVBoxLayout(). In both cases, Widgets are

distributed within the layout occupying all available space, even if we resize the window. Objects must be added to each

layout by the addWidget method. Finally, the box layout must be loaded to the window as self.setLayout().

We can add the vertical alignment of objects by including the horizontal layout within a vertical layout. The following

code shows an example of how to create a layout such that three Widgets are aligned in the bottom right corner. Figure

14.5 shows the output:

1 # codes_5.py

2

3 from PyQt4 import QtGui

4

5

6 class MainForm(QtGui.QMainWindow):

7 def __init__(self):

8 super().__init__()

9

10 # Window geometry

11 self.setWindowTitle('Window with buttons')

12 self.setGeometry(200, 100, 300, 250)

13

14 self.form = MiForm()

15 self.setCentralWidget(self.form)

16

17

18 class MiForm(QtGui.QWidget):

19 def __init__(self):

20 super().__init__()

21 self.init_GUI()

14.2. LAYOUTS 301

22

23 def init_GUI(self):

24 self.label1 = QtGui.QLabel('Text:', self)

25 self.label1.move(10, 15)

26

27 self.edit1 = QtGui.QLineEdit('', self)

28 self.edit1.setGeometry(45, 15, 100, 20)

29

30 self.button1 = QtGui.QPushButton('&Calculate', self)

31 self.button1.resize(self.button1.sizeHint())

32

33 # QHBoxLayout() and QVBoxLayout() are created and added to the

34 # Widget list by using the addWidget() method. The stretch()

35 # method includes a spacing that expands the layout towards

36 # the right and downwards.

37 hbox = QtGui.QHBoxLayout()

38 hbox.addStretch(1)

39 hbox.addWidget(self.label1)

40 hbox.addWidget(self.edit1)

41 hbox.addWidget(self.button1)

42

43 vbox = QtGui.QVBoxLayout()

44 vbox.addStretch(1)

45 vbox.addLayout(hbox)

46

47 # The vertical layout contains the horizontal layout

48 self.setLayout(vbox)

49

50

51 if __name__ == '__main__':

52 app = QtGui.QApplication([])

53

54 form = MainForm()

55 form.show()

56 app.exec_()

302 CHAPTER 14. GRAPHICAL USER INTERFACES

(a) (b)

Figure 14.5: This figure shows the possible results after executing the code above. (a) Shows only using
QHBoxLayout. (b) Shows using QHBoxLayout and QVBoxLayout.

PyQt includes a class to distribute widgets in a matrix-like grid within the window, called QGridLayout(). This

type of layout divides the window space into rows and columns. Each Widget must be added to a cell in the grid by

using the addWidget(Widget, i, j) method. For example, the following code shows an example to create a

matrix similar to a mobile phone keypad buttons. The output can be seen in Figure 14.6.

1 # codes_6.py

2

3 class MyForm(QtGui.QWidget):

4 def __init__(self):

5 super().__init__()

6 self.init_GUI()

7

8 def init_GUI(self):

9 # Creating the grid that will position Widgets in a matrix

10 # like manner

11 grid = QtGui.QGridLayout()

12 self.setLayout(grid)

13

14 values = ['1', '2', '3',

15 '4', '5', '6',

16 '7', '8', '9',

14.3. EVENTS AND SIGNALS 303

17 '*', '0', '#']

18

19 positions = [(i, j) for i in range(4) for j in range(3)]

20

21 for _positions, value in zip(positions, values):

22 if value == '':

23 continue

24

25 # The * symbol allows unpacking _positions as

26 # independent arguments

27 button = QtGui.QPushButton(value)

28 grid.addWidget(button, *_positions)

29

30 self.move(300, 150)

31 self.setWindowTitle('Calculator')

32 self.show()

Figure 14.6: Example of numeric keypad using QGridLayout to organize the buttons in a grid.

14.3 Events and Signals

Graphical interfaces are applications focused mainly on handling events. This strategy allows detecting user actions on

the interface asynchronously. The same application can generate events A. In PyQt these events are detected once

the application enters the main loop started by the exec_() method. Figure 14.6 shows a flowchart comparison

304 CHAPTER 14. GRAPHICAL USER INTERFACES

between a program with a linear structure and a program using GUI-based event handling. In this model there are

three fundamental elements:

• The source of the event: corresponds to the object that generates the change of state or that generates the event

• The event object: the object that encapsulates the change of status through the event.

• The target object: the object to be notified of the status change

Under this model, the event source delegates the task of managing the event to the target object. PyQt, on its 4th

version, uses the signal and slot mechanism to handle events. Both elements are used for communication between

objects. When an event occurs, the activated object generates signals, and any of those signals calls a slot. Slots can be

any callable Python object.

Below, we see a modification to the previous program so that it generates a call to the boton1_callback()

function, after button1 is pressed. This is accomplished using the event to send the signal. In the case of buttons,

the signal corresponds to the clicked method. By using the connect() method, communication between objects

involved in the event is set. This method receives a Python callable function, i.e., boton1_callback without ().

1 # codes_7.py

2

3 class MyForm(QtGui.QWidget):

4 def __init__(self):

5 super().__init__()

6 self.init_GUI()

7

8 def init_GUI(self):

9 self.label1 = QtGui.QLabel('Text:', self)

10 self.label1.move(10, 15)

11

12 self.label2 = QtGui.QLabel('Write your answer here', self)

13 self.label2.move(10, 50)

14

15 self.edit1 = QtGui.QLineEdit('', self)

16 self.edit1.setGeometry(45, 15, 100, 20)

17

18 # Connecting button1 signal to other object

14.4. SENDER 305

19 self.button1 = QtGui.QPushButton('&Process', self)

20 self.button1.resize(self.button1.sizeHint())

21 self.button1.move(5, 70)

22 # This object MUST be callable. self.button1_callback()

23 # would not work.

24 self.button1.clicked.connect(self.button1_callback)

25

26 self.button2 = QtGui.QPushButton('&Exit', self)

27 self.button2.clicked.connect(

28 QtCore.QCoreApplication.instance().quit)

29 self.button2.resize(self.button2.sizeHint())

30 self.button2.move(90, 70)

31

32 self.setGeometry(200, 100, 200, 300)

33 self.setWindowTitle('Window with buttons')

34

35 def button1_callback(self):

36 # This method handles the event

37 self.label2.setText(self.edit1.text())

14.4 Sender

Sometimes we need to know which of the objects on the form sent a signal. PyQt offers the sender() method. We

can see an example by adding a new label to the form that will display the name of the widget that sends the signal:

1 # codes_8.py

2

3 def init_GUI(self):

4 self.label1 = QtGui.QLabel('Text:', self)

5 self.label1.move(10, 15)

6

7 self.label2 = QtGui.QLabel('Write your answer here:', self)

8 self.label2.move(10, 50)

9

10 self.label3 = QtGui.QLabel('Signal origin:', self)

11 self.label3.move(10, 250)

306 CHAPTER 14. GRAPHICAL USER INTERFACES

12

13 self.edit1 = QtGui.QLineEdit('', self)

14 self.edit1.setGeometry(45, 15, 100, 20)

15

16 self.button1 = QtGui.QPushButton('&Process', self)

17 self.button1.resize(self.button1.sizeHint())

18 self.button1.move(5, 70)

19 self.button1.clicked.connect(self.button1_callback)

20 self.button1.clicked.connect(self.button_pressed)

21

22 self.button2 = QtGui.QPushButton('&Exit', self)

23 self.button2.clicked.connect(QtCore.QCoreApplication.instance().quit)

24 self.button2.resize(self.button2.sizeHint())

25 self.button2.move(90, 70)

26

27 self.setGeometry(200, 100, 300, 300)

28 self.setWindowTitle('Window with buttons.')

29 self.show()

30

31

32 def button_pressed(self):

33 # This method registers the object sending the signal and shows it in

34 # label3 by using the sender() method

35 sender = self.sender()

36 self.label3.setText('Signal origin: {0}'.format(sender.text()))

37 self.label3.resize(self.label3.sizeHint())

38

39

40 def button1_callback(self):

41 self.label2.setText(self.edit1.text())

14.5 Creating Custom Signals

In PyQt it is also possible to define user-customized signals. In this case, we must create the object that will host the

new signal. These signals are a subclass of QtCore.QObject. Within the object the new signal is created as an

14.5. CREATING CUSTOM SIGNALS 307

instance of the object QtCore.pyqtSignal(). Then, the signal and its handling functions if required, must be

created in the form. The example below shows a simple way to generate a new signal that activates when one of the

buttons is pressed. To emit the signal the emit() method inherited from pyqtSignal() is used:

1 # codes_9.py

2

3 import sys

4 from PyQt4 import QtGui, QtCore

5

6

7 class MySignal(QtCore.QObject):

8 # This class defines the new signal 'signal_writer'

9 signal_writer = QtCore.pyqtSignal()

10

11

12 class MyForm(QtGui.QWidget):

13 def __init__(self):

14 super().__init__()

15 self.initialize_GUI()

16

17 def initialize_GUI(self):

18 self.s = MySignal()

19 self.s.signal_writer.connect(self.write_label)

20

21 self.label1 = QtGui.QLabel('Label', self)

22 self.label1.move(20, 10)

23 self.resize(self.label1.sizeHint())

24

25 self.setGeometry(300, 300, 290, 150)

26 self.setWindowTitle('Signal Emitter')

27 self.show()

28

29 def mousePressEvent(self, event):

30 # This method handles when any of the mouse buttons is pressed. It is

31 # defined by default within the app. It can be overwritten according

32 # to how the event should be handled in each app.

308 CHAPTER 14. GRAPHICAL USER INTERFACES

33 self.s.signal_writer.emit()

34

35 def write_label(self):

36 self.label1.setText('Mouse was clicked')

37 self.label1.resize(self.label1.sizeHint())

38

39

40 def main():

41 app = QtGui.QApplication(sys.argv)

42 ex = MyForm()

43 sys.exit(app.exec_())

44

45

46 if __name__ == '__main__':

47 main()

14.6 Mouse and Keyboard Events

Another way to generate events is through the keyboard and mouse. These events can be handled by overriding two

methods defined in the MainForm: mousePressEvent() and keyPressEvent().

1 # codes_10.py

2

3 def keyPressEvent(self, event):

4 self.statusBar().showMessage('Key pressed {}'.format(event.text()))

5

6

7 def mousePressEvent(self, *args, **kwargs):

8 self.statusBar().showMessage('Mouse click')

14.7 QT Designer

When GUIs have few Widgets, it is easy to create them manually by adding each one with code. However, when

the interface includes a larger number of objects, interactions or controls, the code gets longer and hard to maintain.

Fortunately, PyQt provides a tool called QT Designer that allows building the graphical interface visually. Qt Designer

14.7. QT DESIGNER 309

allows to create each widget in the interface and also gives you control over all the properties of Widgets. Figure 14.7

shows the main view of Qt Designer.

Figure 14.7: Example of QtDesigner application’s main view.

All QTDesigner’s actions can be controlled from the application menu. There are four major sections in the working

window. On the left side is the Widget Box containing all Widgets that can be added to the form, sorted by type. On

the right side, we can find the Object Inspector which allows displaying the hierarchy of widgets that exist in the form.

Following the Object Inspector is the property editor. Finally, in the center we may find the central Widget that can be

a simple window or form, or a more complex Widget:

Once we add a Widget to the interface, a default name is assigned to the objectName field in the property editor.

This name can be changed directly, as shown in figure 14.9. The same name will be the one used to reference the

object from the Python code that handles the interface.

A natural way to see the result without embedding it in the final code is to use Qt Designer’s preview mode, accessed

by pressing Ctrl + R. In this mode the interface created is fully functional. Once the interface is complete, it must be

saved. At that time a file with the .ui extension is created. Then it should be assembled with the Python code that

controls the interface Widgets’ functionalities. To integrate the interface with a given program, we use the uic module.

This allows us to load the interface through the (<interface-name>.ui) method. The function returns a tuple

with two elements: the first is a class named as the window defined in the objectName in QtDesigner Property

310 CHAPTER 14. GRAPHICAL USER INTERFACES

(a)

(b)

(c)

Figure 14.8: This figure shows the main panels available on QtDesigner. (a) Shows the Widget Box. (b) Shows the
Object Inspector. (c) Shows the Property Editor.

Figure 14.9: An example of how pyqt-designer assigns the object name to a new widget. In this case, the designer
adds a new label call label1.

Editor; and the second is the name of the class from where it inherits. Figure 14.10 shows where the name appears in

the MainWindow from the Property Editor.

The following example shows how to perform this procedure with an already created interface. In this case the form

variable will include the tuple: (class ’Ui_MainWindow’ class ’PyQt4.QtGui.QMainWindow’).

The Ui prefix associated with the name of the class containing the interface is assigned by the uic module during

interface loading. Once we loaded the interface, it must be initialized within the __init__() method, located in the

class from where it inherits. This initialization is performed by the setupUi(self) method. Applications’ creation

14.7. QT DESIGNER 311

Figure 14.10: We use a red ellipse to point out that the name that Qt Designer assigns to the class representing the
window is, in this case MainWindow.

must be carried out by using the main program’s structure, seen at the beginning of the explanation of graphical

interfaces:

1 # codes_11.py

2

3 from PyQt4 import QtGui, uic

4

5 form = uic.loadUiType("qt-designer-label.ui")

6

7

8 class MainWindow(form[0], form[1]):

9 def __init__(self):

10 super().__init__()

11 self.setupUi(self) # Interface is initialized

12

13

14 if __name__ == '__main__':

15 # Application should be initialized just as if it had been

16 # created manually

17 app = QtGui.QApplication([])

18 form = MainWindow()

19 form.show()

20 app.exec_()

312 CHAPTER 14. GRAPHICAL USER INTERFACES

Each Widget’s action must be defined by signals and slots as explained before. Figure 14.11 shows an example of an

interface that performs division between two numbers. The button created in Qt Designer displays the result on a label.

(a) (b)

Figure 14.11: (a) The design view of the multiplication example. (b) The execution view.

1 # codes_12.py

2

3 from PyQt4 import QtGui, uic

4

5 form = uic.loadUiType("qt-designer-mainwindow.ui")

6 print(form[0], form[1])

7

8

9 class MainWindow(form[0], form[1]):

10 def __init__(self):

11 super().__init__()

12 # QtDesigner created interface is initialized

13 self.setupUi(self)

14

15 # Button signal is connected

16 self.pushButton1.clicked.connect(self.divide)

17

18 def divide(self):

19 # This function acts as a slot for de button clicked signal

20 self.label_3.setText('= ' + str(

21 float(self.lineEdit1.text()) / float(

22 self.lineEdit2.text())))

14.7. QT DESIGNER 313

23

24

25 if __name__ == '__main__':

26 app = QtGui.QApplication([])

27 form = MainWindow()

28 form.show()

29 app.exec_()

It is easy to include new Widgets that simplify the user interaction within Qt Designer. One example is radio buttons,

which allow us to capture user options on the form. Figure 14.12 shows a design form using radio buttons and the

python code used to verify the values.

Figure 14.12: Figure shows an execution of a GUI using radio buttons.

1 # codes_13.py

2

3 from PyQt4 import QtGui, uic

4

5 form = uic.loadUiType("qt-designer-radiobutton.ui")

6 print(form[0], form[1])

7

8

9 class MainWindow(form[0], form[1]):

10 def __init__(self):

314 CHAPTER 14. GRAPHICAL USER INTERFACES

11 super().__init__()

12 self.setupUi(self)

13

14 self.pushButton1.clicked.connect(self.show_preferences)

15

16 def show_preferences(self):

17 for rb_id in range(1, 3):

18 if getattr(self, 'radioButton' + str(rb_id)).isChecked():

19 option = getattr(self, 'radioButton' + str(rb_id)).text()

20 print(option)

21 self.label2.setText('prefers: {0}'.format(option))

22 self.label2.resize(self.label2.sizeHint())

23

24

25 if __name__ == '__main__':

26 app = QtGui.QApplication([])

27 form = MainWindow()

28 form.show()

29 app.exec_()

