Graphing Linear Equations

Objective 1: Plotting Ordered Pairs on a Rectangular Coordinate System

Ordered pair (x, y) – two numbers associated with a point on a graph. The first number gives the horizontal location of the point. The second gives the vertical location.

x – axis: horizontal number line

y – axis: vertical number line

Origin: the point of intersection of the two axes

Quadrants: four regions created by the intersection of the two axes

Exercise 1: Plot each ordered pair. State in which quadrant, or on which axis the points lie. Label each point on the graph.

Three ways to graph a linear equation:

- 1. By using a table
- 2. By using the x-and-y intercepts
- 3. By using the y-intercept and use the slope to "rise and run"

1. In which quadrant, or on which axis, does each point lie?

Objective 2: Graphing Linear Equations by Using Table

Example: Graph the following equations.

Exercise 2: Graph the following equations.

a.
$$y = -4x + 3$$

b. 5x - 4y = 8 Hint: Solve for y first.

x	У	Ordered pair (x, y)
0		

Graph the following equations.

Objective 3: Graphing Linear Equations Using the x-and-y Intercepts

Example: Graph 5x + 10y = 10 by using the x-and-y intercepts.

Exercise 3: Graph 2x + 4y = 12.

Exercise 4: Graph -x + 2y = 4.

Graph.

1. -4x + 2y = 8

2.
$$-x - 2y = 4$$

Objective 4: Graphing Linear Equations Using the y-intercept and the Slope

Slope-Intercept Form The equation y = mx + b has _____ as the slope and _____ as the yintercept.

Example: Find the slope and the y-intercept of the line 3x - 6y = 12.

Exercise 5: Find the slope and the y-intercept of the line -3x + 5y = -15.

Steps to Graphing a Linear Equation Using the y-intercept and Slope

- **1.** Plot the y-intercept.
- 2. From the y-intercept, rise and run however many units which the slope indicates.
 - Positive slope: _____ or _____
 - Negative ______ or _____

Example: Graph the equation $y = \frac{5}{3}x - 2$.

Exercise 6: Graph the equation $y = -\frac{3}{4}x + 2$

Objective 5: Graphing Horizontal and Vertical Lines

Horizontal Line The equation of a horizontal line is in the form any number.	_, where <i>a</i> is
Vertical Line The equation of a vertical line is in the form, w number.	vhere a is any

Example: Graph the following equations.

b. x = -3

Exercise 9: Graph the following equations using any method of your choice.

--3

--2-

-1-

_1

-2

-3

.4

-5-

-1

-4

d. 2x - 4y = 8

Graph the following equations using any method of your choice.

