Graphing Linear Equations

Objective 1: Plotting Ordered Pairs on a Rectangular Coordinate System

Ordered pair (x, y) - two numbers associated with a point on a graph. The first number gives the horizontal location of the point. The second gives the vertical location.
\boldsymbol{x} - axis: horizontal number line
\boldsymbol{y} - axis: vertical number line
Origin: the point of intersection of the two axes

Quadrants: four regions created by the intersection of the two axes

Exercise 1: Plot each ordered pair. State in which quadrant, or on which axis the points lie. Label each point on the graph.
A. $(3,2)$ \qquad
B. $(-4,-2)$ \qquad
C. $(2,-1)$ \qquad
D. $(0,5)$ \qquad
E. $(4,0)$ \qquad

Three ways to graph a linear equation:

1. By using a table
2. By using the x-and- y intercepts
3. By using the y-intercept and use the slope to "rise and run"
4. In which quadrant, or on which axis, does each point lie?

Objective 2: Graphing Linear Equations by Using Table
Example: Graph the following equations.
a. $y=3 x+1$

b. $y=-\frac{3}{5} x+4$

c.

Exercise 2: Graph the following equations.
a. $y=-4 x+3$

b. $5 x-4 y=8 \quad$ Hint: Solve for y first.

\mathbf{x}	\mathbf{y}	Ordered pair (x, y)
0		

Graph the following equations.

1. $y=4 x+1$

2. $3 x-2 y=6$

Objective 3: Graphing Linear Equations Using the x-and-y Intercepts

The \mathbf{x}-intercept is the point at which the line crosses the
To find x -intercept, let $\mathrm{y}=$ \qquad and solve for \qquad . It is written in the form \qquad _.

The y-intercept is the point at which the line crosses the
To find y-intercept, let $x=$ \qquad and solve for \qquad It is written in the form \qquad .

Example: Graph $5 x+10 y=10$ by using the x-and- y intercepts.

Exercise 3: Graph $2 x+4 y=12$.

Exercise 4: Graph $-x+2 y=4$.

Graph.

1. $-4 x+2 y=8$

2. $-x-2 y=4$

Objective 4: Graphing Linear Equations Using the y-intercept and the Slope

```
Slope-Intercept Form
The equation }y=mx+b\mathrm{ has
```

\qquad

``` as the slope and
``` \(\qquad\)
``` as the \(y\) intercept.
```

Example: Find the slope and the y-intercept of the line $3 x-6 y=12$.

Exercise 5: Find the slope and the y-intercept of the line $-3 x+5 y=-15$.

Steps to Graphing a Linear Equation Using the y-intercept and Slope

1. Plot the y-intercept.
2. From the y-intercept, rise and run however many units which the slope indicates.

- Positive slope: \qquad or
- Negative \qquad or \qquad

Example: Graph the equation $y=\frac{5}{3} x-2$.

Example: Graph the equation $6 x-3 y=9$.

Exercise 6: Graph the equation $y=-\frac{3}{4} x+2$

Exercise 7: Graph the equation $4 x-5 y=20$.

Exercise 8: Graph the equation $2 x-6 y=-12$.

Graph by finding the slope and the y-intercept of each line.

1. $y=-\frac{2}{3} x+4$

2. $3 x-y=2$

Objective 5: Graphing Horizontal and Vertical Lines

Horizontal Line

The equation of a horizontal line is in the form \qquad where a is any number.

Vertical Line

The equation of a vertical line is in the form \qquad where a is any number.

Example: Graph the following equations.
a. $y=6$

b. $x=-3$

Exercise 9: Graph the following equations using any method of your choice.
a. $y=-3$

b. $y=2 x$

d. $2 x-4 y=8$

Graph the following equations using any method of your choice.

1. $y=-4$

2. $x-3=0$

