Grade Level/Course: Algebra 1
Lesson/Unit Plan Name: Graphing Piecewise Functions
Rationale/Lesson Abstract: Students will graph piecewise defined functions using three different methods.

Timeframe: 1 to 2 Days (60 minute periods)
Common Core Standard(s): F-IF.7b Graph square root, cube root, and piece-wise defined functions, including step functions and absolute value functions.

Notes: \quad The Warm-Up is on page 8.
A graphing handout is provided specifically for example 1 (method 1) on page 6.

Instructional Resources/Materials: Graph paper or coordinate plane handout, rulers.

Lesson:

Think-Pair-Share: Describe the graph below. Then compare it to other graphs we have seen in this class.

Possible Descriptions:

- The graph is a function.
- The graph is composed of part of a line and a part of a parabola.
- The graph is not continuous, there is a break in the graph at $x=1$.

Further Discussion:

Show the equation of the graph and discuss how it relates to the graph.

$$
f(x)= \begin{cases}-x-1 & \text {,if } x<1 \\ x^{2}-6 x+8 & \text {, if } x \geq 1\end{cases}
$$

*Notice the structure of the function, after each function you see a restricted domain.

A piecewise function is a function represented by two or more functions, each corresponding to a part of the domain.

A piecewise function is called piecewise because it acts differently on different "pieces" of the number line.

Example 1: Graph the piecewise function $f(x)=\left\{\begin{array}{ll}3 x-1 & \text {, if } x \leq 0 \\ -\frac{1}{2} x+4, & \text { if } x>0\end{array}\right.$.

Think-Pair: Predict what the graph will look like.

Solution:

Method 1 (Uses 3 coordinate planes- see p. 6):
(Complete use of method 1 shown on page 7)

- Identify the two functions that create the piecewise function.

$$
\begin{aligned}
& y=3 x-1 \\
& y=\frac{1}{2} x+4
\end{aligned}
$$

- Graph each function separately.
- Identify the break between each function as given by the domain of the piecewise function.
- Use a different color to highlight the piece of the graph that is given by the domain of the piecewise function.
- On the third graph, graph the piecewise function. To the left of $x=0$ and including $x=0$, graph $y=3 x-1$. To the right of $x=0$ and excluding $x=0$, graph $\quad y=\frac{1}{2} x+4$.

Solution:

Try: Graph the function $f(x)=\left\{\begin{array}{ll}x+4 & \text {, if } x<-1 \\ -2 x & \text {,if } x \geq-1\end{array}\right.$.

Think-Pair: What kind of function is this? Explain. Predict what the graph will look like.

Example 2: Graph the function $f(x)=\left\{\begin{array}{ll}2 x+7 & \text {, if } x<-3 \\ x^{2}+4 x+3 & \text {, if } x \geq-3\end{array}\right.$.
Think-Pair: Predict what the graph will look like.

Solution:

Method 2 (Uses 1 coordinate plane):

- Split the domain of the piecewise function into three sections.
- Identify the function corresponding to each section.
- Find points on $f(x)$ by substituting values of the domain in each piece.
- For $x=-3$, find the output for both equations*. Identify each point as open or closed.
- Graph the points.

*Discuss: We input $x=-3$ into $y=2 x+7$ even though $f(x) \neq 2 x+7$ at $x=-3$ because the open circle will occur at $x=-3$.

Try: Graph the function $f(x)=\left\{\begin{array}{ll}(x-1)^{2} & \text {, if } x \leq 2 \\ -\frac{3}{2} x+4 & \text {, if } x>2\end{array}\right.$.

Think-Pair: What kind of function is this? Explain. Predict what the graph will look like. Which method did you use? How is this graph different from the previous graphs?

Solution:

Example 3: The function below describes the price of a movie ticket (in dollars) depending on the age of the person (in years). Graph $p(x)$.

$$
p(x)= \begin{cases}8 & , \text { if } 0<x<16 \\ 11 & \text { if } 16 \leq x<55 \\ 8 & \text {,if } x \geq 55\end{cases}
$$

Discuss the meaning of the function:

People under 16 years of age pay $\$ 8$ per ticket
People who are at least 16 year of age, but younger than 55 years old pay $\$ 11$ per ticket.
People who are 55 years old or older pay $\$ 8$ per ticket.
What kind of functions are $y=8$ and $y=11$?
Think-Pair-Share: Predict what the graph is going to look like.

- The graph is going to be in the first quadrant.
- The graph will consist of three linear functions, which are all pieces of horizontal lines.
- The horizontal axis is labeled age.
- The vertical axis is labeled price.
- The axes will not be labeled by one's.

Method 3 (Direct Approach):

- Graph the horizontal line $y=8$ from $x=8$ to $x=16$. The point $(16,8)$ is open.
- Graph the horizontal line $y=11$ from $x=16$ to $x=55$. The point $(16,11)$ is closed and $(55,11)$ is open.
- Graph the horizontal line $y=8$ from $x=55$ to infinity. The point $(55,8)$ is closed.

Try: Graph the function $f(x)=\left\{\begin{array}{l}6 \text {, if } 0<x \leq 50 \\ 10 \text {, if } 50<x \leq 100 \\ 15 \text {, if } 100<x \leq 200\end{array}\right.$.
Write a scenario represented by this function.

Possible scenario:

The function describes the cost to ship packages given the weight of the package. It cost $\$ 6$ to ship packages weighing 50 pounds or less, $\$ 10$ to ship packages weighing over 50 pounds up to 100 pounds, and

Solution:

 $\$ 15$ to ship packages weighing over 100 pounds up to 200 pounds.

Think-Pair-Share: The functions in example 3 and Try 3 are a specific type of piecewise function called a step function. Why do you think they are called step functions?

A step function is a piecewise function whose graph resembles a staircase or steps.

SPECIAL STEP FUNCTIONS:

The Greatest Integer Function,
or The Floor Function

$f(x)=\lfloor x\rfloor$

Graphing Piecewise Functions

Warm-Up

Review: CA Alg. 1 CSS F-IF. 2

Given the function $f(x)=x^{2}-2 x+5$, find the following function values:
a) $f(0)$
b) $f(-3)$
c) $f(4)$

Current: CA Alg. 1 CCSS F-IF.7a

Graph the function $f(x)=x^{2}$ for $x \geq 0$.

Current: CA Alg. 1 CSS F-IF. 1

Find the domain of the function shown in the graph below.

$$
f(x)=
$$

Current: CA Alg. 1 COS C-CED. 2

For the function graphed to the left in quadrant III, write the rule for the function.
\square
Domain:

Solutions to Warm-Up:

Quadrant I

Quadrant II

Given the function $f(x)=x^{2}-2 x+5$, find the following function values:
a)

$$
\begin{aligned}
& f(0)=(0)^{2}-2(0)+5 \\
& f(0)=5
\end{aligned}
$$

b)

$$
f(-3)=(-3)^{2}-2(-3)+5
$$

$$
f(-3)=9+6+5
$$

$$
f(-3)=15+5
$$

$$
f(-3)=20
$$

c)

$$
\begin{aligned}
& f(4)=(4)^{2}-2(4)+5 \\
& f(4)=16-8+5 \\
& f(4)=8+5 \\
& f(4)=13
\end{aligned}
$$

Quadrant III

```
Domain: x 
```

Quadrant IV

$$
f(x)=\sqrt{x+2}
$$

