Grade Level/Cours	se: Algebra 1
-------------------	---------------

Lesson/Unit Plan Name: Graphing Piecewise Functions

Rationale/Lesson Abstract: Students will graph piecewise defined functions using three different methods.

Timeframe:	1 to 2 Days	(60 minute periods)
------------	-------------	---------------------

Common Core Standard(s): F-IF.7b Graph square root, cube root, and piece-wise defined functions, including step functions and absolute value functions.

Notes: The Warm-Up is on page 8.

A graphing handout is provided specifically for example 1 (method 1) on page 6.

Instructional Resources/Materials: Graph paper or coordinate plane handout, rulers.

Lesson: Think-Pair-Share:

Describe the graph below. Then compare it to other graphs we have seen in this class.

Possible Descriptions:

- The graph is a function.
- The graph is composed of part of a line and a part of a parabola.
- The graph is not continuous, there is a break in the graph at *x* = 1.

Further Discussion:

Show the equation of the graph and discuss how it relates to the graph.

$$f(x) = \begin{cases} -x - 1 & \text{, if } x < 1 \\ x^2 - 6x + 8 & \text{, if } x \ge 1 \end{cases}$$

*Notice the structure of the function, after each function you see a restricted domain.

A <u>piecewise function</u> is a function represented by two or more functions, each corresponding to a part of the domain.

A piecewise function is called piecewise because it acts differently on different "pieces" of the number line.

Example 1:	Graph the piecewise function $f(x) = \begin{cases} 2 \\ - \\ - \end{cases}$	$3x-1$, if $x \le 0$ $-\frac{1}{2}x+4$, if $x > 0$.
Think-Pair: Solution:	Predict what the graph will look like.	 Method 1 (Uses 3 coordinate planes- see p. 6): (Complete use of method 1 shown on page 7) Identify the two functions that create the piecewise function. y = 3x - 1 y = 1/2 x + 4 Graph each function separately. Identify the break between each function as given by the domain of the piecewise function. Use a different color to highlight the piece of the graph that is given by the domain of the piecewise
		function. • On the third graph, graph the piecewise function. To the left of $x = 0$ and including $x = 0$, graph y = 3x - 1. To the right of $x = 0$ and excluding $x = 0$, graph $y = \frac{1}{2}x + 4$.

Try: Graph the function
$$f(x) = \begin{cases} x+4 & , \text{ if } x < -1 \\ -2x & , \text{ if } x \ge -1 \end{cases}$$
.

Think-Pair: What kind of function is this? Explain. Predict what the graph will look like.

Example 2: Graph the function
$$f(x) = \begin{cases} 2x+7 & \text{, if } x < -3 \\ x^2 + 4x + 3 & \text{, if } x \ge -3 \end{cases}$$
.

Think-Pair: Predict what the graph will look like.

Solution:

Method 2 (Uses 1 coordinate plane):

- Split the domain of the piecewise function into three sections.
- Identify the function corresponding to each section.
- Find points on f(x) by substituting values of the domain in each piece.
- For x = -3, find the output for both equations*. Identify each point as open or closed.
- Graph the points.

x < -3		<i>x</i> = -3	x > -3	
f(x) = 2x + 7		$f(x) = x^{2} + 4x + 3$ f(x) = (x + 3)(x + 1)	$f(x) = x^{2} + 4x + 3$ f(x) = (x + 3)(x + 1)	
f(-4) = 2(-4) + 7		f(-3) = (-3+3)(-3+1) = 0 (-3, 0)	f(-2) = (-2+3)(-2+1) = (1)(-1)	
= -8 + 7 = -1	(-4, -1)	(-3, 0) is a closed point on $f(x)$.	= -1	(-2, -1)
		y = 2x + 7 * $y = 2(-3) + 7$	f(-1) = (-1+3)(-1+1) = (2)(0) = 0	(-1,0)
f(-5) = 2(-5) + 7 = -10 + 7 = -3	(-5, -3)	y = -6 + 7 $y = 1$	f(0) = (0+3)(0+1)	
	(-3, -3)	(-3, 1) is an open point on $f(x)$.	= (3)(1) = 3	(0, 3)

*Discuss: We input x = -3 into y = 2x + 7 even though $f(x) \neq 2x + 7$ at x = -3 because the open circle will occur at x = -3.

Try: Graph the function $f(x) = \begin{cases} (x-1)^2 & \text{, if } x \le 2\\ -\frac{3}{2}x+4 & \text{, if } x > 2 \end{cases}$.

Think-Pair:What kind of function is this? Explain.
Predict what the graph will look like.
Which method did you use?
How is this graph different from the previous graphs?

Example 3: The function below describes the price of a movie ticket (in dollars) depending on the age of the person (in years). Graph p(x).

$$p(x) = \begin{cases} 8 & \text{, if } 0 < x < 16\\ 11 & \text{, if } 16 \le x < 55\\ 8 & \text{, if } x \ge 55 \end{cases}$$

Discuss the meaning of the function:

People under 16 years of age pay \$8 per ticket

People who are at least 16 year of age, but younger than 55 years old pay \$11 per ticket.

People who are 55 years old or older pay \$8 per ticket.

What kind of functions are y = 8 and y = 11?

Think-Pair-Share: Predict what the graph is going to look like.

- The graph is going to be in the first quadrant.
- The graph will consist of three linear functions, which are all pieces of horizontal lines.
- The horizontal axis is labeled age.
- The vertical axis is labeled price.
- The axes will not be labeled by one's.

Method 3 (Direct Approach):

- Graph the horizontal line y = 8 from x = 8 to x = 16. The point (16, 8) is open.
- Graph the horizontal line y = 11 from x = 16 to x = 55. The point (16, 11) is closed and (55, 11) is open.
- Graph the horizontal line y = 8 from x = 55 to infinity. The point (55, 8) is closed.

Try: Graph the function
$$f(x) = \begin{cases} 6 & \text{, if } 0 < x \le 50 \\ 10 & \text{, if } 50 < x \le 100 \\ 15 & \text{, if } 100 < x \le 200 \end{cases}$$

Write a scenario represented by this function.

Possible scenario:

The function describes the cost to ship packages given the weight of the package. It cost \$6 to ship packages weighing 50 pounds or less, \$10 to ship packages weighing over 50 pounds up to 100 pounds, and \$15 to ship packages weighing over 100 pounds up to 200 pounds.

Think-Pair-Share: The functions in example 3 and Try 3 are a specific type of piecewise function called a step function. Why do you think they are called step functions?

A step function is a piecewise function whose graph resembles a staircase or steps.

SPECIAL STEP FUNCTIONS:

Graphing Piecewise Functions

Graphing Piecewise Functions – Ex. 1 Sample

Warm-Up

Л У

Review: CA Alg. 1 CCSS F-IF.2

Given the function $f(x) = x^2 - 2x + 5$, find the following function values:

- a) f(0)
- b) f(-3)
- c) f(4)

Current: CA Alg. 1 CCSS F-IF.1

Find the domain of the function shown in the graph below.

Domain:

Current: CA Alg. 1 CCSS F-IF.7a

Graph the function $f(x) = x^2$ for $x \ge 0$.

Current: CA Alg. 1 CCSS C-CED.2

For the function graphed to the left in quadrant III, write the rule for the function.

f(x) =

х

Solutions to Warm-Up:

Quadrant I

Quadrant II

Given the function $f(x) = x^2 - 2x + 5$, find the following function values:

a)

$$f(0) = (0)^{2} - 2(0) + 5$$
$$f(0) = 5$$

b)

$$f(-3) = (-3)^2 - 2(-3) + 5$$

$$f(-3) = 9 + 6 + 5$$

$$f(-3) = 15 + 5$$

$$f(-3) = 20$$

c)

$$f(4) = (4)^{2} - 2(4) + 5$$

$$f(4) = 16 - 8 + 5$$

$$f(4) = 8 + 5$$

$$f(4) = 13$$

Quadrant III

Domain: $x \ge -2$

Quadrant IV

$$f(x) = \sqrt{x+2}$$