Graphing Standard Function \& Transformations

A few standard graphs

$f(x)=x$	$f(x)=x^{2}$
	$f(x)=x^{1 / 2}$

Graphing Standard Function \& Transformations

The rules below take these standard plots and shift them horizontally/ vertically

Vertical Shifts

Let f be the function and c a positive real number.

- The graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted c units vertically upwards.
- The graph of $y=f(x)$ - c is the graph of $y=f(x)$ shifted c units vertically downwards.
-

$$
g(x)=x^{2}+2=f(x)+2
$$

The graph of

$h(x)=x^{2}-3=f(x)-3$

Look for the positive and negative sign. Positive sign makes the graph move upwards and the negative sign makes it move downwards

Here is a picture of the graph of $g(x)=x 2$. It is obtained from the graph of $f(x)=$ x^{2} by shifting it down 1 unit.

Graphing Standard Function \& Transformations

Horizontal Shifts

Let f be a function and c a positive real number.

- The graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
- The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x}+\mathrm{c})$ is the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ shifted to the right c units.
$\mathrm{g}(\mathrm{x})=(\mathrm{x}-3)^{2}=\mathrm{f}(\mathrm{x}-3)$
$h(x)=(x+2) 2=f(x+2)$

Here is a picture of the graph of $g(x)=|x 4|$. It is obtained from the graph of $f(x)=$ $|x|$ by shifting it to the right 4 units.

Horizontal/ Vertical Scaling

Horizontal Scaling

Let $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{cx})$ where c is a positive real number.

Graphing Standard Function \& Transformations

- If c > graph of f, direction by a
- If $0<c$
stretched in the of $1 / \mathrm{c}$

Here is a
$\mathrm{g}(\mathrm{x})=(0.5 \mathrm{x}) 3$.
graph is

$\mathrm{f}(\mathrm{x})=\mathrm{x} 3$ by direction by a factor of $1 / \mathrm{c}=2$.

1 , the graph of g is the compressed in the x factor of c .
<1, then the graph is x-direction by a factor
picture of the graph of Since $\mathrm{c}=0.5<1$, the obtained from that of stretching it in the x -

Vertical Scaling
Let $g(x)=\operatorname{cf}(x)$ here c is a positive real number.

- If $\mathrm{c}>1$, the graph of g is the graph of f , stretched in the y -direction by a factor of c .

Graphing Standard Function \& Transformations

- If $0<\mathrm{c}<1$, then the graph is compressed in the y -direction by a factor of 1/c.

Here is a picture of the graph of $g(x)=3(x) 1 / 2$. Since $c=3>1$, the graph is obtained from that of $f(x)=x 1 / 2$ by stretching it in the y-direction by a factor of c $=3$.

Reflection about the x axis

The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the x - axis.
Here is a picture of the graph of $g(x)=(x 21)$. It is obtained from the graph of $f(x)$
$=x 21$ by reflecting it in the x -axis.

Graphing Standard Function \& Transformations

Reflection about the y axis

The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis.
Here is a picture of the graph of $g(x)=(0.5 x) 3+1$. It is obtained from the graph of $f(x)=0.5 \times 3+1$ by reflecting it in the y-axis.

Summary of Transformations

To graph	Draw the graph of f and:	Changes in the equation of $y=f(x)$
Vertical Shifts $y=f(x)+c$ $y=f(x)-c$	Raise the graph of f by c units	C is added to $f(x)$
Lower the graph of f by c units	C is subtracted from $f(x)$	

Graphing Standard Function \& Transformations

Horizontal Shifts $y=f(x+c)$ $y=f(x-c)$	Shift the graph of f to the left c units	x is replaced with $x+c$
Reflection about the x axis $y=-f(x)$	Reflects the graph of f about the x axis	$f(x)$ is multiplied by -1
Reflection about the y axis $y=f(-x)$	Reflect the graph of f about the y axis	X is replaced with $-x$

Sample Question:

Sketch the curve for $\mathrm{g}(\mathrm{x})=\frac{(x-2)^{2}}{3}+4$

Original Function $y=x^{2}$	$\begin{gathered} \text { Step 1 } \\ \mathrm{y}=(\mathrm{x}-2)^{2} \end{gathered}$	$\begin{gathered} \text { Step 2 } \\ \frac{(x-2)^{2}}{3} \end{gathered}$	$\begin{gathered} \text { Step 3 } \\ \frac{(x-2)^{2}}{3}+4 \end{gathered}$

Solve for yourself:

Graphing Standard Function \& Transformations

1. $f(x)=\sqrt{(x-5)^{3}}$
2. $g(t)=\frac{1}{5}|3 t|$
3. $r(a)=\frac{2}{(3 a+4)}$
