
Agenda

• Designing with GRASP

 MVC and GRASP

What is object design

 In the analysis part you have

 Identified use cases and created use case descriptions to get

the requirements

 Created and refined the domain concept model

 Now in order to make a piece of object design you

Assign methods to software classes

Design how the classes collaborate (i.e. send messages) in order

to fulfill the functionality stated in the use cases.

• You have learned how to use sequence diagrams.

Responsibilities are assigned to classes of objects during object
design. E.g.,
 doing

doing itself (like creating an object)
 initiating action in other objects
 controlling and coordinating action in other objects

 knowing
Knowing about private encapsulated data
 knowing about related objects
 knowing about things it can compute

•

Responsibilities and Methods

Responsibility is not the same thing as a method, but methods are
implemented to fulfill responsibilities.
• Responsibilities are implemented by means of methods that either act alone
or collaborate with other methods and objects.

Central tasks in design are:
 Deciding what methods belong where so that you add methods to the
software classes, and define the messaging between the objects to
fulfill the requirements.
 How the objects should interact

Responsibilities and Methods

Responsibilities are assigned to objects during
object design while creating interaction diagrams.
Sequence diagrams
Collaboration diagrams.
Examples:
• "a Sale is responsible for creating SalesLineltems"
(a doing), or
• "a Sale is responsible for knowing its
•total" (a knowing).

Assigning responsibilities

GRASP: Designing Objects

with Responsibilities

GRASP

 Name chosen to suggest the importance of grasping fundamental

principles to successfully design object-oriented software.

 General Responsibility Assignment Software Patterns.

 Fundamental principles of object design and responsibility .

 Strictly speaking, these are not ‘design patterns’, rather fundamental

principles of object design.

 GRASP patterns focus on one of the most important aspects of

object design.

 assigning responsibilities to classes.

 GRASP patterns do not address architectural design.

Basic objectives of GRASP
Which class, in the general case is responsible for a task?

 Responsibilities can include behaviour, data storage, object

creation and more

 As mentioned, they often fall into two categories:

 Doing (creating object, initiating action in other objects,

coordinating action in other objects)

 Knowing (encapsulated data, related abject, what it can

calculate)

Basic objectives of GRASP
 You want to assign a responsibility to a class

 You want to avoid or minimize additional dependencies

 You want to maximise cohesion and minimise coupling

(We will very soon define what these terms mean)

 You want to increase reuse and decrease maintenance

 You want to maximise understandability

Five GRASP patterns:

 Creator

 Information Expert

 Low Coupling

 Controller

 High Cohesion

Creator pattern

Name: Creator

Problem: Who creates an instance of any class say class A?

Solution: Assign class B the responsibility

to create an instance of class A if one of these is true (the more the

better):

 B contains or aggregates A (in a collection)

 B records A

 B closely uses A

 B has the initializing data for A

 If we have more than 1 class that satisfies the above condition

for creating B, give responsibility to the class that aggregates

B or contains B.

Who creates the Squares?

Who creates the square

 Shall we use

Die?

Player?

MonopolyGame?

Player?

Piece?

 No! They don't appeal to our mental model of the domain.

 Board is the right answer.

How does Create pattern lead to

this partial Sequence diagram?

Figure 17.4, page 283

How does Create pattern develop

this Design Class Diagram (DCD)?

Figure 17.5 , page 283

Board has a composite aggregation relationship with Square
• I.e., Board contains a collection of Squares

16

Creator: Another Example

Who should be responsible for the creation of a SalesLineItem?

Sale

date

time

Sales

LineItem

quantity

Product

Specification

description

price

UPC

Described-

by

*

Contain

s
1..*

Who should be responsible for the

creation of a SalesLineItem?

Answer : Sale
This assignment requires that a method makeLineItem is defined in the
Sale class.

Information Expert pattern or principle
 Problem: A system will have hundreds of classes.

How do I begin to assign responsibilities to them?

 Solution:Assign responsibility to the Information

Expert–the class that has the information necessary to

fulfill the responsibility.

 E.g., Board has the information needed to get a Square

Mechanics

• Step 1: Clearly state the responsibility

• Step 2: Look for classes that have the information we need to

fulfill the responsibility.

 Step 3:Domain Model or Design Model? See next slide

 Step 4:Sketch out some interaction diagrams.

 Step 5:Update the class diagram.

Question

 Do we look at the Domain Model or the Design Model to

 analyze the classes that have the information needed?

 Domain model illustrates conceptual classes, design model

software classes

Answer

1. If there are relevant classes in the Design Model, look there

first.

2. Otherwise, look in the Domain Model, and attempt to use

(or expand) its representations to inspire the creation of

corresponding design classes.

Ideas to remember

 Information Expert is a basic guiding principle used continuously in

object design.

 The fulfillment of a responsibility often requires information that is

spread across different classes of objects.

 This implies that there are many "partial" information experts who

will collaborate in the task.

 Different objects will need to interact via messages to share the

work.

 The Information Expert should be an early pattern considered in

every design unless the design implies a controller or creation

problem, or is contraindicated on a higher design level.

Contradictions
 In some situations a solution suggested by Expert is undesirable,

usually because of problems in coupling and cohesion.

 For example, who should be responsible for saving a Sale in a

database?

 If Sale is responsible, then each class has its own services to save

itself in a database. The Sale class must now contain logic related to

database handling, such as related to SQL and JDBC.

 This will raises its coupling and duplicate the logic. The design

would violate a separation of concerns – a basic architectural design

goal.

 Thus, even though by Expert there could be justification on object

design level, it would result a poor architecture design.

23

Information Expert : Example

Who is responsible for knowing the grand total of a sale in a typical Point of Sale application?

 To compute the grand total we need the total of a SalesLineItem.

 So we have to decide who calculates the total of a SalesLineItem.

Sale

date

time

Sales

LineItem

quantity

Product

Specification

description

price

UPC

Described-

by

*

Contain

s
1..*

24

Expert : Example

Need all SalesLineItem instances and their subtotals. Only Sale knows

this, so Sale is the information expert.

Hence

Sale

date

time

total()

:Sale
t := total()

New method

25

Expert : Example

Hence responsibilities assigned to the 3 classes are as folllows

Class

Responsibility

Sale

knows sale total

SalesLineItem

knows line item subtotal

ProductSpecification

knows product price

26

Expert : Example

Subtotals are needed for each line item(multiply quantity by price).

By Expert, SalesLineItem is expert, knows quantity and has association

with ProductSpecification which knows price.

Updated domain model

Advantages of using information

expert

 Information expert has the effect of having a class with high

cohesion.

 Cohesion – the degree to which the information and

responsibilities of a class are related to each other

 Cohesion is improved since the information needed for a

responsibility is closely related to the responsibility itself

 Maintain encapsulation of information.

 Classes use their own info to fulfill tasks

 Promotes low coupling (we will discuss coupling shortly)

 Promotes highly cohesive classes .

 (Caution) Can cause a class to become excessively complex.

Summary of Information expert

 Information encapsulation is maintained, since objects use

their own information to fulfill tasks.

 This usually supports low coupling.

 Behavior is distributed across the classes that have the

required information,

 thus encouraging cohesive "lightweight" class definitions that

are easier to understand and maintain.

Coupling
 See http://msdn.microsoft.com/en-us/magazine/cc947917.aspx

 Much of software design involves the ongoing question,

 where should this code go? (where to assign a responsibility?)

 Find the best way to organize to code to make it easier to write, easier

to understand, and easier to change later.

 Three specific things to aim for:

Keep things that have to change together as close together in the code as

possible.

Allow unrelated things in the code to change independently.

Minimize duplication in the code.

 Coupling among classes or subsystems is a measure of how interconnected

those classes or subsystems are. Tight coupling means that related classes

have to know internal details of each other, changes ripple through the

system, and the system is potentially harder to understand.

http://msdn.microsoft.com/en-us/magazine/cc947917.aspx
http://msdn.microsoft.com/en-us/magazine/cc947917.aspx
http://msdn.microsoft.com/en-us/magazine/cc947917.aspx

Example of tightly coupled code taken from web page cited above

public class BusinessLogicClass { public void DoSomething() { // get some configuration

 int threshold = int.Parse(ConfigurationManager.AppSettings["threshold"]);

 String connectionString = ConfigurationManager.AppSettings["connectionString"];

 String sql = @"select * from things // specify your retrieval condition

 size > ";

 sql += threshold;

 using (SqlConnection connection = new SqlConnection(connectionString)) {

 connection.Open();

 SqlCommand command = new SqlCommand(sql, connection);

 using (SqlDataReader reader =command.ExecuteReader()) {

 while (reader.Read()) {

 string name = reader["Name"].toString();

 string destination = reader["destination"].toString();

 // do some business logic in here

 doSomeBusinessLogic(name, destination, connection);

} } } } }

Example (Cont’d)
Problem:

Our business logic code is intertwined with data-access concerns and configuration settings.

So what is the problem?

 The code is hard to understand because of the way the different concerns are intertwined.

 Any changes in data-access strategy, database structure, or configuration strategies will

ripple through the business logic code as well because it's all in one code file.

 This business logic knows too much about the underlying infrastructure.

 We can't reuse the business logic code independent of the specific database structure or

without the existence of the AppSettings keys.

 We also can't reuse the data-access functionality embedded in the BusinessLogicClass.

 What if we want to repurpose this business logic for usage against data entered directly into

an Excel spreadsheet by analysts?

 What if we want to test or debug the business logic by itself? We can't do any of that

because the business logic is tightly coupled to the data-access code.

 The business logic would be a lot easier to change if we could isolate it from the other

concerns.

Our goals
 Make the code easier to read.

 Make our classes easier to consume by other developers by

hiding the ugly inner workings of our classes behind well-

designed APIs.

 Isolate potential changes to a small area of code.

 Reuse classes in completely new contexts.

Code smells
 It's good to know how to do the right things when designing new code

 It might be even more important to recognize when your existing code or

design has developed problems.

 "code smell" is a tool that you can utilize to spot potential problems in code.

 (reminder) A code smell is a sign that something may be wrong in your code.

 It doesn't mean that you need to rip out your existing code and throw it away

on the spot, but you definitely need to take a closer look at the code that gives

off the offending "smell."

 Many, if not most, of the commonly described code smells are signs of poor

cohesion or harmful tight coupling.

Reminder: resolving code smells

help us decrease coupling
 Divergent Changes A single class that has to be changed in different ways for

different reasons. This smell is a sign that the class is not cohesive. You might

refactor this class to extract distinct responsibilities into new classes.

 Feature Envy A method in ClassA seems way too interested in the workings

and data fields of ClassB. The feature envy from ClassA to ClassB is an indication

of tight coupling from ClassA to ClassB. The usual fix is to try moving the

functionality of the interested method in ClassA to ClassB, which is already

closer to most of the data involved in the task.

 Shotgun Surgery A certain type of change in the system repeatedly leads to

making lots of small changes to a group of classes. Shotgun surgery generally

implies that a single logical idea or function is spread out over multiple classes.

Try to fix this by pulling all the parts of the code that have to change together

into a single cohesive class.

Summarize concept of Coupling

• Coupling refers to connectedness.

• Coupling is a measure of how strongly one element is

connected to, has knowledge of, or relies on other elements.

An element with low (or weak) coupling is not dependent on

too many other elements.

 A class, for example, with high (or strong) coupling relies on

many other classes.

 Tight coupling means that related classes have to know

internal details of each other, changes ripple through the

system, and the system is potentially harder to understand.

Example

 Suppose at a departmental store, the user (The clerk at the

teller) wishes to create a sale object, get payment for the sale

and record details of the sale and the payment.

 The domain mode includes a Register to record these

details.

 Since Register records the sale, creator pattern suggests the

Register should be responsible for payment and the details of

the sale.

Version 1 of adding a payment to Sale

 Here create() return an object p of class Payment.
 addPayment has the object p as an argument since the payment
object must be updated with the details of the sale.
 In this version Register does all the work

Version 2 of adding a payment to Sale

Sale creates a Payment – as opposed to Register creating it.
Sale must know about payment so why don’t we decouple Payment from
Register? This reduces coupling of Register.
Does this conflict with creator principle we talked about?

Why high coupling is bad

 Forced local changes because of changes in related classes.

 Harder to understand in isolation.

 Harder to reuse because its use requires the additional

presence of the classes on which it is dependent.

Why low coupling is desirable?
 A change in one area of an application will require less changes

throughout the entire application. In the long run, this could

alleviate a lot of time, effort, and cost associated with modifying

and adding new features to an application.

 Our goal is to design for low coupling, so that changes in one

element (sub-system, system, class, etc.) will limit changes to

other elements.

 Low coupling supports increased reuse.

 Taken to the extreme, what if we were to design a set of classes

with no coupling. Is this possible?

 We can’t avoid coupling, but we want to make sure we

understand the implications of introducing it and/or the

tradeoffs of reducing it.

 Problem: How to reduce the impact of change and encourage

reuse?

 Solution: Assign a responsibility so that coupling (linking classes)

remains low.

 Advantages

Classes are easier to maintain

Easier to reuse by hiding the ugly inner workings of our classes

behind well-designed APIs.

Changes are localised

 Isolate potential changes to a small area of code.

Low Coupling Pattern

Common forms of coupling
 TypeX is coupled to TypeY if:

TypeX has an attribute (or instance variable) of TypeY.

A TypeX object calls on services of a TypeY object.

TypeX has a method that references an instance of TypeY. These typically include a

parameter or local variable of type TypeY, or the object returned from a

message being an instance of TypeY.

TypeX is a direct or indirect subclass of TypeY.

TypeY is an interface, and TypeX implements that interface.

 A subclass is strongly coupled to its superclass. The decision to derive

from a superclass needs to be carefully considered since it is such a

strong form of coupling.

Why does the following design

violate Low Coupling?

Why is a better idea to leave
getSquare responsibility in Board?

Problems with the couplings

between dog and square
 Both Dog and Board must both know about Square objects

 A solution where only Board knows about Square is better because

the overall coupling is lower.

 Idea in a nutshell:

 In general, if you need to assign a new responsibility to an object,

first look to assign the responsibility to objects that are already

information experts on class X. This will keep coupling low.

 Giving responsibility anywhere else will increase coupling since

more information has to be shared or moved (The square in the

map collection has to be shared with the dog object, away from

their home in the Board object).

Benefits & Contraindications

 Understandability: Classes are easier

to understand in isolation

 Maintainability: Classes aren’t affected by changes in other

components

 Reusability: easier to grab hold of classes

But:

 Don’t sweat coupling to stable classes (in libraries or

pervasive, well-tested classes)

