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Abstract— Intelligent manipulation benefits from the capacity
to flexibly control an end-effector with high degrees of freedom
(DoF) and dynamically react to the environment. However,
due to the challenges of collecting effective training data and
learning efficiently, most grasping algorithms today are limited
to top-down movements and open-loop execution. In this work,
we propose a new low-cost hardware interface for collecting
grasping demonstrations by people in diverse environments.
This data makes it possible to train a robust end-to-end 6DoF
closed-loop grasping model with reinforcement learning that
transfers to real robots. A key aspect of our grasping model is
that it uses “action-view” based rendering to simulate future
states with respect to different possible actions. By evaluating
these states using a learned value function (e.g., Q-function),
our method is able to better select corresponding actions
that maximize total rewards (i.e., grasping success). Our final
grasping system is able to achieve reliable 6DoF closed-loop
grasping of novel objects across various scene configurations,
as well as in dynamic scenes with moving objects.

I. INTRODUCTION

Versatile manipulation benefits from the capacity to flex-
ibly control an end-effector in 3D space and dynamically
react to changes in the environment. In the case of grasping,
6 degrees of freedom (6DoF: where the gripper is free to
change in x, y, z position and in roll, pitch, yaw) closed-loop
algorithms enable robots to pick up objects from a wider
range of unstructured settings beyond tabletop scenarios:
from moving in 6DoF to retrieve diagonally positioned plates
in a dishwasher or harvest berries from a bush, to using
closed-loop visual feedback for grasping objects moving
along a conveyor belt or handed off by people. Despite
the practical value of both 6DoF control and closed-loop
feedback, most data-driven grasping algorithms today are
only able to achieve one of these capabilities. Most methods
only infer top-down grasps (4Dof: x, y, z, yaw) in simple
tabletop settings [1], [2], [3], [4], or detect grasps in 6DoF
but with open-loop execution [5], [6].

One major obstacle for achieving both 6DoF and closed-
loop grasping is the challenge of acquiring effective training
data. Collecting data on real robots through self-supervised
trial and error is expensive. As the action space approaches
higher dimensions (e.g., 4DoF to 6DoF grasping) and as
the state space reaches higher diversity (e.g., images of
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Fig. 1. Grasping in the wild. We developed a low-cost handheld device
that enables people to collect grasping demonstrations (top) while carrying
out everyday tasks in diverse environments. Using these demonstrations as
training data, we show that it is possible to learn flexible 6DoF closed-loop
grasping policies that transfer to real-world robot picking systems (bottom).

static scenes to dynamic scenes), the exploration search
space grows exponentially. In this large search space, the
chances of stumbling on useful grasping trajectories through
random search becomes exponentially slim. While prior work
alleviates some of these issues by training on demonstration
data collected from human teleoperation of robots [7], these
approaches remain limited to a small range of environments
that are physically accessible for those robots.

In this work, we develop a system for collecting grasping
demonstrations in the wild by equipping a handheld grabbing
tool with an RGB-D camera mounted on its “wrist” in the
same way it would be on a real robot arm (Fig. 1). This
device (which in total costs $600) is a low-user-friction
tool that can be used by people to pick up objects while
carrying out everyday tasks real-world environments (e.g.,
picking up trash, sorting dishes, etc.). During these tasks,
the camera captures RGB-D gripper-centric videos from
which we recover 6DoF grasping trajectories using classic
visual tracking algorithms. This setup provides grasping
demonstration data with substantially higher diversity and
lower cost than prior work.

This data makes it possible to bootstrap and train a
robust end-to-end 6DoF closed-loop grasping model with
reinforcement learning that transfers to real robot platforms.
The system uses a deep network to model a value function
that maps from a visual observation of the state (i.e., gripper-
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centric images) to the expected rewards in that state. A key
aspect of our grasping model is that it uses “action-view”
based rendering to simulate future states with respect to
different actions (e.g., what the gripper camera would see if
it moves forward or sideways). It evaluates these states using
the learned value function in a closed-loop while executing
grasps to predict how the gripper should move in the next
step to maximize rewards.

In summary, our main contributions are 1) a real-world
dataset of human grasping demonstrations in diverse envi-
ronments collected using a new low-cost hardware interface,
and 2) a visual 6DoF closed-loop grasping algorithm that
uses action-view based rendering to achieve 92% grasping
success rates in static scenes and 88% in dynamic scenes
with moving objects. Our experiments demonstrate that the
capacity to move in 6DoF enables our system to grasp
novel objects in a variety of environments: from grasping
objects sideways from a wall to picking from inclined bins.
We also show that the performance and learning efficiency
substantially improves by training on demonstration data
collected with our tool. Qualitative results are available in our
supplemental video at https://graspinwild.cs.columbia.edu

II. RELATED WORK

In this section, we review relevant work on vision-based
grasping and data collection for data-driven grasping.

Vision-based grasping. Classic vision-based grasping so-
lutions often explicitly model contact forces with prior
knowledge of object geometry, pose, and dynamics [8], [9],
[10], [11]. However, this kind of prior knowledge is difficult
to obtain for novel objects in unstructured environments.

More recent data-driven methods explore the prospects of
training object-agnostic grasping policies that detect grasps
by exploiting learned visual features, without explicitly using
object-specific knowledge [12], [1], [13], [14], [15], [2], [5],
[6], [16]. This problem formulation enables these methods
to generalize to novel objects without the need for scanning
the objects to obtain 3D models or estimate their poses.
However, since most of these approaches perform open-loop
grasp execution, they are sensitive to calibration errors and
fail to handle dynamic environments.

Another line of work tackles closed-loop grasping by
designing algorithms that continuously gather visual obser-
vations during grasp execution and predict next actions using
visual servoing [17], [18] or reinforcement learning [19].
However, these methods are characterized by constrained
state-action spaces in order to reduce the amount of training
data required. For example, QT-Opt [19] learns only top-
down grasping policies (action space) with images from a
fixed static camera (state space). As a result, the system can-
not immediately generalize to different task configurations
(e.g., grasping from shelves) without extensive retraining.
Specifically, QT-Opt trains using a total of 580k off-policy +
28k on-policy grasping trials to learn an effective policy for
the current setup, which makes it challenging to generalize
to larger state-action spaces. In this work, we propose to

use human demonstration and action-view representations to
improve learning efficiency.

TABLE I
COMPARISONS OF VISUAL GRASPING ALGORITHMS.

Method Closed-Loop 6DoF Training Data

[15], [20] 7 7 simulation
[1], [2], [3], [21], [22] 7 7 real
[14], [5], [6], [23], [16] 7 3 simulation
[17] 3 7 simulation
[18], [19] 3 7 real
Ours 3 3 real

Grasping data acquisition. Learning-based grasping algo-
rithms heavily depend on acquiring high-quality training
data. However, most prior self-supervised grasping systems
are often constrained to learning in simulation [17], [15],
[20], [24] or structured lab environments [1], [3], [21],
[22]. Gupta et al. [25] improves the data collection process
by physically moving a robot into different environments.
However, the data is still limited to simple scenarios (e.g.,
picking up toys from the floor) due to inefficient exploration
algorithms (with low initial grasping success rates) and
constrained physical robot access to diverse environments.

Learning from demonstration is a popular approach to
address sample efficiency problems. With human experts
directly annotating the training data [2], [22] or controlling
the robot via teleoperation [7], [26], the system can quickly
obtain positive examples to speed up the training process.
However, both settings (annotation or teleoperation) require
human experts to be familiar with the robot hardware and
grasping mechanisms in order to correctly annotate the grasp
poses or successfully teleoperate the robot. Training human
experts for such tasks can be expensive and difficult to scale.
On the other hand, recording videos of direct interactions
between human hands and objects does not require expert
knowledge from the subject [27], [28]. However, there is
often a big domain gap between the kinematics between the
human hand and the robot gripper, which makes it challeng-
ing to learn transferable knowledge to robot manipulation
policies. Praveena et al. [29] developed a similar handheld
grabber tool with additional force-torque sensor, and its
movement is tracked with a Optitrack motion capture system.
While this device allow the human user to easily collect
high quality demonstration data, the setup is limited to lab
environments with the motion capture system. In this paper,
by using RGB-D reconstruction, our data collection process
is designed to be accessible to inexperienced users, scalable
to any environment, applicable to any task, and transferable
to real robot manipulation.

III. APPROACH

Our goal is to achieve reliable 6DoF closed-loop grasping
in a framework that is flexible enough to handle novel objects
and dynamic scene configurations with moving objects. We
show that this goal is achievable by training visual grasp-
ing value functions (using view-based rendering for data
augmentation) on a large dataset of human demonstrations
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Fig. 2. Hardware setup. Our low-cost handheld device (left) consists of a plastic grabber tool equipped with an RGB-D camera and a servo that
controls the binary opening of the grabber fingers. This device was designed to be analogous to the real robot’s end effector setup (right), while providing
a low-user-friction interface that enables untrained people to collect grasping data in almost any environment.

(collected from a handheld gripper equipped with a wrist-
mounted camera). Sec. IV describes our hardware setup
and data collection process for gathering human grasping
demonstrations from a diverse set of tasks and environments
(i.e., in-the-wild). Sec. V describes our 6DoF closed-loop
grasping model and how it is trained with this data.

IV. GRASPING DEMONSTRATIONS IN-THE-WILD

To collect grasping data from human demonstrations, we
built a low-cost portable handheld grabber tool equipped with
a wrist-mounted RGB-D camera (illustrated in Fig. 2). We
then asked willing participants to use the tool in place of
their hands for everyday pick-and-place tasks, e.g., picking
items from shelves, bins, refrigerators, sorting dishes in a
dishwasher, or picking trash on the floor, etc. Our data
collection system is driven by 3 key motivations:

· Accessibility for diversity. Our handheld tool is a
low-user-friction interface that allows untrained people
to collect manipulation data in almost any environ-
ment (e.g., various homes, offices, warehouses, grocery
stores), many of which would otherwise be difficult for
robots to acquire physical access to. This substantially
improves the diversity of the data that we can acquire.
· Data for challenging tasks. For challenging manipula-

tion tasks like searching for dishes in a dishwasher, data
collection through robot trial and error can be expensive
– robot failures may lead to negative irreversible con-
sequences (e.g., broken dishes). In contrast, our setup
enables skilled humans to easily collect manipulation
data for these tasks with negligible failure rates.
· Minimized domain gap. Our gripper tool is designed

to be as similar as possible to a real robot’s end ef-
fector: binary actuated parallel-jaw fingers with a wrist-
mounted RGB-D camera. This similarity narrows the
domain gap between the data collected from human
demonstrations and the data that the robot encounters.

A. Hardware Setup

Our handheld data collection device (Fig. 2) consists of:
1) a Royal Medical Solutions (RMS) plastic grabber reacher
tool forearm, 2) a Dynamixel servo that twists the grabber’s
internal cable to control the opening of the fingers, 3) a 3D

printed grip that attaches to the back end of the grabber, 4)
a binary push button on the grip that connects to an Arduino
to trigger the Dynamixel servo, 5) an Intel RealSense D415
camera mounted 25cm from the gripper fingertips, streaming
640× 480 RGB-D images to 6) an Intel compute stick
running Linux OS with data capturing software, 7) a portable
12V battery to power the tool for 5 hours on a single charge,
and 8) an optional touch screen monitor. All components are
either purchased off-the-shelf or 3D printed with PLA. The
cost of the entire unit sums to around $600.

We designed the handheld gripper to be analogous to the
end effector of the real robot setup (shown in Fig. 2 Right),
which consists of a 6DoF UR5 robot arm with an binary
RG2 gripper, and an wrist-mounted Intel RealSense D415
camera. The handheld gripper uses binary control (triggered
by the push button) to mimic the RG2’s binary open/close.

B. Data Collection and Processing
We distributed data collection among 8 participants, who

were tasked with collecting grasping data while performing
various pick-and-place tasks (e.g., picking from shelves,
picking from bins, rearranging objects, picking up trash,
etc.) in different environments (e.g., apartments, kitchens,
offices, warehouses). The varying tasks and environments
naturally encourage human demonstrators to perform dif-
ferent grasping strategies, which subsequently lead to more
diverse demonstration data. Our dataset in total contains 12
hours of recorded gripper-centric RGB-D videos, labeled
with the binary signal of when the user pushed the button to
close the gripper.

To recover 6DoF grasping trajectories from the RGB-D
videos of demonstrations, we use classic frame-to-frame vi-
sual tracking [30] to estimate the camera pose and trajectory
over time. Since the camera is fixed on the gripper and the
rigid transform between the camera and gripper is calibrated
and known beforehand, this tracking process also enables
us to recover the gripper pose and trajectory over time.
Specifically, to estimate the relative pose transform between
two RGB-D frames, we detect SIFT keypoints [31] on both
frames and use random sample consensus (RANSAC) on
correspondences to compute a rigid transform. We then refine
that estimate by using iterative closest point (ICP) [32] on the
3D point clouds projected from the frames. This algorithm



Approaching Trajectories

Other Grasping Examples 

Top-down view

Side view

Approaching Trajectories

Other Grasping Examples 

Top-down 
view

Side view

Fig. 3. Diverse demonstrations. As the handheld device approaches a target object (e.g., blue cup), RGB-D video frames (first row) are used to recover the
6DoF motion trajectory and reconstruct a 3D representation of the scene (top right). Grasping trajectories for the same object (e.g., blue cup, second row)
can vary depending on the object’s pose in the scene, the environment, or the device user. Overall, our grasping dataset contains grasping demonstrations
with a diverse set of objects, tasks, and environments (examples, bottom two rows).

makes the assumption that the environment is static – hence
to reduce noisy estimates, we mask out the pixels that belong
to the gripper and grasped objects.

Additionally, we split the RGB-D videos into short clips
that correspond to each picking attempt by using a set of
heuristics on the binary gripper closing signal. The frames
that occur before a button push (to close handheld gripper
fingers) record the pre-grasp trajectory, while the frames that
occur between the button push and the following button
release record the post-grasp trajectory.

In summary, we extract the following information from
each RGB-D video segment corresponding to each picking
attempt: 1) pre-grasp gripper trajectory, 2) final gripper
grasping pose, 3) target object pixel mask, 4) post-grasp
(placing) gripper trajectory, 5) and picking order. In total, the
dataset contains 7,797 valid picking attempts and grasping
trajectories. Fig. 3 illustrates several example demonstrations
in the dataset and the grasping trajectories.

V. 6DOF CLOSED-LOOP VISION-BASED GRASPING

The task of closed-loop grasping requires an action policy
that enables the robot to move its gripper towards an object,
approach it from an angle that is likely to lead to a stable
grasp. This pre-grasp approaching process is a time-varying
sequence of actions, for which rewards are loosely defined,
and has previously been shown to be more effectively learned
through reinforcement than from direct supervision [3], [19].

We formulate this vision-based grasping problem as a
Markov decision process: given state st at time t, the robot
chooses and executes an action at according to a policy
π(st), then transitions to a new state st+1 and receives a
reward rt . The goal of reinforcement learning is to find
an optimal policy π∗ that selects actions which maximize
the total expected rewards Q(st ,at) = ∑

∞
i=t λ i−tri, i.e., λ -

discounted sum over an infinite-horizon of future returns
from time t to ∞. In this work, we use off-policy Q-learning
to learn the optimal parameterized Q-function Qθ (st ,at) (i.e.,
state-action value function), where θ might denote weights
of a neural network. Formally, our learning objective is to

iteratively minimize the temporal difference error δt between
Qθ (st ,at) and a target value yt :

δt = |Qθ (st ,at)− yt | (1)

yt = rt +λ Qθ (st+1,argmax
at+1

(Qθ (st+1,At+1))) (2)

where At is the set of all available actions at time t.
Within our formulation, we represent each state st as a im-

age observation from the wrist-mounted camera. We parame-
terize each action at as a 6DoF rigid transform that encodes
the relative rotation and translation from the current robot
end effector pose to the next target pose. Motion planning
between end effector poses is autonomously executed on the
real robot using standard proportional-derivative (PD) control
with inverse kinematics (IK) solvers. The algorithm outputs
a gripper closing signal by using depth observations from
the camera to measure proximity to objects. The algorithm
checks the local region of depth values between fingertips,
and issues a close command if the nearest 1% of depth in
this area is smaller than a dmathrmclose = depth of fingertips
- 0.015m. After the gripper attempts to close, the system lifts
the gripper up 0.1m and checks the finger width to determine
grasp success. Each grasping trajectory begins with the end
effector initially positioned 50cm away overlooking the scene
of objects, and terminates after 40 state transitions or after a
successful grasp. Rewards are provided rt = 1 for successful
grasps and rt = 0 otherwise.

A. View-based Rendering as Predictive Models

The key aspect of our formulation is that at each time step
t, we use view-based rendering to forward-simulate the set
of possible future states Ŝt+1 conditioned on the current
state st and action taken at ∈ At . In other words, view-
based rendering is used as a predictive model f (st ,at) =
ŝt+1 ∈ Ŝt+1 where ŝt+1 approximates st+1. Since states St
are represent by wrist-mounted camera views, and possible
actions At represent relative 6DoF rigid transforms of the
end effector from its current pose, forward-simulating future
states f (st ,at) = ŝt+1 amounts to rendering a new camera
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Fig. 4. Action-view based grasping overview. From left to right, the images show: 1) current camera observation, 2) 3D scene representation from TSDF
fusion 3) generated action-view pairs using view-based rendering, and 4) action-view selection network that predicts dense Q-values for each action-view
pair. The action-view rendering step allows the algorithm to forward-simulate the set of possible future states conditioned on the current state and action.
This formulation improves learning efficiency by removing the need to learn to interpret how an action should correspond to changes in the state space.

view as if the end effector had moved according to at .
The views are rendered with a smaller resolution (45× 80)
to speed up both rendering and inference time. We train
our Q-functionfrom human demonstration data and fine-
tune with real world trial and error (Sec. V-B). During
test time, at any given state st , our system evaluates state-
action pairs using trained Q-function Qθ ( f (st ,At),At), and
executes the action that maximizes the predicted Q-values
i.e., argmaxat

(Qθ ( f (st ,At),At)).
This action-view representation is inspired by prior work,

which use predictive models to improve the sample efficiency
of reinforcement learning algorithms [33], [34]. In this work
we show that view-based rendering with 3D reconstruc-
tions can serve as a strong proxy for predictive models in
ego-centric visual grasping. In contrast to abstract action
representations such as end effector Cartesian offsets or
joint angles, where the mapping between the action space
and state space needs to be explicitly learned (or in many
cases, memorized) by the network, our action representa-
tion representation improves learning efficiency by directly
representing each action (e.g., gripper movement) with its
corresponding future state.

The grasping algorithm consists of three components:
1) a 3D reconstruction pipeline that accumulates camera
observations over time to generate 3D representation of the
scene, 2) a method for rendering 3D scenes from arbitrary
viewpoints, and 3) a neural network that models the value
function Qθ . The following paragraphs describe the details
of these components:

Aggregating visual observations. As the end effector ap-
proaches a target object, the wrist-mounted camera continu-
ally gathers new RGB-D images of the scene. Due to object
occlusions and clutter, each observation is partial, hence
the system requires an algorithm that can aggregate these
partial observations into a complete 3D scene representation.
Meanwhile, the representation should continually update it-
self with new observations to handle dynamic environments.

To this end, we use the Truncated Signed Distance Func-
tion (TSDF) representation for fusing observations into a 3D
voxel grid, where each voxel stores a value that represents
its distance to the closest surface. The sign of that value
indicates whether the voxel is in free space or occluded space

[35]. Our implementation stores the color of surface as well,
to support ray casting for downstream view-based rendering.
At the beginning of each grasping attempt (episode), our
system initializes a 3D voxel grid in robot coordinates, with
voxel size set to 5mm. Given each new observation (i.e.,
360×640 RGB-D image) and camera extrinsics, the system
transforms the observed surface from camera coordinates
into TSDF voxel grid coordinates, and updates the TSDF
values for all observed voxels respectively using an exponen-
tial moving average with α = 0.8 that biases towards new
observations. The camera extrinsics are obtained by using
robot end effector poses and a calibrated transformation
between the camera and end-effector. Our UR5 robot arm
features industrial-grade sub-millimeter repeatability, which
enables accurate end effector poses to provide high quality
reconstructions. The region that is not directly observed by
the camera (missing depth, occluded, or outside camera FoV)
will remain unchanged.

In this way, the algorithm is not only able to build a more
complete 3D representation of a static scene by aggregating
past observations, but is also update the representation for
dynamic environments with new observations. Compared to
other methods of aggregating past observations such as using
recurrent neural networks or LSTMs [36], our TSDF fusion
explicitly leverages accurate industrial-grade robot motion in
order to reduce the burden of learning view point registration
or 3D reconstruction inside the network.

Generating action-views. At each time step t, our formu-
lation chooses between a set of n (n = 35 in our experi-
ments) possible action candidates ai

t(φ ,τ) ∈At each action
encodes the relative rotation φ and translation τ between
the current end effector pose and the next target pose.
The 35 candidate actions are heuristically generated using
combinatorial transforms with 5 translations x = +/-d, y=+/-
d, z=d, and 7 rotations Rx =±a, Ry =±a, Rz = a, and R= 0,
where d = 0.015 + ratio ∗ 0.035, a = 10 + ratio ∗ 20, and
ratio = max{0,min{1,MED(D)− 0.1)/0.4}} and MED(D)
is median depth value from the camera. All actions have a
small z-offset of 0.01m to encourage the gripper to move
forward. Actions that cause self-collision or move outside
the workspace are automatically removed.

By ray-casting the TSDF of the scene, we render virtual



observations ŝi
t+1 of the robots’ camera as if it had moved

accordingly to action ai
t . ŝi

t+1 contains an RGB-D and an sur-
face normal image. After that, all generated views {ŝ0

t ...ŝ
n
t }

are fed into the Q-function. The state-action pair with the
highest Q-value is selected and executed on the robot.

Evaluating action-views. Given a set of candidate views
{ŝ0

t ...ŝ
n
t }, the goal of the network is to evaluate the Q-value

with respect to each candidate and select the best correspond-
ing action ai

t to perform. We model our Q-function Qθ (st ,at)
as a feed-forward fully convolutional network that has two
input branches and one output branch. One input branch
takes as input the visual observation of the state st , the other
branch takes in the candidate views ŝi

t+1. The encoded current
and future state features are then concatenated and fed into
the action selection network to output a dense pixel-wise
map of Q-values with the same image size and resolution
as that of st . Both the state encoder and action selection
networks are modeled by ResNet-18 network architectures.
The training objective is to minimize the error δt between
the predicted and target Q-values. Section V-B provides more
details on how the target Q-value yt is assigned.

B. Learning from Human Demonstrations

Our system bootstraps its learning of the value function
Qθ from our human demonstration data. While human
demonstrations provide a diverse set of examples for learning
grasping strategies, there are still two major issues that need
to be addressed in order to make these demonstrations an
effective data source for training robot grasping algorithms:
1) like most learning from demonstration datasets, the train-
ing data distribution is naturally unbalanced: it consists of
mostly positive examples, with very few negative examples.
2) despite efforts on making the hardware setup similar,
there is still a small domain gap between the demonstration
data and real robot data. We address the first issue through
negative trajectories synthesis, and tackle the second issue
by fine-tuning on the real robot using trial and error.

Synthesizing negative trajectories via rendering. Each
successful grasping demonstration trajectory (i.e., episode)
consists of a sequence of RGB-D images captured up until
the gripper closing signal that terminates the episode. Each
RGB-D image is associated with a 6DoF camera pose
computed from RGB-D visual tracking (described in Sec.
IV). At each time step t of the sequence, we use TSDF
fusion to aggregate camera observations up until the current
frame, then use view-based rendering with the fused volume
to generate a set of action-views at ∈At around the current
camera pose (in the same fashion as our algorithm described
in Sec. V). All action-views are ranked by their distances
to the ground truth (measured by the IoU of the 3D view
frustum between the candidate and ground truth view). We
treat the first view as positive, other views ranked lower
than the top 4 are considered as negatives. To balance
training, we randomly sample negative views to maintain
a 1:5 positive to negative example ratio. The target yt value
of positive views are assigned as yt(st ,a

pos
t ) = λ (m−t), where

t is number of steps in this grasping attempt, m is the total
step length of the grasping episode, and our discount factor
λ = 0.999. The yt value for all negative actions are assigned
as yt(st ,a

neg
t ) = 0. Note that this labeling scheme is strictly

only for bootstrapping (i.e., pretraining) our Q-function from
demonstrations with supervised learning (while ensuring that
the network satisfies the Bellman equation). This is similar to
the n-step Q-learning loss for learning from demonstrations
in [37], but simplified since our rewards are sparse and only
imparted at the end of each trajectory based on final grasp
success. Additionally, rather than predicting one Q-value per
image, we predict pixel-wise Q-values where supervision is
provided to the pixel of the final grasping pose (i.e., 3D
gripper position) back-projected onto the current action-view
image. The issue with predicting a global Q-value for the
entire image was that after reducing the feature map into
a single prediction value (e.g., via max-pooling) the model
tends to predict similar values for different rendered views
and struggles to converge in training. We conjecture that it
is because local visual and geometric details (which provide
important information for grasping) are easily lost through
max-pooling operations. Predicting dense Q-values for every
pixel forces the network to focus on local geometric features,
by specifically backpropagating gradients on local visual
features that contribute most to its Q-value.

Fine-tuning with robot trial and error. To address the
domain gap between data collected from human demon-
strations and data from the real robot, we further fine-tune
our grasping models on the real robot platform through
trial and error. During fine-tuning, our formulation trains
with standard off-policy Q-learning, where target values
are predicted Q-values of the next state, and no loss is
backpropagated for actions not taken. The robot executes
grasping trajectories that follow the action-view Q-function
predictions (pretrained from human demonstrations) with ε-
greedy exploration, where ε is initially fixed at 0.1, then
annealed over time. This exploration step enables the algo-
rithm to explore other possible grasping trajectories beyond
what it has learned from demonstrations. After each grasping
attempt (i.e., episode), the new observations, action trajecto-
ries, and final binary grasping label (success or failure) are
stored into the replay buffer for fine-tuning. Both models
with and without this fine-tuning step are evaluated.

VI. EXPERIMENTS

In this section we evaluate the effectiveness of our pro-
posed algorithm as well as its ability to adapt to different test
environment settings. The experiments in Tab. II and III are
tested on novel objects. The evaluation metric is the grasping
success rate: = # successful grasps

# grasping episodes . Table III reports algorithmic
run times. On average, our algorithm takes 0.18s in total
for each action step using an Nvidia GPU GTX 2080Ti.
The reconstruction runs at 30 FPS asynchronously with the
grasping model, and does not block action execution. The
rendering pipeline (with GPU parallelization) raycasts into
the current TSDF volume to generate an action-view. The



rendering takes 0.057s in total for all views, which are passed
to the view selection network as a batch.

TABLE II
TESTING ON DIFFERENT SCENE CONFIGURATIONS (MEAN %).

Tabletop Bin Wall Random

pretrain only 76 66 78 62
+finetune 92 82 89 76

Table WallBin

Random Bin Configurations

Grasping in various static settings. We first investigate
our algorithm’s grasping performance across various static
environment settings and scene configurations:
· Tabletop. Robot grasps from a pile of objects randomly

dumped on a flat tabletop.
· Bin. Robot grasps from a pile of objects randomly

dumped into a bin. This is more challenging than the
Tabletop setting as it requires the grasping algorithm to
avoid collisions with the bin while grasping.
· Wall. Robot grasps from object hung on a flat wall 1m

in front of the robot.
· Random. Robot grasps from a pile of objects randomly

dumped into a bin that is randomly positioned in the
workspace with a random height (0-15cm to tabletop)
and random tilt angle (0-30◦ to tabletop).

For each configuration, we run a total of 10 test runs,
where each run consists of 10 (Wall) or 20 (others) grasping
episodes. Objects are replaced in the scene after each test
run. Each grasping episode begins with the robot’s initial
gripper positioned in a pose such that all target objects are
visible to the wrist mounted camera.

Since the algorithm formulation predicts only relative
6DoF position, it works out-of-the-box with any initial
starting position. Row [pretrain only] in Tab. II shows the
same model trained with only human demonstration data
without any fine-tuning on the real robot. We can see that
this model is able to perform reasonably well out-of-the-box
across different scene configurations, due to the diversity of
the demonstrations. Fine-tuning under each specific setting
further improves the performance around 18% on average
([+finetune] in Tab. II).
Grasping in dynamic settings. We also test our algorithm’s
grasping performance in dynamic settings using the same
experimental setup as Morrison et al. [18]. During each
test run, we arrange a pile of 10 objects (Fig. 5) on a
movable sheet on a tabletop. The robot attempts multiple

Fig. 5. The testing objects (left) used to reproduce the dynamic grasping
in clutter experiments of [17], [18] (right).

Fig. 6. In dynamic scene experiments, the entire pile of objects is randomly
shifted around while the gripper approaches an object.

grasps – any objects that are grasped are removed. During
each grasping attempt (i.e., episode), the pile is moved
once by hand randomly (using the movable sheet). The
movements have translations > 0.1m and rotations > 25◦

(Fig. 6). This continues until all objects in the pile are
grasped, or at least three consecutive grasps fail. We execute
10 test runs and average the grasping performance across
the runs. Tab. III column [Dynamic] reports these results
and their comparisons to alternative approaches in the same
dynamic setting. These results show that our algorithm is
able to achieve higher grasping success rates compared to
alternative approaches for both static and dynamic settings.

TABLE III
COMPARISON TO STATE-OF-THE-ART METHODS (MEAN %).

Method and Setup Static Scenes Dynamic Scenes Time

GG-CNN [18] 87 ± 7 81 ± 8 19ms
Viereck et al. [17] 89 77 0.2s
Zeng et al. [2] 90 ± 6 - -
Ours 92±5 88 ± 8 0.18s

Effect of pretaining with demonstration data. To evaluate
the benefits of pretraining on human demonstration data,
we compare the our algorithm’s performance with a model
directly trained from on-robot self-supervised trial and error
(described in Sec. V). Fig. 7 plots grasping success vs.
training iterations, where each iteration happens every five
grasping episodes. The diverse training data collected from
human demonstrations not only helps the algorithm learn
faster (higher performance in the early training stage), but
also helps the algorithm learn better (higher performance
after fine-tuning). This experiment shows that human demon-
stration data is more effective than trial and error data since
the demonstration data contains significantly more diverse
grasping examples than the trial and error data collected on
the robot. This diversity is important for pretraining grasping
policies that can generalize to different grasping scenarios.

VII. CONCLUSIONS AND FUTURE WORK

We introduce a new low-cost hardware interface for
collecting grasping demonstrations in diverse environments,
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Fig. 7. Grasping performance of our algorithm with and without pretaining
on the demonstration data in the “Tabletop” setting.

and a visual 6DoF closed-loop grasping algorithm that uses
action-view based rendering. Our experiments demonstrate
that training on the demonstration data improves both grasp-
ing performance and learning efficiency, and the capacity to
move in 6DoF and adaptive closed-loop control enabled the
algorithm to handle a variety of environments.

Our system is not without limitations. Our approach uses
simple view-based rendering as a forward predictive model.
While this approach can model possible motions and passive
observations, it does not model the contact physics, which
may be important during in-contact manipulation. It would
be interesting to extend our predictive model with a learnable
function that considers object and contact physics [34].
More broadly, view-based rendering may also be applicable
for other tasks with ego-centric visual states and action
spaces – investigating its benefits for other applications
(e.g., navigation) would be interesting future work. It would
also be interesting to investigate how to make use of the
other information captured in the demonstration (e.g., placing
trajectories) for other applications (e.g., placing [38]).
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