
Grasshopper Learning Material
Syracuse Architecture / Apr 10th 2010

by Woojae Sung / woojsung.com
GH Version 0.6.0059

Chapter01
Grasshopper Introduction

Basic Concept
Grasshopper is a graphical algorithm editor. We work on real 2D/3D geometries with Rhino. With Grasshopper, we work on the algo-
rithm behind those real geometries.

Basic Concept : Apple Making Process
In Rhino

Below is an usual work process to make an apple in Rhino work environment. First we need to draw a profile curve and a rotation axis.
Then, type in ‘Revolve’ then pick the profile and rotation curves with starting and ending angles. In this case, we supply 0 as the starting
angle and 360 as the ending angle to get a whole apple.

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘360’ AS END ANGLE

ROTATION AXIS

YOUR APPLE

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘90’ AS END ANGLE

ROTATION AXIS

BUILD A TABLE WITH 10000 POINTS ON IT

DO IT AGAIN, OR KILL YOUR BOSS AND GET A NEW JOB

BUILD APPLES

10000 POINTS

x 1250

x 1250

x 2500

x 5000

YOUR APPLE

ARRAY THEM ON THE TABLE

10000 APPLES

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘360’ AS END ANGLE

EN
TE

R

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘90’ AS END ANGLE

EN
TE

R

What if we want to have only a quarter of an apple? Basically, we need to do the same thing again, but this time, we supply 0 as the start-
ing angle and 90 as the ending angle.

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘360’ AS END ANGLE

ROTATION AXIS

YOUR APPLE

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘90’ AS END ANGLE

ROTATION AXIS

BUILD A TABLE WITH 10000 POINTS ON IT

DO IT AGAIN, OR KILL YOUR BOSS AND GET A NEW JOB

BUILD APPLES

10000 POINTS

x 1250

x 1250

x 2500

x 5000

YOUR APPLE

ARRAY THEM ON THE TABLE

10000 APPLES

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘360’ AS END ANGLE

EN
TE

R

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘90’ AS END ANGLE

EN
TE

R

Now, your boss wants to have a table on which 5,000 apples, 2,500 three quarter apples, 1,250 two quarter apples, and 1,250 one quar-
ter apples are distributed randomly. First you should make a table which has 10,000 reference points on it. Then make 4 different types
of apple, copy and move one by one to the reference points. Don’t forget to count apples so as to make your boss happy.

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘360’ AS END ANGLE

ROTATION AXIS

YOUR APPLE

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘90’ AS END ANGLE

ROTATION AXIS

BUILD A TABLE WITH 10000 POINTS ON IT

DO IT AGAIN, OR KILL YOUR BOSS AND GET A NEW JOB

BUILD APPLES

10000 POINTS

x 1250

x 1250

x 2500

x 5000

YOUR APPLE

ARRAY THEM ON THE TABLE

10000 APPLES

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘360’ AS END ANGLE

EN
TE

R

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘90’ AS END ANGLE

EN
TE

R

Chapter01 Grasshopper Introduction

Your boss is not happy with this. He wants to change the mixing ratio of apples. You have two choices; do it again, or find another job.

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘360’ AS END ANGLE

ROTATION AXIS

YOUR APPLE

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘90’ AS END ANGLE

ROTATION AXIS

BUILD A TABLE WITH 10000 POINTS ON IT

DO IT AGAIN, OR KILL YOUR BOSS AND GET A NEW JOB

BUILD APPLES

10000 POINTS

x 1250

x 1250

x 2500

x 5000

YOUR APPLE

ARRAY THEM ON THE TABLE

10000 APPLES

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘360’ AS END ANGLE

EN
TE

R

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE

EN
TE

R

‘90’ AS END ANGLE

EN
TE

R

In Grasshopper

In Grasshopper, you don’t work on the real geometries. Rather, you work on the logic behind the geometries. Once the apple making
logic has been set up, you can change parameters such as starting and ending angles. Also you can change the shape of apples by sup-
plying different profile curves as well as rotation axis. Or you can make multiple apples out of just one definition by supplying multiple
angle values and/or profile/rotation curves to the definition.

PROFILE CRV - TYPE ‘REVOLVE’
- HIT ENTER
- PICK PROFILE CRV
- HIT ENTER
- PICK ROTATION AXIS
- HIT ENTER
- TYPE ‘0’ AS START ANGLE
- HIT ENTER
- TYPE ‘360’ AS END ANGLE

ROTATION AXIS

YOUR APPLE

TYPE ‘REVOLVE’ YOUR APPLEPICK PROFILE CRV

EN
TE

R

EN
TE

R

PICK ROTATION AXIS

EN
TE

R

‘0’ AS START ANGLE
EN

TE
R

‘360’ AS END ANGLE

EN
TE

R

INPUTS

OUTPUTS

PARAMETERS

INPUTS

OUTPUTS

PARAMETERS

SUPLY MULTIPLE INPUTS
MODIFY INPUTS

10000 APPLES ARE
UNDER YOUR CONTROL

SUPLY MULTIPLE PARAMS
MODIFY PARAMS

GRASSHOPPER LEARNING MATERIAL
CH01.3

Chapter02
Interface / Basic Knowledge

Interface
Grasshopper’s workspace is pretty similar to other windows applications. However, as a history/algorithm editor, it has some unique
features like components/parameters, which eventually will be linked to each other to make a working definition.

Interface : Workspace
Main Menu

File handling, copy/paste, undo/redo, interface/display setting, realtime solution toggle, etc..

Shelves

Shelves are where all Grasshopper objects are listed by categories. Each shelve has its sub tabs which show limited numbers of items.
To access to all available components/parameters, click on black title bar at the bottom.

Canvas Tool Bar

Short cuts for some frequently used commands such as ‘zoom extend’, ‘realtime solution on/off toggle’, ‘show/hide toggle’, ‘component
on/off toggle’, and ‘bake command button’.

Chapter02 Interface / Basic Knowledge

Canvas

Canvas is the main workspace where you work with lots of component/parameter to make an actual definition. To activate a compo-
nent/parameter, click the component/parameter icon on a shelve and drop it on canvas by clicking somewhere on canvas. Once you
drop it, you can move, delete, copy or paste as you do in other windows applications. You can also pan/zoom your working canvas with
mouse button as you do in Rhino.

Status Bar

Displays information such as errors, warnings, etc..

GRASSHOPPER LEARNING MATERIAL
CH02.3

Interface : Grasshopper Objects
Grasshopper objects fall into two major categories, components and parameters, which will be covered later on this tutorial. However,
before we move on, it is important to understand how Grasshopper objects are structured.

Structure & Types of Grasshopper Objects

INPUT TAB + INPUT OPTION + BODY + OUTPUT OPTION + OUTPUT TAB

INPUT TAB + BODY + OUTPUT TAB

BODY + OUTPUT OPTION + OUTPUT TAB

INPUT TAB + INPUT OPTION + BODY

IN
PU

T
O

PT
IO

N
RI

G
H

T
CL

IC
K

TO
 C

H
A

N
G

E
O

PT
IO

N
S

IN
PU

T
TA

B
IN

PU
T

FR
O

M
 O

TH
ER

 C
O

M
PO

N
EN

TS

RI
G

H
T

CL
IC

K
TO

 C
H

A
N

G
E

O
PT

IO
N

S
BO

D
Y

RI
G

H
T

CL
IC

K
TO

 C
H

A
N

G
E

O
PT

IO
N

S
O

U
TP

U
T

O
PT

IO
N

O
U

TP
U

T
TO

 O
TH

ER
 C

O
M

PO
N

EN
TS

O
U

TP
U

T
TA

B

Grasshopper objects usually can be divided into 5 different parts; Input Tab, Input Option, Body, Output Option, Output Tab. However,
depends on object types, some of them have only 3 parts as shown in the figure above.

‘Input Tab’ is where an object get input from the output data of others. If you are not sure what kind of data should be connected to an
input tab, you can check the tool tip by hovering your mouse point on top of the ‘Input Option’ character right next to the input tab. You
can also access to an input option setting window by clicking right mouse button on the character. If you want to change data processing
setting of an object, right click on the ‘Body’. ‘Output Option’ is pretty same with ‘Input Option’, where you can change some output data
setting. ‘Output Tab’ is where output data stored so we can pass it to other Grasshopper objects.

Object Connection

To connect your output data to other Grasshopper objects, click on the white little bubble in ‘Output Tab’ and drag and drop it onto input
tab(s) of other Grasshopper objects as shown in the figure below.

click & hold mouse button

drag mouse point
release

If you want to have multiple connection, hold your shift button while you connecting tabs as shown below.

hold down shift button

Object Status

There are couple of different object colors which indicate the status of object.

default status without data

object selected

default status with data

error

preview on

preview off

object on

object off (do not process data)

Basic Knowledge
There are some background knowledge you should understand before we move on.

Basic Knowledge : Coordination Systems
Grasshopper provides couple of different coordination systems, some of which are familiar with Rhino users.

A. XYZ (WORLD)

X Y

Z

B. UVW (SURFACE)

U

V

W (SURFACE NORMAL)

(0,0,0)

t = 0.0 t = 12.5

t = 37.5

C. L (CURVE/CURVE ON SURFACE)

L = 0.0 L = 0.25

L = 0.75

L = 1.0

CURVE LENGTH = 1 (UNITIZED)

D. t (CURVE/CURVE ON SURFACE)

t = 50

CURVE LENGTH = 50 (REAL SCALE)

GRASSHOPPER LEARNING MATERIAL
CH02.5

Basic Knowledge : Data Matching
Data matching is one of key concepts of most parametric tools. Since a Grasshopper object deal with multiple data from different input
sources, we need to have a clear logic on how to match data.

For example, let’s say that we have a Grasshopper object which draws a line out of two input points like below.

We can also supply multiple points to get multiple lines at the same time as below.

What if we have different numbers of points for each input? This may cause problem in drawing lines because the number of input
points are not matching. If we set the data matching option as ‘Shortest list’ in option window, Grasshopper will draw lines based on
short input list.

Else if we set the data matching option as ‘Longest list’ in option window, Grasshopper will draw lines based on longest input list.

Or we can set the data matching option as ‘Cross reference’ in option window, in case we want to have crazy data matching.

Basic Knowledge : Data Structure (Tree / Branch / List / Item)
Grasshopper provides multi-dimensional data structure, which we call ‘Tree’. ‘Tree’ is composed of multiple ‘Branches’. Branches can
have sub branches. Only the branches at the lowest hierarchy can have ‘List’. A list is a one-dimensional array containing items with
index number.

Let’s say that we have 4 lists, and each of them has 3 items in it. Numbers in round bracket in the figure below is item index number.

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

{0}

{0:0}

{0:1}

{0:2}

{0:3}

(0)

(0)

(0)

(0)

(1)

(1)

(1)
(1)

(2)

{0:0}(2)

{0:1}(2)

{0:2}(2)

{0:3}(2)

{0:0}(1)

{0:1}(1)

{0:2}(1)
{0:3}(1)

{0:0}(0)

{0:1}(0)

{0:2}(0)

{0:3}(0)

(2)

(2)

(2)

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

Branch is represented as form of numbers separated by semicolons in braces. Numbers in braces represent hierarchy, which means
a branch can have any numbers of sub branches. The 4 lists from the diagram above can be mapped onto 4 branches as shown in the
figure below like {0;0}, {0;1}, {0;2}, {0;3}. And these branches can be merged as another branch which is represented as {0}.

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

{0}

{0:0}

{0:1}

{0:2}

{0:3}

(0)

(0)

(0)

(0)

(1)

(1)

(1)
(1)

(2)

{0:0}(2)

{0:1}(2)

{0:2}(2)

{0:3}(2)

{0:0}(1)

{0:1}(1)

{0:2}(1)
{0:3}(1)

{0:0}(0)

{0:1}(0)

{0:2}(0)

{0:3}(0)

(2)

(2)

(2)

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

{0}

{0:0}

{0:1}

{0:2}

{0:3}

(0)

(0)

(0)

(0)

(1)

(1)

(1)
(1)

(2)

{0:0}(2)

{0:1}(2)

{0:2}(2)

{0:3}(2)

{0:0}(1)

{0:1}(1)

{0:2}(1)
{0:3}(1)

{0:0}(0)

{0:1}(0)

{0:2}(0)

{0:3}(0)

(2)

(2)

(2)

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

Below is complete map of data tree structure with one main branch, 4 sub branches, 4 lists, and 12 items.

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

{0}

{0:0}

{0:1}

{0:2}

{0:3}

(0)

(0)

(0)

(0)

(1)

(1)

(1)
(1)

(2)

{0:0}(2)

{0:1}(2)

{0:2}(2)

{0:3}(2)

{0:0}(1)

{0:1}(1)

{0:2}(1)
{0:3}(1)

{0:0}(0)

{0:1}(0)

{0:2}(0)

{0:3}(0)

(2)

(2)

(2)

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

GRASSHOPPER LEARNING MATERIAL
CH02.7

Chapter03
Parameters / Components

Parameters
There are two major object types in Grasshopper; parameters and components.
Parameters usually store data, while components do some action such as creating
curves, surfaces, etc. For example, we need at least two curves to make a loft surface.
Those curves are stored as form of parameter in Grasshopper, so we can do loft action
out of the curves.

Parameters : Geometry / Primitive

Grasshopper provides three different ways of assigning data to parameters; referenc-
ing Rhino data, referencing Grasshopper data, and creating new data from scratch.

Reference Rhino data

RHINO CURVE

PARAMETER
COMPONENT

Some parameters can work like bridges between Rhino and Grasshopper data. It is
useful in getting inputs from rhino data. For example, to make a loft surface in
Grasshopper, the first thing that we should do is to get curves from Rhino. To assign a
Rhino curve to Grasshopper’s one, right click on curve parameter on Grasshopper
canvas, select ‘set one curve’ from the popup menu, then select a curve from Rhino
viewport. Now since they are connected to each other, when we move the curve in
Rhino view port, we can see the Grasshopper curve follows it.

Reference Grasshopper data

PARAMETER

GRASSHOPPER CURVE

COMPONENT

Most of parameter also can reference Grasshopper data itself. It is pretty much like an
internal bridge between data in Grasshopper.

Chapter03 Parameters / Components

Note : For more information about each
parameter / component, right click and
refer to help file.

Create new data from scratch

PARAMETER
COMPONENT

Some parameters are not able to get data from Rhino object. For example, circle parameter does not provide connection with Rhino
circle. Instead, it has a built-in option to draw a circle directly by providing radius and center point. The circle by the parameter is
completely independent from any Rhino object. To make a circle using circle parameter, right click on it, select ‘set a circle’ from the
popup, then draw a circle in Rhino view port.

Parameters : Special

Special parameters are more about controlling, manipulating and representing data, rather than pure parameters. Four major roles;
getting new input data, representing data, referencing data, and converting/modifying data.

Get user input

They are useful to get user input such as custom color, numeric number or boolean value.

Represent data

Represent data in graphical fashion. For example, Bar Graph parameter visualizes numeric input data using bar chart. Parameter
Viewer parameter shows data tree structure in the form of simple table.

Convert / Modify data

Generate different type of data from user input. For example, Image Sampler parameter produces series of numeric data out of an
input image file, by picking up RGB values of corresponding coordinates.

Reference data

Most of special parameters also can reference Grasshopper data.

GRASSHOPPER LEARNING MATERIAL
CH03.3

Components
Unlike parameters, components usually do something with input data from parameters or from other components. There are two
major actions that components do; data manipulation and geometry creation. For example, some components calculate numeric data
operations such as addition, subtraction, multiplication, or division. While some other components do some physical works like creating
points, curves or surfaces.

Components : Logic

Logic components are pretty much about data manipulation rather than physical works. They fall into four different categories; List/
Sets, Tree, Script, and Boolean. List and Sets components manipulate list data. List data exist in the form of one dimensional array with
item index numbers (refer to data tree section). Tree components control data tree itself rather than individual data item in the list (also
refer to data tree section). Script components let users to make customized functions as well as components with VB.net / C# lan-
guage. Boolean components provide stream control like gate and filters.

List data handling (List / Sets)

List / Sets components deal with list data, one dimensional array of individual items. Every item in the list data has its own item index
number starting from 0. For example, let say that we have 4 lists consisting of 3 items. We can retrieve every 2nd items from those lists
by ‘List Item’ component. We can also cull every 3rd items from those lists by ‘Cull Nth’ component.

(2)

(2)
(2)

(1)

2nd ITEM INDEX = 1

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

Tree structure handling (Tree)

Most of tree components deal with tree structure itself. In the previous example, if we want to retrieve 2nd branch, we can do that with
‘Tree Branch’ component.

2nd BRANCH = {0:1}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

(2)

(2)
(2)

(1)

(1)
(1)

(2)

(1)

(0)

(0)

(0)

(0)

{0:3}

{0:2}{0:1}

{0:0}

{0}

Components : Scalar

Scalar components calculate scalar operations such as addition, subtraction, multiplication, and division. Also some of them provide
built-in functions like Log, Sine, Max, etc. We can also find some useful constants such as Pi in this shelf. However, the most important
ones here is Interval (Domain in the later version of GH).

Interval (Domain)

Interval or domain is usually numeric data which has a starting and ending value. In Grasshopper, all objects with coordinate systems
can be seen as domain or interval. For now, Grasshopper provides up to two dimensional domain. Curves could be treated as one
dimensional objects which have t or L parameters (refer to the coordinate system section). Also, surfaces could be though of as two
dimensional domain with U and V value (also refer to the coordinate system section).

For example, a surface can be subdivided into several pieces by domains. Assume that the dimension of a surface is 10 in U direction
and 8 in V direction. Grasshopper recognizes the surface as two dimensional domain; U:0~10 / V:0~8. If we split each domain into two
sub domains like U:0~5,5~10 and V:0~4,4~8, we can subdivide the surface into 4 patches.

U DOMAIN : 0 ~ 10

V DOM
AIN : 0 ~ 8

U DOMAIN : 0 ~ 10

0 ~ 5

5 ~ 10

V DOM
AIN : 0 ~ 8

0 ~ 4

4 ~ 8

GRASSHOPPER LEARNING MATERIAL
CH03.5

Components : Vector

Vector components create and control vectors, points and planes. This might sound weird because a point does not have direction or
magnitude which vectors have in common. However, Grasshopper recognize a point as a vector, precisely as an ending point of a vector.
A plane is a vector because it defines origine and three unit vectors (x,y,z) enabling us to use a plane as a sub coordinate system.

POINT (4,2,3)

SUB COORDINATE SYSTEM
@ (4,2,3)

X Y

Z

X Y

Z

X’

Y’

Z’

Components : Curve

Curve components fall into three categories; Primitive/Spline, Analysis/Division, and Util. Primitive/Spline components create different
types of curve out of input data. Analysis/Division components get points or planes out of curves. Util components modify the property
of curves.

Primitive / Spline

Primitive/spline components create curves based on user input. For example, with ‘Curve’ component, we can define a curve out of 4
input points from Rhino.

Analysis / Division

Analysis/Division components produce points or planes as the product of curve analysis/division processes. For example, by supplying
a number and an input curve, we can get equidistant points along with the curve.

Util

Utility components do some special operations on curves. For example, we can invert the direction of a curve by ‘Flip Curve’ compo-
nent.

Components : Surface

Surface components also fall into three categories; Freeform/Primitive, Analysis, and Util. Freeform/Primitive components create
different types of surfaces out of input data such as points, curves, etc.. Analysis components get points or curves out of surfaces. Util
components modify the property of surfaces.

Freeform / Primitive

Freeform/Primitive components create surfaces based on user input. For example, with ‘Loft’ component, we can define a surface
between multiple curves from Rhino.

Analysis

Analysis components produce points or curves as the product of surface analysis processes. For example, by supplying an UV coordi-
nation of a point on a surface, we can get the normal vector of the surface on that point.

Util

Utility components do some special operations on surfaces. For example, we can invert the direction of a surface by ‘Flip’ component.

GRASSHOPPER LEARNING MATERIAL
CH03.7

Components : Intersect

Intersect components fall into three categories; Boolean, Mathematical/Physical, and Region. Boolean components do boolean opera-
tions between closed planar curves as well as Breps. Mathematical/Physical components get points or curves between geometries
where they intersect with each other. Region components do trim or split curves with any given geometries.

Boolean

Boolean components are pretty much same as the compound path commands of Adobe Illustrator such as union, intersection and
subtraction (difference). They works with only closed planar curves or closed Breps.

Mathematical / Physical

Mathematical and Physical components are basically same in that they get intersecting geometries such as curves or points. However,
Physical calculate the intersection based on purely physical characteristics, while Mathematical do it based on the mathematical defini-
tion of the geometries. For example, there are a line and a cylinder, and they meet at a point. Physically speaking, they meet at point A.
However, mathematically, they intersect at two points. This is because the line is an infinite with a specific inclination when mathemati-
cally defined.

Mathematically Defined Line
with Imaginary Line

MATHEMATICAL INTERSECTIONPHYSICAL INTERSECTION

Physically Defined Line
without Imaginary Line

Region

Region components split/trim curves with closed Breps or curves.

Components : Xform

Xform components fall into two categories; Affine/Euclidian and Morph. These components either transform or deform any given
geometries. Affine/Euclidian do basic transform/deform actions such as scaling, rotating or moving geometries. Morph literally deform
geometries.

Affine / Euclidian

Besides the difference between Affine and Euclidian transform, they are basic transforming tools available in Grasshopper. They usu-
ally need reference points or vector for their 3D operations.

Morph

Morph is one of the most powerful transformation/deformation tools in Grasshopper. For example, we can morph a pre-defined com-
ponent into a twisted box on/in between surface(s). If you are familiar with the concept of Rhino Paneling Tools, you will see most of
Morph components are pretty much about it.

GRASSHOPPER LEARNING MATERIAL
CH03.9

	cover
	Grasshopper index
	CH1
	CH2
	CH3

