
VB SCRIPTING + GALAPAGOS GH VER. 0.8.0010
GRASSHOPPER WORKEXAMPLE

woojae sung
woojae.sung@yahoo.com

http://woojsung.com

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 01

STEP02 INITIAL ARRAY

VARIABLE
ANGLE 01

TYPE A

VARIABLE
ANGLE 02

TYPE B

VARIABLE
ANGLE 03

TYPE C

VARIABLE
ANGLE 04

TYPE D

STEP01 COMPONENTS

STEP03 PACKED

D1

D2

IDEA
The idea was to create four component types, and then array / pack them together. Each component has only one variable, the angle between
two lines, which are represented by solid red lines tangent to a circle in the center. Each angle varies within a predefined range, for example,
TYPE A’s angle is in a range between 5 to 10 degrees, TYPE B’s in between 7 to 12, etc.. In the second step we array them based on a certain
order, which we can modify later. Then in the last step we want to minimize the sum of distance D1 and D2 so the array can be packed as tight
as possible. Since we have four independent variables, it seems quite tough to get the optimum angle value for each component by moving
number sliders. To solve the optimum value for each number sliders, we will use Galapagos, built-in algorithm solver in Grasshopper.

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 02

DEFINING A COMPONENT
In the first place, we are going to define a component using only Grasshopper’s built-in objects (then we will convert it to a custom VB scripting
object). The first thing is to draw a line (we call it as Start Line) in Rhino in length of 20 and connect it to Grasshopper Curve Object. Then we
get a mid point of the line to get a perpendicular line (we call it as Start Leg) in length of 2.5. Now we can get a tangential circle at the end of
the perpendicular line. Then we rotate geometries including the Start Line and the Start Leg by a certain amount of angle to get the “End line”
and “End Leg”.

GH DEFINITION
Below is the screenshot of the definition (001 component GH objects.ghx).

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 03

CUSTOM VB COMPONENT
As you can see from the screenshot below, the custom VB component has three inputs and seven outputs, which are pretty familiar with us. If
not, refer to the component process diagram in the previous page. What it does is basically same thing with the GH definition in the previous
page. We supply a curve as the initial input geometry, radius of a circle as fixed number (though it is from a number slider), and pivot angle as
a variable. Then we get series of outputs such as End Curve, End Leg, etc.. (002 component VB.ghx)

Why do we use VB component over GH Objects? If you don’t bother with the length definition like below, you don’t have to. However, you will
find it much easier to do whatever you want to do as you get to know about VB Scripting better (Such a fantastic excuse!).

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 04

CODE REVIEW
Double click on the VB object, you will get a new window to edit VB script.

• Any line that starts with ‘ means that the line is just a note / comment. This does not do anything.
• The second line defines variable “s_pt” as a new point, and assign a mid point of the input curve (“start_

crv”) to it. Then assign “s_pt” to “start_leg_pt”, the output of the VB object.

• Define two points variables one at the start and the other at the end of the input curve (“start_crv”).
• Then defines a vector, “original_vector”, using two points (We don’t care about the actual length of the

vector).
• We need to rotate the vector(blue arrow) 90 degrees clock wise to get a perpendicular vector (green ar-

row) in order to draw a perpendicular line, “Start Leg”.
• To use ‘rotate method’, we first need to define rotation axis and angle. The angle should be 90 degrees

(PI/2 in radians). And Z-direction vector will serve as a rotation axis.
• Apply ‘rotate method’ to the existing vector. Methods can be applied followed by dot connector. Rotate

method consist of two input variables such as rotation angle and axis. For more information, visit http://
www.rhino3d.com/5/rhinocommon/

• Then we define a line, “line_start”, by three variables; start point of line segment, direction of line seg-
ment and length of line segment.

• Assign the line to “start_leg”, the output of the VB object.

 'defines start_leg_pt //

 Dim s_pt As New point3d(start_crv.PointAt(0.5))

 start_leg_pt = s_pt

 'defines start_leg ///

 Dim start_crv_start As New Point3d(start_crv.PointAt(0.0))
 Dim start_crv_end As New Point3d(start_crv.pointat(1.0))

 Dim original_vector As New Vector3d(start_crv_start - start_crv_end)

 Dim rotation_ang_start_leg As Double = math.PI / 2
 Dim rotation_axis_start_leg As New Vector3d(0, 0, 1)

 original_vector.Rotate(rotation_ang_start_leg, rotation_axis_start_leg)

 Dim line_start As New line(start_leg_pt, original_vector, pivot_cell_radius)

 start_leg = line_start

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 05

• Define “p_pt” as a new point object, then assign the end point of “start leg (line_start)” to it.
• Then we assign “p_pt” to ““pivot_pt”, the output of the VB object.
• Define “pivot_circle” as a new circle object, then assign a circle with given center(“pivot_pt”) and

radius(“pivot_cell_radius”, the input of the VB object).
• Assign it to “pivot_cell”, the output of the VB object.

• In this step, we will rotate “start line”, “start leg” and “start leg point” in a given angle, then assign them
to the corresponding output variable: “end line”, “end leg”, and “end leg point”.

• Define a rotation matrix. This will be handy since we will need to repeat the exact same transformation
couple of times. A rotation matrix consists of angle, axis, and center point of rotation. Supply correspond-
ing value from previously defined variable.

• Define “rotated_leg” as a line and assign “line_start” to it. Then, rotate it by the rotation matrix.
• Do the same thing for leg point and end line.
• Unlike others, “end line / start line” is direction-sensitive. When we rotate “start line”, its direction will be

reversed, so we need to flip the line.
• Get the start and end point of the rotated line, “st_line”, and make another line, “end_line”, out of the

points. Note how we supply start and end points to reverse the line.

 'defines pivot_pt //

 Dim p_pt As New point3d(line_start.PointAt(1.0))

 pivot_pt = p_pt

 'defines pivot_cell //

 Dim pivot_circle As New Circle(line_start.PointAt(1.0), pivot_cell_radius)

 pivot_cell = pivot_circle

 'defines end_leg ///

 Dim rot As transform = transform.Rotation(pivot_ang * math.PI / 180, vector3d.ZAxis, line_start.PointAt(1.0))

 Dim rotated_leg As line = line_start

 rotated_leg.Transform(rot)

 end_leg = rotated_leg

 'defines end_leg_pt //

 s_pt.Transform(rot)

 end_leg_pt = s_pt

 'defines end_crv ///

 Dim st_line As line = start_crv

 st_line.Transform(rot)

 Dim end_line_st_pt As New Point3d(st_line.PointAt(1.0))

 Dim end_line_end_pt As New Point3d(st_line.PointAt(0.0))

 Dim end_line As New line(end_line_st_pt, end_line_end_pt)

 end_crv = end_line

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

01 A CENTER POINT 02 A PERPENDICULAR LINE 03 A CIRCLE 04 ROTATE BY ANGLE 05 ROTATE BY ANGLE

ANGLE

RA
DI

U
S

=
2.

5

LE
N

GT
H

=
2.

5

L = 0.5

INPUT GEOMETRY
Start Line

Start Leg Pt

Start Leg

Center Pt

End Leg

End Leg Pt

End Line

Pivot Point

Circle /
Pivot Cell

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 06

USING A SUBROUTINE (FUNCTION) IN VB COMPONENT
Now that we have a working custom object, we can copy and paste it multiple times to array all the components. However, copy and paste will
cause the same problem that we had before. (003 subroutine component VB.ghx)

We can be smart to use a subroutine in VB scripting. The idea is to define a subroutine, which is kind of a custom function within VB script, and
call it whenever we need it, just as we use “line” function.

Let’s say that we want to make a subroutine called “FunctionA” which do something with two inputs and one output. Then one thing we should
do is to define how it works, and the other is to call it and ask it to do whatever it supposes to do. The second part should be somewhere in VB
scripting area, and the first part should be in “custom additional code” space (not sure how scripters call these). Also note that when we define
a subroutine, “ByVal” means that it is an input variable, and “ByRef” means it is an output variable.

 line(start point, direction vector, distance)

 FunctionA (ByVal input1, ByVal input2, ByRef output1)

 ‘<Custom additional code>
 Sub FunctionA (ByVal input1, ByVal input2, ByRef output1)

 End Sub
 ‘</Custom additional code>

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 07

Let’s open up the script editor and copy from “Private Sub ~” to “End Sub” as is shown below.

Then paste it in between ‘<Custom additional code> and ‘</Custom additional code>

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 08

Then change the first part of the script as shown below. In this case, we call the subroutine as “component”.

And we need to change inputs / outputs as shown below.
We have same inputs such as input curve, circle radius, and pivot angles. In the mean time, we also need an additional string input that defines
component type (A/B/C/D).

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 09

 ‘defines output parameters //

 Dim pivot_cell_list As New List(Of circle)
 Dim pivot_pt_list As New List(Of point3d)
 Dim start_leg_list As New List(Of Line)
 Dim start_leg_pt_list As New List(Of point3d)
 Dim end_leg_list As New List(Of Line)
 Dim end_leg_pt_list As New List(Of point3d)
 Dim end_crv_list As New List(Of Line)

 ‘defines output parameters of “component” subroutine ///

 Dim pivot_cell As circle
 Dim pivot_pt As point3d
 Dim start_leg As line
 Dim start_leg_pt As point3d
 Dim end_leg As line
 Dim end_leg_pt As point3d
 Dim end_crv As line

 ‘defines rotation_ang ///

 Dim rotation_ang As Double

• The first part defines main outputs. Since we want to visualize all the components, we should define the variables in the form of list.

• Those variables are the output of “component” subroutine. If we do not define these before we call “component” subroutine, Grass-
hopper will spit out error messages. Unlike outputs, we don’t have to worry about inputs of the subroutine, because they are already
defined within the subroutine.

• This defines “rotation_angle”. Why? Because this angle may vary depend on the type of component (A/B/C/D). So we first define the
angle as an empty variable, then we assign specific value later based on component types.

CODE REVIEW
Double click on the VB component, you will get a new window to edit VB script.

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 10

 ‘checks component types and computes output based on the types ///

 For i As Integer = 0 To celltype.Count - 1

 If i = 0 Then

 If celltype(i) = “A” Then

 rotation_ang = A_ang

 Else If celltype(i) = “B” Then

 rotation_ang = B_ang

 Else If celltype(i) = “C” Then

 rotation_ang = C_ang

 Else If celltype(i) = “D” Then

 rotation_ang = D_ang

 End If

 component(int_line, r, rotation_ang, pivot_cell, pivot_pt, start_leg, start_leg_pt, end_leg, end_leg_pt, end_crv)

 Else

 If celltype(i) = “A” Then

 rotation_ang = A_ang

 Else If celltype(i) = “B” Then

 rotation_ang = B_ang

 Else If celltype(i) = “C” Then

 rotation_ang = C_ang

 Else If celltype(i) = “D” Then

 rotation_ang = D_ang

 End If

 int_line = end_crv

 component(int_line, r, rotation_ang, pivot_cell, pivot_pt, start_leg, start_leg_pt, end_leg, end_leg_pt, end_crv)

 End If

• Now we multiply component based on component types supplied in the form of a list of strings (A/B/C/D).
• Do iteration for a certain amount of times depends on the length of characters list. That is what “For i As ~ “ do.
• If this is the first path of the iteration(if i = 0 then), we use “int_line” (one that we made in Rhino and supplied as an input geometry of

VB object) as our input geometry for the subroutine. Else, we use “end_crv” from the previous iteration as the input curve.
• Assign type specific rotation angle to variable “rotation_ang”. A_ang / B_ang / C_ang / D_ang are input parameters that we can adjust

in number sliders.
• Then finally we call the subroutine, “component”. Note that we supply “int_line”(input geometry), “r”(radius of a circle) and “rota-

tion_ang” and we get “pivot_cell”, “start_leg”, “start_leg_pt”, “end_leg”, “end_leg_pt”, and “end_crv”.
• As is mentioned, “end_crv” will be an input geometry for the next iteration.

• Note that “end_crv” in the current iteration is assigned as “int_line” for the next iteration.

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 11

 pivot_cell_list.Add(pivot_cell)
 pivot_pt_list.Add(pivot_pt)
 start_leg_list.Add(start_leg)
 start_leg_pt_list.Add(start_leg_pt)
 end_leg_list.Add(end_leg)
 end_leg_pt_list.Add(end_leg_pt)
 end_crv_list.Add(end_crv)

 Next

 ‘output ///

 A = pivot_cell_list
 B = pivot_pt_list
 C = start_leg_list
 D = start_leg_pt_list
 E = end_leg_list
 F = end_leg_pt_list
 G = end_crv_list

• Add every single output for the current iteration to the lists, before the next iteration.

• Put list variables to the corresponding output parameters so we can see the result in Rhino viewport.

COMPONENT PACKING VB + GALAPAGOS - http://woojsung.com 12

• We get the first and last lines.
• Then we get start and end points of

them
• Calculate distances, D1, D2.
• Add two values.
• Inverse the value, since Galapagos tries

to find the maximum value.
• Connect angle sliders to Galapagos’ Ge-

nome tab, and connect the inversed dis-
tance value to Fitness tab.

• Double click on Galapagos object and go
to the solver tab and hit start solver but-
ton on top.

• Wait until it finished the calculation.

STEP03 PACKED

D1

D2

OPTIMUM SOLUTION BY GALAPAGOS
To pack the components as tight as possible, firstly, we need to
define two distance variables. As the sum of two gets smaller,
the components will be packed tighter.
(004 galapagos.ghx)

