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We analyze the structure of scattering amplitudes of the Kaluza-Klein (KK) gravitons and of the
KK gravitational Goldstone bosons in the compactified 5d General Relativity (GR). Using a general
R, gauge-fixing, we study the geometric Higgs mechanism for the massive spin-2 KK gravitons. We
newly propose and prove a Gravitational Equivalence Theorem (GRET) to connect the scattering
amplitudes of longitudinal KK gravitons to that of the KK gravitational Goldstone bosons, which
formulates the geometric gravitational Higgs mechanism at the scattering S-matriz level. We demon-
strate that the GRET provides a general energy-cancellation mechanism guaranteeing the N-point
longitudinal KK graviton scattering amplitudes to have their leading energy dependence cancelled
down by a large power factor of E2Y (N >4) up to any loop level. We propose an improved double-
copy approach to construct the massive KK graviton (Goldstone) amplitudes from the KK gauge
boson (Goldstone) amplitudes. With these we establish a new correspondence between the two types
of energy cancellations in the four-point longitudinal KK amplitudes at tree level: E*— E° in the

KK gauge theory and E'°— E? in the KK GR theory.

I. Introduction

Kaluza-Klein (KK) compactification [1] of the extra
spatial dimensions leads to infinite towers of massive
KK excitation states in the low energy 4d effective field
theory. This serves as an essential ingredient of all ex-
tra dimensional models [2] and the string/M theories [3].
The KK compactification realizes the geometric “Higgs”
mechanisms for mass generations of KK gravitons [4] and
of KK gauge bosouns [5] without invoking any extra Higgs
boson of the conventional Higgs mechanism [6].

In this work, we formulate the geometric gravitation-
al “Higgs” mechanism for the compactified 5d Gener-
al Relativity (GR5) by quantizing the KK GR5 un-
der a general R, gauge-fixing at both the Lagrangian
level and the S-matrix level. We prove that the KK
graviton propagator is free from the longstanding prob-
lem of van Dam-Veltman and Zakharov (vDVZ) discon-
tinuity [7] in the conventional Fierz-Pauli massive grav-
ity [8][9] and the KK GR5 theory can consistently real-
ize the mass-generation for spin-2 KK gravitons. Then,
we propose and prove a new Gravitational Equivalence
Theorem (GRET) which quantitatively connects each s-
cattering amplitude of the (helicity-zero) longitudinally-
polarized KK gravitons to that of the corresponding KK
Goldstone bosons. The GRET takes a highly nontriv-
ial form and differs substantially from the KK Gauge
Equivalence Theorem (GAET) of the 5d KK gauge the-
ories [5][10][11], because each massive KK graviton hp”
has 5 helicity states (A = 0,41,+2) where the A =

* yfhang@sjtu.edu.cn
T hjhe@sjtu.edu.cn

0,+1 components arise from absorbing a scalar Gold-
stone boson h)® (A=0) and a vector Goldstone boson
hi® (A\==1) in the 5d graviton field. We demonstrate
that the GRET provides a general energy-cancellation
mechanism guaranteeing that the leading energy depen-
dence of N-particle longitudinal KK graviton amplitudes
(o E2(NH1+L)) must cancel down to a much lower ener-
gy power (oc E20+DL)) by an energy factor of E?N, as
enforced by matching the energy dependence of the cor-
responding leading gravitational KK Goldstone ampli-
tudes, where L denotes the loop number of the relevant
Feynman diagram. For the four-point longitudinal KK
graviton scattering amplitudes at tree level, this proves
the energy cancellations E'°— E2 . which explains the
result of the recent explicit calculations of 4-longitudinal
KK graviton amplitudes [12][13][14].

The double-copy approach has profound importance
for understanding the quantum gravity because it uncov-
ers the deep gauge-gravity connection at the scattering
S-matrix level, GR = (Gauge Theory)? [15]. The conven-
tional double-copy method with color-kinematics (CK)
duality of Bern-Carrasco-Johansson (BCJ)[16][17] was
proposed to connect scattering amplitudes between the
massless Yang-Mills (YM) gauge theories and the mass-
less GR theories. It was inspired by the Kawai-Lewellen-
Tye (KLT) relation [18] which connects the product of
two scattering amplitudes of open strings to that of the
closed string at tree level [19].

Extending the conventional double-copy approach, we
construct the massive KK graviton (Goldstone) ampli-
tudes from the massive KK YM gauge (Goldstone) am-
plitudes under high energy expansion at the leading order
(LO) and at the next-to-leading order (NLO). This pro-
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vides an extremely efficient way to derive the complicat-
ed massive KK graviton amplitudes from the massive KK
gauge boson amplitudes, and gives a deep understanding
on the structure of the KK graviton amplitudes.

Because the LO amplitudes of the longitudinal KK
gauge bosons and of their KK Goldstone bosons have
O(E°MY?) and are equal (leading to the KK GAET) [5],
our double-copy approach demonstrates that the recon-
structed LO amplitudes of the longitudinal KK graviton-
s and of the KK Goldstone bosons have O(E*M}Y), and
must be equal to each other (leading to the KK GRET),
where M,, denotes the relevant KK mass. Our double-
copy construction further proves that the residual term
of the GRET belongs to the NLO, which has O(E°M32)
and is suppressed relative to the LO KK Goldstone boson
amplitude of O(E?MY).

II. R, Gauge-Fixing and Geometric Higgs Mechanism

We consider the compactified GR5 under the orbifold
S1/Z, where the fifth dimension is a line segment 0< z°
< L (= mr,), with r, being the compactification radius.
Extension to the case of warped 5d space[20] does not
cause conceptual change regarding our current study.
Thus, the 5d Einstein-Hilbert (EH) action takes the fol-

lowing form:
~ 2 .
Seu = [Calon = [ToVTGR ()

where the coupling constant & =V/327G .

Then, we expand the 5d EH action (1) under the met-
ric perturbation G,z =MNsp5+ I%EAB , where 1), 5 = diag
(=1,1,1,1,1) is the 5d Minkowski metric. Thus, we can
express the 5d graviton field 7, 5 as follows:
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Under the compactification of S'/Z, , the spin-2 field 7,,,,

and scalar field ¢ (= h%%) are Z, even, while the vector

field Au (= hys) is Zy odd. After compactification, we de-
rive the 4d effective Lagrangian for both the zero-modes
and KK-modes (hh", AL, ¢,,) [21].

We further construct a general R,-type gauge-fixing

term:
oo

1
Lop = — Z ?[(F#)Q +(F)?], (3)
n=0 >"
where (F}, F2) take the following form [22],
it = O,hl (1= 5 )Ry + E M AS, (da)

The above R, gauge-fixing can ensure the kinetic terms
and propagators of the KK fields (ht,", A%, ¢,,) to be di-
agonal. In the limit of &, — oo, we recover the uni-
tary gauge where the KK Goldstone bosons (A}, ¢,,) are

fully absorbed (eaten) by the corresponding KK gravi-
tons hi” at each KK level-n. This realizes a Geometric
Gravitational “Higgs” Mechanism for KK graviton mass-
generations.

Then, we derive the propagators of KK gravitons and
KK Goldstone bosons under the R, gauge-fixing (3) [21].
For Feynman-'t Hooft gauge (£, = 1), the propagators
take the following simple forms:
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which all share the same mass-pole p?=—M2.

Strikingly, we observe that our massive KK graviton
propagator (5a) has a smooth limit for M, — 0, under
which Eq.(5a) reduces to the massless graviton propa-
gator of Einstein gravity. Hence, we uncover that the
KK graviton propagator is free from the vDVZ discon-
tinuity [7] which is a longstanding problem plaguing the
conventional Fierz-Pauli massive gravity and alike [8][9].
This is because the GHM under KK compactification
guarantees that the physical degrees of freedom of each
KK graviton are conserved before and after taking the
massless limit M,,— 0, i.e., 5 = 24 2 + 1. This demon-
strates that the compactified KK GR can consistently
realize the mass-generation for spin-2 KK gravitons.

III. GRET Formulation for the GHM

In the previous section, we analyzed the geometric Hig-
gs mechanism at the Lagrangian level. In this section,
we further formulate the GRET, which realizes the ge-
ometric gravitational Higgs mechanism at the S-matrix
level. Using the gauge-fixing terms (3)-(4) and following
the method of Ref. [23], we derive a Slavnov-Taylor-type
identity in the momentum space:

(O1F% (k1 ) FJ2 () - Fry (1) Fpy (p2) -+~ @0) = 0, (6)

where ® denotes any other on-shell physical fields af-
ter the Lehmann-Symanzik-Zimmermann (LSZ)) ampu-
tation and each external momentum obeys the on-shell
condition k:?-:—M,%j or p?:—anj. The identity (6) is
a direct consequence of the diffeomorphism (gauge) in-
variance of the theory [22][23].

Under the Feynman-'t Hooft gauge (£,,=1) and at the
tree level, we can directly amputate each external state
by multiplying the propagator-inverse (k?+M2)—0 for
Eq.(6). Thus, we derive [22] the following GRET identi-
ty which connects the longitudinal KK graviton ampli-
tude to the corresponding KK Goldstone amplitude plus
a residual term:

M[hﬁlu ) hﬁNa (I)] = M[¢71,17 BT ¢71,N ’ (P} + MA7 (73’)
MA = Z M[{ana¢n}vq)]v (7b)

1<k<N



where A, = @, —h,,, ¥, = D, hin”, and h,=1/2/3 N hin” -
The tensor o"7=ce/"—/2/3 ek’= O(E"), and ()", ek)
are the (longitudinal, scalar) polarizations of the KK
graviton hf”. We can extend the GRET (7) up to loop
levels and valid for all R, gauges by using the gravitation-
al BRST identities [24], similar to the ET formulation in
the 5d KK YM theories [11] and in the 4d SM [23, 25, 26].

Inspecting the scattering amplitudes in the GRET i-
dentity (7a), we can make direct power counting on the
leading E-dependence of individual Feynman diagrams
for each amplitude. For the 4-particle scattering, the lon-
gitudinal KK graviton amplitude on the left-hand-side
of Eq.(7a) contains individual contributions via quar-
tic interactions or via exchanging KK-mode (zero-mode)
gravitons. Since each external longitudinal KK graviton
has polarization tensor /"> k*k*/M?2, the leading indi-
vidual contributions behave as O(E1Y). But we observe
that on the right-hand-side (RHS) of Eq.(7a), the exter-
nal states in all amplitudes have no superficial enhance-
ment or suppression factor. Thus, by power counting on
the KK amplitudes, we find that the RHS of Eq.(7a)
(including M, ) scales as O(E?). Hence, the GRET i-
dentity (7) provides a general mechanism for the large
energy cancellations of E'9— E? in the 4-longitudinal
KK graviton amplitudes.

We have further developed a generalized energy-power
counting method [21] for the massive KK gauge and grav-
ity theories, by extending the conventional 4d power
counting rule of Weinberg for the nonlinear sigma model
of low energy QCD [27]. With this and the GRET (7),
we can prove a general energy cancellation E2(N+1+L)
E20+L) in the N-point longitudinal KK graviton ampli-
tudes, which cancels the leading energy-dependence by
E?Npowers [21]. For N-longitudinal KK gauge boson am-
plitudes, we also prove [22] a general energy cancellation
of E*—E*N=% which cancels the leading E-powers by
ENTO with § = [1—(—1)V]/2. We will establish a new
correspondence between the two types of energy cancel-
lations in the N-point KK gauge boson and KK graviton
amplitudes in Sec.V.

IV. KK Graviton Scattering Amplitudes from GRET

In the following, we demonstrate explicitly how the
GRET holds. For this, we compute the gravitational
KK Goldstone boson scattering amplitude M[e,, ¢,,,—
Gy Pn,] (1;21). The relevant Feynman diagrams having
leading energy contributions are shown in Fig. 1.

For the elastic scattering, we set the KK numbers of
all external states as n,=n and of internal states as
N;=0, 2n. Then, summing up the contributions of Fig. 1
and making high energy expansion, we derive the fol-
lowing LO scattering amplitude of the gravitational KK
Goldstone bosons:

—~ 3% (7T+ cos26)?
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FIG. 1. Feynman diagrams for the scattering of gravitational
KK Goldstone bosons, ¢, ¢n,—> ¢n,én,, by exchanging the
KK gravitons of level-N; (j = s,t,u) at the tree level, which
contribute the leading energy-dependence of O(E?).

where My = M[¢,, ¢, — ¢, 0] To compare our Eq.(8)
with the corresponding longitudinal KK graviton ampli-
tude of Refs. [12][13], we rescale our coupling x— r/\/2
to match their normalization and find that the two am-
plitudes are equal at the LO:

MolhEhE —RERY] = Molondn— dndnl.  (9)

Namely, M, =M,, where we denote M, =Mylh}h}—
hTh7]. From the GRET identity (7a) [and Eq.(18)], this
means that the residual term (7b) belongs to the NLO,
Mpa=M—M=0M-56M=0(EM?).  (10)
and thus is much smaller. We have further computed the

exact tree-level Goldstone boson amplitude M by includ-
ing all the subleading diagrams [21].

For inelastic scattering of gravitational KK Goldstone
bosons, we compute the 4-point amplitudes and find that
the LO inelastic amplitude is connected to the LO elastic
amplitude (8) by

M, Gny= by bn,) = (Mbpdn—=dndnl, (1)

where (=2/3 for ny=ny#n;=n,, and (=1/3 for the
cases with KK numbers (n4,ny, ns,n,4) having no more
than one equality.

V. Double-Copy Construction of KK Amplitudes

The double-copy construction for the massive KK
gauge/gravity scattering amplitudes are highly nontriv-
ial. We make the first serious attempt for an explicit
double-copy construction of KK amplitudes under high
energy expansion. We present the 4-point elastic scatter-
ing amplitudes of longitudinal KK gauge bosons (Gold-
stones) at the LO and NLO:

2 2 0
PN PG s

T=>) ~
j J

Ty Ly SOl

J J J J

i J

=To+ 0T, (12b)

where we have denoted T=T[A4" AL~ A5 A4"] and T =
T[Agm Al — A Adn]. We also define the SU(N) color



TABLE I. Kinematic numerators of the LO and NLO scattering amplitudes for KK longitudinal gauge bosons and KK Gold-
stones as defined in Eq.(12), where (N}, ;) = (N2, N)+ (0N, 6N;) = O(E*M2) + O(E°M?), and (s, co) = (sinf, cosf).

Numerators || N, M N, N, N, N, N,=N, | N, =N, | N,,- N,
5¢, 13+5¢o+4c 13—5¢p+4c. 3cyg | 3(3—cy) 3(34cy)
0 0 p+4cop _ p+4co0 _ 3c 0) | _ 0
N /s; 2 2(1+cp) 2(1—cy) 2 | 2(1tcy) | 2(1—cp) Aeo Aco deo
2(2—3cg—2co9—c39) 2(243cg—2c99+c39) 8¢ 8¢
2 9—2C26—C30) | _ 9 —2Cop+C30 _ _8co _ 8¢ 2 )
ON; /M7 4cy Theg e 4cy Ttec, T—cg 0 8s; 8sg

factors as (Cy, Cy, C,) = (C’“beC’Cde7 Cadebee C“CGCdbe),
which obey the Jacobi identity C,+ C,+ C,=0.

We present in TableI the numerator factors (N}, ./\7J) of
Eqgs.(12a)-(12b). TableI shows that (7;, 75)= O(E°MY)
and (67, 67T) = O(M2/E?). We find that the sum of
each set of the LO, NLO, and NNLO numerators of the
KK gauge (Goldstone) scattering amplitudes in Eq.(12)
violate the kinematic Jacobi identity by terms of O(M2)
and O(M}/E?), respectively:

ZNO = 10cy M2, ZNO = —6cyM?, (13a)
Z(Slj\/ 251 2(7+ cog)co csc?0 M2, (13b)
Z(szf\/j = 8(31—!—049)09 esclO M2 /s (13c)
J

D 0o N =32(7T+cpg) coesc0 M,y /s, (13d)

j -
where ¢, 4 = cos(nf), ON; = 6,N;+ 6,N;, and 0N, =
6N + 0,N;. Hence, we cannot naively apply color-
kinematics duality for BCJ-type double-copy construc-
tion without making further modifications on these nu-
merators.

Inspecting the scattering amplitudes in Eq.(12), we
first observe that they are invariant under the following
generalized gauge transformations of their numerators:

We can determine the gauge-parameters (A, 5) by
requiring the gauge-transformed numerators to obey the
Jacobi identities 37 N/ =0 and }7; N/ = 0. Thus, we
derive the following general solutions:

1 ~ 1 ~
A=—pEp2 N A=—gEd N (19)
J J

which realize the BCJ-respecting numerators (N7, ./\7; )
Making high energy expansions on both sides of Eq.
(15), we derive the expressmns of the gauge-parameters

(A, A) = (Ag+ Ay, AOJrA ) at the LO and NLO:
Ag=5(94Tcp)co csc?h
Ay = (17— c99) g csc?d),
Ay = —2(314cqg)coescO M2 /s,

—8(7+ cog)cocscd M2 /s .

With these, we further compute the new numerators
(N}, NJ), and derive explicitly the LO results in Eq.(19)
and the NLO results in [21].

For the 5d KK YM (YMS5) and 5d KK GR (GR5) the-
ories, we expect the double-copy correspondence between
the KK gauge fields and KK graviton fields:

A QAL — W
AP QAR — by, (17)
A QAT — i

The physical spin-2 KK graviton field h” arises from
two copies of spin-1 KK gauge fields. The KK Gold-
stone A% of the YM5 has its double-copy counterparts
h3 (= ¢,,) and hi® (=A%) which correspond to the s-
calar and vector KK Goldstone bosons in the compacti-
fied GR5. The double-copy correspondence between the
longitudinal KK modes, A{"® A" —h?, is highly non-
trivial even at the LO of high energy expansion, because
(A9™, k) do not exist in M,,— 0 limit and the KK Gold-
stone bosons (Ag", ¢,,) become physical states in mass-
less limit. Thus, this double-copy is consistently realized
because we can use the KK GRET (GAET) to connect
h} (A%™) amplitudes to the ¢, (Ag™) amplitudes under
M, /E— 0 limit.

Then, we extend the conventional double-copy method

[16][17] to the massive KK YM theory under high energy
expansion. We apply the color-kinematics duality C;—

./\/;’ and C; — /\7;’ to Eq.(12), and construct the four-
particle KK graviton (Goldstone) amplitudes:

(NP4 0N
M = Zcog P MeroM. (8w

SN
_ZCOQ N N = My+6M,  (18b)

S
where M= MIRERG k), M= 16,6, 6,6,), and
¢y denotes a conversion constant.

From TableI and using Eqs.(14)(16), we find that the

LO numerators (/\/;0’, J\~/;-0’) are mass-independent and e-
qual to each other:

~ T+cog)cy
N = o S(THean)co. 19
° * 2sin?6 (192)
N = N = — 5 (42—15¢y+6c99 —c39) 7 (19b)

16(1—cp)



$(42+15¢9+6¢9g+C39)
].6 (1+Cg)

This demonstrates the equivalence between the two
leading-order KK amplitudes at O(E°MY2), T, = Ty,
which explicitly realizes the KK GAET. With these and
using our LO double-copy formulas in Eq.(18), we can
reconstruct the KK GRET:

M,[DC] = M,[DC], (20)

which is of O(E2M))). We stress that as expected, these
LO amplitudes are mass-independent and thus the LO
double-copy can universally hold. We further find that
after setting the overall conversion constant of Eq.(18)
as cq = —K2/(24g%), the reconstructed LO KK ampli-
tude M, (M,) just equals the LO KK Goldstone am-
plitude (8) and the corresponding LO longitudinal KK
graviton amplitude [21]. Hence, our double-copy predic-
tion (20) can prove (reconstruct) the GRET M,= M,
from the GAET 7, = ’7~6. We derived this GRET in E-
q.(9) by direct Feynman-diagram calculations. Note that
the KK GAET relation 7, = 7~6 can hold for gener-
al N-point longitudinal KK gauge (Goldstone) ampli-
tudes [5][11]. Hence, making double-copy on both sides
of To=T, can establish the GRET (20) to hold for N-
point longitudinal KK graviton (Goldstone) amplitudes.
From this, we can further establish a new correspondence
between the two types of energy cancellations in the V-
longitudinal KK gauge boson amplitudes and in the cor-
responding N-longitudinal KK graviton amplitudes (cf.
the discussion around the end of Sec. III).

NO/ NO/

(19¢)

Next, we use the double-copy formulas (18a)-(18b) to
reconstruct the 4-point longitudinal KK graviton ampli-
tude and the corresponding KK Goldstone boson ampli-
tude at the NLO:

OM(DC) _ 5(1642+297cyp+102¢49 +7¢49) (21a)
K2M? 768 sin*0 ’

SM(DC) _ 638643837c)+30c4y — 13¢g (21b)
K2 M2 768 sin*6 '

They have the same size of O(k2M?2) and the same an-
gular structure of (1, cag, Chg, Cg9) X csc*@ as the origi-

nal NLO amplitudes (6 M, M) derived from Feynman
diagram calculations [21], though their numerical coeffi-
cients still differ. Then, using Eq.(21) we compute the
difference between the two double-copied NLO ampli-
tudes AM(DC)= M —6M and compare it with the
NLO amplitude-difference AM(GR5) by Feynman dia-
gram calculations in the KK GR5 theory:

AM(GR5) = —3 kM7 (19.5 4 cag) (22a)
AM(DC) = k202 (T+ e5). (221)

We find that they also have the same size of O(k?M?2)
and the same angular structure of (1, cay). Eq.(22a)

shows that the difference AM(GR5) between the orig-
inal NLO amplitudes exhibits a striking precise cancella-
tions of the angular structure (1, cag, Ca9, Cgo) X csc*0 to

(1, c99). Impressively, our double-copied NLO amplitude-
difference AM(DC) in Eq.(22b) can also realize the same
type of the precise angular cancellations.

The above extended NLO double-copy results (21) and
(22b) are truly encouraging, because they already give
the correct structure of the NLO KK amplitudes includ-
ing the precise cancellations of the angular dependence
in Egs.(21)-(22). These strongly suggest that our massive
KK double-copy approach is on the right track. Its im-
portance is twofold: (i). In practice, for our proposed KK
double-copy method under high energy expansion, the LO
double-copy construction is the most important part be-

cause it newly establishes GRET relation My=M, [Eq

(20)] from the GAET 7, = ’7~B [Eq.(19) and below], as
will be shown in Eq.(29). The NLO KK graviton am-
plitudes are relevant only when we estimate the size of
the residual term M, of our GRET (7) and here we
do not need the precise form of M, ezcept to justify its
size My = O(E°M?) by double-copy construction [cf.
Eq.(28)]. This proves that the residual term M, does
belong to the NLO amplitudes and is neligible for our
GRET formulation in the high energy limit. Hence, we do
not need any precise NLO double-copy here. (ii).In gen-
eral, our current KK double-copy approach as the first
serious attempt to construct the massive KK graviton
amplitudes has given strong motivation and important
guideline for a full resolution of the exact double-copy
beyond the LO. Our further study has found out the
reasons for the minor mismatch between the numerical
coefficients of the double-copied NLO amplitudes (21)
and that of the direct Feynman-diagram calculations.
One reason is due to the double-pole structure in the KK
amplitudes (including exchanges of both the zero-mode
and KK-modes) beyond the conventional massless theo-
ries, so the additional KK mass-poles contribute to our
mass-dependent NLO amplitudes and cause a mismatch.
Another reason is because the exact polarization tensor
of the (helicity—zero) longitudinal KK graviton is given
by e’ = (el e’ + " e + 2¢i /) V/6 [21], which constain-
s not only the longltudlnal product €f e/, but also the
transverse products eie‘i + € €. So, other scattering
amplitudes containing possible transversely polarized ex-
ternal KK gauge boson states should be included for a
full double-copy besides the four-longitudinal KK gauge
boson amplitude in Eq.(12).

With these in minds, we have further used a first prin-
ciple approach of the KK string theory in our recent s-
tudy [28] to derive the extended massive KLT-like rela-
tions between the product of the KK open string am-
plitudes and the KK closed string amplitude. In the
field theory limit, we can derive the exact double-copy
relations between the product of the KK gauge boson
amplitudes and the KK graviton amplitude at tree lev-
el [28]. In such exact double-copy relations all the rel-
evant helicity indices of the external KK gauge boson
states are summed over to match the corresponding po-
larization tensors of the external KK graviton states. The



double-pole structure is also avoided by first making the
5d compactification under S! (without orbifold) where
the KK numbers (£n=41,+2 43, ---) are strictly con-
served and the amplitudes always have single-pole struc-
ture. Then, we can define the Z,-even (odd) KK states
as ng)=(]+n) £ |—n))A/2, and derive the amplitudes
under S'/Z, compactification from the combinations of
those amplitudes under the S compactification [28]. Us-
ing this improved massive double-copy approach, we can
exactly reconstruct all the massive KK graviton ampli-
tudes at tree level in principle. Hence, the current study
and [28] are very encouraging, and much can be pursued
in our future works.

Finally, it is encouraging that our current extended
massive double-copy method (& la BCJ) not only pre-
dicts the precise KK scattering amplitudes at the LO,
but also gives already the correct structure of the NLO
longitudinal KK graviton amplitude by using the pure
longitidinal KK gauge boson amplitude alone. So, for the
completeness of the this study we propose an improved
double-copy method below to further reproduce the exact
longitudinal KK graviton (KK Goldstone) amplitudes at
the NLO and beyond. It only uses the amplitudes of pure
longitudinal KK gauge bosons (KK Goldstone bosons),
hence it is practically simple and valuable. For this, we
construct the following improved NLO numerators:

(N, 6N}, SNU) = (SN, SN —z, 0N +2),  (23a)
(ONZ, SNV, 6NY) = (ONZ, 6N{ =2, SN, +2),  (23b)

where (z, Z) are functions of § and can be determined by
matching our improved NLO KK amplitudes of double-
copy with the original NLO KK graviton (Goldstone)
amplitudes of the GR5. Then, we solve (z, Z) as

M2 (1390+603cp+66c45 — 11cgp)

: 12(13— 12¢55 —cag) ’ (242)

5 = M2 (4546 —3585¢o9+1086¢49+ cg0) . (24b)
12 (13— 12C29 —049)

Note that the modified numerators (23) continue to hold
the Jacobi identity. This is because the corresponding N-
LO gauge (Goldstone) amplitudes (67", 67") are modi-
fied only by terms of NLO, so we can still hold the general
GAET identity 7"=T"+T7T," by redefining the residual
term as 7. =T, — ¢*(C;/t—C,/u)(z—%). Using Eqs.(23)-
(24), we can reproduce the exact NLO KK gravitational
scattering amplitudes (shown in the Supplemental Ma-
terial [21]). This double-copy procedure can be further
applied to higher orders (beyond NLO) when needed.

VI. GRET Residual Terms and Energy Cancellation

According to TableI and the generalized gauge trans-
formation (14), we can explicitly deduce the equivalence
between the KK gauge boson amplitude and the corre-
sponding KK Goldstone boson amplitude,

To = To, (25)
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which belongs to the LO of O(E°MY). Using our double-
copy method, we further derived the GRET relation
My=M, at the O(E?>MY) as shown in Eq. (20). Thus,
the residual terms of the GAET and the GRET (7) are
given by the differences between the KK longitudinal am-
plitude and KK Goldstone amplitude at the NLO:

T, =Y TIAL v, =0T —6T = O(M2/E?),  (26a)

Mp =Y MA,, ¢,] =6M—M = O(E°MZ). (26b)

The size of 7, = O(M2/E?) can be easily understood
by using our generalized power counting rule [21]. But,
making the direct power counting gives M, = O(E?)
for its individual amplitudes, which has the same energy
dependence as the LO KK Goldstone amplitude (8).

We can further determine the size of the residual
term M, by the double-copy construction (18) based
upon the KK gauge (Goldstone) boson scattering
amplitudes of the YM5 theory alone (which are well
understood [5][10][11][29]). From Eq.(18) and TableI, we
can estimate the residual term by power counting,

07/ 1 NFOIS AT
My = O(aM,5M)=o<Nj Wj, N ‘WJ)

Sj Sj

= O(E°M2). (27)
Thus, we deduce the double-copy correspondence be-
tween the residual term 7, of the GAET and the residual
term M, of the GRET:

T, — Mx(DC) = O(E°M?). (28)

Hence, our double-copy construction proves that the
GRET residual term M, should have an energy cancel-
lation O(E?)— O(E®) among its individual amplitudes
in Eq.(7b). This means that M, is much smaller than
the leading KK Goldstone amplitude M, = O(E*MY)).

From the above double-copy construction, we can es-
tablish a new correspondence from the GAET of the KK
YMS5 theory to the GRET of the 5d KK GR (GR5):

GAET (YM5) = GRET (GR5). (29)

We will give a systematically expanded analysis in the
companison long paper [22], which includes our elabora-
tions of the current key points and our extension of KLT
relations [18] (along with CHY [30]) to the double-copy
construction of massive KK graviton amplitudes.

VII. Conclusions

In this work, we newly formulated the geometric “Hig-
gs” mechanism for the mass generation of Kaluza-Klein
(KK) gravitons of the compactified 5d GR (GR5) theory
at both the Lagrangian level and the scattering S-matrix
level. Using a general R, gauge-fixing of quantization,
we proved that the KK graviton propagator is free from
the longstanding problem of the vDVZ discontinuity [7]
in the conventional Fierz-Pauli massive gravity [8][9] and



demonstrated that the KK gravity theory consistently re-
alizes the mass-generation for spin-2 KK gravitons. We
newly proposed and proved a Gravitational Equivalence
Theorem (GRET) which connects the N-point scatter-
ing amplitudes of the longitudinal KK gravitons to that
of the gravitational KK Goldstone bosons. We comput-
ed the four-point scattering amplitudes of KK Goldstone
bosons in comparison with the longitudinal KK gravi-
ton amplitudes, and explicitly proved the equivalence
between the leading amplitudes of the longitudinal KK
graviton scattering and the corresponding KK Goldstone
boson scattering at O(E2MY).

We developed a generalized power counting method
for massive KK gauge and gravity theories. Using the
GRET and the new power counting rules, we established
a general energy-cancellation mechanism under which the
leading energy dependence of N-particle longitudinal KK
graviton amplitudes (o< E2VH14L)) must cancel down to
a much lower energy power (ox E2(1+L)) by an energy
factor of E*N, where L denotes the loop number of the
relevant Feynman diagram. For the case of longitudinal
KK graviton scattering amplitudes with N =4 and L=0,
this proves the energy cancellations of E'°— E?.

Extending the conventional massless double-copy
method [16][17] to the compactified massive KK YM and
GR theories, we derived the Jacobi-respecting numera-
tors and constructed the amplitudes of longitudinal KK
gravitons (KK Goldstone bosons) under high energy ex-
pansion. Using the double-copy method, we established a
new correspondence between the two energy cancellations
in the four-point longitudinal KK amplitudes: E*— E°

in the 5d KK YM gauge theory and E'°— E? in the 5d
KK GR theory, which is connected to the double-copy
correspondence between the GAET and GRET as we
derived in Eq.(29). Furthermore, we analyzed the struc-
ture of the residual term M, in the GRET (7) and fur-
ther uncovered a new energy-cancellation mechanism of
E? 5 E° therein.

Finally, we stress that the geometric Higgs mechanis-
m is a general consequence of the KK compactification
of extra spatial dimensions and should be realized for
other KK gravity theories with nonflat extra dimensions
and/or with more than one extra dimensions. We note
that our identity (6) results from the underlying gravi-
tational diffeomorphism invariance and thus should gen-
erally hold for any compactified 5d KK GR theory with
proper gauge-fixing functions. Thus, we expect that the
GRET should generally hold for other 5d KK GR theo-
ries and take similar form as the present Eq.(7) [24]. For
instance, we find that the geometric Higgs mechanism is
also realized in the compactified warped 5d space of the
Randall-Sundrum model [20] and our GRET should work
in similar way. Following the current work, it is encourag-
ing to further study these interesting issues in our future
work [24].
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This Supplemental Material provides in detail the relevant formulas and Feynman rules for the analyses of the KK
scattering amplitudes in the compactified 5d Yang-Mills (YMS5) theory and the compactified 5d General Relativity
(GR5) theory.

I. Kinematics of KK Scattering

We consider 2 — 2 KK scattering process, with the four-momentum of each external state obeying the on-shell
condition p? =—M j2’ (j = 1,2,3,4). We number the external lines clockwise, with their momenta being out-going.
Thus, the energy-momentum conservation gives »_ ;iP;=0, and the physical momenta of the two incident particles

equal —p; and —p,, respectively. For illustration, we take the elastic scattering X, X,— X,,X,, (n>0) as an example,
where X,, denotes any given KK state of level-n and has M =M, For the KK theory, the external particle has mass
M, for a given KK-state of level-n. Thus, in the center-of-mass frame, we define the momenta as follows:

h=—BL008),  ph=—-B(1.0.0-5),
ps = E(1,Bs,0, Bcy) Py = E(1,-Bs4,0,—Bcy) , (S1)

where (sg,cg) = (sinf, cosf) and f=(1—M2/E?)'/2. With the above, we can define the three Mandelstam variables:
5:_(P1+P2)2:4E2a t=—(p1+p4)2=—%8ﬂ2(1+69)» U:_(P1+P3)2:_%5ﬁ2(1_69)- (S2)
Then, using the on-shell condition E? = E?3%+ M2, we define a new set of mass-independent Mandelstam variables

as follows:

s s
so = 4E?p32, ty = —70(14—09), u():—?O(l—Ce)a (S3)

where s, =s—4M?2, and thus (s, ty, ug) = (s8% t, u). Summing up the Mandelstam variables (52) and (S3) gives
the following relations:

s+t+u=4M?2, Sot+to+uy=0. (S4)

As we mentioned in the text, a massive KK graviton has 5 helicity states (A= £2,41,0). Their polarization tensors
take the following forms:

ng

1 1
uv nov nov nov Nz nov nov n v
ey =€lel, el = — (el e+ erel), e = — (e eV + € e + 2€ €] ), S5
+2 = €16+ +1 ﬁ(iL L:t) L \/a(-i— + LL) (S5)
where (€lf, €f/) are the (transverse,longitudinal) polarization vectors of a vector boson with the same 4-momentum
p". These polarization tensors obey the traceless and orthonormal conditions. They are also orthogonal to the KK
graviton’s 4-momentum p* . Hence, the following conditions are realized:

ﬂuuﬁw = 07 El)fysj/, uv — 5A)\/ ) pugl“’ = 07 (SG)

where the KK graviton’s helicity indices A\, X' = 42, &1, 0.



II. Feynman Rules for 5d KK GR Theory

In this section, we summarize the relevant Feynman rules [22] including propagators and vertices which are used
for the amplitude calculations in the text of this Letter.

We first give the propagators in R, gauge for KK graviton (ht;”) and KK Goldstone bosons (A%, ¢,,) as follows:

Divas () = — O e /) e/ 3 S S 1 v 2P (s 2p°p°
nm P 2 P22 3PP H M2 PP (36, —2)M? M2 M2

1 1 1
_ #auﬁ et Vauﬁ+ vB, 1,
T <p2+M% p2+§nM%>(n 0 p A php a Ppkp)

Aptp?pp” 1 1
— , (S7a)
&, M3 P HEME pPHE, M2
_ldnm py‘py(l_gn) _lénm
DHY — Hy__ . D = . S7b
#) = Jre i [ prang | DW= e S (870)

For the Feynman-"t Hooft gauge (£, =1), the above propagators reduce to the simple forms [cf. Eq.(5) in main text].

Next, we make the following Fourier expansions for the 5d graviton fields in terms of their zero modes and KK
states:

R (P 2% = 1 KV (.p OOWP nz®
(x,z)—ﬁ Y (@) + V2 ) hi¥ (a) cos | (S8a)
n=1
b (2P ) = \/gngl RS (xP) sinng5 ) (S8b)
B ,a) = — [ o0la”) 4 VB () cos ™ (s5¢)
n=1

With these, we list the relevant 4d effective Lagrangians including both cubic and quartic interactions which are used
for our analyses:

h¢2 = Z { |: hﬂuaﬂ¢oau¢0+huyau¢m V¢€ Z+hgyap,¢mau¢05nm+hgyau¢oau¢f§n€)

nmf 1

B D00, 00 D, )|+ a3 [VE (1 600,0, 60 B 10,0, 0000+ W 610,000

B 3000, G10ne) +h" 6 100,80, 008 (. 0)| + a5 | V2 (hBu 000" G+ 0y 6D G10ms

By D B+, 0u 000" S0+ 64 (1m0, )] 4 4 [V (hoo 00+ oGO 000ms

o R D G0+ D00 ) -3 Dy (11, )|+ 15, Moy My [ V2R B18 - Sy b0 B (1, £)

- a6M€2 |:\/§ (h0¢m¢56m£+hn¢0¢/§nﬁ)+hn¢m¢£ A3(n7 m, 6) :| } ) (Sga‘)

Li[A¢?] = Z by My | V2ALD, G060 ,0 + AlD,, by A (n,m, €)
f

n,m =1

+ b2 MZ [\/iAﬁL(boau(bZéné—’— Alviqbnzau(bé Ag(’nﬁ m, 6) :| } ) (Sgb)

\[ Z 1{Cl|: ¢0 u¢0) +¢O M¢maud)l m€+¢n M¢Oau¢m6nm+¢n M¢Oau¢€ né)

n,m =

+ 0n0u 0000 D (1m0, 0) |+ oMy, My | V2 00610 G0+ 0B (mm, )] } L (89%)



2 oo
£2[¢4] = % Z {d1{2(¢08,u¢0)2+2[(8u¢0)2¢n¢m§nm+¢06u¢0¢nau¢€5n€+¢Oap,¢0¢nau¢k§nk
n,m,l, k=1

+ $00,000m 0" D16k + 000,00 B 0" DS mu+ (0) 0, 000" b6 ] +Vv2 [ 0,000 Om0" deAz(n, m, 0
+ 000D O 0" b1 Ag(n,m, k) 40,0000 0 S Ag (11, £, k) + P01, 0, 000" D1 Ag (m, £, K) |
+ OG0, 3e0" b1, Ay (nym, £, k) }+dy My My [2(00)* 661001+ V2006 0001 g (m, £, k)
+ V260000081 As (1, €, k) + 6 bm by i Aa(n,m, L, k)] } : (894)
where the delta functions (A}, A}) are defined as follows:
As(n,m, 0) = §(ntm—L0)+6(n—m—~0)+6(n—m+),
Asz(n,m,b) = 6(n+m—~0)—8(n—m—~€)+6(n—m~+1)
Al(n,m, ) = 6(n+m—~0)—8(n—m+€)+6(n—m—1)
Ay(n,m, 0, k) = 6(n+m+L—k)+8(n+m——k)+8(n—m-+l—k)+5(n—m—_l—k) (510)
+o(n—m—L+k)+d(n+m—L+k)+d(n—m—+L+k),

Ay(n,m, 0 k) = 6(n+m+Ll—k)—d(n+m—L—k)+5(n—m+{—k)—0(n—m—L—k)
+o(n—m—L+k)=d(n+m—L+k)+o(n—m—+L+Ek).

Then, we derive the Feynman rules based on the interaction Lagrangians in the above Eq.(S9). We present the
relevant 3-point and 4-point vertices as follows:

¢7z(p1)
a, (P % +pYph)
W) reed / _ =ik | Faa(Phipy+poph) (S11a)
m \P3 \ V100 m | F2a30" (p1-ps) |
— 25L47)“”M,21
(bn(pQ)
(bn(pl)
/4 K(by + by) M,
e (G O ), (s110)
(Z)n(pQ)
¢n(p1>
/ m = 0: 12k[c, (P} + p§ + py- pa)+caM? ]
Oy) — S = oohelly § 95 ey (pr- pa) — (21 — ) M2, (S11c)
m=2n: —i\/im[cl(pl-pg)—l— M7 ],
¢n(p2)
¢n<p2) ¢n(P3>
= i6K> [dl(p% —l—p% + p1- P2 —p3-p4) + 2d2M72L]
(S11d)

onshell, i 1942(dy — dy) M2

><
77N

¢n<p1) ¢11,<p4>

where a4 = a, + (—1)%2nmag — ag with m= 0, 2n in Eq.(S11a).



ITII. Power Counting and Energy Cancellations for KK Graviton Amplitudes

We consider a S-matrix element S having € external states and L loops (L > 0). Extending Weinberg’s power
counting rule for the ungauged nonlinear o-model of the low energy QCD [27], we develop generalized power count-
ing approach [22] for the KK gravity theory. The mass dimension of a given scattering amplitude S in 4d is counted as

where the number of external states €= £z + & with €5 (£p) representing the total number of external bosonic
(fermionic) states. In addition, we only consider the SM fermions whose masses are much smaller than the scattering
energy. We denote the number of vertices of type-j as V; . Each vertex of type-j contains d; derivatives, b; bosonic
lines and f; fermionic lines. Then, the energy dependence of coupling constant in S is given by

Dq = Zvj(zx—dj—bj—gfj). (S13)

J

For each Feynman diagram in the amplitude S, we denote the number of the internal lines as I = Iz + I with Ig
(Ir) being the number of the internal bosonic (fermionic) lines. Thus, we have the following general relations:

L=141-V, V=YV, > Vb =25+, > Vifj=2Ip+E&, (S14)
J J J

where V is the total number of vertices in a given Feynman diagram. The S may include &, ~external longitudinal
KK graviton states. Thus, taking Eqgs.(S12)-(S14), we deduce the leading energy-power dependence as follows:

Dy = Dg— D¢ = 28, + 2L+2)+ > V;(d;—2+%f;) . (S15)
J

For the pure longitudinal KK graviton scattering amplitude with N external states, we have 5}1,L:N and f;=0.
Each pure KK graviton vertex always contains two partial derivatives and thus d; = 2. For the loop level (L>1),
the amplitude may contain gravitational ghost loop which involves graviton-ghost-antighost vertex, but the number
of partial derivatives d; should be no more than two. While for the gravitational KK Goldstone boson scattering
amplitude, its leading energy dependence is given by the diagrams containing the cubic vertices of type hf"-¢,,-¢,
and the pure graviton self-interaction vertices, where each of these vertices includes two derivatives (d; = 2). Hence,
we can derive the power counting formula (S15) as:

Dg[NhE] = 2(N+1)+ 2L, Dg[N¢,] = 2+2L, (S16)

where the notation [Nh%] and [N¢,] denote the N external longitudinal KK graviton states and N external KK
Goldstone states respectively.

Comparing the energy power counting formulas for KK graviton and KK Goldstone in Eq.(S16), we note that their
difference arises from the leading energy-dependence of the polarization tensors ef”~ kk¥ /M2 for the N external
longitudinal KK gravitons in the high energy scattering:

Dy[NhE] ~ Dy[N,] = 2N. (S17)

Finally, we examine the leading energy dependence of the individual amplitudes in the residual term M, of the
GRET [cf. Eq.(7) in main text]. A typical leading amplitude can be M[t, ,---, 0, ], in which all the external
states are KK gravitons contracted with o/ = &7"— ely” = O(E"), such as ¥,, = 0,,,hy," . Hence, the leading energy
dependence of this amplitude yields:

Dy[N®,] = 2+2L, (S18)

which gives the same energy power dependence as D[N¢,].

IV. KK Graviton and Goldstone Scattering Amplitudes

In this section, we first present the four-point scattering amplitudes of KK gravitons (Goldstone bosons) at the
LO and NLO of the high energy expansion, which are obtained from computing . Then, we present the four-point
scattering amplitudes of the KK gauge bosons (Goldstone bosons) at the LO and NLO under two kinds of high energy
expansions. From these we provide the detailed formulas for our improved massive double-copy construction of the
KK graviton (Goldstone) amplitudes which are used in the main text.



A. KK Graviton and Goldstone Amplitudes from Feynman Diagrams

In this subsection, we summarize the full elastic amplitudes of the four longitudinal KK graviton scattering [13] and
of the four gravitational KK Goldstone boson scattering [22]. For the purpose of our double-copy analysis, we express
these amplitudes in terms of the dimensionless variable s:

KJQMTZL (XO + XQCQQ + X4C49 + XGC60) CSC20

M) == 5125(5 — 4)[5%2 — (5 — 4)%cqp + 245 +16] (5192)

KJQM,,% (550 + ),ZQCQQ + X4C49 + ‘)?6669) CSC29

M[4¢,] = — S19b
Miden] 5125(5 — 4)[52 — (5 — 4)2cop +245 +16] ( )
where 5= s/M?2 and c,, = cos(nf). In the above, the coefficients (X, )Z']) are defined as follows:
X, = —2(2555° 4 28245 — 199365> + 3993652 — 2565 + 14336),
X, = 4295° — 101525* + 308165° — 271365% — 499205 + 34816,
X, = 2(395° — 3125% — 27845% — 112645 + 263685 — 2048),
X = 35° + 405" + 4165% — 153652 — 33285 — 2048,
- (S20)
X, = —2(2555° 4 82485 — 41445% + 7910452 + 6425605 + 69632),
X, = 4295° + 41525* + 212165° — 15001652 + 11420165 + 182272,
X, = 2(395° — 19925* + 178085% — 581125 + 701445 — 20480) ,
X = 35° — 565* + 4165 — 15365 + 28165 — 2048 .
Then, we expand the KK scattering amplitudes (S19a)-(S19b) under the high energy expansion of 1/s:
M[4hT] = M[4h] + dIM4hT], (S21a)
Mao,] = Moldg,] + SM[4g,,], (S21b)
where the LO and NLO KK amplitudes take the following forms,
n v 3k° 2 2
Myldht] = Mylde,] = 198 s(7+ cg9)”csc0 (S22a)
K2 M2
SM4R}] = — 256” (1810 + 93 cop + 12649 +19¢49) csc@ (S22b)
. I<J2M2
SM[4p,] = — 5 6" (=902 4 3669cog — T14dcyg — Hegg)esc? o . (S22c)

If we make instead the high energy expansion in terms of 1/s,, we derive the following LO and NLO KK amplitudes:
2

M[AR}] = M4, = o 507+ )’ esc®0, (S23a)
KZM?

SIM'[4h}] = — 128” (650 4 261cop+ 102¢49+ 11cgg) csc*d (S23b)
—~ KZM?2

SM'[4¢,] = — 128” (=706 4 2049¢o5 — 318c49 — cgp) csc?6, (S23c)

where s, = s —4M?2. We see that the 1/s, expansion has shifted a hidden O(M2) subleading term (contained in
s = 8y +4M2) from the LO amplitudes (522a) into the NLO amplitudes (S23b)-(S23c). But this rearrangement
in Egs.(523a)-(523c) does not affect the difference between the two NLO amplitudes. Thus, we can deduce the
contribution of the residual terms by computing the amplitude-difference from either Eqs.(S22b)-(S22¢) or Egs.(S23b)-
(S23c) as follows:

. 2M2
My = SMART] — 6M[4g,) = —5Mn (39 +029>. (S24)

2 2
This provides Eq.(18a) in the main text.



B. KK Graviton and Goldstone Amplitudes from Extended Double-Copy

We expand the scattering amplitudes under the high energy expansion in terms of M?2/s. Thus, we can express
4-point elastic KK gauge boson (Goldstone) amplitudes as follows:

T4A7] = g2<CSNS Lo C“N“>, (S25a)

s t U
T[443) = 92<65Ns + CN, + C”N“>, (S25h)

s t U

which are invariant under the following generalized gauge-transformations:
N/ =N, +5;A, /\N/j':./\NGJrsjE. (526)

The above Eqs.(525)-(S26) are given in Egs.(9)(11) of the main text. This allows us to find proper solutions of
{A, ﬁ} which ensure the gauge-transformed NLO numerators (5/\/; , (5./\7]( ) to obey the kinematic Jacobi identity, as
we demonstrated in Egs.(12)-(13) of the main text (cf. Sec.V). Thus, from these we can derive the gauge-transformed
NLO numerators for the elastic KK gauge boson amplitude:

SN = =3 M} (246 ¢+ Tegg+3csq) esc’d, (S27a)
M2 (131 —8cy—4cop+8csg+cap)
N = —= S27b
% STEr , (s27h)
M2 (131+8cy—4cog—8cs9+Cap)
SN = — n 3 46 S27
No 8(1+cy)? ’ (827¢)
and the gauge-transformed NLO numerators for the corresponding KK Goldstone boson amplitude:
SN = — 3 M7 (238¢p+19c39—csg) csc’0 (S28a)
5/{].; _ MTQL (994’800‘}*28629* 86394’040) : (SQSb)
8(1—09)2
6_/’\771 _ Mg (99—809+28029 +8€39+C49) ) (S28C)
8(14’09)2

Using the double-copy formulas in Eqs.(14a)-(14b) together with the gauge-transformed numerators (N7, ./\7]’) in
Eq.(15) and Egs.(S27)-(S28), we construct the following four-point KK gravition amplitude and gravitational KK
Goldstone amplitude at the LO and NLO:

N 2
My(DC) = My(DC) = f;s 5 (7T+ cyp)? 020, (S292)
5k M2 4
6M (DC) = _W(1642 + 297029 + 102 Cqp + 7069)CSC 9 5 (S29b)
—~ K2M?
IM(DC) = — 768n (6386 + 3837 o + 30cqg — 13669)CSC49, (S29¢)

where we have set the conversion constant ¢, =—x2/(24¢%). The double-copy amplitudes of Eq.(S29a) provide the LO
gravitational amplitudes (16) and the NLO gravitational amplitudes (17) in the main text. We can further compute
the gravitational residual term of the GRET from the difference between the two NLO amplitudes (S29b) and (S29c):

AM(DC) = SM(DC) — SM(DC) = —k>M2 (T+ cop), (S30)

which provides Eq.(18b) in the main text. We see that the above reconstructed residual term (S30) by the extended
double-copy approach does give the same size of O(E°M?2) and takes the same angular structure of (1, cyy) as
the original residual term (S24) although their numerical coefficients still differ. As discussed in the main test, it
is impressive to note that Eq.(S30) also demonstrates a very precise cancellation between the angular structures
(1, Cag, Cag, Cog) X csc of the NLO double-copied KK amplitudes (S29b)-(S29¢) down to the substantially simpler



angular structure (1, cyp). This is the same kind of angular cancellations as what we found for the original NLO
KK graviton and Goldstone amplitudes (S22b)-(S22c¢) and their difference (S24). This demonstrates that the above
double-copied NLO KK amplitudes have captured the essential features of the original KK graviton (Goldstone)
amplitudes at both the LO and NLO. We have presented the further improved NLO numerators (23)-(24) in the main
text, which can realize the double-copied NLO KK amplitudes in full agreement with the original NLO KK graviton
and Goldstone amplitudes (S22b)-(S22¢). A further study based on the first principle approach of the KK string
theory is recently presented in [28], which can realize the exact double-copy construction of the general N-point KK
graviton scattering amplitudes at tree level.

Finally, for the sake of comparison, we also give the results of making the high energy expansion of M2/s, and
explain that within this expansion there is no generalized gauge transformation which could realize the Jacobi-
conserving numerators for KK gauge boson (Goldstone) scattering amplitudes. For this, we express the elastic
scattering amplitude 7T[4A7] = T[A9" Abr— A A4n] and T[4AP] = T[AZ" Abr— ASm Adn] as follows:

TH4A}] = g2<CSNS - Culs + C“N“>, (S31a)
5o to Ug
5o Lo Ug

We compute their numerators at the LO and NLO, (N, J\~/'j) = (N7, /\ijo)—l—(éj\/'j7 5]\7]) = O(E*M?)+O(E°M?), and
present them in the following Tabel I.

With these, we verify that the LO numerators of KK gauge boson (Goldstone) scattering amplitude satisfy the
Jacobi identity:

YoANP=0, DY A=o0, (S32)
J J
where j € (s,¢,u). But, we find that the Jacobi identity is no longer obeyed by the NLO numerators:
D ON; =) 0N; =x #0, (S33a)
J J

X = —2(T+ co)cgcsc?0 M2, (S33b)

We further note that the KK amplitudes (S31a)-(S31b) are invariant under the generalized gauge transformations for
the kinematic numerators:

/\/}—>N}I:N]+AXSOJ, X/j—>./f\7]/:./f\7;+£x80] (834)
But, because of }>:s,;=0 [cf. Eq.(S4)], we deduce }>;0Nj=3" 0N;#0 and Zj5f\7j=2j 5/\7]- # 0. Hence, under

the expansion of M?2/s,, it is impossible to obtain proper solutions of {A, E} which are supposed to ensure the
gauge-transformed NLO numerators (5]\/; , 5/\/;) to obey the kinematic Jacobi identity.

TABLE I. Kinematic numerators of the LO and NLO scattering amplitudes (S31a)-(S31b) for KK longitudinal gauge bosons and
KK Goldstones under the high energy expansion of M /s, where (N, ./\N/']) = (N}, ./\~/'JQ)+(5./\/]-, 6]\7]) = O(E*MS)+O(E°M?).

Numerators N, N, N, N, N, N, N,=N, | N,=N, | N,,—N,
11c —5+11cy+4c 5+11cyg—4c 3co | 3(=3+4cq) | 3(3+cy)
0 (0] {°) 20 (%) 20 0 (%) (%)
N7 /so 5 7 4 ) 1 1 —4cy —4cy —4cy
2(2—3cg—2co9—c39) 2(243cg—2c99+c39) 8¢ 8¢
2 0 —2C29—C30 9 —2Co9+C30 0 0 2 Q2
ON; /My 4cy 5c, 1=c, 4cg Ttco 1—c, 0 8sp 8s
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