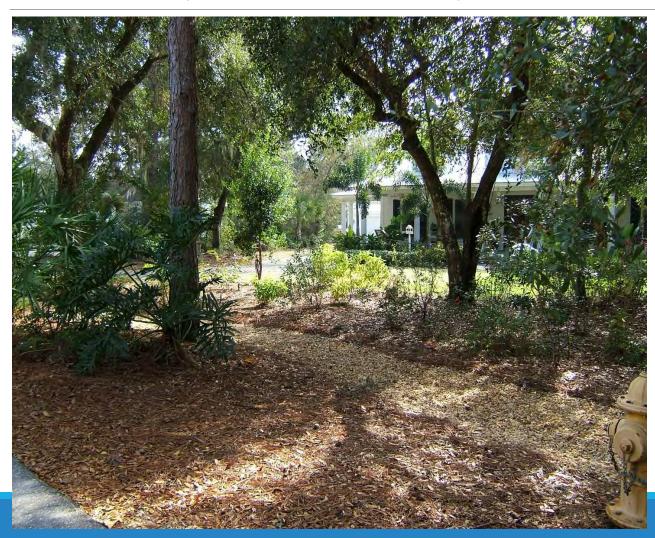
Green Infrastructure/LID Operation and Maintenance Considerations

FSA STORMWATER BMP SEMINAR SEPTEMBER 11, 2015


The Importance of Sustainability

Top trends in infrastructure planning and engineering:

- 1990s Technology
- 2000s Alternative Project Delivery
- Today Sustainability

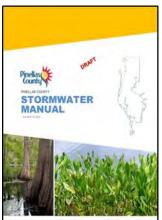
Low-Impact Development


- Treat closer to source
- Smaller, more dispersed
- Often rely on infiltration

Low-Impact Development (LID) Defined

"Low-impact development" (LID) is a stormwater and land use management strategy that strives to mimic pre-disturbance hydrologic processes of infiltration, filtration, storage, evaporation, and transpiration by emphasizing conservation, use of on-site natural features, site planning, and distributed stormwater management practices that are integrated into a project's design, especially it's landscaping.

Unlike conventional stormwater systems, which typically control and treat runoff using a single engineered stormwater BMP located at the "bottom of the hill," LID systems use a suite of stormwater BMPs – source controls, retention, detention, infiltration, treatment and harvesting mechanisms – that are integrated into a project site to function as a **"BMP Treatment Train".**


Source – Pinellas County Draft Stormwater Manual

Low-Impact Development (LID) Defined

Typically, LID practices will not completely replace more conventional "bottom-of-the-hill" stormwater management practices, but can be used to complement these practices and to ensure that the entire stormwater management system meets the Pinellas County water resources objectives.

Source – Pinellas County Draft Stormwater Manual

Stormwater Management Academy

HOME ABOUT US

IT US RESEARCH

COMPUTER PROGRAMS

EVENTS & CONFERENCES

MEMBERS FTP

search now____

0,

< >

A source for stormwater information supported by the University of Central Florida, Florida Department of Transportation, and Florida Department of Environmental Protection

BMPTRAINS Model (Version 7.5) DOWNLOAD BMPTRAINS Analysis Model (Version 7.4) -DOWNLOAD user's manual or REGISTER to receive updates and news!

Other Featured Publications

Click here to read the latest publications. Includes pervious pavements, pollution control using BAM, erosion, and sedimentation.

Providing educational materials and research to advance an understanding and practice of stormwater management and to influence policy and procedures.

Featured posts

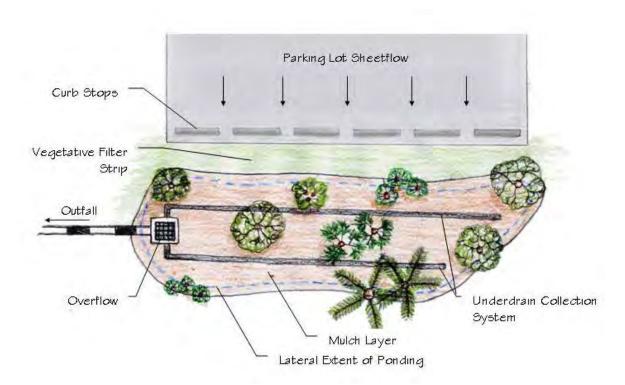
State of Florida Erosion Manual (2013)

This manual will assist designers and reviewers in providing meaningful and practical Erosion and Sediment Control (E&SC) drawings as part of the Stormwater Pollution Prevention Plan (SWPPP) for the contractor to implement.

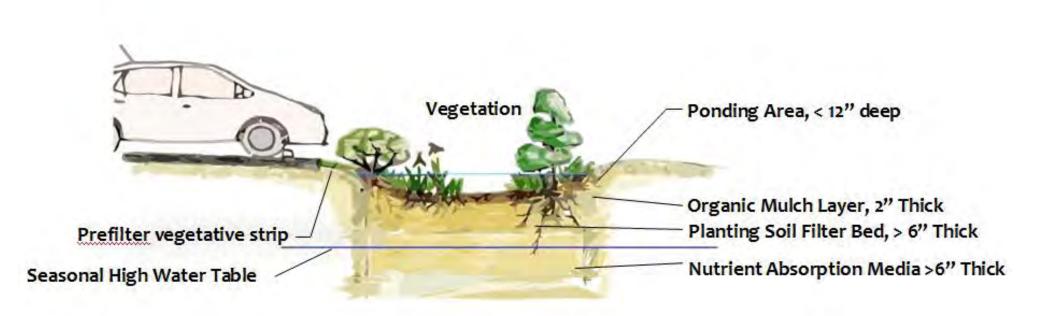
Low Impact Development (LID) Alternatives

- 1. Shallow Bioretention
- 2. Pervious Pavement System
- 3. Stormwater Harvesting
- 4. Greenroof Stormwater Treatment System
- 5. Rainwater Harvesting
- 6. Detention with Biofiltration

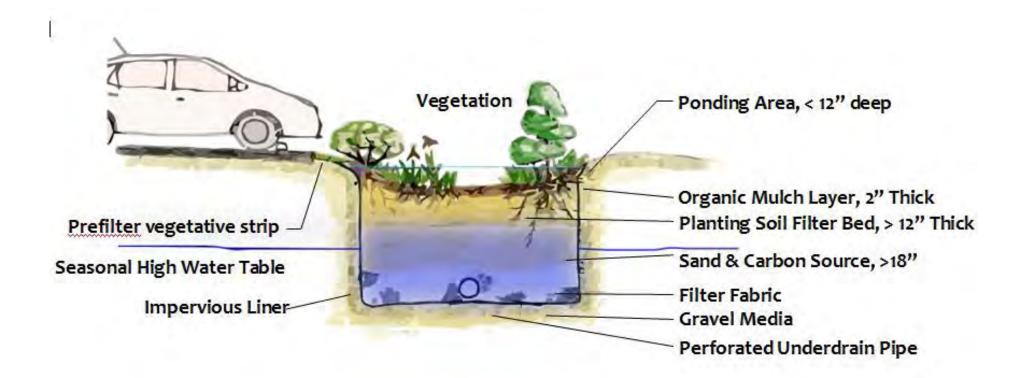
LID BMPs Covered


Bioretention Biofiltration

Pervious Pavement


Swales Level Spreaders

Bioretention and Biofiltration


- Shallow landscaped depressions
- Engineered media
- Retention: no underdrain
- Detention/filtration: underdrain

Bioretention Cross Section View

Biofiltration Cross Section View

Bioretention/Biofiltration Design Considerations

- Pretreatment (Filter strip, settling area, or both)
- Ponding depth
- Infiltration rate
- Drought-resistant plants
- Irrigation
- Adequate mulch
- Underdrain cleanout
- Area served
- Maintenance access

Detention with Biofiltration

Advantage/Benefits

- Applicable to small drainage areas.
- Applicable to high water table conditions.
- Good retrofit capability.
- Can be planned as an aesthetic feature.
- Used where contamination is a threat.

Disadvantages/Limitations

- Requires landscaping.
- Requires underdrain system.

Maintenance Requirements

- Inspect and repair/replace treatment area components
- Remove trash, litter and sediment.

Bioretention/Biofiltration Typical Problems and Inspection

- Inadequate infiltration Ponding
 - 24 hours after ½" rain
 - 48 hours after 1" rain
 - 72 hours after 1 ½" rain
- Sediment build up

- Overgrown/choked
- Erosion and bare soil
- Blocked inlet
- Trash accumulation
- Sightline issues

Bioretention/Biofiltration City of Palmetto

Bioretention/Biofiltration Routine Maintenance

Description	Typical Frequency	Typical Timing
Weeding and pruning	Twice per year	Spring and summer
Trash removal	Twice per year	
Add mulch	2-3 years	Spring
Pretreatment sediment removal	Once per year	*Look upstream if more frequent
Underdrain cleanout	Once per year	

Bioretention/Biofiltration Non-Routine Maintenance

Description	Typical Frequency
Sediment removal	> 5 years
Media replacement	> 10 years
Vegetation replacement	2-3 years
Erosion control/stabilization	

Pervious Pavement

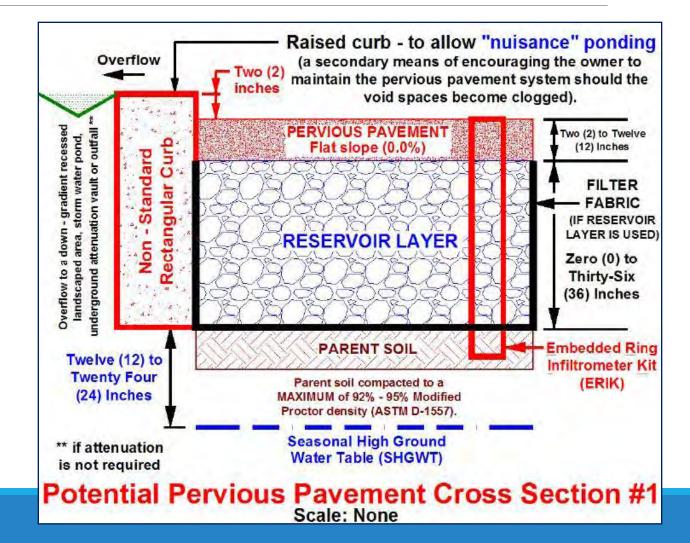
Pervious Pavements

Advantage/Benefits

- Has potential to reduce the size of or eliminate stormwater structures from impervious areas
- Increases usable/developable space or decreased developed footprint
- May increase aesthetic value

Disadvantages/Limitations

- Typically has higher construction cost than conventional impervious pavements
- Not suitable for all site soil conditions
- If the surface fails, it must be reconstructed, not resurfaced


Maintenance Requirements

- Vacuum as needed when infiltration measurements are lower than 1.5 inches per hour
- Check bi-monthly to assess the amount of infiltration, ideally during a rain event

Pervious Pavement Design Considerations

- Certified installer
- Edge restraint
- In-situ infiltration measurements
- Reservoir layer and native soils
- Turning motion and heavy traffic
- Contributing area

Pervious Pavement Typical Problems and Inspection

- Structural integrity
- Clogging

Pervious Pavement Routine Maintenance

- Vacuuming (at least 2 times per year)
- High-pressure washing
- Aggregate replacement
- Minimize/stabilize upstream pervious areas

Pervious Pavement Lake Concord Park, City of Casselberry

Pervious Concrete

Turf Block

Flexi-Pave

Grassed Swale

Grassed Swale Design Considerations

- Shallow depth of flow
- Gradual side slopes
- Gradual longitudinal slope
- Adequate depth to water table

Grassed Swale Typical Problems and Inspection

- Bare soils
- Dead vegetation
- Erosion
- Sedimentation
- Standing water

Grassed Swale Maintenance

Description	Typical Frequency	Notes						
Routine								
Mowing	Variable	Remove clippings if possible						
Sediment removal (minor)	1-3 years	Look upstream if more frequent						
Non-routine								
Regrading and restabilizing	> 5 years	Look upstream if more frequent						
Upstream stabilization	Variable							

Shallow Bioretention

Advantage/Benefits

- Applicable to small drainage areas
- Applicable to high water table conditions
- Good retrofit capability
- Can be planned as an aesthetic feature

Disadvantages/Limitations

Requires landscaping

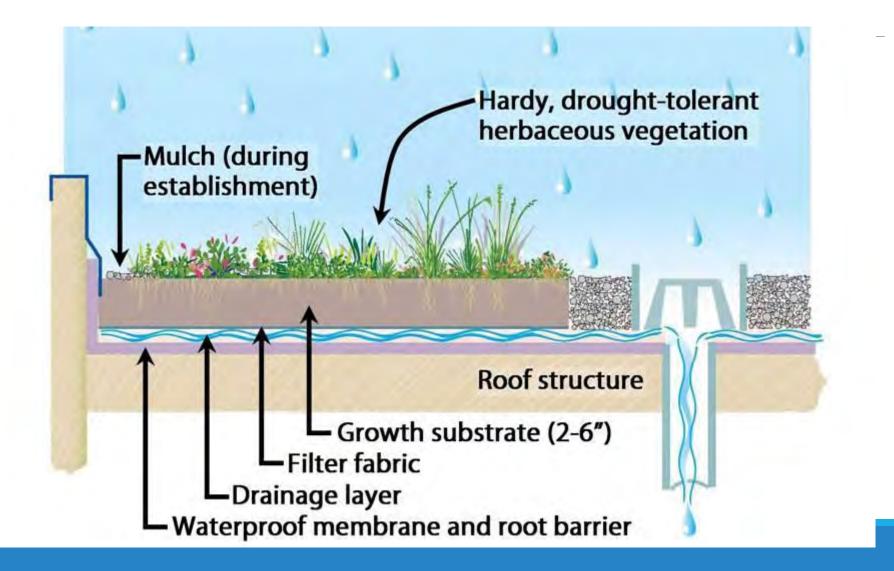
Maintenance Requirements

- Prune and weed to keep any structures clear
- Maintain/mow the prefilter or swale at least twice during the growing season and remove clippings from the flow path
- Replace mulch over the entire area every 2 to 3 years
- Remove trash and debris, sediment from inflow and outflow system and any dead or severely damaged vegetation as needed

MASSACHUSETTS LOW IMPACT DEVELOPMENT TOOLKIT

LID STRATEGIES Green Roof Systems Runoff Reduction, Reduce Heating/Cooling Costs

- Rainwater stored in a lightweight engineered soil medium
- Hardy, drought-resistant vegetation
- Reduce runoff by 50%
- Not for use in stressed basins

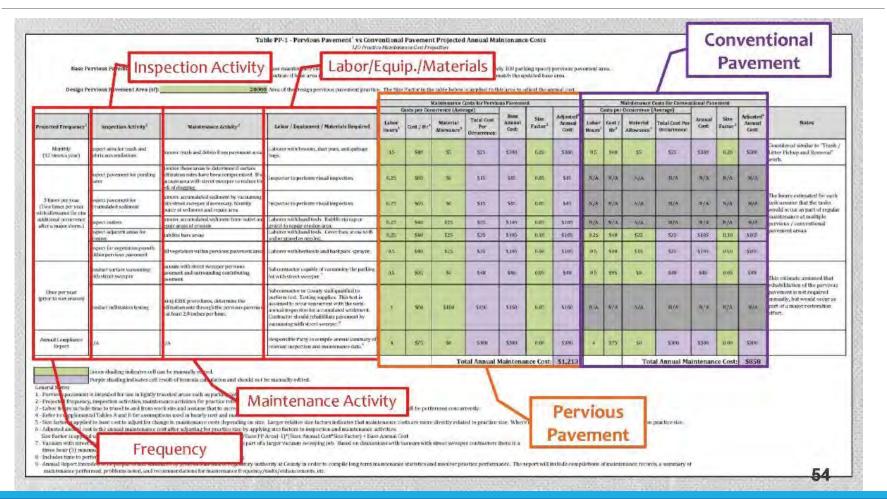


MASSACHUSETTS LOW IMPACT DEVELOPMENT TOOLKIT

LID STRATEGIES Green Roof Systems

MASSACHUSETTS LOW IMPACT DEVELOPMENT TOOLKIT

LID STRATEGIES Green Roof Systems


Greenroof Stormwater Treatment Systems

Maintenance Requirements

- The maintenance record or log of activities should include data on the following:
 - Irrigation volume measured using a flow meter, cistern overflow volume, observations of the irrigation system and replacement of parts, removal of nuisance species or invasive exotics, removal and replacement of dead or damaged plants and maintenance of roof mechanical equipment
- Inspections every two years

Low Impact Development (LID) Annual Cost Projection

Low Impact Development (LID) Example 10-Year Maintenance Cost Projection

		3%		Oser input i	njiacion rate	. The buse	rate of inflati	on 15 3%.			
Maintenance Activity	Year						Totals				
Maintenance Activity	1	2	3	4	5	6	7	8	9	10	Totals
Monthly Trash and Debris Removal	\$300	\$309	\$318	\$328	\$338	\$348	\$358	\$369	\$380	\$391	\$3,439
Triannual Minor Inspection, Cleaning, and Restoration	\$405	\$417	\$430	\$443	\$456	\$470	\$484	\$498	\$513	\$528	\$4,643
Annual Inspection and Maintenance	\$208	\$214	\$220	\$227	\$234	\$241	\$248	\$255	\$263	\$271	\$2,379
Annual Compliance Report	\$300	\$309	\$318	\$328	\$338	\$348	\$358	\$369	\$380	\$391	\$3,439
							Total 10	Year Ma	intenan	ce Cost:	\$13,900

Low Impact Development (LID) Traditional vs. LID Maintenance Cost Comparison (Preliminary)

Maintenance Scenario	Maintenance Scenario Design Practice Size		Estimated 10-Year Maintenance (3% inflation)		
Pervious Pavement	36792 sf	\$1,333	\$15,278		
Bioretention	73846 sf	\$11,367	\$130,311		
Rain Garden	26498 sf	\$5,877	\$67,377		
Planter Box	2448 sf	\$1,804	\$20,684		
Tree Box Filter	10 boxes	\$1,586	\$18,722		
Curb Cuts / inverted Medians	N/A	N/A	N/A		
Stormwater Harvesting (w/ Cisterns)	134528 gal	\$9,120	\$104,548		
Dry Retention Pond	92522 sf	\$11,303	\$133,462		
	Totals:	\$42,390	\$490,382		
Maintenance Scenario	Design Practice Size	Estimated Annual Maintenance (2013 Dollars)	Estimated 10-Year Maintenance (3% inflation)		
Dry Retention Pond	132,675 sf	\$15,880	\$187,512		
Landscaped Area	30,546 sf	\$5,889	\$69,542		
Swale	73,843 sf	\$8,779	\$103,663		
Wet Detention Pond	63,319 sf	\$4,451	\$49,095		
	Totals:	\$34,999	\$409,812		

The Good...

Highlands Avenue Parking Lot-Pervious Pavement City of Melbourne, FL

The Good...

EAST SIDE PUMPING STATION GREEN ROOF – WASHINGTON, DC

George Hawkins, CEO and General Manager of DC Water has been pushing for green infrastructure since he took the job more than 5 years ago, but concedes that the predicted impact of green infrastructure will only be accurate over the long term if it is properly maintained which could be tricky. Because these projects are small and spread across the city, maintenance can be difficult to deliver or verify. "Bioswales can fill up with silt and muck, and if you don't dig them out, it blocks infiltration of water."

- WaterWorld Magazine- August 2015

The Bad...

Sunset Lane Drainage Improvements – Hillsborough County, FL *APWA Project of the Year 2014!*

The Bad...

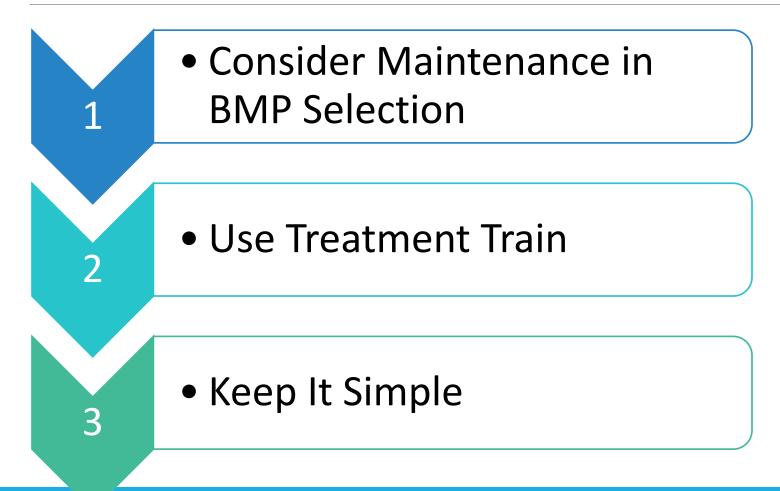
Sunset Lane Drainage Improvements – Tampa, FL (August 2015 photo)

The Ugly...

Pervious Pavement Gulf Boulevard (SR 699) from Park Boulevard to Whitehurst Avenue Town of Indian Shores, FL

The Ugly...

Pervious Pavement Gulf Boulevard (SR 699) from Park Boulevard to Whitehurst Avenue Town of Indian Shores, FL



SUNBURST

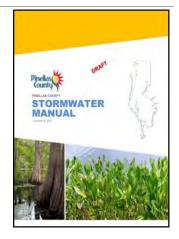
STATE ROAD NO. 699 (GULF BLVD.) CITY OF INDIAN SHORES FLOODING ASSESSMENT

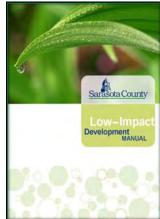
Lessons Learned

Sources

Brett Cunningham – SESWA Webinar, May 2012

Draft Pinellas County Stormwater Manual http://www.pinellascounty.org/build/green-resources.htm


Sarasota County LID Manual https://www.scgov.net/WaterServices/Pages/LowimpactDevelopment.aspx


UCF Stormwater Academy http://stormwater.ucf.edu/

UCF Operation, Maintenance & Management of Stormwater Management Manual http://stormwater.ucf.edu/wp-content/uploads/2014/09/stormwaterOMM.pdf

United States Environmental Protection Agency http://water.epa.gov/polwaste/green/

Green on the Horizon – Challenges of Integrating LID into New Development Janna Souvorova, PH.D., AICP – Orange County Planning Division and Mark W. Ellard, PE, CFM, D.WRE – Geosyntec Consultants, Inc.

