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Chapter 1

Introduction

1.1 Features at a glance

Gretl is an econometrics package, including a shared library, a command-line client program and a
graphical user interface.

User-friendly Gretl offers an intuitive user interface; it is very easy to get up and running with
econometric analysis. Thanks to its association with the econometrics textbooks by Ramu
Ramanathan, Jeffrey Wooldridge, and James Stock and Mark Watson, the package offers many
practice data files and command scripts. These are well annotated and accessible. Two other
useful resources for gretl users are the available documentation and the gretl-users mailing
list.

Flexible You can choose your preferred point on the spectrum from interactive point-and-click to
batch processing, and can easily combine these approaches.

Cross-platform Gretl’s “home” platform is Linux but it is also available for MS Windows and Mac
OS X, and should work on any unix-like system that has the appropriate basic libraries (see
Appendix C).

Open source The full source code for gretl is available to anyone who wants to critique it, patch it,
or extend it. See Appendix C.

Sophisticated Gretl offers a full range of least-squares based estimators, either for single equations
and for systems, including vector autoregressions and vector error correction models. Sev-
eral specific maximum likelihood estimators (e.g. probit, ARIMA, GARCH) are also provided
natively; more advanced estimation methods can be implemented by the user via generic
maximum likelihood or nonlinear GMM.

Extensible Users can enhance gretl by writing their own functions and procedures in gretl’s script-
ing language, which includes a reasonably wide range of matrix functions.

Accurate Gretl has been thoroughly tested on several benchmarks, among which the NIST refer-
ence datasets. See Appendix D.

Internet ready Gretl can access and fetch databases from a server at Wake Forest University. The
MS Windows version comes with an updater program which will detect when a new version is
available and offer the option of auto-updating.

International Gretl will produce its output in English, French, Italian, Spanish, Polish, Portuguese,
German or Basque, depending on your computer’s native language setting.

1.2 Acknowledgements

The gretl code base originally derived from the program ESL (“Econometrics Software Library”),
written by Professor Ramu Ramanathan of the University of California, San Diego. We are much in
debt to Professor Ramanathan for making this code available under the GNU General Public Licence
and for helping to steer gretl’s early development.

1

http://gretl.sourceforge.net/lists.html
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We are also grateful to the authors of several econometrics textbooks for permission to package for
gretl various datasets associated with their texts. This list currently includes William Greene, au-
thor of Econometric Analysis; Jeffrey Wooldridge (Introductory Econometrics: A Modern Approach);
James Stock and Mark Watson (Introduction to Econometrics); Damodar Gujarati (Basic Economet-
rics); Russell Davidson and James MacKinnon (Econometric Theory and Methods); and Marno Ver-
beek (A Guide to Modern Econometrics).

GARCH estimation in gretl is based on code deposited in the archive of the Journal of Applied
Econometrics by Professors Fiorentini, Calzolari and Panattoni, and the code to generate p-values
for Dickey–Fuller tests is due to James MacKinnon. In each case we are grateful to the authors for
permission to use their work.

With regard to the internationalization of gretl, thanks go to Ignacio Díaz-Emparanza (Spanish),
Michel Robitaille and Florent Bresson (French) , Cristian Rigamonti (Italian), Tadeusz Kufel and
Pawel Kufel (Polish), Markus Hahn and Sven Schreiber (German), Hélio Guilherme (Portuguese) and
Susan Orbe (Basque).

Gretl has benefitted greatly from the work of numerous developers of free, open-source software:
for specifics please see Appendix C. Our thanks are due to Richard Stallman of the Free Software
Foundation, for his support of free software in general and for agreeing to “adopt” gretl as a GNU
program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection par-
ticular thanks are due to Ignacio Díaz-Emparanza, Tadeusz Kufel, Pawel Kufel, Alan Isaac, Cri
Rigamonti, Sven Schreiber, Talha Yalta, Andreas Rosenblad, and Dirk Eddelbuettel, who maintains
the gretl package for Debian GNU/Linux.

1.3 Installing the programs

Linux

On the Linux1 platform you have the choice of compiling the gretl code yourself or making use of a
pre-built package. Building gretl from the source is necessary if you want to access the development
version or customize gretl to your needs, but this takes quite a few skills; most users will want to
go for a pre-built package.

Some Linux distributions feature gretl as part of their standard offering: Debian, for example, or
Ubuntu (in the universe repository). If this is the case, all you need to do is install gretl through
your package manager of choice (e.g. synaptic).

Ready-to-run packages are available in rpm format (suitable for Red Hat Linux and related systems)
on the gretl webpage http://gretl.sourceforge.net.

However, we’re hopeful that some users with coding skills may consider gretl sufficiently interest-
ing to be worth improving and extending. The documentation of the libgretl API is by no means
complete, but you can find some details by following the link “Libgretl API docs” on the gretl home-
page. People interested in the gretl development are welcome to subscribe to the gretl-devel mailing
list.

If you prefer to compile your own (or are using a unix system for which pre-built packages are not
available), instructions on building gretl can be found in Appendix C.

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter of
downloading gretl_install.exe and running this program. You will be prompted for a location
to install the package.

1In this manual we use “Linux” as shorthand to refer to the GNU/Linux operating system. What is said herein about
Linux mostly applies to other unix-type systems too, though some local modifications may be needed.

http://gretl.sourceforge.net
http://gretl.sourceforge.net/lists.html
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Updating

If your computer is connected to the Internet, then on start-up gretl can query its home website
at Wake Forest University to see if any program updates are available; if so, a window will open
up informing you of that fact. If you want to activate this feature, check the box marked “Tell me
about gretl updates” under gretl’s “Tools, Preferences, General” menu.

The MS Windows version of the program goes a step further: it tells you that you can update gretl
automatically if you wish. To do this, follow the instructions in the popup window: close gretl
then run the program titled “gretl updater” (you should find this along with the main gretl program
item, under the Programs heading in the Windows Start menu). Once the updater has completed
its work you may restart gretl.



Part I

Running the program

4



Chapter 2

Getting started

2.1 Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter 27
below and the Gretl Command Reference for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment let’s
not do that: just fire up the program.1 You should see a main window (which will hold information
on the data set but which is at first blank) and various menus, some of them disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open a data
file, create a new data file, read the help items, or open a command script. For now let’s browse the
supplied data files. Under the File menu choose “Open data, Sample file”. A second notebook-type
window will open, presenting the sets of data files supplied with the package (see Figure 2.1). Select
the first tab, “Ramanathan”. The numbering of the files in this section corresponds to the chapter
organization of Ramanathan (2002), which contains discussion of the analysis of these data. The
data will be useful for practice purposes even without the text.

Figure 2.1: Practice data files window

If you select a row in this window and click on “Info” this opens a window showing information on
the data set in question (for example, on the sources and definitions of the variables). If you find
a file that is of interest, you may open it by clicking on “Open”, or just double-clicking on the file
name. For the moment let’s open data3-6.

+ In gretl windows containing lists, double-clicking on a line launches a default action for the associated list
entry: e.g. displaying the values of a data series, opening a file.

1For convenience I will refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gretl_x11 while on MS
Windows it is gretlw32.exe. On Linux systems a wrapper script named gretl is also installed — see also the Gretl
Command Reference.

5
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This file contains data pertaining to a classic econometric “chestnut”, the consumption function.
The data window should now display the name of the current data file, the overall data range and
sample range, and the names of the variables along with brief descriptive tags — see Figure 2.2.

Figure 2.2: Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explanatory. For
now we’ll dip into the Model menu; a brief tour of all the main window menus is given in Section 2.3
below.

gretl’s Model menu offers numerous various econometric estimation routines. The simplest and
most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling for a
model specification — see Figure 2.3.

Figure 2.3: Model specification dialog

To select the dependent variable, highlight the variable you want in the list on the left and click the
“Choose” button that points to the Dependent variable slot. If you check the “Set as default” box
this variable will be pre-selected as dependent when you next open the model dialog box. Shortcut:
double-clicking on a variable on the left selects it as dependent and also sets it as the default. To
select independent variables, highlight them on the left and click the “Add” button (or click the
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right mouse button over the highlighted variable). To select several variable in the list box, drag
the mouse over them; to select several non-contiguous variables, hold down the Ctrl key and click
on the variables you want. To run a regression with consumption as the dependent variable and
income as independent, click Ct into the Dependent slot and add Yt to the Independent variables
list.

2.2 Estimation output

Once you’ve specified a model, a window displaying the regression output will appear. The output
is reasonably comprehensive and in a standard format (Figure 2.4).

Figure 2.4: Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to print the regression output in LATEX format. See Chap-
ter 24 for details.

To import gretl output into a word processor, you may copy and paste from an output window,
using its Edit menu (or Copy button, in some contexts) to the target program. Many (not all) gretl
windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”) or as LATEX. If you are
pasting into a word processor, RTF may be a good option because the tabular formatting of the
output is preserved.2 Alternatively, you can save the output to a (plain text) file then import the
file into the target program. When you finish a gretl session you are given the option of saving all
the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command to
send the output directly to a printer.

+ When pasting or importing plain text gretl output into a word processor, select a monospaced or typewriter-
style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font (10-point Courier
should do) to prevent the output lines from being broken in the wrong place.

2Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into appli-
cations that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also that there
appears to be a bug in some versions of Windows, whereby the paste will not work properly unless the “target” application
(e.g. MS Word) is already running prior to copying the material in question.
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2.3 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Tools, Data, View, Add,
Sample, Variable, Model and Help menus.

• File menu

– Open data: Open a native gretl data file or import from other formats. See Chapter 4.

– Append data: Add data to the current working data set, from a gretl data file, a comma-
separated values file or a spreadsheet file.

– Save data: Save the currently open native gretl data file.

– Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

– Export data: Write out the current data set in Comma Separated Values (CSV) format, or
the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix E.

– Send to: Send the current data set as an e-mail attachment.

– New data set: Allows you to create a blank data set, ready for typing in values or for
importing series from a database. See below for more on databases.

– Clear data set: Clear the current data set out of memory. Generally you don’t have to do
this (since opening a new data file automatically clears the old one) but sometimes it’s
useful.

– Script files: A “script” is a file containing a sequence of gretl commands. This item
contains entries that let you open a script you have created previously (“User file”), open
a sample script, or open an editor window in which you can create a new script.

– Session files: A “session” file contains a snapshot of a previous gretl session, including
the data set used and any models or graphs that you saved. Under this item you can
open a saved session or save the current session.

– Databases: Allows you to browse various large databases, either on your own computer
or, if you are connected to the internet, on the gretl database server. See Section 4.3 for
details.

– Function files: Handles “function packages” (see Section 10.5), which allow you to access
functions written by other users and share the ones written by you.

– Exit: Quit the program. You’ll be prompted to save any unsaved work.

• Tools menu

– Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin–Watson).

– P-value finder: Look up p-values from the Gaussian, t, chi-square, F, gamma, binomial or
Poisson distributions. See also the pvalue command in the Gretl Command Reference.

– Distribution graphs: Produce graphs of various probability distributions. In the resulting
graph window, the pop-up menu includes an item “Add another curve”, which enables
you to superimpose a further plot (for example, you can draw the t distribution with
various different degrees of freedom).

– Test statistic calculator: Calculate test statistics and p-values for a range of common hy-
pothesis tests (population mean, variance and proportion; difference of means, variances
and proportions).

– Nonparametric tests: Calculate test statistics for various nonparametric tests (Sign test,
Wilcoxon rank sum test, Wilcoxon signed rank test, Runs test).
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– Seed for random numbers: Set the seed for the random number generator (by default
this is set based on the system time when the program is started).

– Command log: Open a window containing a record of the commands executed so far.

– Gretl console: Open a “console” window into which you can type commands as you would
using the command-line program, gretlcli (as opposed to using point-and-click).

– Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix E.

– Sort variables: Rearrange the listing of variables in the main window, either by ID number
or alphabetically by name.

– NIST test suite: Check the numerical accuracy of gretl against the reference results for
linear regression made available by the (US) National Institute of Standards and Technol-
ogy.

– Preferences: Set the paths to various files gretl needs to access. Choose the font in which
gretl displays text output. Activate or suppress gretl’s messaging about the availability
of program updates, and so on. See the Gretl Command Reference for further details.

• Data menu

– Select all: Several menu items act upon those variables that are currently selected in the
main window. This item lets you select all the variables.

– Display values: Pops up a window with a simple (not editable) printout of the values of
the selected variable or variables.

– Edit values: Opens a spreadsheet window where you can edit the values of the selected
variables.

– Add observations: Gives a dialog box in which you can choose a number of observations
to add at the end of the current dataset; for use with forecasting.

– Remove extra observations: Active only if extra observations have been added automati-
cally in the process of forecasting; deletes these extra observations.

– Read info, Edit info: “Read info” just displays the summary information for the current
data file; “Edit info” allows you to make changes to it (if you have permission to do so).

– Print description: Opens a window containing a full account of the current dataset, in-
cluding the summary information and any specific information on each of the variables.

– Add case markers: Prompts for the name of a text file containing “case markers” (short
strings identifying the individual observations) and adds this information to the data set.
See Chapter 4.

– Remove case markers: Active only if the dataset has case markers identifying the obser-
vations; removes these case markers.

– Dataset structure: invokes a series of dialog boxes which allow you to change the struc-
tural interpretation of the current dataset. For example, if data were read in as a cross
section you can get the program to interpret them as time series or as a panel. See also
section 4.5.

– Compact data: For time-series data of higher than annual frequency, gives you the option
of compacting the data to a lower frequency, using one of four compaction methods
(average, sum, start of period or end of period).

– Expand data: For time-series data, gives you the option of expanding the data to a higher
frequency.

– Transpose data: Turn each observation into a variable and vice versa (or in other words,
each row of the data matrix becomes a column in the modified data matrix); can be useful
with imported data that have been read in “sideways”.

• View menu
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– Icon view: Opens a window showing the content of the current session as a set of icons;
see section 3.4.

– Graph specified vars: Gives a choice between a time series plot, a regular X–Y scatter
plot, an X–Y plot using impulses (vertical bars), an X–Y plot “with factor separation” (i.e.
with the points colored differently depending to the value of a given dummy variable),
boxplots, and a 3-D graph. Serves up a dialog box where you specify the variables to
graph. See Chapter 7 for details.

– Multiple graphs: Allows you to compose a set of up to six small graphs, either pairwise
scatter-plots or time-series graphs. These are displayed together in a single window.

– Summary statistics: Shows a full set of descriptive statistics for the variables selected in
the main window.

– Correlation matrix: Shows the pairwise correlation coefficients for the selected variables.

– Cross Tabulation: Shows a cross-tabulation of the selected variables. This works only if
at least two variables in the data set have been marked as discrete (see Chapter 8).

– Principal components: Produces a Principal Components Analysis for the selected vari-
ables.

– Mahalonobis distances: Computes the Mahalonobis distance of each observation from
the centroid of the selected set of variables.

– Cross-correlogram: Computes and graphs the cross-correlogram for two selected vari-
ables.

• Add menu Offers various standard transformations of variables (logs, lags, squares, etc.) that
you may wish to add to the data set. Also gives the option of adding random variables, and
(for time-series data) adding seasonal dummy variables (e.g. quarterly dummy variables for
quarterly data).

• Sample menu

– Set range: Select a different starting and/or ending point for the current sample, within
the range of data available.

– Restore full range: self-explanatory.

– Define, based on dummy: Given a dummy (indicator) variable with values 0 or 1, this
drops from the current sample all observations for which the dummy variable has value
0.

– Restrict, based on criterion: Similar to the item above, except that you don’t need a pre-
defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the sample is
restricted to observations satisfying that condition. See the entry for genr in the Gretl
Command Reference for details on the Boolean operators that can be used.

– Random sub-sample: Draw a random sample from the full dataset.

– Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see Section 4.6).

– Count missing values: Give a report on observations where data values are missing. May
be useful in examining a panel data set, where it’s quite common to encounter missing
values.

– Set missing value code: Set a numerical value that will be interpreted as “missing” or “not
available”. This is intended for use with imported data, when gretl has not recognized
the missing-value code used.

• Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most options
will be self-explanatory. Note that you can rename a variable and can edit its descriptive label
under “Edit attributes”. You can also “Define a new variable” via a formula (e.g. involving



Chapter 2. Getting started 11

some function of one or more existing variables). For the syntax of such formulae, look at the
online help for “Generate variable syntax” or see the genr command in the Gretl Command
Reference. One simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

• Model menu For details on the various estimators offered under this menu please consult the
Gretl Command Reference. Also see Chapter 16 regarding the estimation of nonlinear models.

• Help menu Please use this as needed! It gives details on the syntax required in various dialog
entries.

2.4 Keyboard shortcuts

When working in the main gretl window, some common operations may be performed using the
keyboard, as shown in the table below.

Return Opens a window displaying the values of the currently selected variables: it is
the same as selecting “Data, Display Values”.

Delete Pressing this key has the effect of deleting the selected variables. A confirma-
tion is required, to prevent accidental deletions.

e Has the same effect as selecting “Edit attributes” from the “Variable” menu.

F2 Same as “e”. Included for compatibility with other programs.

g Has the same effect as selecting “Define new variable” from the “Variable”
menu (which maps onto the genr command).

h Opens a help window for gretl commands.

F1 Same as “h”. Included for compatibility with other programs.

r Refreshes the variable list in the main window: has the same effect as selecting
“Refresh window” from the “Data” menu.

t Graphs the selected variable; a line graph is used for time-series datasets,
whereas a distribution plot is used for cross-sectional data.

2.5 The gretl toolbar

At the bottom left of the main window sits the toolbar.

The icons have the following functions, reading from left to right:

1. Launch a calculator program. A convenience function in case you want quick access to a
calculator when you’re working in gretl. The default program is calc.exe under MS Win-
dows, or xcalc under the X window system. You can change the program under the “Tools,
Preferences, General” menu, “Programs” tab.

2. Start a new script. Opens an editor window in which you can type a series of commands to be
sent to the program as a batch.

3. Open the gretl console. A shortcut to the “Gretl console” menu item (Section 2.3 above).
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4. Open the gretl session icon window.

5. Open a window displaying available gretl function packages.

6. Open this manual in PDF format.

7. Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

8. Open the dialog box for defining a graph.

9. Open the dialog box for estimating a model using ordinary least squares.

10. Open a window listing the sample datasets supplied with gretl, and any other data file collec-
tions that have been installed.
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Modes of working

3.1 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands are
recorded in the form of a “script” or batch file. Such scripts can be edited and re-run, using either
gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “Command log” under
the Tools menu. This log file is called session.inp and it is overwritten whenever you start a new
session. To preserve it, save the script under a different name. Script files will be found most easily,
using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Script files” menu item; to create a
script from scratch use the “File, Script files, New script” item or the “new script” toolbar button.
In either case a script window will open (see Figure 3.1).

Figure 3.1: Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1) Save
the file; (2) Save the file under a specified name; (3) Print the file (this option is not available on all
platforms); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste the selected text;
(7) Find and replace text; (8) Undo the last Paste or Replace action; (9) Help (if you place the cursor
in a command word and press the question mark you will get help on that command); (10) Close
the window.

When you execute the script, by clicking on the Execute icon or by pressing Ctrl-r, all output is
directed to a single window, where it can be edited, saved or copied to the clipboard. To learn
more about the possibilities of scripting, take a look at the gretl Help item “Command reference,”

13
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or start up the command-line program gretlcli and consult its help, or consult the Gretl Command
Reference.

If you run the script when part of it is highlighted, gretl will only run that portion. Moreover, if you
want to run just the current line, you can do so by pressing Ctrl-Enter.1

Clicking the right mouse button in the script editor window produces a pop-up menu. This gives
you the option of executing either the line on which the cursor is located, or the selected region of
the script if there’s a selection in place. If the script is editable, this menu also gives the option of
adding or removing comment markers from the start of the line or lines.

The gretl package includes over 70 “practice” scripts. Most of these relate to Ramanathan (2002),
but they may also be used as a free-standing introduction to scripting in gretl and to various points
of econometric theory. You can explore the practice files under “File, Script files, Practice file” There
you will find a listing of the files along with a brief description of the points they illustrate and the
data they employ. Open any file and run it to see the output. Note that long commands in a script
can be broken over two or more lines, using backslash as a continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting each
method where it offers greater convenience. Here are two suggestions.

• Open a data file in the GUI. Explore the data — generate graphs, run regressions, perform
tests. Then open the Command log, edit out any redundant commands, and save it under
a specific name. Run the script to generate a single file containing a concise record of your
work.

• Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in the Gretl Command Reference).
Typically this sort of thing can be accomplished more efficiently via commands assembled
with forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the data
via the GUI. To revisit the data at a later point, open and rerun the “preparatory” script first.

Scripts and data files

One common way of doing econometric research with gretl is as follows: compose a script; execute
the script; inspect the output; modify the script; run it again — with the last three steps repeated
as many times as necessary. In this context, note that when you open a data file this clears out
most of gretl’s internal state. It’s therefore probably a good idea to have your script start with an
open command: the data file will be re-opened each time, and you can be confident you’re getting
“fresh” results.

One further point should be noted. When you go to open a new data file via the graphical interface,
you are always prompted: opening a new data file will lose any unsaved work, do you really want
to do this? When you execute a script that opens a data file, however, you are not prompted. The
assumption is that in this case you’re not going to lose any work, because the work is embodied
in the script itself (and it would be annoying to be prompted at each iteration of the work cycle
described above).

This means you should be careful if you’ve done work using the graphical interface and then decide
to run a script: the current data file will be replaced without any questions asked, and it’s your
responsibility to save any changes to your data first.

1This feature is not unique to gretl; other econometric packages offer the same facility. However, experience shows
that while this can be remarkably useful, it can also lead to writing dinosaur scripts that are never meant to be executed
all at once, but rather used as a chaotic repository to cherry-pick snippets from. Since gretl allows you to have several
script windows open at the same time, you may want to keep your scripts tidy and reasonably small.
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3.2 Saving script objects

When you estimate a model using point-and-click, the model results are displayed in a separate
window, offering menus which let you perform tests, draw graphs, save data from the model, and
so on. Ordinarily, when you estimate a model using a script you just get a non-interactive printout
of the results. You can, however, arrange for models estimated in a script to be “captured”, so that
you can examine them interactively when the script is finished. Here is an example of the syntax
for achieving this effect:

Model1 <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment arrow”,
then the model command. You may use names that have embedded spaces if you like, but such
names must be wrapped in double quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl icon view window (see Section 3.4) after
the script is executed. In addition, you can arrange to have a named model displayed (in its own
window) automatically as follows:

Model1.show

Again, if the name contains spaces it must be quoted:

"Model 1".show

The same facility can be used for graphs. For example the following will create a plot of Ct against
Yt, save it under the name “CrossPlot” (it will appear under this name in the icon view window),
and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

You can also save the output from selected commands as named pieces of text (again, these will
appear in the session icon window, from where you can open them later). For example this com-
mand sends the output from an augmented Dickey–Fuller test to a “text object” named ADF1 and
displays it in a window:

ADF1 <- adf 2 x1
ADF1.show

Objects saved in this way (whether models, graphs or pieces of text output) can be destroyed using
the command .free appended to the name of the object, as in ADF1.free.

3.3 The gretl console

A further option is available for your computing convenience. Under gretl’s “Tools” menu you will
find the item “Gretl console” (there is also an “open gretl console” button on the toolbar in the
main window). This opens up a window in which you can type commands and execute them one
by one (by pressing the Enter key) interactively. This is essentially the same as gretlcli’s mode of
operation, except that the GUI is updated based on commands executed from the console, enabling
you to work back and forth as you wish.

In the console, you have “command history”; that is, you can use the up and down arrow keys to
navigate the list of command you have entered to date. You can retrieve, edit and then re-enter a
previous command.
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In console mode, you can create, display and free objects (models, graphs or text) aa described
above for script mode.

3.4 The Session concept

gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it later.
The basic idea is to provide an iconic space containing various objects pertaining to your current
working session (see Figure 3.2). You can add objects (represented by icons) to this space as you
go along. If you save the session, these added objects should be available again if you re-open the
session later.

Figure 3.2: Icon view: one model and one graph have been added to the default icons

If you start gretl and open a data set, then select “Icon view” from the View menu, you should see
the basic default set of icons: these give you quick access to information on the data set (if any),
correlation matrix (“Correlations”) and descriptive summary statistics (“Summary”). All of these
are activated by double-clicking the relevant icon. The “Data set” icon is a little more complex:
double-clicking opens up the data in the built-in spreadsheet, but you can also right-click on the
icon for a menu of other actions.

To add a model to the Icon view, first estimate it using the Model menu. Then pull down the File
menu in the model window and select “Save to session as icon. . . ” or “Save as icon and close”.
Simply hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the View menu, “Graph specified vars”, or via one of gretl’s
other graph-generating commands). Click on the graph window to bring up the graph menu, and
select “Save to session as icon”.

Once a model or graph is added its icon will appear in the Icon view window. Double-clicking on the
icon redisplays the object, while right-clicking brings up a menu which lets you display or delete
the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent vari-
able — the models differing in respect of which independent variables are included, or perhaps in
respect of the estimator used. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates and standard
errors) for a given model, and each row contains the estimates for a given variable across the
models.

In the Icon view window gretl provides a means of constructing such a table (and copying it in plain
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text, LATEX or Rich Text Format). Here is how to do it:2

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).

3. When you are done estimating the models, open the icon view of your gretl session, by se-
lecting “Icon view” under the View menu in the main gretl window, or by clicking the “session
icon view” icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled “Model table”. Decide which model you wish to
appear in the left-most column of the model table and add it to the table, either by dragging
its icon onto the Model table icon, or by right-clicking on the model icon and selecting “Add
to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model selected
will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its icon.
Under the Edit menu in the window which appears, you have the option of copying the table
to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3.3.

Figure 3.3: Example of model table

2The model table can also be built non-interactively, in script mode. For details on how to do this, see the entry for
modeltab in the Gretl Command Reference.
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The graph page

The “graph page” icon in the session window offers a means of putting together several graphs
for printing on a single page. This facility will work only if you have the LATEX typesetting system
installed, and are able to generate and view either PDF or PostScript output.3

In the Icon view window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the icon (or right-click and select “Display”), a page containing the selected graphs
(in PDF or EPS format) will be composed and opened in your viewer. From there you should be able
to print the page.

To clear the graph page, right-click on its icon and select “Clear”.

On systems other than MS Windows, you may have to adjust the setting for the program used
to view postscript. Find that under the “Programs” tab in the Preferences dialog box (under the
“Tools” menu in the main window). On Windows, you may need to adjust your file associations so
that the appropriate viewer is called for the “Open” action on files with the .ps extension. FIXME
discuss PDF here.

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before quitting
gretl select “Session files, Save session” from the File menu and give a name under which to save
the session. To re-open the session later, either

• Start gretl then re-open the session file by going to the “File, Session files, Open session”, or

• From the command line, type gretl -r sessionfile, where sessionfile is the name under which
the session was saved.

3For PDF output you need pdflatex and either Adobe’s PDF reader or xpdf on X11. For PostScript, you must have dvips
and ghostscript installed, along with a viewer such as gv, ggv or kghostview. The default viewer for systems other than
MS Windows is gv.
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Data files

4.1 Native format

gretl has its own format for data files. Most users will probably not want to read or write such files
outside of gretl itself, but occasionally this may be useful and full details on the file formats are
given in Appendix A.

4.2 Other data file formats

gretl will read various other data formats.

• Plain text (ASCII) files. These can be brought in using gretl’s “File, Open Data, Import ASCII. . . ”
menu item, or the import script command. For details on what gretl expects of such files, see
Section 4.4.

• Comma-Separated Values (CSV) files. These can be imported using gretl’s “File, Open Data,
Import CSV. . . ” menu item, or the import script command. See also Section 4.4.

• Spreadsheets: MS Excel, Gnumeric and Open Document (ODS). These are also brought in us-
ing gretl’s “File, Open Data, Import” menu. The requirements for such files are given in Sec-
tion 4.4.

• Stata data files (.dta).

• SPSS data files (.sav).

• Eviews workfiles (.wf1).1

• JMulTi data files.

When you import data from the ASCII or CSV formats, gretl opens a “diagnostic” window, report-
ing on its progress in reading the data. If you encounter a problem with ill-formatted data, the
messages in this window should give you a handle on fixing the problem.

As of version 1.7.5, gretl also offers ODBC connctivity. Be warned: this is a recent feature meant
for somewhat advanced users; it may still have a few rough edges and there is no GUI interface for
this yet. Interested readers will find more info in appendix B.

For the convenience of anyone wanting to carry out more complex data analysis, gretl has a facility
for writing out data in the native formats of GNU R, Octave, JMulTi and PcGive (see Appendix E). In
the GUI client this option is found under the “File, Export data” menu; in the command-line client
use the store command with the appropriate option flag.

4.3 Binary databases

For working with large amounts of data gretl is supplied with a database-handling routine. A
database, as opposed to a data file, is not read directly into the program’s workspace. A database

1See http://www.ecn.wfu.edu/eviews_format/.
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can contain series of mixed frequencies and sample ranges. You open the database and select
series to import into the working dataset. You can then save those series in a native format data
file if you wish. Databases can be accessed via gretl’s menu item “File, Databases”.

For details on the format of gretl databases, see Appendix A.

Online access to databases

As of version 0.40, gretl is able to access databases via the internet. Several databases are available
from Wake Forest University. Your computer must be connected to the internet for this option to
work. Please see the description of the “data” command under gretl’s Help menu.

+ Visit the gretl data page for details and updates on available data.

Foreign database formats

Thanks to Thomas Doan of Estima, who made available the specification of the database format
used by RATS 4 (Regression Analysis of Time Series), gretl can handle such databases — or at least,
a subset of same, namely time-series databases containing monthly and quarterly series.

Gretl can also import data from PcGive databases. These take the form of a pair of files, one
containing the actual data (with suffix .bn7) and one containing supplementary information (.in7).

4.4 Creating a data file from scratch

There are several ways of doing this:

1. Find, or create using a text editor, a plain text data file and open it with gretl’s “Import ASCII”
option.

2. Use your favorite spreadsheet to establish the data file, save it in Comma Separated Values
format if necessary (this should not be necessary if the spreadsheet format is MS Excel, Gnu-
meric or Open Document), then use one of gretl’s “Import” options.

3. Use gretl’s built-in spreadsheet.

4. Select data series from a suitable database.

5. Use your favorite text editor or other software tools to a create data file in gretl format inde-
pendently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For gretl to read such data success-
fully, certain general conditions must be satisfied:

• The first row must contain valid variable names. A valid variable name is of 15 characters
maximum; starts with a letter; and contains nothing but letters, numbers and the underscore
character, _. (Longer variable names will be truncated to 15 characters.) Qualifications to the
above: First, in the case of an ASCII or CSV import, if the file contains no row with variable
names the program will automatically add names, v1, v2 and so on. Second, by “the first row”
is meant the first relevant row. In the case of ASCII and CSV imports, blank rows and rows
beginning with a hash mark, #, are ignored. In the case of Excel and Gnumeric imports, you
are presented with a dialog box where you can select an offset into the spreadsheet, so that
gretl will ignore a specified number of rows and/or columns.

http://gretl.sourceforge.net/gretl_data.html


Chapter 4. Data files 21

• Data values: these should constitute a rectangular block, with one variable per column (and
one observation per row). The number of variables (data columns) must match the number
of variable names given. See also section 4.6. Numeric data are expected, but in the case of
importing from ASCII/CSV, the program offers limited handling of character (string) data: if
a given column contains character data only, consecutive numeric codes are substituted for
the strings, and once the import is complete a table is printed showing the correspondence
between the strings and the codes.

• Dates (or observation labels): Optionally, the first column may contain strings such as dates,
or labels for cross-sectional observations. Such strings have a maximum of 8 characters (as
with variable names, longer strings will be truncated). A column of this sort should be headed
with the string obs or date, or the first row entry may be left blank.

For dates to be recognized as such, the date strings must adhere to one or other of a set of
specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002:3, 1947Q1. For monthly data: a 4-digit year, followed by a period or
a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

CSV files can use comma, space or tab as the column separator. When you use the “Import CSV”
menu item you are prompted to specify the separator. In the case of “Import ASCII” the program
attempts to auto-detect the separator that was used.

If you use a spreadsheet to prepare your data you are able to carry out various transformations of
the “raw” data with ease (adding things up, taking percentages or whatever): note, however, that
you can also do this sort of thing easily — perhaps more easily — within gretl, by using the tools
under the “Add” menu.

Appending imported data

You may wish to establish a gretl dataset piece by piece, by incremental importation of data from
other sources. This is supported via the “File, Append data” menu items: gretl will check the new
data for conformability with the existing dataset and, if everything seems OK, will merge the data.
You can add new variables in this way, provided the data frequency matches that of the existing
dataset. Or you can append new observations for data series that are already present; in this case
the variable names must match up correctly. Note that by default (that is, if you choose “Open
data” rather than “Append data”), opening a new data file closes the current one.

Using the built-in spreadsheet

Under gretl’s “File, New data set” menu you can choose the sort of dataset you want to establish
(e.g. quarterly time series, cross-sectional). You will then be prompted for starting and ending dates
(or observation numbers) and the name of the first variable to add to the dataset. After supplying
this information you will be faced with a simple spreadsheet into which you can type data values. In
the spreadsheet window, clicking the right mouse button will invoke a popup menu which enables
you to add a new variable (column), to add an observation (append a row at the foot of the sheet),
or to insert an observation at the selected point (move the data down and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace using the
spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or formulas.
Data transformations are done via the “Add” or “Variable” menus in the main gretl window.

Selecting from a database

Another alternative is to establish your dataset by selecting variables from a database.
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Begin with gretl’s “File, Databases” menu item. This has four forks: “Gretl native”, “RATS 4”,
“PcGive” and “On database server”. You should be able to find the file fedstl.bin in the file
selector that opens if you choose the “Gretl native” option — this file, which contains a large
collection of US macroeconomic time series, is supplied with the distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data.2 If you do possess
RATS data you should go into gretl’s “Tools, Preferences, General” dialog, select the Databases tab,
and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake Forest
University) under “On database server”. You can browse these remotely; you also have the option
of installing them onto your own computer. The initial remote databases window has an item
showing, for each file, whether it is already installed locally (and if so, if the local version is up to
date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s workspace
by using the “Series, Import” menu item in the database window, or via the popup menu that ap-
pears if you click the right mouse button, or by dragging the series into the program’s main window.

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts of
data already in machine readable form. You will, of course, need to study the gretl data formats
(XML format or “traditional” format) as described in Appendix A.

4.5 Structuring a dataset

Once your data are read by gretl, it may be necessary to supply some information on the nature of
the data. We distinguish between three kinds of datasets:

1. Cross section

2. Time series

3. Panel data

The primary tool for doing this is the “Data, Dataset structure” menu entry in the graphical inter-
face, or the setobs command for scripts and the command-line interface.

Cross sectional data

By a cross section we mean observations on a set of “units” (which may be firms, countries, in-
dividuals, or whatever) at a common point in time. This is the default interpretation for a data
file: if gretl does not have sufficient information to interpret data as time-series or panel data,
they are automatically interpreted as a cross section. In the unlikely event that cross-sectional data
are wrongly interpreted as time series, you can correct this by selecting the “Data, Dataset struc-
ture” menu item. Click the “cross-sectional” radio button in the dialog box that appears, then click
“Forward”. Click “OK” to confirm your selection.

Time series data

When you import data from a spreadsheet or plain text file, gretl will make fairly strenuous efforts
to glean time-series information from the first column of the data, if it looks at all plausible that
such information may be present. If time-series structure is present but not recognized, again you

2See www.estima.com

http://www.estima.com/
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can use the “Data, Dataset structure” menu item. Select “Time series” and click “Forward”; select the
appropriate data frequency and click “Forward” again; then select or enter the starting observation
and click “Forward” once more. Finally, click “OK” to confirm the time-series interpretation if it is
correct (or click “Back” to make adjustments if need be).

Besides the basic business of getting a data set interpreted as time series, further issues may arise
relating to the frequency of time-series data. In a gretl time-series data set, all the series must
have the same frequency. Suppose you wish to make a combined dataset using series that, in their
original state, are not all of the same frequency. For example, some series are monthly and some
are quarterly.

Your first step is to formulate a strategy: Do you want to end up with a quarterly or a monthly data
set? A basic point to note here is that “compacting” data from a higher frequency (e.g. monthly) to
a lower frequency (e.g. quarterly) is usually unproblematic. You lose information in doing so, but
in general it is perfectly legitimate to take (say) the average of three monthly observations to create
a quarterly observation. On the other hand, “expanding” data from a lower to a higher frequency is
not, in general, a valid operation.

In most cases, then, the best strategy is to start by creating a data set of the lower frequency, and
then to compact the higher frequency data to match. When you import higher-frequency data from
a database into the current data set, you are given a choice of compaction method (average, sum,
start of period, or end of period). In most instances “average” is likely to be appropriate.

You can also import lower-frequency data into a high-frequency data set, but this is generally not
recommended. What gretl does in this case is simply replicate the values of the lower-frequency
series as many times as required. For example, suppose we have a quarterly series with the value
35.5 in 1990:1, the first quarter of 1990. On expansion to monthly, the value 35.5 will be assigned
to the observations for January, February and March of 1990. The expanded variable is therefore
useless for fine-grained time-series analysis, outside of the special case where you know that the
variable in question does in fact remain constant over the sub-periods.

When the current data frequency is appropriate, gretl offers both “Compact data” and “Expand
data” options under the “Data” menu. These options operate on the whole data set, compacting or
exanding all series. They should be considered “expert” options and should be used with caution.

Panel data

Panel data are inherently three dimensional — the dimensions being variable, cross-sectional unit,
and time-period. For example, a particular number in a panel data set might be identified as the
observation on capital stock for General Motors in 1980. (A note on terminology: we use the
terms “cross-sectional unit”, “unit” and “group” interchangeably below to refer to the entities that
compose the cross-sectional dimension of the panel. These might, for instance, be firms, countries
or persons.)

For representation in a textual computer file (and also for gretl’s internal calculations) the three
dimensions must somehow be flattened into two. This “flattening” involves taking layers of the
data that would naturally stack in a third dimension, and stacking them in the vertical dimension.

Gretl always expects data to be arranged “by observation”, that is, such that each row represents
an observation (and each variable occupies one and only one column). In this context the flattening
of a panel data set can be done in either of two ways:

• Stacked time series: the successive vertical blocks each comprise a time series for a given
unit.

• Stacked cross sections: the successive vertical blocks each comprise a cross-section for a
given period.

You may input data in whichever arrangement is more convenient. Internally, however, gretl always
stores panel data in the form of stacked time series.
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When you import panel data into gretl from a spreadsheet or comma separated format, the panel
nature of the data will not be recognized automatically (most likely the data will be treated as
“undated”). A panel interpretation can be imposed on the data using the graphical interface or via
the setobs command.

In the graphical interface, use the menu item “Data, Dataset structure”. In the first dialog box
that appears, select “Panel”. In the next dialog you have a three-way choice. The first two options,
“Stacked time series” and “Stacked cross sections” are applicable if the data set is already organized
in one of these two ways. If you select either of these options, the next step is to specify the number
of cross-sectional units in the data set. The third option, “Use index variables”, is applicable if the
data set contains two variables that index the units and the time periods respectively; the next step
is then to select those variables. For example, a data file might contain a country code variable and
a variable representing the year of the observation. In that case gretl can reconstruct the panel
structure of the data regardless of how the observation rows are organized.

The setobs command has options that parallel those in the graphical interface. If suitable index
variables are available you can do, for example

setobs unitvar timevar --panel-vars

where unitvar is a variable that indexes the units and timevar is a variable indexing the periods.
Alternatively you can use the form setobs freq 1:1 structure, where freq is replaced by the “block
size” of the data (that is, the number of periods in the case of stacked time series, or the number
of units in the case of stacked cross-sections) and structure is either --stacked-time-series or
--stacked-cross-section. Two examples are given below: the first is suitable for a panel in
the form of stacked time series with observations from 20 periods; the second for stacked cross
sections with 5 units.

setobs 20 1:1 --stacked-time-series
setobs 5 1:1 --stacked-cross-section

Panel data arranged by variable

Publicly available panel data sometimes come arranged “by variable.” Suppose we have data on two
variables, x1 and x2, for each of 50 states in each of 5 years (giving a total of 250 observations
per variable). One textual representation of such a data set would start with a block for x1, with
50 rows corresponding to the states and 5 columns corresponding to the years. This would be
followed, vertically, by a block with the same structure for variable x2. A fragment of such a data
file is shown below, with quinquennial observations 1965–1985. Imagine the table continued for
48 more states, followed by another 50 rows for variable x2.

x1

1965 1970 1975 1980 1985

AR 100.0 110.5 118.7 131.2 160.4

AZ 100.0 104.3 113.8 120.9 140.6

If a datafile with this sort of structure is read into gretl,3 the program will interpret the columns as
distinct variables, so the data will not be usable “as is.” But there is a mechanism for correcting the
situation, namely the stack function within the genr command.

Consider the first data column in the fragment above: the first 50 rows of this column constitute a
cross-section for the variable x1 in the year 1965. If we could create a new variable by stacking the

3Note that you will have to modify such a datafile slightly before it can be read at all. The line containing the variable
name (in this example x1) will have to be removed, and so will the initial row containing the years, otherwise they will be
taken as numerical data.
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first 50 entries in the second column underneath the first 50 entries in the first, we would be on the
way to making a data set “by observation” (in the first of the two forms mentioned above, stacked
cross-sections). That is, we’d have a column comprising a cross-section for x1 in 1965, followed by
a cross-section for the same variable in 1970.

The following gretl script illustrates how we can accomplish the stacking, for both x1 and x2. We
assume that the original data file is called panel.txt, and that in this file the columns are headed
with “variable names” p1, p2, . . . , p5. (The columns are not really variables, but in the first instance
we “pretend” that they are.)

open panel.txt
genr x1 = stack(p1..p5) --length=50
genr x2 = stack(p1..p5) --offset=50 --length=50
setobs 50 1:1 --stacked-cross-section
store panel.gdt x1 x2

The second line illustrates the syntax of the stack function. The double dots within the parenthe-
ses indicate a range of variables to be stacked: here we want to stack all 5 columns (for all 5 years).
The full data set contains 100 rows; in the stacking of variable x1 we wish to read only the first 50
rows from each column: we achieve this by adding --length=50. Note that if you want to stack a
non-contiguous set of columns you can put a comma-separated list within the parentheses, as in

genr x = stack(p1,p3,p5)

On line 3 we do the stacking for variable x2. Again we want a length of 50 for the components of
the stacked series, but this time we want gretl to start reading from the 50th row of the original
data, and we specify --offset=50. Line 4 imposes a panel interpretation on the data; finally, we
save the data in gretl format, with the panel interpretation, discarding the original “variables” p1
through p5.

The illustrative script above is appropriate when the number of variable to be processed is small.
When then are many variables in the data set it will be more efficient to use a command loop to
accomplish the stacking, as shown in the following script. The setup is presumed to be the same
as in the previous section (50 units, 5 periods), but with 20 variables rather than 2.

open panel.txt
loop for i=1..20
genr k = ($i - 1) * 50
genr x$i = stack(p1..p5) --offset=k --length=50

endloop
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 \
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Panel data marker strings

It can be helpful with panel data to have the observations identified by mnemonic markers. A
special function in the genr command is available for this purpose.

In the example above, suppose all the states are identified by two-letter codes in the left-most
column of the original datafile. When the stacking operation is performed, these codes will be
stacked along with the data values. If the first row is marked AR for Arkansas, then the marker AR
will end up being shown on each row containing an observation for Arkansas. That’s all very well,
but these markers don’t tell us anything about the date of the observation. To rectify this we could
do:
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genr time
genr year = 1960 + (5 * time)
genr markers = "%s:%d", marker, year

The first line generates a 1-based index representing the period of each observation, and the second
line uses the time variable to generate a variable representing the year of the observation. The
third line contains this special feature: if (and only if) the name of the new “variable” to generate
is markers, the portion of the command following the equals sign is taken as C-style format string
(which must be wrapped in double quotes), followed by a comma-separated list of arguments.
The arguments will be printed according to the given format to create a new set of observation
markers. Valid arguments are either the names of variables in the dataset, or the string marker
which denotes the pre-existing observation marker. The format specifiers which are likely to be
useful in this context are %s for a string and %d for an integer. Strings can be truncated: for
example %.3s will use just the first three characters of the string. To chop initial characters off
an existing observation marker when constructing a new one, you can use the syntax marker + n,
where n is a positive integer: in the case the first n characters will be skipped.

After the commands above are processed, then, the observation markers will look like, for example,
AR:1965, where the two-letter state code and the year of the observation are spliced together with
a colon.

4.6 Missing data values

These are represented internally as DBL_MAX, the largest floating-point number that can be repre-
sented on the system (which is likely to be at least 10 to the power 300, and so should not be
confused with legitimate data values). In a native-format data file they should be represented as
NA. When importing CSV data gretl accepts several common representations of missing values in-
cluding −999, the string NA (in upper or lower case), a single dot, or simply a blank cell. Blank cells
should, of course, be properly delimited, e.g. 120.6,,5.38, in which the middle value is presumed
missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:

• In calculating descriptive statistics (mean, standard deviation, etc.) under the summary com-
mand, missing values are simply skipped and the sample size adjusted appropriately.

• In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
time series work due to the inclusion of lags, first differences and so on; missing values at the
end of the range are not uncommon due to differential updating of series and possibly the
inclusion of leads.

If gretl detects any missing values “inside” the (possibly truncated) sample range for a regression,
the result depends on the character of the dataset and the estimator chosen. In many cases, the
program will automatically skip the missing observations when calculating the regression results.
In this situation a message is printed stating how many observations were dropped. On the other
hand, the skipping of missing observations is not supported for all procedures: exceptions include
all autoregressive estimators, system estimators such as SUR, and nonlinear least squares. In the
case of panel data, the skipping of missing observations is supported only if their omission leaves
a balanced panel. If missing observations are found in cases where they are not supported, gretl
gives an error message and refuses to produce estimates.

In case missing values in the middle of a dataset present a problem, the misszero function (use
with care!) is provided under the genr command. By doing genr foo = misszero(bar) you can
produce a series foo which is identical to bar except that any missing values become zeros. Then
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you can use carefully constructed dummy variables to, in effect, drop the missing observations
from the regression while retaining the surrounding sample range.4

4.7 Maximum size of data sets

Basically, the size of data sets (both the number of variables and the number of observations per
variable) is limited only by the characteristics of your computer. Gretl allocates memory dynami-
cally, and will ask the operating system for as much memory as your data require. Obviously, then,
you are ultimately limited by the size of RAM.

Aside from the multiple-precision OLS option, gretl uses double-precision floating-point numbers
throughout. The size of such numbers in bytes depends on the computer platform, but is typically
eight. To give a rough notion of magnitudes, suppose we have a data set with 10,000 observations
on 500 variables. That’s 5 million floating-point numbers or 40 million bytes. If we define the
megabyte (MB) as 1024× 1024 bytes, as is standard in talking about RAM, it’s slightly over 38 MB.
The program needs additional memory for workspace, but even so, handling a data set of this size
should be quite feasible on a current PC, which at the time of writing is likely to have at least 256
MB of RAM.

If RAM is not an issue, there is one further limitation on data size (though it’s very unlikely to
be a binding constraint). That is, variables and observations are indexed by signed integers, and
on a typical PC these will be 32-bit values, capable of representing a maximum positive value of
231 − 1 = 2,147,483,647.

The limits mentioned above apply to gretl’s “native” functionality. There are tighter limits with
regard to two third-party programs that are available as add-ons to gretl for certain sorts of time-
series analysis including seasonal adjustment, namely TRAMO/SEATS and X-12-ARIMA. These pro-
grams employ a fixed-size memory allocation, and can’t handle series of more than 600 observa-
tions.

4.8 Data file collections

If you’re using gretl in a teaching context you may be interested in adding a collection of data files
and/or scripts that relate specifically to your course, in such a way that students can browse and
access them easily.

There are three ways to access such collections of files:

• For data files: select the menu item “File, Open data, Sample file”, or click on the folder icon
on the gretl toolbar.

• For script files: select the menu item “File, Script files, Practice file”.

When a user selects one of the items:

• The data or script files included in the gretl distribution are automatically shown (this includes
files relating to Ramanathan’s Introductory Econometrics and Greene’s Econometric Analysis).

• The program looks for certain known collections of data files available as optional extras,
for instance the datafiles from various econometrics textbooks (Davidson and MacKinnon,
Gujarati, Stock and Watson, Verbeek, Wooldridge) and the Penn World Table (PWT 5.6). (See
the data page at the gretl website for information on these collections.) If the additional files
are found, they are added to the selection windows.

4genr also offers the inverse function to misszero, namely zeromiss, which replaces zeros in a given series with the
missing observation code.

http://gretl.sourceforge.net/gretl_data.html
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• The program then searches for valid file collections (not necessarily known in advance) in
these places: the “system” data directory, the system script directory, the user directory,
and all first-level subdirectories of these. For reference, typical values for these directories
are shown in Table 4.1. (Note that PERSONAL is a placeholder that is expanded by Windows,
corresponding to “My Documents” on English-language systems.)

Linux MS Windows

system data dir /usr/share/gretl/data c:\Program Files\gretl\data

system script dir /usr/share/gretl/scripts c:\Program Files\gretl\scripts

user dir $HOME/gretl PERSONAL\gretl

Table 4.1: Typical locations for file collections

Any valid collections will be added to the selection windows. So what constitutes a valid file collec-
tion? This comprises either a set of data files in gretl XML format (with the .gdt suffix) or a set of
script files containing gretl commands (with .inp suffix), in each case accompanied by a “master
file” or catalog. The gretl distribution contains several example catalog files, for instance the file
descriptions in the misc sub-directory of the gretl data directory and ps_descriptions in the
misc sub-directory of the scripts directory.

If you are adding your own collection, data catalogs should be named descriptions and script
catalogs should be be named ps_descriptions. In each case the catalog should be placed (along
with the associated data or script files) in its own specific sub-directory (e.g. /usr/share/gretl/
data/mydata or c:\userdata\gretl\data\mydata).

The syntax of the (plain text) description files is straightforward. Here, for example, are the first
few lines of gretl’s “misc” data catalog:

# Gretl: various illustrative datafiles
"arma","artificial data for ARMA script example"
"ects_nls","Nonlinear least squares example"
"hamilton","Prices and exchange rate, U.S. and Italy"

The first line, which must start with a hash mark, contains a short name, here “Gretl”, which
will appear as the label for this collection’s tab in the data browser window, followed by a colon,
followed by an optional short description of the collection.

Subsequent lines contain two elements, separated by a comma and wrapped in double quotation
marks. The first is a datafile name (leave off the .gdt suffix here) and the second is a short de-
scription of the content of that datafile. There should be one such line for each datafile in the
collection.

A script catalog file looks very similar, except that there are three fields in the file lines: a filename
(without its .inp suffix), a brief description of the econometric point illustrated in the script, and
a brief indication of the nature of the data used. Again, here are the first few lines of the supplied
“misc” script catalog:

# Gretl: various sample scripts
"arma","ARMA modeling","artificial data"
"ects_nls","Nonlinear least squares (Davidson)","artificial data"
"leverage","Influential observations","artificial data"
"longley","Multicollinearity","US employment"

If you want to make your own data collection available to users, these are the steps:

1. Assemble the data, in whatever format is convenient.

/usr/share/gretl/data/mydata
/usr/share/gretl/data/mydata


Chapter 4. Data files 29

2. Convert the data to gretl format and save as gdt files. It is probably easiest to convert the data
by importing them into the program from plain text, CSV, or a spreadsheet format (MS Excel
or Gnumeric) then saving them. You may wish to add descriptions of the individual variables
(the “Variable, Edit attributes” menu item), and add information on the source of the data (the
“Data, Edit info” menu item).

3. Write a descriptions file for the collection using a text editor.

4. Put the datafiles plus the descriptions file in a subdirectory of the gretl data directory (or user
directory).

5. If the collection is to be distributed to other people, package the data files and catalog in some
suitable manner, e.g. as a zipfile.

If you assemble such a collection, and the data are not proprietary, we would encourage you to
submit the collection for packaging as a gretl optional extra.
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Special functions in genr

5.1 Introduction

The genr command provides a flexible means of defining new variables. It is documented in the
Gretl Command Reference. This chapter offers a more expansive discussion of some of the special
functions available via genr and some of the finer points of the command.

5.2 Long-run variance

As is well known, the variance of the average of T random variables x1, x2, . . . , xT with equal vari-
ance σ 2 equals σ 2/T if the data are uncorrelated. In this case, the sample variance of xt over the
sample size provides a consistent estimator.

If, however, there is serial correlation among the xts, the variance of X̄ = T−1
∑T
t=1 xt must be

estimated differently. One of the most widely used statistics for this purpose is a nonparametric
kernel estimator with the Bartlett kernel defined as

ω̂2(k) = T−1
T−k∑
t=k

 k∑
i=−k

wi(xt − X̄)(xt−i − X̄)
 , (5.1)

where the integer k is known as the window size and thewi terms are the so-called Bartlett weights,
defined as wi = 1 − |i|

k+1 . It can be shown that, for k large enough, ω̂2(k)/T yields a consistent
estimator of the variance of X̄.

Gretl implements this estimator by means of the function lrvar(), which takes two arguments:
the series whose long-run variance must be estimated and the scalar k. If k is negative, the popular
choice T 1/3 is used.

5.3 Time-series filters

One sort of specialized function in genr is time-series filtering. In addition to the usual application
of lags and differences, gretl provides fractional differencing and two filters commonly used in
macroeconomics for trend-cycle decomposition: the Hodrick–Prescott filter (Hodrick and Prescott,
1997) and the Baxter–King bandpass filter (Baxter and King, 1999).

Fractional differencing

The concept of differencing a time series d times is pretty obvious when d is an integer; it may seem
odd when d is fractional. However, this idea has a well-defined mathematical content: consider the
function

f(z) = (1− z)−d,
where z and d are real numbers. By taking a Taylor series expansion around z = 0, we see that

f(z) = 1+ dz + d(d+ 1)
2

z2 + · · ·

30
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or, more compactly,

f(z) = 1+
∞∑
i=1

ψizi

with

ψk =
∏k
i=1(d+ i− 1)

k!
= ψk−1

d+ k− 1
k

The same expansion can be used with the lag operator, so that if we defined

Yt = (1− L)0.5Xt

this could be considered shorthand for

Yt = Xt − 0.5Xt−1 − 0.125Xt−2 − 0.0625Xt−3 − · · ·

In gretl this transformation can be accomplished by the syntax

genr Y = fracdiff(X,0.5)

The Hodrick–Prescott filter

This filter is accessed using the hpfilt() function, which takes one argument, the name of the
variable to be processed.

A time series yt may be decomposed into a trend or growth component gt and a cyclical component
ct .

yt = gt + ct , t = 1,2, . . . , T

The Hodrick–Prescott filter effects such a decomposition by minimizing the following:

T∑
t=1

(yt − gt)2 + λ
T−1∑
t=2

(
(gt+1 − gt)− (gt − gt−1)

)2 .

The first term above is the sum of squared cyclical components ct = yt − gt . The second term is a
multiple λ of the sum of squares of the trend component’s second differences. This second term
penalizes variations in the growth rate of the trend component: the larger the value of λ, the higher
is the penalty and hence the smoother the trend series.

Note that the hpfilt function in gretl produces the cyclical component, ct , of the original series.
If you want the smoothed trend you can subtract the cycle from the original:

genr ct = hpfilt(yt)
genr gt = yt - ct

Hodrick and Prescott (1997) suggest that a value of λ = 1600 is reasonable for quarterly data.
The default value in gretl is 100 times the square of the data frequency (which, of course, yields
1600 for quarterly data). The value can be adjusted using the set command, with a parameter of
hp_lambda. For example, set hp_lambda 1200.

The Baxter and King filter

This filter is accessed using the bkfilt() function, which again takes the name of the variable to
be processed as its single argument.

Consider the spectral representation of a time series yt :

yt =
∫ π
−π
eiωdZ(ω)
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To extract the component of yt that lies between the frequencies ω and ω one could apply a
bandpass filter:

c∗t =
∫ π
−π
F∗(ω)eiωdZ(ω)

where F∗(ω) = 1 for ω < |ω| < ω and 0 elsewhere. This would imply, in the time domain,
applying to the series a filter with an infinite number of coefficients, which is undesirable. The
Baxter and King bandpass filter applies to yt a finite polynomial in the lag operator A(L):

ct = A(L)yt

where A(L) is defined as

A(L) =
k∑

i=−k
aiLi

The coefficients ai are chosen such that F(ω) = A(eiω)A(e−iω) is the best approximation to F∗(ω)
for a given k. Clearly, the higher k the better the approximation is, but since 2k observations have
to be discarded, a compromise is usually sought. Moreover, the filter has also other appealing
theoretical properties, among which the property that A(1) = 0, so a series with a single unit root
is made stationary by application of the filter.

In practice, the filter is normally used with monthly or quarterly data to extract the “business
cycle” component, namely the component between 6 and 36 quarters. Usual choices for k are 8 or
12 (maybe higher for monthly series). The default values for the frequency bounds are 8 and 32,
and the default value for the approximation order, k, is 8. You can adjust these values using the
set command. The keyword for setting the frequency limits is bkbp_limits and the keyword for
k is bkbp_k. Thus for example if you were using monthly data and wanted to adjust the frequency
bounds to 18 and 96, and k to 24, you could do

set bkbp_limits 18 96
set bkbp_k 24

These values would then remain in force for calls to the bkfilt function until changed by a further
use of set.

5.4 Panel data specifics

Dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following sorts:
(a) dummies as unique identifiers for the units or groups, and (b) dummies as unique identifiers for
the time periods. The former may be used to allow the intercept of the regression to differ across
the units, the latter to allow the intercept to differ across periods.

Two special functions are available to create such dummies. These are found under the “Add”
menu in the GUI, or under the genr command in script mode or gretlcli.

1. “unit dummies” (script command genr unitdum). This command creates a set of dummy
variables identifying the cross-sectional units. The variable du_1 will have value 1 in each
row corresponding to a unit 1 observation, 0 otherwise; du_2 will have value 1 in each row
corresponding to a unit 2 observation, 0 otherwise; and so on.

2. “time dummies” (script command genr timedum). This command creates a set of dummy
variables identifying the periods. The variable dt_1 will have value 1 in each row correspond-
ing to a period 1 observation, 0 otherwise; dt_2 will have value 1 in each row corresponding
to a period 2 observation, 0 otherwise; and so on.



Chapter 5. Special functions in genr 33

If a panel data set has the YEAR of the observation entered as one of the variables you can create a
periodic dummy to pick out a particular year, e.g. genr dum = (YEAR=1960). You can also create
periodic dummy variables using the modulus operator, %. For instance, to create a dummy with
value 1 for the first observation and every thirtieth observation thereafter, 0 otherwise, do

genr index
genr dum = ((index-1) % 30) = 0

Lags, differences, trends

If the time periods are evenly spaced you may want to use lagged values of variables in a panel
regression (but see section 15.2 below); you may also wish to construct first differences of variables
of interest.

Once a dataset is identified as a panel, gretl will handle the generation of such variables correctly.
For example the command genr x1_1 = x1(-1) will create a variable that contains the first lag
of x1 where available, and the missing value code where the lag is not available (e.g. at the start of
the time series for each group). When you run a regression using such variables, the program will
automatically skip the missing observations.

When a panel data set has a fairly substantial time dimension, you may wish to include a trend in
the analysis. The command genr time creates a variable named time which runs from 1 to T for
each unit, where T is the length of the time-series dimension of the panel. If you want to create an
index that runs consecutively from 1 to m × T , where m is the number of units in the panel, use
genr index.

Basic statistics by unit

Gretl contains functions which can be used to generate basic descriptive statistics for a given vari-
able, on a per-unit basis; these are pnobs() (number of valid cases), pmin() and pmax() (minimum
and maximum) and pmean() and psd() (mean and standard deviation).

As a brief illustration, suppose we have a panel data set comprising 8 time-series observations on
each of N units or groups. Then the command

genr pmx = pmean(x)

creates a series of this form: the first 8 values (corresponding to unit 1) contain the mean of x for
unit 1, the next 8 values contain the mean for unit 2, and so on. The psd() function works in a
similar manner. The sample standard deviation for group i is computed as

si =
√∑

(x − x̄i)2
Ti − 1

where Ti denotes the number of valid observations on x for the given unit, x̄i denotes the group
mean, and the summation is across valid observations for the group. If Ti < 2, however, the
standard deviation is recorded as 0.

One particular use of psd() may be worth noting. If you want to form a sub-sample of a panel that
contains only those units for which the variable x is time-varying, you can either use

smpl (pmin(x) < pmax(x)) --restrict

or

smpl (psd(x) > 0) --restrict
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Special functions for data manipulation

Besides the functions discussed above, there are some facilities in genr designed specifically for
manipulating panel data — in particular, for the case where the data have been read into the
program from a third-party source and they are not in the correct form for panel analysis. These
facilities are explained in Chapter 4.

5.5 Resampling and bootstrapping

Another specialized function is the resampling, with replacement, of a series. Given an original
data series x, the command

genr xr = resample(x)

creates a new series each of whose elements is drawn at random from the elements of x. If the
original series has 100 observations, each element of x is selected with probability 1/100 at each
drawing. Thus the effect is to “shuffle” the elements of x, with the twist that each element of x may
appear more than once, or not at all, in xr.

The primary use of this function is in the construction of bootstrap confidence intervals or p-values.
Here is a simple example. Suppose we estimate a simple regression of y on x via OLS and find that
the slope coefficient has a reported t-ratio of 2.5 with 40 degrees of freedom. The two-tailed p-
value for the null hypothesis that the slope parameter equals zero is then 0.0166, using the t(40)
distribution. Depending on the context, however, we may doubt whether the ratio of coefficient to
standard error truly follows the t(40) distribution. In that case we could derive a bootstrap p-value
as shown in Example 5.1.

Under the null hypothesis that the slope with respect to x is zero, y is simply equal to its mean plus
an error term. We simulate y by resampling the residuals from the initial OLS and re-estimate the
model. We repeat this procedure a large number of times, and record the number of cases where
the absolute value of the t-ratio is greater than 2.5: the proportion of such cases is our bootstrap
p-value. For a good discussion of simulation-based tests and bootstrapping, see Davidson and
MacKinnon (2004, chapter 4).

Example 5.1: Calculation of bootstrap p-value

ols y 0 x
# save the residuals
genr ui = $uhat
scalar ybar = mean(y)
# number of replications for bootstrap
scalar replics = 10000
scalar tcount = 0
series ysim = 0
loop replics --quiet
# generate simulated y by resampling
ysim = ybar + resample(ui)
ols ysim 0 x
scalar tsim = abs($coeff(x) / $stderr(x))
tcount += (tsim > 2.5)

endloop
printf "proportion of cases with |t| > 2.5 = %g\n", tcount / replics
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5.6 Cumulative densities and p-values

The two functions cdf and pvalue provide complementary means of examining values from several
probability distributions: the standard normal, Student’s t, χ2, F , gamma, and binomial. The syntax
of these functions is set out in the Gretl Command Reference; here we expand on some subtleties.

The cumulative density function or CDF for a random variable is the integral of the variable’s
density from its lower limit (typically either −∞ or 0) to any specified value x. The p-value (at
least the one-tailed, right-hand p-value as returned by the pvalue function) is the complementary
probability, the integral from x to the upper limit of the distribution, typically +∞.

In principle, therefore, there is no need for two distinct functions: given a CDF value p0 you could
easily find the corresponding p-value as 1 − p0 (or vice versa). In practice, with finite-precision
computer arithmetic, the two functions are not redundant. This requires a little explanation. In
gretl, as in most statistical programs, floating point numbers are represented as “doubles” —
double-precision values that typically have a storage size of eight bytes or 64 bits. Since there are
only so many bits available, only so many floating-point numbers can be represented: doubles do
not model the real line. Typically doubles can represent numbers over the range (roughly) ±1.7977×
10308, but only to about 15 digits of precision.

Suppose you’re interested in the left tail of the χ2 distribution with 50 degrees of freedom: you’d
like to know the CDF value for x = 0.9. Take a look at the following interactive session:

? genr p1 = cdf(X, 50, 0.9)
Generated scalar p1 (ID 2) = 8.94977e-35
? genr p2 = pvalue(X, 50, 0.9)
Generated scalar p2 (ID 3) = 1
? genr test = 1 - p2
Generated scalar test (ID 4) = 0

The cdf function has produced an accurate value, but the pvalue function gives an answer of 1,
from which it is not possible to retrieve the answer to the CDF question. This may seem surprising
at first, but consider: if the value of p1 above is correct, then the correct value for p2 is 1−8.94977×
10−35. But there’s no way that value can be represented as a double: that would require over 30
digits of precision.

Of course this is an extreme example. If the x in question is not too far off into one or other tail
of the distribution, the cdf and pvalue functions will in fact produce complementary answers, as
shown below:

? genr p1 = cdf(X, 50, 30)
Generated scalar p1 (ID 2) = 0.0111648
? genr p2 = pvalue(X, 50, 30)
Generated scalar p2 (ID 3) = 0.988835
? genr test = 1 - p2
Generated scalar test (ID 4) = 0.0111648

But the moral is that if you want to examine extreme values you should be careful in selecting the
function you need, in the knowledge that values very close to zero can be represented as doubles
while values very close to 1 cannot.

5.7 Handling missing values

Four special functions are available for the handling of missing values. The boolean function
missing() takes the name of a variable as its single argument; it returns a series with value 1
for each observation at which the given variable has a missing value, and value 0 otherwise (that is,
if the given variable has a valid value at that observation). The function ok() is complementary to
missing; it is just a shorthand for !missing (where ! is the boolean NOT operator). For example,
one can count the missing values for variable x using



Chapter 5. Special functions in genr 36

genr nmiss_x = sum(missing(x))

The function zeromiss(), which again takes a single series as its argument, returns a series where
all zero values are set to the missing code. This should be used with caution — one does not want
to confuse missing values and zeros — but it can be useful in some contexts. For example, one can
determine the first valid observation for a variable x using

genr time
genr x0 = min(zeromiss(time * ok(x)))

The function misszero() does the opposite of zeromiss, that is, it converts all missing values to
zero.

It may be worth commenting on the propagation of missing values within genr formulae. The
general rule is that in arithmetical operations involving two variables, if either of the variables has
a missing value at observation t then the resulting series will also have a missing value at t. The
one exception to this rule is multiplication by zero: zero times a missing value produces zero (since
this is mathematically valid regardless of the unknown value).

5.8 Retrieving internal variables

The genr command provides a means of retrieving various values calculated by the program in
the course of estimating models or testing hypotheses. The variables that can be retrieved in this
way are listed in the Gretl Command Reference; here we say a bit more about the special variables
$test and $pvalue.

These variables hold, respectively, the value of the last test statistic calculated using an explicit
testing command and the p-value for that test statistic. If no such test has been performed at the
time when these variables are referenced, they will produce the missing value code. The “explicit
testing commands” that work in this way are as follows: add (joint test for the significance of vari-
ables added to a model); adf (Augmented Dickey–Fuller test, see below); arch (test for ARCH); chow
(Chow test for a structural break); coeffsum (test for the sum of specified coefficients); cusum (the
Harvey–Collier t-statistic); kpss (KPSS stationarity test, no p-value available); lmtest (see below);
meantest (test for difference of means); omit (joint test for the significance of variables omitted
from a model); reset (Ramsey’s RESET); restrict (general linear restriction); runs (runs test for
randomness); testuhat (test for normality of residual); and vartest (test for difference of vari-
ances). In most cases both a $test and a $pvalue are stored; the exception is the KPSS test, for
which a p-value is not currently available.

An important point to notice about this mechanism is that the internal variables $test and $pvalue
are over-written each time one of the tests listed above is performed. If you want to reference these
values, you must do so at the correct point in the sequence of gretl commands.

A related point is that some of the test commands generate, by default, more than one test statistic
and p-value; in these cases only the last values are stored. To get proper control over the retrieval
of values via $test and $pvalue you should formulate the test command in such a way that the
result is unambiguous. This comment applies in particular to the adf and lmtest commands.

• By default, the adf command generates three variants of the Dickey–Fuller test: one based
on a regression including a constant, one using a constant and linear trend, and one using a
constant and a quadratic trend. When you wish to reference $test or $pvalue in connection
with this command, you can control the variant that is recorded by using one of the flags
--nc, --c, --ct or --ctt with adf.

• By default, the lmtest command (which must follow an OLS regression) performs several
diagnostic tests on the regression in question. To control what is recorded in $test and
$pvalue you should limit the test using one of the flags --logs, --autocorr, --squares or
--white.
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As an aid in working with values retrieved using $test and $pvalue, the nature of the test to which
these values relate is written into the descriptive label for the generated variable. You can read the
label for the variable using the label command (with just one argument, the name of the variable),
to check that you have retrieved the right value. The following interactive session illustrates this
point.

? adf 4 x1 --c
Augmented Dickey-Fuller tests, order 4, for x1
sample size 59
unit-root null hypothesis: a = 1
test with constant
model: (1 - L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.216889
test statistic: t = -1.83491
asymptotic p-value 0.3638

P-values based on MacKinnon (JAE, 1996)
? genr pv = $pvalue
Generated scalar pv (ID 13) = 0.363844
? label pv
pv=Dickey-Fuller pvalue (scalar)

5.9 Numerical procedures

Two special functions are available to aid in the construction of special-purpose estimators, namely
BFGSmax (the BFGS maximizer, discussed in Chapter 17) and fdjac, which produces a forward-
difference approximation to the Jacobian.

The BFGS maximizer

The BFGSmax function takes two arguments: a vector holding the initial values of a set of parame-
ters, and a call to a function that calculates the (scalar) criterion to be maximized, given the current
parameter values and any other relevant data. If the object is in fact minimization, this function
should return the negative of the criterion. On successful completion, BFGSmax returns the maxi-
mized value of the criterion and the matrix given via the first argument holds the parameter values
which produce the maximum. Here is an example:

matrix X = { dataset }
matrix theta = { 1, 100 }’
scalar J = BFGSmax(theta, ObjFunc(&theta, &X))

It is assumed here that ObjFunc is a user-defined function (see Chapter 10) with the following
general set-up:

function ObjFunc (matrix *theta, matrix *X)
scalar val = ... # do some computation
return scalar val

end function

The operation of the BFGS maximizer can be adjusted using the set variables bfgs_maxiter and
bfgs_toler (see Chapter 17). In addition you can provoke verbose output from the maximizer by
assigning a positive value to max_verbose, again via the set command.

The Rosenbrock function is often used as a test problem for optimization algorithms. It is also
known as “Rosenbrock’s Valley” or “Rosenbrock’s Banana Function”, on account of the fact that its
contour lines are banana-shaped. It is defined by:

f(x,y) = (1− x)2 + 100(y − x2)2
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Example 5.2: Finding the minimum of the Rosenbrock function

function Rosenbrock(matrix *param)
scalar x = param[1]
scalar y = param[2]
scalar f = -(1-x)^2 - 100 * (y - x^2)^2
return scalar f

end function

nulldata 10

matrix theta = { 0 , 0 }

set max_verbose 1
M = BFGSmax(theta, Rosenbrock(&theta))

print theta

The function has a global minimum at (x,y) = (1,1) where f(x,y) = 0. Example 5.2 shows a gretl
script that discovers the minimum using BFGSmax (giving a verbose account of progress).

Computing a Jacobian

Gretl offers the possibility of differentiating numerically a user-defined function via the fdjac
function.

This function again takes two arguments: an n × 1 matrix holding initial parameter values and a
function call that calculates and returns an m × 1 matrix, given the current parameter values and
any other relevant data. On successful completion it returns anm×nmatrix holding the Jacobian.
For example,

matrix Jac = fdjac(theta, SumOC(&theta, &X))

where we assume that SumOC is a user-defined function with the following structure:

function SumOC (matrix *theta, matrix *X)
matrix V = ... # do some computation
return matrix V

end function

This may come in handy in several cases: for example, if you use BFGSmax to estimate a model, you
may wish to calculate a numerical approximation to the relevant Jacobian to construct a covariance
matrix for your estimates.

Another example is the delta method: if you have a consistent estimator of a vector of parameters
θ̂, and a consistent estimate of its covariance matrix Σ, you may need to compute estimates for a
nonlinear continuous transformationψ = g(θ). In this case, a standard result in asymptotic theory
is that  θ̂

p−→ θ
√
T
(
θ̂ − θ

)
d−→ N(0,Σ)

 =⇒
 ψ̂ = g(θ̂) p−→ ψ = g(θ)
√
T
(
ψ̂−ψ

) d−→ N(0, JΣJ′)


where T is the sample size and J is the Jacobian ∂g(x)
∂x

∣∣∣
x=θ .
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Script 5.3 exemplifies such a case: the example is taken from Greene (2003), section 9.3.1. The
slight differences between the results reported in the original source and what gretl returns are
due to the fact that the Jacobian is computed numerically, rather than analytically as in the book.

5.10 The discrete Fourier transform

The discrete Fourier transform can be best thought of as a linear, invertible transform of a complex
vector. Hence, if x is an n-dimensional vector whose k-th element is xk = ak+ ibk, then the output
of the discrete Fourier transform is a vector f = F(x) whose k-th element is

fk =
n−1∑
j=0

e−iω(j,k)xj

where ω(j, k) = 2πi jkn . Since the transformation is invertible, the vector x can be recovered from
f via the so-called inverse transform

xk =
1
n

n−1∑
j=0

eiω(j,k)fj .

The Fourier transform is used in many diverse situations on account of this key property: the
convolution of two vectors can be performed efficiently by multiplying the elements of their Fourier
transforms and inverting the result. If

zk =
n∑
j=1

xjyk−j ,

then
F(z) = F(x)�F(y).

That is, F(z)k = F(x)kF(y)k.
For computing the Fourier transform, gretl uses the external library fftw3: see Frigo and Johnson
(2003). This guarantees extreme speed and accuracy. In fact, the CPU time needed to perform
the transform is O(n logn) for any n. This is why the array of numerical techniques employed in
fftw3 is commonly known as the Fast Fourier Transform.

Gretl provides two matrix functions1 for performing the Fourier transform and its inverse: fft and
ffti. In fact, gretl’s implementation of the Fourier transform is somewhat more specialized: the
input to the fft function is understood to be real. Conversely, ffti takes a complex argument and
delivers a real result. For example:

x1 = { 1 ; 2 ; 3 }
# perform the transform
f = fft(a)
# perform the inverse transform
x2 = ffti(f)

yields

x1 =


1

2

3

 f =


6 0

−1.5 0.866

−1.5 −0.866

 x2 =


1

2

3


where the first column of f holds the real part and the second holds the complex part. In general,
if the input to fft has n columns, the output has 2n columns, where the real parts are stored in

1See chapter 12.
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the odd columns and the complex parts in the even ones. Should it be necessary to compute the
Fourier transform on several vectors with the same number of elements, it is numerically more
efficient to group them into a matrix rather than invoking fft for each vector separately.

As an example, consider the multiplication of two polynomals:

a(x) = 1+ 0.5x
b(x) = 1+ 0.3x − 0.8x2

c(x) = a(x) · b(x) = 1+ 0.8x − 0.65x2 − 0.4x3

The coefficients of the polynomial c(x) are the convolution of the coefficents of a(x) and b(x); the
following gretl code fragment illustrates how to compute the coefficients of c(x):

# define the two polynomials
a = { 1, 0.5, 0, 0 }’
b = { 1, 0.3, -0.8, 0 }’
# perform the transforms
fa = fft(a)
fb = fft(b)
# complex-multiply the two transforms
fc = cmult(fa, fb)
# compute the coefficients of c via the inverse transform
c = ffti(fc)

Maximum efficiency would have been achieved by grouping a and b into a matrix. The computa-
tional advantage is so little in this case that the exercise is a bit silly, but the following alternative
may be preferable for a large number of rows/columns:

# define the two polynomials
a = { 1 ; 0.5; 0 ; 0 }
b = { 1 ; 0.3 ; -0.8 ; 0 }
# perform the transforms jointly
f = fft(a ~ b)
# complex-multiply the two transforms
fc = cmult(f[,1:2], f[,3:4])
# compute the coefficients of c via the inverse transform
c = ffti(fc)

Traditionally, the Fourier tranform in econometrics has been mostly used in time-series analysis,
the periodogram being the best known example. Example script 5.4 shows how to compute the
periodogram of a time series via the fft function.
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Example 5.3: Delta Method

function MPC(matrix *param, matrix *Y)
beta = param[2]
gamma = param[3]
y = Y[1]
matrix ret = beta*gamma*y^(gamma-1)
return matrix ret

end function

# William Greene, Econometric Analysis, 5e, Chapter 9
set echo off
set messages off
open greene5_1.gdt

# Use OLS to initialize the parameters
ols realcons 0 realdpi --quiet
genr a = $coeff(0)
genr b = $coeff(realdpi)
genr g = 1.0

# Run NLS with analytical derivatives
nls realcons = a + b * (realdpi^g)
deriv a = 1
deriv b = realdpi^g
deriv g = b * realdpi^g * log(realdpi)

end nls

matrix Y = realdpi[2000:4]
matrix theta = $coeff
matrix V = $vcv

mpc = MPC(&theta, &Y)
matrix Jac = fdjac(theta, MPC(&theta, &Y))
Sigma = qform(Jac, V)

printf "\nmpc = %g, std.err = %g\n", mpc, sqrt(Sigma)
scalar teststat = (mpc-1)/sqrt(Sigma)
printf "\nTest for MPC = 1: %g (p-value = %g)\n", \

teststat, pvalue(n,abs(teststat))
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Example 5.4: Periodogram via the Fourier transform

nulldata 50
# generate an AR(1) process
series e = normal()
series x = 0
x = 0.9*x(-1) + e
# compute the periodogram
scale = 2*pi*$nobs
X = { x }
F = fft(X)
S = sumr(F.^2)
S = S[2:($nobs/2)+1]/scale
omega = seq(1,($nobs/2))’ .* (2*pi/$nobs)
omega = omega ~ S
# compare the built-in command
pergm x
print omega
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Sub-sampling a dataset

6.1 Introduction

Some subtle issues can arise here. This chapter attempts to explain the issues.

A sub-sample may be defined in relation to a full data set in two different ways: we will refer to
these as “setting” the sample and “restricting” the sample respectively.

6.2 Setting the sample

By “setting” the sample we mean defining a sub-sample simply by means of adjusting the starting
and/or ending point of the current sample range. This is likely to be most relevant for time-series
data. For example, one has quarterly data from 1960:1 to 2003:4, and one wants to run a regression
using only data from the 1970s. A suitable command is then

smpl 1970:1 1979:4

Or one wishes to set aside a block of observations at the end of the data period for out-of-sample
forecasting. In that case one might do

smpl ; 2000:4

where the semicolon is shorthand for “leave the starting observation unchanged”. (The semicolon
may also be used in place of the second parameter, to mean that the ending observation should be
unchanged.) By “unchanged” here, we mean unchanged relative to the last smpl setting, or relative
to the full dataset if no sub-sample has been defined up to this point. For example, after

smpl 1970:1 2003:4
smpl ; 2000:4

the sample range will be 1970:1 to 2000:4.

An incremental or relative form of setting the sample range is also supported. In this case a relative
offset should be given, in the form of a signed integer (or a semicolon to indicate no change), for
both the starting and ending point. For example

smpl +1 ;

will advance the starting observation by one while preserving the ending observation, and

smpl +2 -1

will both advance the starting observation by two and retard the ending observation by one.

An important feature of “setting” the sample as described above is that it necessarily results in
the selection of a subset of observations that are contiguous in the full dataset. The structure of
the dataset is therefore unaffected (for example, if it is a quarterly time series before setting the
sample, it remains a quarterly time series afterwards).

43



Chapter 6. Sub-sampling a dataset 44

6.3 Restricting the sample

By “restricting” the sample we mean selecting observations on the basis of some Boolean (logical)
criterion, or by means of a random number generator. This is likely to be most relevant for cross-
sectional or panel data.

Suppose we have data on a cross-section of individuals, recording their gender, income and other
characteristics. We wish to select for analysis only the women. If we have a gender dummy variable
with value 1 for men and 0 for women we could do

smpl gender=0 --restrict

to this effect. Or suppose we want to restrict the sample to respondents with incomes over $50,000.
Then we could use

smpl income>50000 --restrict

A question arises here. If we issue the two commands above in sequence, what do we end up with
in our sub-sample: all cases with income over 50000, or just women with income over 50000? By
default, in a gretl script, the answer is the latter: women with income over 50000. The second
restriction augments the first, or in other words the final restriction is the logical product of the
new restriction and any restriction that is already in place. If you want a new restriction to replace
any existing restrictions you can first recreate the full dataset using

smpl --full

Alternatively, you can add the replace option to the smpl command:

smpl income>50000 --restrict --replace

This option has the effect of automatically re-establishing the full dataset before applying the new
restriction.

Unlike a simple “setting” of the sample, “restricting” the sample may result in selection of non-
contiguous observations from the full data set. It may also change the structure of the data set.

This can be seen in the case of panel data. Say we have a panel of five firms (indexed by the variable
firm) observed in each of several years (identified by the variable year). Then the restriction

smpl year=1995 --restrict

produces a dataset that is not a panel, but a cross-section for the year 1995. Similarly

smpl firm=3 --restrict

produces a time-series dataset for firm number 3.

For these reasons (possible non-contiguity in the observations, possible change in the structure of
the data), gretl acts differently when you “restrict” the sample as opposed to simply “setting” it. In
the case of setting, the program merely records the starting and ending observations and uses these
as parameters to the various commands calling for the estimation of models, the computation of
statistics, and so on. In the case of restriction, the program makes a reduced copy of the dataset
and by default treats this reduced copy as a simple, undated cross-section.1

If you wish to re-impose a time-series or panel interpretation of the reduced dataset you can do so
using the setobs command, or the GUI menu item “Data, Dataset structure”.

1With one exception: if you start with a balanced panel dataset and the restriction is such that it preserves a balanced
panel — for example, it results in the deletion of all the observations for one cross-sectional unit — then the reduced
dataset is still, by default, treated as a panel.
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The fact that “restricting” the sample results in the creation of a reduced copy of the original
dataset may raise an issue when the dataset is very large (say, several thousands of observations).
With such a dataset in memory, the creation of a copy may lead to a situation where the computer
runs low on memory for calculating regression results. You can work around this as follows:

1. Open the full data set, and impose the sample restriction.

2. Save a copy of the reduced data set to disk.

3. Close the full dataset and open the reduced one.

4. Proceed with your analysis.

6.4 Random sampling

With very large datasets (or perhaps to study the properties of an estimator) you may wish to draw
a random sample from the full dataset. This can be done using, for example,

smpl 100 --random

to select 100 cases. If you want the sample to be reproducible, you should set the seed for the
random number generator first, using set. This sort of sampling falls under the “restriction”
category: a reduced copy of the dataset is made.

6.5 The Sample menu items

The discussion above has focused on the script command smpl. You can also use the items under
the Sample menu in the GUI program to select a sub-sample.

The menu items work in the same way as the corresponding smpl variants. When you use the item
“Sample, Restrict based on criterion”, and the dataset is already sub-sampled, you are given the
option of preserving or replacing the current restriction. Replacing the current restriction means,
in effect, invoking the replace option described above (Section 6.3).
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Graphs and plots

7.1 Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured graphing
program with myriad options. It is available from www.gnuplot.info (but note that a suitable copy
of gnuplot is bundled with the packaged versions of gretl for MS Windows and Mac OS X). gretl
gives you direct access, via a graphical interface, to a subset of gnuplot’s options and it tries to
choose sensible values for you; it also allows you to take complete control over graph details if you
wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the following
options.

• Save as PNG: Save the graph in Portable Network Graphics format.

• Save as postscript: Save in encapsulated postscript (EPS) format.

• Save as Windows metafile: Save in Enhanced Metafile (EMF) format.

• Save to session as icon: The graph will appear in iconic form when you select “Icon view” from
the View menu.

• Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

• Print: (Gnome desktop or MS Windows only) lets you print the graph directly.

• Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications such
as MS Word.

• Edit: Opens a controller for the plot which lets you adjust many aspects of its appearance.

• Close: Closes the graph window.

Displaying data labels

In the case of a simple X-Y scatterplot (with or without a line of best fit displayed), some further
options are available if the dataset includes “case markers” (that is, labels identifying each observa-
tion).1 With a scatter plot displayed, when you move the mouse pointer over a data point its label
is shown on the graph. By default these labels are transient: they do not appear in the printed or
copied version of the graph. They can be removed by selecting “Clear data labels” from the graph
pop-up menu. If you want the labels to be affixed permanently (so they will show up when the
graph is printed or copied), you have two options.

• To affix the labels currently shown on the graph, select “Freeze data labels” from the graph
pop-up menu.

1For an example of such a dataset, see the Ramanathan file data4-10: this contains data on private school enrollment
for the 50 states of the USA plus Washington, DC; the case markers are the two-letter codes for the states.

46

http://www.gnuplot.info/


Chapter 7. Graphs and plots 47

• To affix labels for all points in the graph, select “Edit” from the graph pop-up and check the
box titled “Show all data labels”. This option is available only if there are less than 55 data
points, and it is unlikely to produce good results if the points are tightly clustered since the
labels will tend to overlap.

To remove labels that have been affixed in either of these ways, select “Edit” from the graph pop-up
and uncheck “Show all data labels”.

Advanced options

If you know something about gnuplot and wish to get finer control over the appearance of a graph
than is available via the graphical controller (“Edit” option), here’s what to do. In the graph display
window, right-click and choose “Save to session as icon”. Then open the icon view window —
either via the menu item View/Icon view, or by clicking the “session icon view” button on the main-
window toolbar. You should see an icon representing your graph. Right-click on that and select
“Edit plot commands” from the pop-up menu. This opens an editing window with the actual gnuplot
commands displayed. You can edit these commands and either save them for future processing
or send them to gnuplot directly, using the Execute (cogwheel) button on the toolbar in the plot
commands editing window.

To find out more about gnuplot visit www.gnuplot.info. This site has documentation for the current
version of the program in various formats.

See also the entry for gnuplot in the Gretl Command Reference — and the graph and plot com-
mands for “quick and dirty” ASCII graphs.

Figure 7.1: gretl’s gnuplot controller

7.2 Boxplots

These plots (after Tukey and Chambers) display the distribution of a variable. The central box
encloses the middle 50 percent of the data, i.e. it is bounded by the first and third quartiles. The
“whiskers” extend to the minimum and maximum values. A line is drawn across the box at the
median and a “+” sign identifies the mean.

In the case of boxplots with confidence intervals, dotted lines show the limits of an approximate 90
percent confidence interval for the median. This is obtained by the bootstrap method, which can
take a while if the data series is very long.

http://www.gnuplot.info/
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After each variable specified in the boxplot command, a parenthesized boolean expression may
be added, to limit the sample for the variable in question. A space must be inserted between the
variable name or number and the expression. Suppose you have salary figures for men and women,
and you have a dummy variable GENDER with value 1 for men and 0 for women. In that case you
could draw comparative boxplots with the following line in the boxplots dialog:

salary (GENDER=1) salary (GENDER=0)
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Discrete variables

When a variable can take only a finite, typically small, number of values, then the variable is said to
be discrete. Some gretl commands act in a slightly different way when applied to discrete variables;
moreover, gretl provides a few commands that only apply to discrete variables. Specifically, the
dummify and xtab commands (see below) are available only for discrete variables, while the freq
(frequency distribution) command produces different output for discrete variables.

8.1 Declaring variables as discrete

Gretl uses a simple heuristic to judge whether a given variable should be treated as discrete, but
you also have the option of explicitly marking a variable as discrete, in which case the heuristic
check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where this
is taken to mean that they are all integer multiples of 0.25? If this criterion is met, we then ask
whether the variable takes on a “fairly small” set of distinct values, where “fairly small” is defined
as less than or equal to 8. If both conditions are satisfied, the variable is automatically considered
discrete.

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A dialog box
will appear and, if the variable seems suitable, you will see a tick box labeled “Treat this
variable as discrete”. This dialog box can also be invoked via the context menu (right-click on
a variable) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command takes one or
more arguments, which can be either variables or list of variables. For example:

list xlist = x1 x2 x3
discrete z1 xlist z2

This syntax makes it possible to declare as discrete many variables at once, which cannot
presently be done via the graphical interface. The switch --reverse reverses the declaration
of a variable as discrete, or in other words marks it as continuous. For example:

discrete foo
# now foo is discrete
discrete foo --reverse
# now foo is continuous

The command-line variant is more powerful, in that you can mark a variable as discrete even if it
does not seem to be suitable for this treatment.

Note that marking a variable as discrete does not affect its content. It is the user’s responsibility
to make sure that marking a variable as discrete is a sensible thing to do. Note that if you want
to recode a continuous variable into classes, you can use the genr command and its arithmetic
functions, as in the following example:
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nulldata 100
# generate a variable with mean 2 and variance 1
genr x = normal() + 2
# split into 4 classes
genr z = (x>0) + (x>2) + (x>4)
# now declare z as discrete
discrete z

Once a variable is marked as discrete, this setting is remembered when you save the file.

8.2 Commands for discrete variables

The dummify command

The dummify command takes as argument a series x and creates dummy variables for each distinct
value present in x, which must have already been declared as discrete. Example:

open greene22_2
discrete Z5 # mark Z5 as discrete
dummify Z5

The effect of the above command is to generate 5 new dummy variables, labeled DZ5_1 through
DZ5_5, which correspond to the different values in Z5. Hence, the variable DZ5_4 is 1 if Z5 equals
4 and 0 otherwise. This functionality is also available through the graphical interface by selecting
the menu item “Add, Dummies for selected discrete variables”.

The dummify command can also be used with the following syntax:

list dlist = dummify(x)

This not only creates the dummy variables, but also a named list (see section 11.1) that can be used
afterwards. The following example computes summary statistics for the variable Y for each value
of Z5:

open greene22_2
discrete Z5 # mark Z5 as discrete
list foo = dummify(Z5)
loop foreach i foo
smpl $i --restrict --replace
summary Y

end loop
smpl full

Since dummify generates a list, it can be used directly in commands that call for a list as input, such
as ols. For example:

open greene22_2
discrete Z5 # mark Z5 as discrete
ols Y 0 dummify(Z5)

The freq command

The freq command displays absolute and relative frequencies for a given variable. The way fre-
quencies are counted depends on whether the variable is continuous or discrete. This command is
also available via the graphical interface by selecting the “Variable, Frequency distribution” menu
entry.
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For discrete variables, frequencies are counted for each distinct value that the variable takes. For
continuous variables, values are grouped into “bins” and then the frequencies are counted for each
bin. The number of bins, by default, is computed as a function of the number of valid observations
in the currently selected sample via the rule shown in Table 8.1. However, when the command is
invoked through the menu item “Variable, Frequency Plot”, this default can be overridden by the
user.

Observations Bins

8 ≤ n < 16 5

16 ≤ n < 50 7

50 ≤ n ≤ 850 d√ne
n > 850 29

Table 8.1: Number of bins for various sample sizes

For example, the following code

open greene19_1
freq TUCE
discrete TUCE # mark TUCE as discrete
freq TUCE

yields

Read datafile /usr/local/share/gretl/data/greene/greene19_1.gdt
periodicity: 1, maxobs: 32,
observations range: 1-32

Listing 5 variables:
0) const 1) GPA 2) TUCE 3) PSI 4) GRADE

? freq TUCE

Frequency distribution for TUCE, obs 1-32
number of bins = 7, mean = 21.9375, sd = 3.90151

interval midpt frequency rel. cum.

< 13.417 12.000 1 3.12% 3.12% *
13.417 - 16.250 14.833 1 3.12% 6.25% *
16.250 - 19.083 17.667 6 18.75% 25.00% ******
19.083 - 21.917 20.500 6 18.75% 43.75% ******
21.917 - 24.750 23.333 9 28.12% 71.88% **********
24.750 - 27.583 26.167 7 21.88% 93.75% *******

>= 27.583 29.000 2 6.25% 100.00% **

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211
? discrete TUCE # mark TUCE as discrete
? freq TUCE

Frequency distribution for TUCE, obs 1-32

frequency rel. cum.

12 1 3.12% 3.12% *
14 1 3.12% 6.25% *
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17 3 9.38% 15.62% ***
19 3 9.38% 25.00% ***
20 2 6.25% 31.25% **
21 4 12.50% 43.75% ****
22 2 6.25% 50.00% **
23 4 12.50% 62.50% ****
24 3 9.38% 71.88% ***
25 4 12.50% 84.38% ****
26 2 6.25% 90.62% **
27 1 3.12% 93.75% *
28 1 3.12% 96.88% *
29 1 3.12% 100.00% *

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

As can be seen from the sample output, a Doornik-Hansen test for normality is computed auto-
matically. This test is suppressed for discrete variables where the number of distinct values is less
than 10.

This command accepts two options: --quiet, to avoid generation of the histogram when invoked
from the command line and --gamma, for replacing the normality test with Locke’s nonparametric
test, whose null hypothesis is that the data follow a Gamma distribution.

If the distinct values of a discrete variable need to be saved, the values() matrix construct can be
used (see chapter 12).

The xtab command

The xtab command cab be invoked in either of the following ways. First,

xtab ylist ; xlist

where ylist and xlist are lists of discrete variables. This produces cross-tabulations (two-way
frequencies) of each of the variables in ylist (by row) against each of the variables in xlist (by
column). Or second,

xtab xlist

In the second case a full set of cross-tabulations is generated; that is, each variable in xlist is tabu-
lated against each other variable in the list. In the graphical interface, this command is represented
by the “Cross Tabulation” item under the View menu, which is active if at least two variables are
selected.

Here is an example of use:

open greene22_2
discrete Z* # mark Z1-Z8 as discrete
xtab Z1 Z4 ; Z5 Z6

which produces

Cross-tabulation of Z1 (rows) against Z5 (columns)

[ 1][ 2][ 3][ 4][ 5] TOT.

[ 0] 20 91 75 93 36 315
[ 1] 28 73 54 97 34 286
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TOTAL 48 164 129 190 70 601

Pearson chi-square test = 5.48233 (4 df, p-value = 0.241287)

Cross-tabulation of Z1 (rows) against Z6 (columns)

[ 9][ 12][ 14][ 16][ 17][ 18][ 20] TOT.

[ 0] 4 36 106 70 52 45 2 315
[ 1] 3 8 48 45 37 67 78 286

TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 123.177 (6 df, p-value = 3.50375e-24)

Cross-tabulation of Z4 (rows) against Z5 (columns)

[ 1][ 2][ 3][ 4][ 5] TOT.

[ 0] 17 60 35 45 14 171
[ 1] 31 104 94 145 56 430

TOTAL 48 164 129 190 70 601

Pearson chi-square test = 11.1615 (4 df, p-value = 0.0248074)

Cross-tabulation of Z4 (rows) against Z6 (columns)

[ 9][ 12][ 14][ 16][ 17][ 18][ 20] TOT.

[ 0] 1 8 39 47 30 32 14 171
[ 1] 6 36 115 68 59 80 66 430

TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 18.3426 (6 df, p-value = 0.0054306)

Pearson’s χ2 test for independence is automatically displayed, provided that all cells have expected
frequencies under independence greater than 10−7. However, a common rule of thumb states that
this statistic is valid only if the expected frequency is 5 or greater for at least 80 percent of the
cells. If this condition is not met a warning is printed.

Additionally, the --row or --column options can be given: in this case, the output displays row or
column percentages, respectively.

If you want to cut and paste the output of xtab to some other program, e.g. a spreadsheet, you
may want to use the --zeros option; this option causes cells with zero frequency to display the
number 0 instead of being empty.
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Loop constructs

9.1 Introduction

The command loop opens a special mode in which gretl accepts a block of commands to be re-
peated zero or more times. This feature may be useful for, among other things, Monte Carlo
simulations, bootstrapping of test statistics and iterative estimation procedures. The general form
of a loop is:

loop control-expression [ --progressive | --verbose | --quiet ]
loop body

endloop

Five forms of control-expression are available, as explained in section 9.2.

Not all gretl commands are available within loops. The commands that are not presently accepted
in this context are shown in Table 9.1.

Table 9.1: Commands not usable in loops

boxplot corrgm cusum data delete eqnprint function hurst

include leverage modeltab nulldata open qlrtest rmplot run

scatters setmiss setobs tabprint vif xcorrgm

By default, the genr command operates quietly in the context of a loop (without printing informa-
tion on the variable generated). To force the printing of feedback from genr you may specify the
--verbose option to loop. The --quiet option suppresses the usual printout of the number of
iterations performed, which may be desirable when loops are nested.

The --progressive option to loop modifies the behavior of the commands print and store,
and certain estimation commands, in a manner that may be useful with Monte Carlo analyses (see
Section 9.3).

The following sections explain the various forms of the loop control expression and provide some
examples of use of loops.

+ If you are carrying out a substantial Monte Carlo analysis with many thousands of repetitions, memory
capacity and processing time may be an issue. To minimize the use of computer resources, run your script
using the command-line program, gretlcli, with output redirected to a file.

9.2 Loop control variants

Count loop

The simplest form of loop control is a direct specification of the number of times the loop should
be repeated. We refer to this as a “count loop”. The number of repetitions may be a numerical
constant, as in loop 1000, or may be read from a scalar variable, as in loop replics.
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In the case where the loop count is given by a variable, say replics, in concept replics is an
integer; if the value is not integral, it is converted to an integer by truncation. Note that replics is
evaluated only once, when the loop is initially compiled.

While loop

A second sort of control expression takes the form of the keyword while followed by a boolean
expression. For example,

loop while essdiff > .00001

Execution of the commands within the loop will continue so long as (a) the specified condition
evaluates as true and (b) the number of iterations does not exceed the value of the internal vari-
able loop_maxiter. By default this equals 250, but you can specify a different value via the set
command (see the Gretl Command Reference).

Index loop

A third form of loop control uses an index variable, for example i.1 In this case you specify starting
and ending values for the index, which is incremented by one each time round the loop. The syntax
looks like this: loop i=1..20.

The index variable may be a pre-existing scalar; if this is not the case, the variable is created
automatically and is destroyed on exit from the loop.

The index may be used within the loop body in either of two ways: you can access the integer value
of i (see Example 9.4) or you can use its string representation, $i (see Example 9.5).

The starting and ending values for the index can be given in numerical form, or by reference to
predefined scalar variables. In the latter case the variables are evaluated once, at the start of the
loop. In addition, with time series data you can give the starting and ending values in the form of
dates, as in loop i=1950:1..1999:4.

This form of loop control is intended to be quick and easy, and as such it is subject to certain
limitations. You cannot do arithmetic within the loop control expression, as in

loop i=k..2*k # won’t work

But one extension is permitted for convenience: you can inflect a loop control variable with a minus
sign, as in

loop k=-lag..lag # OK

Also note that in this sort of loop the index variable is always incremented by one at each iteration.
If, for example, you have

loop i=m..n

where m and n are scalar variables with values m > n at the time of execution, the index will not be
decremented; rather, the loop will simply be bypassed.

If you need more complex loop control, see the “for” form below.

The index loop is particularly useful in conjunction with the values() matrix function when some
operation must be carried out for each value of some discrete variable (see chapter 8). Consider
the following example:

1It is common programming practice to use simple, one-character names for such variables. However, you may use any
name that is acceptable by gretl: up to 15 characters, starting with a letter, and containing nothing but letters, numerals
and the underscore character.
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open greene22_2
open greene22_2
discrete Z8
v8 = values(Z8)
n = rows(v8)
loop i=1..n
scalar xi = v8[$i]
smpl (Z8=xi) --restrict --replace
printf "mean(Y | Z8 = %g) = %8.5f, sd(Y | Z8 = %g) = %g\n", \
xi, mean(Y), xi, sd(Y)

end loop

In this case, we evaluate the conditional mean and standard deviation of the variable Y for each
value of Z8.

Foreach loop

The fourth form of loop control also uses an index variable, in this case to index a specified list
of strings. The loop is executed once for each string in the list. This can be useful for performing
repetitive operations on a list of variables. Here is an example of the syntax:

loop foreach i peach pear plum
print "$i"

endloop

This loop will execute three times, printing out “peach”, “pear” and “plum” on the respective itera-
tions. The numerical value of the index starts at 1 and is incremented by 1 at each iteration.

If you wish to loop across a list of variables that are contiguous in the dataset, you can give the
names of the first and last variables in the list, separated by “..”, rather than having to type all
the names. For example, say we have 50 variables AK, AL, . . . , WY, containing income levels for the
states of the US. To run a regression of income on time for each of the states we could do:

genr time
loop foreach i AL..WY

ols $i const time
endloop

This loop variant can also be used for looping across the elements in a named list (see chapter 11).
For example:

list ylist = y1 y2 y3
loop foreach i ylist

ols $i const x1 x2
endloop

Note that if you use this idiom inside a function (see chapter 10), looping across a list that has been
supplied to the function as an argument, it is necessary to use the syntax listname.$i to reference
the list-member variables. In the context of the example above, this would mean replacing the third
line with

ols ylist.$i const x1 x2

For loop

The final form of loop control emulates the for statement in the C programming language. The
sytax is loop for, followed by three component expressions, separated by semicolons and sur-
rounded by parentheses. The three components are as follows:
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1. Initialization: This is evaluated only once, at the start of the loop. Common example: setting
a scalar control variable to some starting value.

2. Continuation condition: this is evaluated at the top of each iteration (including the first). If
the expression evaluates as true (non-zero), iteration continues, otherwise it stops. Common
example: an inequality expressing a bound on a control variable.

3. Modifier: an expression which modifies the value of some variable. This is evaluated prior
to checking the continuation condition, on each iteration after the first. Common example: a
control variable is incremented or decremented.

Here’s a simple example:

loop for (r=0.01; r<.991; r+=.01)

In this example the variable r will take on the values 0.01, 0.02, . . . , 0.99 across the 99 iterations.
Note that due to the finite precision of floating point arithmetic on computers it may be necessary
to use a continuation condition such as the above, r<.991, rather than the more “natural” r<=.99.
(Using double-precision numbers on an x86 processor, at the point where you would expect r to
equal 0.99 it may in fact have value 0.990000000000001.)

Any or all of the three expressions governing a for loop may be omitted — the minimal form is
(;;). If the continuation test is omitted it is implicitly true, so you have an infinite loop unless you
arrange for some other way out, such as a break statement.

If the initialization expression in a for loop takes the common form of setting a scalar variable to
a given value, the string representation of that scalar’s value will be available within the loop via
the accessor $varname.

9.3 Progressive mode

If the --progressive option is given for a command loop, special behavior is invoked for certain
commands, namely, print, store and simple estimation commands. By “simple” here we mean
commands which (a) estimate a single equation (as opposed to a system of equations) and (b) do
so by means of a single command statement (as opposed to a block of statements, as with nls and
mle). The paradigm is ols; other possibilities include tsls, wls, logit and so on.

The special behavior is as follows.

Estimators: The results from each individual iteration of the estimator are not printed. Instead,
after the loop is completed you get a printout of (a) the mean value of each estimated coefficient
across all the repetitions, (b) the standard deviation of those coefficient estimates, (c) the mean
value of the estimated standard error for each coefficient, and (d) the standard deviation of the
estimated standard errors. This makes sense only if there is some random input at each step.

print: When this command is used to print the value of a variable, you do not get a print each time
round the loop. Instead, when the loop is terminated you get a printout of the mean and standard
deviation of the variable, across the repetitions of the loop. This mode is intended for use with
variables that have a scalar value at each iteration, for example the error sum of squares from a
regression. Data series cannot be printed in this way.

store: This command writes out the values of the specified scalars, from each time round the
loop, to a specified file. Thus it keeps a complete record of their values across the iterations. For
example, coefficient estimates could be saved in this way so as to permit subsequent examination
of their frequency distribution. Only one such store can be used in a given loop.
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9.4 Loop examples

Monte Carlo example

A simple example of a Monte Carlo loop in “progressive” mode is shown in Example 9.1.

Example 9.1: Simple Monte Carlo loop

nulldata 50
seed 547
genr x = 100 * uniform()
# open a "progressive" loop, to be repeated 100 times
loop 100 --progressive

genr u = 10 * normal()
# construct the dependent variable
genr y = 10*x + u
# run OLS regression
ols y const x
# grab the coefficient estimates and R-squared
genr a = $coeff(const)
genr b = $coeff(x)
genr r2 = $rsq
# arrange for printing of stats on these
print a b r2
# and save the coefficients to file
store coeffs.gdt a b

endloop

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates and R2 across the 100 rep-
etitions. After running the loop, coeffs.gdt, which contains the individual coefficient estimates
from all the runs, can be opened in gretl to examine the frequency distribution of the estimates in
detail.

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) opens a dummy data set, containing just a constant and an index vari-
able, with a series length of 50. Constructed variables can then be added using the genr command.
See the set command for information on generating repeatable pseudo-random series.

Iterated least squares

Example 9.2 uses a “while” loop to replicate the estimation of a nonlinear consumption function of
the form

C = α+ βY γ + ε

as presented in Greene (2000, Example 11.3). This script is included in the gretl distribution under
the name greene11_3.inp; you can find it in gretl under the menu item “File, Script files, Practice
file, Greene...”.

The option --print-final for the ols command arranges matters so that the regression results
will not be printed each time round the loop, but the results from the regression on the last iteration
will be printed when the loop terminates.

Example 9.3 shows how a loop can be used to estimate an ARMA model, exploiting the “outer
product of the gradient” (OPG) regression discussed by Davidson and MacKinnon in their Estimation
and Inference in Econometrics.
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Example 9.2: Nonlinear consumption function

open greene11_3.gdt
# run initial OLS
ols C 0 Y
genr essbak = $ess
genr essdiff = 1
genr beta = $coeff(Y)
genr gamma = 1
# iterate OLS till the error sum of squares converges
loop while essdiff > .00001

# form the linearized variables
genr C0 = C + gamma * beta * Y^gamma * log(Y)
genr x1 = Y^gamma
genr x2 = beta * Y^gamma * log(Y)
# run OLS
ols C0 0 x1 x2 --print-final --no-df-corr --vcv
genr beta = $coeff(x1)
genr gamma = $coeff(x2)
genr ess = $ess
genr essdiff = abs(ess - essbak)/essbak
genr essbak = ess

endloop
# print parameter estimates using their "proper names"
noecho
printf "alpha = %g\n", $coeff(0)
printf "beta = %g\n", beta
printf "gamma = %g\n", gamma

Indexed loop examples

Example 9.4 shows an indexed loop in which the smpl is keyed to the index variable i. Suppose we
have a panel dataset with observations on a number of hospitals for the years 1991 to 2000 (where
the year of the observation is indicated by a variable named year). We restrict the sample to each
of these years in turn and print cross-sectional summary statistics for variables 1 through 4.

Example 9.5 illustrates string substitution in an indexed loop.

The first time round this loop the variable V will be set to equal COMP1987 and the dependent
variable for the ols will be PBT1987. The next time round V will be redefined as equal to COMP1988
and the dependent variable in the regression will be PBT1988. And so on.
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Example 9.3: ARMA 1, 1

open armaloop.gdt

genr c = 0
genr a = 0.1
genr m = 0.1

series e = 1.0
genr de_c = e
genr de_a = e
genr de_m = e

genr crit = 1
loop while crit > 1.0e-9

# one-step forecast errors
genr e = y - c - a*y(-1) - m*e(-1)

# log-likelihood
genr loglik = -0.5 * sum(e^2)
print loglik

# partials of forecast errors wrt c, a, and m
genr de_c = -1 - m * de_c(-1)
genr de_a = -y(-1) -m * de_a(-1)
genr de_m = -e(-1) -m * de_m(-1)

# partials of l wrt c, a and m
genr sc_c = -de_c * e
genr sc_a = -de_a * e
genr sc_m = -de_m * e

# OPG regression
ols const sc_c sc_a sc_m --print-final --no-df-corr --vcv

# Update the parameters
genr dc = $coeff(sc_c)
genr c = c + dc
genr da = $coeff(sc_a)
genr a = a + da
genr dm = $coeff(sc_m)
genr m = m + dm

printf " constant = %.8g (gradient = %#.6g)\n", c, dc
printf " ar1 coefficient = %.8g (gradient = %#.6g)\n", a, da
printf " ma1 coefficient = %.8g (gradient = %#.6g)\n", m, dm

genr crit = $T - $ess
print crit

endloop

genr se_c = $stderr(sc_c)
genr se_a = $stderr(sc_a)
genr se_m = $stderr(sc_m)

noecho
print "
printf "constant = %.8g (se = %#.6g, t = %.4f)\n", c, se_c, c/se_c
printf "ar1 term = %.8g (se = %#.6g, t = %.4f)\n", a, se_a, a/se_a
printf "ma1 term = %.8g (se = %#.6g, t = %.4f)\n", m, se_m, m/se_m
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Example 9.4: Panel statistics

open hospitals.gdt
loop i=1991..2000
smpl (year=i) --restrict --replace
summary 1 2 3 4

endloop

Example 9.5: String substitution

open bea.dat
loop i=1987..2001
genr V = COMP$i
genr TC = GOC$i - PBT$i
genr C = TC - V
ols PBT$i const TC V

endloop
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User-defined functions

10.1 Defining a function

Since version 1.3.3, gretl has contained a mechanism for defining functions, which may be called
via the command line, in the context of a script, or (if packaged appropriately, see section 10.5) via
the program’s graphical interface.

The syntax for defining a function looks like this:

function function-name(parameters)
function body

end function

function-name is the unique identifier for the function. Names must start with a letter. They have
a maximum length of 31 characters; if you type a longer name it will be truncated. Function names
cannot contain spaces. You will get an error if you try to define a function having the same name
as an existing gretl command.

The parameters for a function are given in the form of a comma-separated list. Parameters can be
of any of the types shown below.

Type Description

bool scalar variable acting as a Boolean switch

int scalar variable acting as an integer

scalar scalar variable

series data series

list named list of series

matrix named matrix or vector

string named string or string literal

Each element in the listing of parameters must include two terms: a type specifier, and the name
by which the parameter shall be known within the function. An example follows:

function myfunc(series y, list xvars, bool verbose)

Each of the type-specifiers, with the exception of list and string, may be modified by prepending
an asterisk to the associated parameter name, as in

function myfunc(series *y, scalar *b)

The meaning of this modification is explained below (see section 10.4); it is related to the use of
pointer arguments in the C programming language.

Function parameters: optional refinements

Besides the required elements mentioned above, the specification of a function parameter may
include some additional fields.
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For a parameter of type scalar or int, a minimum, maximum and default value may be specified.
These values should directly follow the name of the parameter, enclosed in square brackets and
with the individual elements separated by colons. For example, suppose we have an integer para-
meter order for which we wish to specify a minimum of 1, a maximum of 12, and a default of 4.
We can write

int order[1:12:4]

If you wish to omit any of the three specifiers, leave the corresponding field empty. For example
[1::4] would specify a minimum of 1 and a default of 4 while leaving the maximum unlimited.

For a parameter of type bool, you can specify a default of 1 (true) or 0 (false), as in

bool verbose[0]

Finally, for a parameter of any type you can append a short descriptive string. This will show
up as an aid to the user if the function is packaged (see section 10.5 below) and called via gretl’s
graphical interface. The string should be enclosed in double quotes, and inserted before the comma
that precedes the following parameter (or the closing right parenthesis of the function definition,
in the case of the last parameter), as illustrated in the following example.

function myfun (series y "dependent variable",
series x "independent variable")

Void functions

You may define a function that has no parameters (these are called “routines” in some programming
languages). In this case, use the keyword void in place of the listing of parameters:

function myfunc2(void)

The function body

The function body is composed of gretl commands, or calls to user-defined functions (that is,
function calls may be nested). A function may call itself (that is, functions may be recursive). While
the function body may contain function calls, it may not contain function definitions. That is, you
cannot define a function inside another function. For further details, see section 10.4.

10.2 Calling a function

A user function is called by typing its name followed by zero or more arguments enclosed in
parentheses. If there are two or more arguments these should be separated by commas.

There are automatic checks in place to ensure that the number of arguments given in a function
call matches the number of parameters, and that the types of the given arguments match the types
specified in the definition of the function. An error is flagged if either of these conditions is violated.
One qualification: allowance is made for omitting arguments at the end of the list, provided that
default values are specified in the function definition. To be precise, the check is that the number
of arguments is at least equal to the number of required parameters, and is no greater than the
total number of parameters.

A scalar, series or matrix argument to a function may be given either as the name of a pre-existing
variable or as an expression which evaluates to a variable of the appropriate type. Scalar arguments
may also be given as numerical values. List arguments must be specified by name.

The following trivial example illustrates a function call that correctly matches the function defini-
tion.
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# function definition
function ols_ess(series y, list xvars)
ols y 0 xvars --quiet
scalar myess = $ess
printf "ESS = %g\n", myess
return scalar myess

end function
# main script
open data4-1
list xlist = 2 3 4
# function call (the return value is ignored here)
ols_ess(price, xlist)

The function call gives two arguments: the first is a data series specified by name and the second
is a named list of regressors. Note that while the function offers the variable myess as a return
value, it is ignored by the caller in this instance. (As a side note here, if you want a function to
calculate some value having to do with a regression, but are not interested in the full results of the
regression, you may wish to use the --quiet flag with the estimation command as shown above.)

A second example shows how to write a function call that assigns a return value to a variable in the
caller:

# function definition
function get_uhat(series y, list xvars)
ols y 0 xvars --quiet
series uh = $uhat
return series uh

end function
# main script
open data4-1
list xlist = 2 3 4
# function call
series resid = get_uhat(price, xlist)

10.3 Deleting a function

If you have defined a function and subsequently wish to clear it out of memory, you can do so using
the keywords delete or clear, as in

function myfunc delete
function get_uhat clear

Note, however, that if myfunc is already a defined function, providing a new definition automatically
overwrites the previous one, so it should rarely be necessary to delete functions explicitly.

10.4 Function programming details

Variables versus pointers

Series, scalar, and matrix arguments to functions can be passed in two ways: “as they are”, or as
pointers. For example, consider the following:

function triple1(series x)
series ret = 3*x
return series ret

end function
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function triple2(series *x)
series ret = 3*x
return series ret

end function

These two functions are nearly identical (and yield the same result); the only difference is that you
need to feed a series into triple1, as in triple1(myseries), while triple2 must be supplied a
pointer to a series, as in triple2(&myseries).

Why make the distinction, then? There are two main reasons for doing so: modularity and perfor-
mance.

By modularity we mean the insulation of a function from the rest of the script which calls it. One of
the many benefits of this approach is that your functions are easily reusable in other contexts. To
achieve modularity, variables created within a function are local to that function, and are destroyed
when the function exits, unless they are made available as return values and these values are “picked
up” or assigned by the caller.

In addition, functions do not have access to variables in “outer scope” (that is, variables that exist
in the script from which the function is called) except insofar as these are explicitly passed to the
function as arguments.

By default, when a variable is passed to a function as an argument, what the function actually “gets”
is a copy of the outer variable, which means that the value of the outer variable is not modified by
whatever goes on inside the function. But the use of pointers allows a function and its caller to
“cooperate” such that an outer variable can be modified by the function. In effect, this allows a
function to “return” more than one value (although only one variable can be returned directly —
see below). The parameter in question is marked with a prefix of * in the function definition, and
the corresponding argument is marked with the complementary prefix & in the caller. For example,

function get_uhat_and_ess(series y, list xvars, scalar *ess)
ols y 0 xvars --quiet
ess = $ess
series uh = $uhat
return series uh

end function
# main script
open data4-1
list xlist = 2 3 4
# function call
scalar SSR
series resid = get_uhat_and_ess(price, xlist, &SSR)

In the above, we may say that the function is given the address of the scalar variable SSR, and it
assigns a value to that variable (under the local name ess). (For anyone used to programming in C:
note that it is not necessary, or even possible, to “dereference” the variable in question within the
function using the * operator. Unembellished use of the name of the variable is sufficient to access
the variable in outer scope.)

An “address” parameter of this sort can be used as a means of offering optional information to the
caller. (That is, the corresponding argument is not strictly needed, but will be used if present). In
that case the parameter should be given a default value of null and the the function should test to
see if the caller supplied a corresponding argument or not, using the built-in function isnull().
For example, here is the simple function shown above, modified to make the filling out of the ess
value optional.

function get_uhat_and_ess(series y, list xvars, scalar *ess[null])
ols y 0 xvars --quiet
if !isnull(ess)
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ess = $ess
endif
series uh = $uhat
return series uh

end function

If the caller does not care to get the ess value, it can use null in place of a real argument:

series resid = get_uhat_and_ess(price, xlist, null)

Alternatively, trailing function arguments that have default values may be omitted, so the following
would also be a valid call:

series resid = get_uhat_and_ess(price, xlist)

Pointer arguments may also be useful for optimizing performance: even if a variable is not modified
inside the function, it may be a good idea to pass it as a pointer if it occupies a lot of memory.
Otherwise, the time gretl spends transcribing the value of the variable to the local copy may be
non-negligible, compared to the time the function spends doing the job it was written for.

Example 10.1 takes this to the extreme. We define two functions which return the number of rows
of a matrix (a pretty fast operation). One function gets a matrix as argument, the other one a pointer
to a matrix. The two functions are evaluated on a matrix with 2000 rows and 2000 columns; on a
typical system, floating-point numbers take 8 bytes of memory, so the space occupied by the matrix
is roughly 32 megabytes.

Running the code in example 10.1 will produce output similar to the following (the actual numbers
depend on the machine you’re running the example on):

Elapsed time:
without pointers (copy) = 3.66 seconds,
with pointers (no copy) = 0.01 seconds.

If a pointer argument is used for this sort of purpose — and the object to which the pointer points
is not modified by the function — it is a good idea to signal this to the user by adding the const
qualifier, as shown for function b in Example 10.1. When a pointer argument is qualified in this
way, any attempt to modify the object within the function will generate an error.

List arguments

The use of a named list as an argument to a function gives a means of supplying a function with
a set of variables whose number is unknown when the function is written — for example, sets of
regressors or instruments. Within the function, the list can be passed on to commands such as
ols.

A list argument can also be “unpacked” using a foreach loop construct, but this requires some
care. For example, suppose you have a list X and want to calculate the standard deviation of each
variable in the list. You can do:

loop foreach i X
scalar sd_$i = sd(X.$i)

end loop

Please note: a special piece of syntax is needed in this context. If we wanted to perform the above
task on a list in a regular script (not inside a function), we could do

loop foreach i X
scalar sd_$i = sd($i)

end loop
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Example 10.1: Performance comparison: values versus pointer

function a(matrix X)
r = rows(X)
return scalar r

end function

function b(const matrix *X)
r = rows(X)
return scalar r

end function

nulldata 10
set echo off
set messages off
X = zeros(2000,2000)
r = 0

set stopwatch
loop 100
r = a(X)

end loop
fa = $stopwatch

set stopwatch
loop 100
r = b(&X)

end loop
fb = $stopwatch

printf "Elapsed time:\n\
\twithout pointers (copy) = %g seconds,\n\
\twith pointers (no copy) = %g seconds.\n", fa, fb

where $i gets the name of the variable at position i in the list, and sd($i) gets its standard
deviation. But inside a function, working on a list supplied as an argument, if we want to reference
an individual variable in the list we must use the syntax listname.varname. Hence in the example
above we write sd(X.$i).

This is necessary to avoid possible collisions between the name-space of the function and the name-
space of the caller script. For example, suppose we have a function that takes a list argument, and
that defines a local variable called y. Now suppose that this function is passed a list containing
a variable named y. If the two name-spaces were not separated either we’d get an error, or the
external variable y would be silently over-written by the local one. It is important, therefore, that
list-argument variables should not be “visible” by name within functions. To “get hold of” such
variables you need to use the form of identification just mentioned: the name of the list, followed
by a dot, followed by the name of the variable.

+ The treatment of list-argument variables described above is new in gretl 1.7.6. The problem it addresses is
quite subtle, and was discovered only recently. Existing functions that use foreach loops on list arguments
may need to be modified. For a limited time, there is a special switch available that restores the old behavior:
that is, it enables support for functions that do not use the listname.varname syntax. The command to use
is set protect_lists off. But we recommend updating old functions as soon as possible.



Chapter 10. User-defined functions 68

Constancy of list arguments When a named list of variables is passed to a function, the function
is actually provided with a copy of the list. The function may modify this copy (for instance, adding
or removing members), but the original list at the level of the caller is not modified.

Optional list arguments If a list argument to a function is optional, this should be indicated by
appending a default value of null, as in

function myfunc (scalar y, list X[null])

In that case, if the caller gives null as the list argument (or simply omits the last argument) the
named list X inside the function will be empty. This possibility can be detected using the nelem()
function, which returns 0 for an empty list.

String arguments

String arguments can be used, for example, to provide flexibility in the naming of variables created
within a function. In the following example the function mavg returns a list containing two moving
averages constructed from an input series, with the names of the newly created variables governed
by the string argument.

function mavg (series y, string vname)
series @vname_2 = (y+y(-1)) / 2
series @vname_4 = (y+y(-1)+y(-2)+y(-3)) / 4
list retlist = @vname_2 @vname_4
return list retlist

end function

open data9-9
list malist = mavg(nocars, "nocars")
print malist --byobs

The last line of the script will print two variables named nocars_2 and nocars_4. For details on
the handling of named strings, see chapter 11.

If a string argument is considered optional, it may be given a null default value, as in

function foo (series y, string vname[null])

Retrieving the names of arguments

The variables given as arguments to a function are known inside the function by the names of the
corresponding parameters. For example, within the function whose signature is

function somefun (series y)

we have the series known as y. It may be useful, however, to be able to determine the names of
the variables provided as arguments. This can be done using the function argname, which takes
the name of a function parameter as its single argument and returns a string. Here is a simple
illustration:

function namefun (series y)
printf "the series given as ’y’ was named %s\n", argname(y)

end function

open data9-7
namefun(QNC)
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This produces the output

the series given as ’y’ was named QNC

Please note that this will not always work: the arguments given to functions may be anonymous
variables, created on the fly, as in somefun(log(QNC)) or somefun(CPI/100). In that case the
argname function fails to return a string. Function writers who wish to make use of this facility
should check the return from argname using the isstring() function, which returns 1 when given
the name of a string variable, 0 otherwise.

Return values

Functions can return nothing (just printing a result, perhaps), or they can return a single variable
— a scalar, series, list, matrix or string. The return value, if any, is specified via a statement within
the function body beginning with the keyword return, followed by a type specifier and the name
of a variable (as in the listing of parameters). There can be only one such statement. An example
of a valid return statement is shown below:

return scalar SSR

Having a function return a list is one way of permitting the “return” of more than one variable.
That is, you can define several variable inside a function and package them as a list; in this case
they are not destroyed when the function exits. Here is a simple example, which also illustrates the
possibility of setting the descriptive labels for variables generated in a function.

function make_cubes (list xlist)
list cubes = null
loop foreach i xlist --quiet

series $i3 = (xlist.$i)^3
setinfo $i3 -d "cube of $i"
list cubes += $i3

end loop
return list cubes

end function

open data4-1
list xlist = price sqft
list cubelist = make_cubes(xlist)
print xlist cubelist --byobs
labels

Note that the return statement does not cause the function to return (exit) at the point where it
appears within the body of the function. Rather, it specifies which variable is available for assign-
ment when the function exits, and a function exits only when (a) the end of the function code is
reached, (b) a gretl error occurs, or (c) a funcerr statement is reached.

The funcerr keyword, which may be followed by a string enclosed in double quotes, causes a
function to exit with an error flagged. If a string is provided, this is printed on exit, otherwise a
generic error message is printed. This mechanism enables the author of a function to pre-empt an
ordinary execution error and/or offer a more specific and helpful error message. For example,

if nelem(xlist) = 0
funcerr "xlist must not be empty"

end if

Error checking

When gretl first reads and “compiles” a function definition there is minimal error-checking: the
only checks are that the function name is acceptable, and, so far as the body is concerned, that you
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are not trying to define a function inside a function (see Section 10.1). Otherwise, if the function
body contains invalid commands this will become apparent only when the function is called, and
its commands are executed.

Debugging

The usual mechanism whereby gretl echoes commands and reports on the creation of new variables
is by default suppressed when a function is being executed. If you want more verbose output from
a particular function you can use either or both of the following commands within the function:

set echo on
set messages on

Alternatively, you can achieve this effect for all functions via the command set debug 1. Usually
when you set the value of a state variable using the set command, the effect applies only to the
current level of function execution. For instance, if you do set messages on within function f1,
which in turn calls function f2, then messages will be printed for f1 but not f2. The debug variable,
however, acts globally; all functions become verbose regardless of their level.

Further, you can do set debug 2: in addition to command echo and the printing of messages, this
is equivalent to setting max_verbose (which produces verbose output from the BFGS maximizer) at
all levels of function execution.

10.5 Function packages

As of gretl 1.6.0, there is a mechanism to package functions and make them available to other users
of gretl. Here is a walk-through of the process.

Load a function in memory

There are several ways to load a function:

• If you have a script file containing function definitions, open that file and run it.

• Create a script file from scratch. Include at least one function definition, and run the script.

• Open the GUI console and type a function definition interactively. This method is not partic-
ularly recommended; you are probably better composing a function non-interactively.

For example, suppose you decide to package a function that returns the percentage change of a
time series. Open a script file and type

function pc(series y "Series to process")
series foo = 100 * diff(y)/y(-1)
return series foo

end function

In this case, we have appended a string to the function argument, as explained in section 10.1, so
as to make our interface more informative. This is not obligatory: if you omit the descriptive string,
gretl will supply a predefined one.

Now run your function. You may want to make sure it works properly by running a few tests. For
example, you may open the console and type

genr x = uniform()
genr dpcx = pc(x)
print x dpcx --byobs
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Figure 10.1: Output of function check

You should see something similar to figure 10.1. The function seems to work ok. Once your
function is debugged, you may proceed to the next stage.

Create a package

Start the GUI program and take a look at the “File, Function files” menu. This menu contains four
items: “On local machine”, “On server”, “Edit package”, “New package”.

Select “New package”. (This will produce an error message unless at least one user-defined function
is currently loaded in memory — see the previous point.) In the first dialog you get to select:

• A public function to package.

• Zero or more “private” helper functions.

Public functions are directly available to users; private functions are part of the “behind the scenes”
mechanism in a function package.

On clicking “OK” a second dialog should appear (see Figure 10.2), where you get to enter the package
information (author, version, date, and a short description). You can also enter help text for the
public interface. You have a further chance to edit the code of the function(s) to be packaged, by
clicking on “Edit function code”. (If the package contains more than one function, a drop-down
selector will be shown.) And you get to add a sample script that exercises your package. This
will be helpful for potential users, and also for testing. A sample script is required if you want to
upload the package to the gretl server (for which a check-box is supplied).

You won’t need it right now, but the button labeled “Save as script” allows you to “reverse engineer”
a function package, writing out a script that contains all the relevant function definitions.

Clicking “Save” in this dialog leads you to a File Save dialog. All being well, this should be pointing
towards a directory named functions, either under the gretl system directory (if you have write
permission on that) or the gretl user directory. This is the recommended place to save function
package files, since that is where the program will look in the special routine for opening such files
(see below).

Needless to say, the menu command “File, Function files, Edit package” allows you to make changes
to a local function package.
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Figure 10.2: The package editor window

A word on the file you just saved. By default, it will have a .gfn extension. This is a “function
package” file: unlike an ordinary gretl script file, it is an XML file containing both the function code
and the extra information entered in the packager. Hackers might wish to write such a file from
scratch rather than using the GUI packager, but most people are likely to find it awkward. Note
that XML-special characters in the function code have to be escaped, e.g. & must be represented as
&amp;. Also, some elements of the function syntax differ from the standard script representation:
the parameters and return values (if any) are represented in XML. Basically, the function is pre-
parsed, and ready for fast loading using libxml.

Load a package

Why package functions in this way? To see what’s on offer so far, try the next phase of the walk-
through.

Close gretl, then re-open it. Now go to “File, Function files, On local machine”. If the previous stage
above has gone OK, you should see the file you packaged and saved, with its short description. If
you click on “Info” you get a window with all the information gretl has gleaned from the function
package. If you click on the “View code” icon in the toolbar of this new window, you get a script
view window showing the actual function code. Now, back to the “Function packages” window, if
you click on the package’s name, the relevant functions are loaded into gretl’s workspace, ready to
be called by clicking on the “Call” button.

After loading the function(s) from the package, open the GUI console. Try typing help foo, replac-
ing foo with the name of the public interface from the loaded function package: if any help text
was provided for the function, it should be presented.

In a similar way, you can browse and load the function packages available on the gretl server, by
selecting “File, Function files, On server”.

Once your package is installed on your local machine, you can use the function it contains via
the graphical interface as described above, or by using the CLI, namely in a script or through the
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console. In the latter case, you load the function via the include command, specifying the package
file as the argument, complete with the .gfn extension.

Figure 10.3: Using your package

To continue with our example, load the file np.gdt (supplied with gretl among the sample datasets).
Suppose you want to compute the rate of change for the variable iprod via your new function and
store the result in a series named foo.

Go to “File, Function files, On local machine”. You will be shown a list of the installed packages,
including the one you have just created. If you select it and click on “Execute” (or double-click on
the name of the function package), a window similar to the one shown in figure 10.3 will appear.
Notice that the description string “Series to process”, supplied with the function definition, appears
to the left of the top series chooser.

Click “Ok” and the series foo will be generated (see figure 10.4). You may have to go to “Data,
Refresh data” in order to have your new variable show up in the main window variable list (or just
press the “r” key).

Alternatively, the same could have been accomplished by the script

include pc.gfn
open np
foo = pc(iprod)
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Figure 10.4: Percent change in industrial production



Chapter 11

Named lists and strings

11.1 Named lists

Many gretl commands take one or more lists of series as arguments. To make this easier to handle
in the context of command scripts, and in particular within user-defined functions, gretl offers the
possibility of named lists.

Creating and modifying named lists

A named list is created using the keyword list, followed by the name of the list, an equals sign,
and an expression that forms a list. The most basic sort of expression that works in this context is
a space-separated list of variables, given either by name or by ID number. For example,

list xlist = 1 2 3 4
list reglist = income price

Note that the variables in question must be of the series type: you can’t include scalars in a named
list.

Two special forms are available:

• If you use the keyword null on the right-hand side, you get an empty list.

• If you use the keyword dataset on the right, you get a list containing all the series in the
current dataset (except the pre-defined const).

The name of the list must start with a letter, and must be composed entirely of letters, numbers
or the underscore character. The maximum length of the name is 15 characters; list names cannot
contain spaces.

Once a named list has been created, it will be “remembered” for the duration of the gretl session,
and can be used in the context of any gretl command where a list of variables is expected. One
simple example is the specification of a list of regressors:

list xlist = x1 x2 x3 x4
ols y 0 xlist

To get rid of a list, you can use the following syntax:

list xlist delete

Be careful: delete xlist will delete the variables contained in the list, so it implies data loss
(which may not be what you want). On the other hand, list xlist delete will simply “undefine”
the xlist identifier and the variables themselves will not be affected.

Lists can be modified in two ways. To redefine an existing list altogether, use the same syntax as
for creating a list. For example

list xlist = 1 2 3
xlist = 4 5 6

75
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After the second assignment, xlist contains just variables 4, 5 and 6.

To append or prepend variables to an existing list, we can make use of the fact that a named list
stands in for a “longhand” list. For example, we can do

list xlist = xlist 5 6 7
xlist = 9 10 xlist 11 12

Another option for appending a term (or a list) to an existing list is to use +=, as in

xlist += cpi

To drop a variable from a list, use -=:

xlist -= cpi

In most contexts where lists are used in gretl, it is expected that they do not contain any duplicated
elements. If you form a new list by simple concatenation, as in list L3 = L1 L2 (where L1 and
L2 are existing lists), it’s possible that the result may contain duplicates. To guard against this you
can form a new list as the union of two existing ones:

list L3 = L1 || L2

The result is a list that contains all the members of L1, plus any members of L2 that are not already
in L1.

In the same vein, you can construct a new list as the intersection of two existing ones:

list L3 = L1 && L2

Here L3 contains all the elements that are present in both L1 and L2.

Lists and matrices

Another way of forming a list is by assignment from a matrix. The matrix in question must be
interpretable as a vector containing ID numbers of (series) variables. It may be either a row or
a column vector, and each of its elements must have an integer part that is no greater than the
number of variables in the data set. For example:

matrix m = {1,2,3,4}
list L = m

The above is OK provided the data set contains at least 4 variables.

Querying a list

You can determine whether an unknown variable actually represents a list using the function
islist().

series xl1 = log(x1)
series xl2 = log(x2)
list xlogs = xl1 xl2
genr is1 = islist(xlogs)
genr is2 = islist(xl1)

The first genr command above will assign a value of 1 to is1 since xlogs is in fact a named list.
The second genr will assign 0 to is2 since xl1 is a data series, not a list.

You can also determine the number of variables or elements in a list using the function nelem().
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list xlist = 1 2 3
nl = nelem(xlist)

The (scalar) variable nl will be assigned a value of 3 since xlist contains 3 members.

You can display the membership of a named list just by giving its name, as illustrated in this
interactive session:

? list xlist = x1 x2 x3
Added list ’xlist’
? xlist
x1 x2 x3

Note that print xlist will do something different, namely print the values of all the variables in
xlist (as should be expected).

Generating lists of transformed variables

Given a named list of variables, you are able to generate lists of transformations of these variables
using the functions log, lags, diff, ldiff, sdiff or dummify. For example

list xlist = x1 x2 x3
list lxlist = log(xlist)
list difflist = diff(xlist)

When generating a list of lags in this way, you specify the maximum lag order inside the parenthe-
ses, before the list name and separated by a comma. For example

list xlist = x1 x2 x3
list laglist = lags(2, xlist)

or

scalar order = 4
list laglist = lags(order, xlist)

These commands will populate laglist with the specified number of lags of the variables in xlist.
You can give the name of a single series in place of a list as the second argument to lags: this is
equivalent to giving a list with just one member.

The dummify function creates a set of dummy variables coding for all but one of the distinct values
taken on by the original variable, which should be discrete. (The smallest value is taken as the
omitted catgory.) Like lags, this function returns a list even if the input is a single series.

Generating series from lists

Once a list is defined, gretl offers several functions that apply to the list and return a series. In most
cases, these functions also apply to single series and behave as natural extensions when applied to
a list, but this is not always the case.

For recognizing and handling missing values, Gretl offers several functions (see the Gretl Command
Reference for details). In this context, it is worth remarking that the ok() function can be used with
a list argument. For example,

list xlist = x1 x2 x3
series xok = ok(xlist)
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YpcFR YpcGE YpcIT NFR NGE NIT

1997 114.9 124.6 119.3 59830.635 82034.771 56890.372

1998 115.3 122.7 120.0 60046.709 82047.195 56906.744

1999 115.0 122.4 117.8 60348.255 82100.243 56916.317

2000 115.6 118.8 117.2 60750.876 82211.508 56942.108

2001 116.0 116.9 118.1 61181.560 82349.925 56977.217

2002 116.3 115.5 112.2 61615.562 82488.495 57157.406

2003 112.1 116.9 111.0 62041.798 82534.176 57604.658

2004 110.3 116.6 106.9 62444.707 82516.260 58175.310

2005 112.4 115.1 105.1 62818.185 82469.422 58607.043

2006 111.9 114.2 103.3 63195.457 82376.451 58941.499

Table 11.1: GDP per capita and population in 3 European countries (Source: Eurostat)

After these commands, the series xok will have value 1 for observations where none of x1, x2, or
x3 has a missing value, and value 0 for any observations where this condition is not met.

The functions max, min, mean, sd, sum and var behave horizontally rather than vertically when their
argument is a list. For instance, the following commands

list Xlist = x1 x2 x3
series m = mean(Xlist)

produce a series m whose i-th element is the average of x1,i, x2,i and x3,i; missing values, if any, are
implicitly discarded.

In addition, gretl provides three functions for weighted operations: wmean, wsd and wvar. Consider
as an illustration Table 11.1: the first three columns are GDP per capita for France, Germany and
Italy; columns 4 to 6 contain the population for each country. If we want to compute an aggregate
indicator of per capita GDP, all we have to do is

list Ypc = YpcFR YpcGE YpcIT
list N = NFR NGE NIT
y = wmean(Ypc, N)

so for example

y1996 =
114.9× 59830.635+ 124.6× 82034.771+ 119.3× 56890.372

59830.635+ 82034.771+ 56890.372
= 120.163

See the Gretl Command Reference for more details.

11.2 Named strings

For some purposes it may be useful to save a string (that is, a sequence of characters) as a named
variable that can be reused. Versions of gretl higher than 1.6.0 offer this facility, but some of the
refinements noted below are available only in gretl 1.7.2 and higher.

To define a string variable, you can use either of two commands, string or sprintf. The string
command is simpler: you can type, for example,

string s1 = "some stuff I want to save"
string s2 = getenv("HOME")
string s3 = s1 + 11
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The first field after string is the name under which the string should be saved, then comes an
equals sign, then comes a specification of the string to be saved. This can be the keyword null, to
produce an empty string, or may take any of the following forms:

• a string literal (enclosed in double quotes); or

• the name of an existing string variable; or

• a function that returns a string (see below); or

• any of the above followed by + and an integer offset.

The role of the integer offset is to use a substring of the preceding element, starting at the given
character offset. An empty string is returned if the offset is greater than the length of the string in
question.

To add to the end of an existing string you can use the operator +=, as in

string s1 = "some stuff I want to "
string s1 += "save"

or you can use the ~ operator to join two or more strings, as in

string s1 = "sweet"
string s2 = "Home, " ~ s1 ~ " home."

The sprintf command is more flexible. It works exactly as gretl’s printf command except that
the “format” string must be preceded by the name of a string variable. For example,

scalar x = 8
sprintf foo "var%d", x

To use the value of a string variable in a command, give the name of the variable preceded by the
“at” sign, @. This notation is treated as a “macro”. That is, if a sequence of characters in a gretl
command following the symbol @ is recognized as the name of a string variable, the value of that
variable is sustituted literally into the command line before the regular parsing of the command is
carried out. This is illustrated in the following interactive session:

? scalar x = 8
scalar x = 8

Generated scalar x (ID 2) = 8
? sprintf foo "var%d", x
Saved string as ’foo’
? print "@foo"
var8

Note the effect of the quotation marks in the line print "@foo". The line

? print @foo

would not print a literal “var8” as above. After pre-processing the line would read

print var8

It would therefore print the value(s) of the variable var8, if such a variable exists, or would generate
an error otherwise.

In some contexts, however, one wants to treat string variables as variables in their own right: to
do this, give the name of the variable without a leading @ symbol. This is the way to handle such
variables in the following contexts:
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• When they appear among the arguments to the commands printf and sprintf.

• On the right-hand side of a string assignment.

• When they appear as an argument to the function taking a string argument.

Here is an illustration of the use of named string arguments with printf:

string vstr = "variance"
Generated string vstr
printf "vstr: %12s\n", vstr
vstr: variance

Note that vstr should not be put in quotes in this context. Similarly with

? string vstr_copy = vstr

Built-in strings

Apart from any strings that the user may define, some string variables are defined by gretl itself.
These may be useful for people writing functions that include shell commands. The built-in strings
are as shown in Table 11.2.

gretldir the gretl installation directory

workdir user’s current gretl working directory

dotdir the directory gretl uses for temporary files

gnuplot path to, or name of, the gnuplot executable

tramo path to, or name of, the tramo executable

x12a path to, or name of, the x-12-arima executable

tramodir tramo data directory

x12adir x-12-arima data directory

Table 11.2: Built-in string variables

Reading strings from the environment

In addition, it is possible to read into gretl’s named strings, values that are defined in the external
environment. To do this you use the function getenv, which takes the name of an environment
variable as its argument. For example:

? string user = getenv("USER")
Saved string as ’user’
? string home = getenv("HOME")
Saved string as ’home’
? print "@user’s home directory is @home"
cottrell’s home directory is /home/cottrell

To check whether you got a non-empty value from a given call to getenv, you can use the function
strlen, which retrieves the length of the string, as in

? string temp = getenv("TEMP")
Saved empty string as ’temp’
? scalar x = strlen(temp)
Generated scalar x (ID 2) = 0
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The function isstring returns 1 if its argument is the name of a string variable, 0 otherwise.
However, if the return is 1 the string may still be empty.

At present the getenv function can only be used on the right-hand side of a string assignment,
as in the above illustrations.

Capturing strings via the shell

If shell commands are enabled in gretl, you can capture the output from such commands using the
syntax

string stringname = $(shellcommand)

That is, you enclose a shell command in parentheses, preceded by a dollar sign.

Reading from a file into a string

You can read the content of a file into a string variable using the syntax

string stringname = readfile(filename)

The filename field may include components that are string variables. For example

string foo = readfile(x12adir/QNC.rts)

The strstr function

Invocation of this function takes the form

string stringname = strstr(s1, s2)

The effect is to search s1 for the first occurrence of s2. If no such occurrence is found, an empty
string is returned; otherwise the portion of s1 starting with s2 is returned. For example:

? string hw = "hello world"
Saved string as ’hw’
? string w = strstr(hw, "o")
Saved string as ’w’
? print "@w"
o world
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Matrix manipulation

Together with the other two basic types of data (series and scalars), gretl offers a quite compre-
hensive array of matrix methods. This chapter illustrates the peculiarities of matrix syntax and
discusses briefly some of the more complex matrix functions. For a full listing of matrix functions
and a comprehensive account of their syntax, please refer to the Gretl Command Reference.

12.1 Creating matrices

Matrices can be created using any of these methods:

1. By direct specification of the scalar values that compose the matrix — in numerical form, by
reference to pre-existing scalar variables, or using computed values.

2. By providing a list of data series.

3. By providing a named list of series.

4. Using a formula of the same general type that is used with the genr command, whereby a new
matrix is defined in terms of existing matrices and/or scalars, or via some special functions.

To specify a matrix directly in terms of scalars, the syntax is, for example:

matrix A = { 1, 2, 3 ; 4, 5, 6 }

The matrix is defined by rows; the elements on each row are separated by commas and the rows
are separated by semi-colons. The whole expression must be wrapped in braces. Spaces within the
braces are not significant. The above expression defines a 2 × 3 matrix. Each element should be a
numerical value, the name of a scalar variable, or an expression that evaluates to a scalar. Directly
after the closing brace you can append a single quote (’) to obtain the transpose.

To specify a matrix in terms of data series the syntax is, for example,

matrix A = { x1, x2, x3 }

where the names of the variables are separated by commas. Besides names of existing variables,
you can use expressions that evaluate to a series. For example, given a series x you could do

matrix A = { x, x^2 }

Each variable occupies a column (and there can only be one variable per column). You cannot use
the semi-colon as a row separator in this case: if you want the series arranged in rows, append the
transpose symbol. The range of data values included in the matrix depends on the current setting
of the sample range.

+ While gretl’s built-in statistical functions for data series are capable of handling missing values, the matrix
arithmetic functions are not. When you build a matrix from series that include missing values, observations
for which at least one series has a missing value are skipped.

Instead of giving an explicit list of variables, you may instead provide the name of a saved list (see
Chapter 11), as in
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list xlist = x1 x2 x3
matrix A = { xlist }

When you provide a named list, the data series are by default placed in columns, as is natural in an
econometric context: if you want them in rows, append the transpose symbol.

As a special case of constructing a matrix from a list of variables, you can say

matrix A = { dataset }

This builds a matrix using all the series in the current dataset, apart from the constant (variable 0).
When this dummy list is used, it must be the sole element in the matrix definition {...}. You can,
however, create a matrix that includes the constant along with all other variables using horizontal
concatenation (see below), as in

matrix A = {const}~{dataset}

The syntax

matrix A = {}

creates an empty matrix — a matrix with zero rows and zero columns. See section 12.2 for a
discussion of this object.

+ Names of matrices must satisfy the same requirements as names of gretl variables in general: the name
can be no longer than 15 characters, must start with a letter, and must be composed of nothing but letters,
numbers and the underscore character.

12.2 Empty matrices

The main purpose of the concept of an empty matrix is to enable the user to define a starting point
for subsequent concatenation operations. For instance, if X is an already defined matrix of any size,
the commands

matrix A = {}
matrix B = A ~ X

result in a matrix B identical to X.

From an algebraic point of view, one can make sense of the idea of an empty matrix in terms of
vector spaces: if a matrix is an ordered set of vectors, then A={} is the empty set. As a consequence,
operations involving addition and multiplications don’t have any clear meaning (arguably, they have
none at all), but operations involving the cardinality of this set (that is, the dimension of the space
spanned by A) are meaningful.

Legal operations on empty matrices are listed in Table 12.1. (All other matrix operations gener-
ate an error when an empty matrix is given as an argument.) In line with the above interpreta-
tion, some matrix functions return an empty matrix under certain conditions: the functions diag,
vec, vech, unvech when the arguments is an empty matrix; the functions I, ones, zeros,
mnormal, muniform when one or more of the arguments is 0; and the function nullspace when
its argument has full column rank.

12.3 Selecting sub-matrices

You can select sub-matrices of a given matrix using the syntax

A[rows,cols]

where rows can take any of these forms:



Chapter 12. Matrix manipulation 84

Function Return value

A’, transp(A) A

rows(A) 0

cols(A) 0

rank(A) 0

det(A) NA

ldet(A) NA

tr(A) NA

onenorm(A) NA

infnorm(A) NA

rcond(A) NA

Table 12.1: Valid functions on an empty matrix, A

1. empty selects all rows

2. a single integer selects the single specified row

3. two integers separated by a colon selects a range of rows

4. the name of a matrix selects the specified rows

With regard to option 2, the integer value can be given numerically, as the name of an existing
scalar variable, or as an expression that evaluates to a scalar. With the option 4, the index matrix
given in the rows field must be either p×1 or 1×p, and should contain integer values in the range
1 to n, where n is the number of rows in the matrix from which the selection is to be made.

The cols specification works in the same way, mutatis mutandis. Here are some examples.

matrix B = A[1,]
matrix B = A[2:3,3:5]
matrix B = A[2,2]
matrix idx = { 1, 2, 6 }
matrix B = A[idx,]

The first example selects row 1 from matrix A; the second selects a 2×3 submatrix; the third selects
a scalar; and the fourth selects rows 1, 2, and 6 from matrix A.

In addition there is a pre-defined index specification, diag, which selects the principal diagonal of
a square matrix, as in B[diag], where B is square.

You can use selections of this sort on either the right-hand side of a matrix-generating formula or
the left. Here is an example of use of a selection on the right, to extract a 2× 2 submatrix B from a
3× 3 matrix A:

matrix A = { 1, 2, 3; 4, 5, 6; 7, 8, 9 }
matrix B = A[1:2,2:3]

And here are examples of selection on the left. The second line below writes a 2×2 identity matrix
into the bottom right corner of the 3× 3 matrix A. The fourth line replaces the diagonal of A with
1s.

matrix A = { 1, 2, 3; 4, 5, 6; 7, 8, 9 }
matrix A[2:3,2:3] = I(2)
matrix d = { 1, 1, 1 }
matrix A[diag] = d



Chapter 12. Matrix manipulation 85

12.4 Matrix operators

The following binary operators are available for matrices:

+ addition

- subtraction

* ordinary matrix multiplication

’ pre-multiplication by transpose

/ matrix “division” (see below)

~ column-wise concatenation

| row-wise concatenation

** Kronecker product

= test for equality

In addition, the following operators (“dot” operators) apply on an element-by-element basis:

.+ .- .* ./ .^ .= .> .<

Here are explanations of the less obvious cases.

For matrix addition and subtraction, in general the two matrices have to be of the same dimensions
but an exception to this rule is granted if one of the operands is a 1×1 matrix or scalar. The scalar
is implicitly promoted to the status of a matrix of the correct dimensions, all of whose elements
are equal to the given scalar value. For example, if A is an m × n matrix and k a scalar, then the
commands

matrix C = A + k
matrix D = A - k

both produce m×n matrices, with elements cij = aij + k and dij = aij − k respectively.

By “pre-multiplication by transpose” we mean, for example, that

matrix C = X’Y

produces the product of X-transpose and Y . In effect, the expression X’Y is shorthand for X’*Y
(which is also valid).

In matrix “division”, the statement

matrix C = A/B

is interpreted as a request to find the matrix C that solves BC = A. If B is a square matrix, this
is treated as equivalent to B−1A, which fails if B is singular; the numerical method employed here
is the LU decomposition. If B is a T × k matrix with T > k, then C is the least-squares solution,
C = (B′B)−1B′A, which fails if B′B is singular; the numerical method employed here is the QR
decomposition. Otherwise, the operation necessarily fails.

In “dot” operations a binary operation is applied element by element; the result of this operation
is obvious if the matrices are of the same size. However, there are several other cases where such
operators may be applied. For example, if we write

matrix C = A .- B

then the result C depends on the dimensions of A and B. Let A be an m × n matrix and let B be
p × q; the result is as follows:
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Case Result

Dimensions match (m = p and n = q) cij = aij − bij
A is a column vector; rows match (m = p; n = 1) cij = ai − bij
B is a column vector; rows match (m = p; q = 1) cij = aij − bi
A is a row vector; columns match (m = 1; n = q) cij = aj − bij
B is a row vector; columns match (m = p; q = 1) cij = aij − bj
A is a column vector; B is a row vector (n = 1; p = 1) cij = ai − bj
A is a row vector; B is a column vector (m = 1; q = 1) cij = aj − bi
A is a scalar (m = 1 and n = 1) cij = a− bij
B is a scalar (p = 1 and q = 1) cij = aij − b

If none of the above conditions are satisfied the result is undefined and an error is flagged.

Note that this convention makes it unnecessary, in most cases, to use diagonal matrices to perform
transformations by means of ordinary matrix multiplication: if Y = XV , where V is diagonal, it is
computationally much more convenient to obtain Y via the instruction

matrix Y = X .* v

where v is a row vector containing the diagonal of V .

In column-wise concatenation of anm×nmatrix A and anm×pmatrix B, the result is anm×(n+p)
matrix. That is,

matrix C = A ~ B

produces C =
[
A B

]
.

Row-wise concatenation of an m × n matrix A and an p × n matrix B produces an (m + p) × n
matrix. That is,

matrix C = A | B

produces C =
[
A
B

]
.

12.5 Matrix–scalar operators

For matrix A and scalar k, the operators shown in Table 12.2 are available. (Addition and subtrac-
tion were discussed in section 12.4 but we include them in the table for completeness.) In addition,
for square A and integer k ≥ 0, B = A^k produces a matrix B which is A raised to the power k.

12.6 Matrix functions

Most of the gretl functions available for scalars and series also apply to matrices in an element-by-
element fashion, and as such their behavior should be pretty obvious. This is the case for functions
such as log, exp, sin, etc. These functions have the effects documented in relation to the genr
command. For example, if a matrix A is already defined, then

matrix B = sqrt(A)
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Expression Effect

matrix B = A * k bij = kaij
matrix B = A / k bij = aij/k
matrix B = k / A bij = k/aij
matrix B = A + k bij = aij + k
matrix B = A - k bij = aij − k
matrix B = k - A bij = k− aij
matrix B = A % k bij = aij modulo k

Table 12.2: Matrix–scalar operators

generates a matrix such that bij = √aij . All such functions require a single matrix as argument, or
an expression which evaluates to a single matrix.1

In this section, we review some aspects of genr functions that apply specifically to matrices. A full
account of each function is available in the Gretl Command Reference.

Creation and I/O
colnames diag I lower makemask mnormal

mread muniform mwrite ones seq unvech

upper vec vech zeros

Shape/size/arrangement
cols dsort mshape msortby rows selifc

selifr sort trimr

Matrix algebra
cdiv cholesky cmult det eigengen eigensym

fft ffti ginv infnorm inv invpd

ldet mexp nullspace onenorm polroots qform

qrdecomp rank rcond svd toepsolv tr

transp

Statistics/transformations
cdemean cum imaxc imaxr iminc iminr

maxc maxr mcorr mcov mcovg meanc

meanr minc minr mlag mols mpols

mxtab princomp quantile resample sdc sumc

sumr values

Numerical methods
BFGSmax fdjac

Transformations
lincomb

Table 12.3: Matrix functions by category

1Note that to find the “matrix square root” you need the cholesky function (see below); moreover, the exp function
computes the exponential element by element, and therefore does not return the matrix exponential unless the matrix is
diagonal — to get the matrix exponential, use mexp.
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Matrix reshaping

In addition to the methods discussed in sections 12.1 and 12.3, a matrix can also be created by
re-arranging the elements of a pre-existing matrix. This is accomplished via the mshape function.
It takes three arguments: the input matrix, A, and the rows and columns of the target matrix, r
and c respectively. Elements are read from A and written to the target in column-major order. If A
contains fewer elements than n = r × c, they are repeated cyclically; if A has more elements, only
the first n are used.

For example:

matrix a = mnormal(2,3)
a
matrix b = mshape(a,3,1)
b
matrix b = mshape(a,5,2)
b

produces

? a
a

1.2323 0.99714 -0.39078
0.54363 0.43928 -0.48467

? matrix b = mshape(a,3,1)
Generated matrix b
? b
b

1.2323
0.54363
0.99714

? matrix b = mshape(a,5,2)
Replaced matrix b
? b
b

1.2323 -0.48467
0.54363 1.2323
0.99714 0.54363
0.43928 0.99714

-0.39078 0.43928

Complex multiplication and division

Gretl has no native provision for complex numbers. However, basic operations can be performed
on vectors of complex numbers by using the convention that a vector of n complex numbers is
represented as a n × 2 matrix, where the first column contains the real part and the second the
imaginary part.

Addition and subtraction are trivial; the functions cmult and cdiv compute the complex product
and division, respectively, of two input matrices, A and B, representing complex numbers. These
matrices must have the same number of rows, n, and either one or two columns. The first column
contains the real part and the second (if present) the imaginary part. The return value is an n × 2
matrix, or, if the result has no imaginary part, an n-vector.

For example, suppose you have z1 = [1+ 2i,3+ 4i]′ and z2 = [1, i]′:
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? z1 = {1,2;3,4}
z1 = {1,2;3,4}

Generated matrix z1
? z2 = I(2)
z2 = I(2)

Generated matrix z2
? conj_z1 = z1 .* {1,-1}
conj_z1 = z1 .* {1,-1}

Generated matrix conj_z1
? eval cmult(z1,z2)
eval cmult(z1,z2)
1 2
-4 3

? eval cmult(z1,conj_z1)
eval cmult(z1,conj_z1)
5
25

Multiple returns and the null keyword

Some functions take one or more matrices as arguments and compute one or more matrices; these
are:

eigensym Eigen-analysis of symmetric matrix

eigengen Eigen-analysis of general matrix

mols Matrix OLS

qrdecomp QR decomposition

svd Singular value decomposition (SVD)

The general rule is: the “main” result of the function is always returned as the result proper.
Auxiliary returns, if needed, are retrieved using pre-existing matrices, which are passed to the
function as pointers (see 10.4). If such values are not needed, the pointer may be substituted with
the keyword null.

The syntax for qrdecomp, eigensym and eigengen is of the form

matrix B = func(A, &C)

The first argument, A, represents the input data, that is, the matrix whose decomposition or analysis
is required. The second argument must be either the name of an existing matrix preceded by & (to
indicate the “address” of the matrix in question), in which case an auxiliary result is written to that
matrix, or the keyword null, in which case the auxiliary result is not produced, or is discarded.

In case a non-null second argument is given, the specified matrix will be over-written with the
auxiliary result. (It is not required that the existing matrix be of the right dimensions to receive the
result.)

The function eigensym computes the eigenvalues, and optionally the right eigenvectors, of a sym-
metric n × n matrix. The eigenvalues are returned directly in a column vector of length n; if the
eigenvectors are required, they are returned in an n×n matrix. For example:

matrix V
matrix E = eigensym(M, &V)
matrix E = eigensym(M, null)

In the first case E holds the eigenvalues of M and V holds the eigenvectors. In the second, E holds
the eigenvalues but the eigenvectors are not computed.
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The function eigengen computes the eigenvalues, and optionally the eigenvectors, of a general
n×n matrix. The eigenvalues are returned directly in an n×2 matrix, the first column holding the
real components and the second column the imaginary components.

If the eigenvectors are required (that is, if the second argument to eigengen is not null), they
are returned in an n × n matrix. The column arrangement of this matrix is somewhat non-trivial:
the eigenvectors are stored in the same order as the eigenvalues, but the real eigenvectors occupy
one column, whereas complex eigenvectors take two (the real part comes first); the total num-
ber of columns is still n, because the conjugate eigenvector is skipped. Example 12.1 provides a
(hopefully) clarifying example (see also subsection 12.6).

Example 12.1: Complex eigenvalues and eigenvectors

set seed 34756

matrix v
A = mnormal(3,3)

/* do the eigen-analysis */
l = eigengen(A,&v)
/* eigenvalue 1 is real, 2 and 3 are complex conjugates */
print l
print v

/*
column 1 contains the first eigenvector (real)

*/

B = A*v[,1]
c = l[1,1] * v[,1]
/* B should equal c */
print B
print c

/*
columns 2:3 contain the real and imaginary parts
of eigenvector 2

*/

B = A*v[,2:3]
c = cmult(ones(3,1)*(l[2,]),v[,2:3])
/* B should equal c */
print B
print c

The qrdecomp function computes the QR decomposition of an m × n matrix A: A = QR, where Q
is anm×n orthogonal matrix and R is an n×n upper triangular matrix. The matrix Q is returned
directly, while R can be retrieved via the second argument. Here are two examples:

matrix R
matrix Q = qrdecomp(M, &R)
matrix Q = qrdecomp(M, null)

In the first example, the triangular R is saved as R; in the second, R is discarded. The first line
above shows an example of a “simple declaration” of a matrix: R is declared to be a matrix variable
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but is not given any explicit value. In this case the variable is initialized as a 1 × 1 matrix whose
single element equals zero.

The syntax for svd is

matrix B = func(A, &C, &D)

The function svd computes all or part of the singular value decomposition of the realm×nmatrix
A. Let k =min(m,n). The decomposition is

A = UΣV ′
where U is anm×k orthogonal matrix, Σ is an k×k diagonal matrix, and V is an k×n orthogonal
matrix.2 The diagonal elements of Σ are the singular values of A; they are real and non-negative,
and are returned in descending order. The first k columns of U and V are the left and right singular
vectors of A.

The svd function returns the singular values, in a vector of length k. The left and/or right singu-
lar vectors may be obtained by supplying non-null values for the second and/or third arguments
respectively. For example:

matrix s = svd(A, &U, &V)
matrix s = svd(A, null, null)
matrix s = svd(A, null, &V)

In the first case both sets of singular vectors are obtained, in the second case only the singular
values are obtained; and in the third, the right singular vectors are obtained but U is not computed.
Please note: when the third argument is non-null, it is actually V ′ that is provided. To reconstitute
the original matrix from its SVD, one can do:

matrix s = svd(A, &U, &V)
matrix B = (U.*s)*V

Finally, the syntax for mols is

matrix B = mols(Y, X, &U)

This function returns the OLS estimates obtained by regressing the T × n matrix Y on the T × k
matrix X, that is, a k × n matrix holding (X′X)−1X′Y . The Cholesky decomposition is used. The
matrix U , if not null, is used to store the residuals.

Reading and writing matrices from/to text files

The two functions mread and mwrite can be used for basic matrix input/output. This can be useful
to enable gretl to exchange data with other programs.

The mread function accepts one string parameter: the name of the (plain text) file from which the
matrix is to be read. The file in question must conform to the following rules:

1. The columns must be separated by spaces or tab characters.

2. The decimal separator must be the dot “.” character.

3. The first line in the file must contain two integers, separated by a space or a tab, indicating
the number of rows and columns, respectively.

2This is not the only definition of the SVD: some writers define U as m ×m, Σ as m × n (with k non-zero diagonal
elements) and V as n×n.
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Should an error occur (such as the file being badly formatted or inaccessible), an empty matrix (see
section 12.2) is returned.

The complementary function mwrite produces text files formatted as described above. The column
separator is the tab character, so import into spreadsheets should be straightforward. Usage is
illustrated in example 12.2. Matrices stored via the mwrite command can be easily read by other
programs; the following table summarizes the appropriate commands for reading a matrix A from
a file called a.mat in some widely-used programs.3

Program Sample code

GAUSS tmp[] = load a.mat;

A = reshape(tmp[3:rows(tmp)],tmp[1],tmp[2]);

Octave fd = fopen("a.mat");

[r,c] = fscanf(fd, "%d %d", "C");

A = reshape(fscanf(fd, "%g", r*c),c,r)’;

fclose(fd);

Ox decl A = loadmat("a.mat");

R A <- as.matrix(read.table("a.mat", skip=1))

Example 12.2: Matrix input/output via text files

nulldata 64
scalar n = 3
string f1 = "a.csv"
string f2 = "b.csv"

matrix a = mnormal(n,n)
matrix b = inv(a)

err = mwrite(a, f1)

if err != 0
fprintf "Failed to write %s\n", f1

else
err = mwrite(b, f2)

endif

if err != 0
fprintf "Failed to write %s\n", f2

else
c = mread(f1)
d = mread(f2)
a = c*d
printf "The following matrix should be an identity matrix\n"
print a

endif

3Matlab users may find the Octave example helpful, since the two programs are mostly compatible with one another.
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12.7 Matrix accessors

In addition to the matrix functions discussed above, various “accessor” strings allow you to create
copies of internal matrices associated with models previously estimated. These are set out in
Table 12.4.

$coeff vector of estimated coefficients

$compan companion matrix (after VAR or VECM estimation)

$jalpha matrix α (loadings) from Johansen’s procedure

$jbeta matrix β (cointegration vectors) from Johansen’s procedure

$jvbeta covariance matrix for the unrestricted elements of β from Johansen’s procedure

$rho autoregressive coefficients for error process

$sigma residual covariance matrix

$stderr vector of estimated standard errors

$uhat matrix of residuals

$vcv covariance matrix of parameter estimates

$yhat matrix of fitted values

Table 12.4: Matrix accessors for model data

Many of the accessors in Table 12.4 behave somewhat differently depending on the sort of model
that is referenced, as follows:

• Single-equation models: $sigma gets a scalar (the standard error of the residuals); $uhat and
$yhat get series.

• All system estimators: $sigma gets the cross-equation residual covariance matrix, $uhat gets
a matrix of residuals, one column per equation.

• VARs and VECMs: $stderr and $yhat are not available; $coeff gets a matrix of coefficients,
one column per equation.

If the accessors are given without any prefix, they retrieve results from the last model estimated, if
any. Alternatively, they may be prefixed with the name of a saved model plus a period (.), in which
case they retrieve results from the specified model. Here are some examples:

matrix u = $uhat
matrix b = m1.$coeff
matrix v2 = m1.$vcv[1:2,1:2]

The first command grabs the residuals from the last model; the second grabs the coefficient vector
from model m1; and the third (which uses the mechanism of sub-matrix selection described above)
grabs a portion of the covariance matrix from model m1.

If the model in question a VAR or VECM (only) $compan returns the companion matrix.

After a vector error correction model is estimated via Johansen’s procedure, the matrices $jalpha
and $jbeta are also available. These have a number of columns equal to the chosen cointegration
rank; therefore, the product

matrix Pi = $jalpha * $jbeta’

returns the reduced-rank estimate of A(1). Since β is automatically identified via the Phillips nor-
malization (see section 21.5), its unrestricted elements do have a proper covariance matrix, which
can be retrieved through the $jvbeta accessor.
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12.8 Namespace issues

Matrices share a common namespace with data series and scalar variables. In other words, no two
objects of any of these types can have the same name. It is an error to attempt to change the type
of an existing variable, for example:

scalar x = 3
matrix x = ones(2,2) # wrong!

It is possible, however, to delete or rename an existing variable then reuse the name for a variable
of a different type:

scalar x = 3
delete x
matrix x = ones(2,2) # OK

12.9 Creating a data series from a matrix

Section 12.1 above describes how to create a matrix from a data series or set of series. You may
sometimes wish to go in the opposite direction, that is, to copy values from a matrix into a regular
data series. The syntax for this operation is

series sname = mspec

where sname is the name of the series to create and mspec is the name of the matrix to copy from,
possibly followed by a matrix selection expression. Here are two examples.

series s = x
series u1 = U[,1]

It is assumed that x and U are pre-existing matrices. In the second example the series u1 is formed
from the first column of the matrix U.

For this operation to work, the matrix (or matrix selection) must be a vector with length equal to
either the full length of the current dataset, n, or the length of the current sample range, n′. If
n′ < n then only n′ elements are drawn from the matrix; if the matrix or selection comprises n
elements, the n′ values starting at element t1 are used, where t1 represents the starting observation
of the sample range. Any values in the series that are not assigned from the matrix are set to the
missing code.

12.10 Matrices and lists

To facilitate the manipulation of named lists of variables (see Chapter 11), it is possible to convert
between matrices and lists. In section 12.1 above we mentioned the facility for creating a matrix
from a list of variables, as in

matrix M = { listname }

That formulation, with the name of the list enclosed in braces, builds a matrix whose columns hold
the variables referenced in the list. What we are now describing is a different matter: if we say

matrix M = listname

(without the braces), we get a row vector whose elements are the ID numbers of the variables in the
list. This special case of matrix generation cannot be embedded in a compound expression. The
syntax must be as shown above, namely simple assignment of a list to a matrix.

To go in the other direction, you can include a matrix on the right-hand side of an expression that
defines a list, as in
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list Xl = M

where M is a matrix. The matrix must be suitable for conversion; that is, it must be a row or column
vector containing non-negative whole-number values, none of which exceeds the highest ID number
of a variable (series or scalar) in the current dataset.

Example 12.3 illustrates the use of this sort of conversion to “normalize” a list, moving the constant
(variable 0) to first position.

Example 12.3: Manipulating a list

function normalize_list (matrix *x)
# If the matrix (representing a list) contains var 0,
# but not in first position, move it to first position

if (x[1] != 0)
scalar k = cols(x)
loop for (i=2; i<=k; i++) --quiet

if (x[i] = 0)
x[i] = x[1]
x[1] = 0
break

endif
end loop

end if
end function

open data9-7
list Xl = 2 3 0 4
matrix x = Xl
normalize_list(&x)
list Xl = x

12.11 Deleting a matrix

To delete a matrix, just write

delete M

where M is the name of the matrix to be deleted.

12.12 Printing a matrix

To print a matrix, the easiest way is to give the name of the matrix in question on a line by itself,
which is equivalent to using the print command:

matrix M = mnormal(100,2)
M
print M

You can get finer control on the formatting of output by using the printf command: for example,
the following code
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matrix Id = I(2)
printf "%10.3f", Id

produces

? print Id
print Id

Id (2 x 2)

1 0
0 1

? printf "%10.3f", Id
1.000 0.000
0.000 1.000

For presentation purposes you may wish to give titles to the columns of a matrix. For this you can
use the colnames function: the first argument is a matrix and the second is either a named list of
variables, whose names will be used as headings, or a string that contains as many space-separated
substrings as the matrix has columns. For example,

? matrix M = mnormal(3,3)
? colnames(M, "foo bar baz")
? print M
M (3 x 3)

foo bar baz
1.7102 -0.76072 0.089406

-0.99780 -1.9003 -0.25123
-0.91762 -0.39237 -1.6114

12.13 Example: OLS using matrices

Example 12.4 shows how matrix methods can be used to replicate gretl’s built-in OLS functionality.

Example 12.4: OLS via matrix methods

open data4-1
matrix X = { const, sqft }
matrix y = { price }
matrix b = invpd(X’X) * X’y
print "estimated coefficient vector"
b
matrix u = y - X*b
scalar SSR = u’u
scalar s2 = SSR / (rows(X) - rows(b))
matrix V = s2 * inv(X’X)
V
matrix se = sqrt(diag(V))
print "estimated standard errors"
se
# compare with built-in function
ols price const sqft --vcv
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Cheat sheet

This chapter explains how to perform some common — and some not so common — tasks in gretl’s
scripting language. Some but not all of the techniques listed here are also available through the
graphical interface. Although the graphical interface may be more intuitive and less intimidating
at first, we encourage users to take advantage of the power of gretl’s scripting language as soon as
they feel comfortable with the program.

13.1 Dataset handling

“Weird” periodicities

Problem: You have data sampled each 3 minutes from 9am onwards; you’ll probably want to specify
the hour as 20 periods.

Solution:

setobs 20 9:1 --special

Comment: Now functions like sdiff() (“seasonal” difference) or estimation methods like seasonal
ARIMA will work as expected.

Help, my data are backwards!

Problem: Gretl expects time series data to be in chronological order (most recent observation last),
but you have imported third-party data that are in reverse order (most recent first).

Solution:

setobs 1 1 --cross-section
genr sortkey = -obs
dataset sortby sortkey
setobs 1 1950 --time-series

Comment: The first line is required only if the data currently have a time series interpretation: it
removes that interpretation, because (for fairly obvious reasons) the dataset sortby operation is
not allowed for time series data. The following two lines reverse the data, using the negative of the
built-in index variable obs. The last line is just illustrative: it establishes the data as annual time
series, starting in 1950.

If you have a dataset that is mostly the right way round, but a particular variable is wrong, you can
reverse that variable as follows:

genr x = sortby(-obs, x)

Dropping missing observations selectively

Problem: You have a dataset with many variables and want to restrict the sample to those observa-
tions for which there are no missing observations for the variables x1, x2 and x3.
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Solution:

list X = x1 x2 x3
genr sel = ok(X)
smpl sel --restrict

Comment: You can now save the file via a store command to preserve a subsampled version of
the dataset.

“By” operations

Problem: You have a discrete variable d and you want to run some commands (for example, estimate
a model) by splitting the sample according to the values of d.

Solution:

matrix vd = values(d)
m = rows(vd)
loop for i=1..m
scalar sel = vd[i]
smpl (d=sel) --restrict --replace
ols y const x

end loop
smpl full

Comment: The main ingredient here is a loop. You can have gretl perform as many instructions as
you want for each value of d, as long as they are allowed inside a loop.

13.2 Creating/modifying variables

Generating a dummy variable for a specific observation

Problem: Generate dt = 0 for all observation but one, for which dt = 1.

Solution:

genr d = (t="1984:2")

Comment: The internal variable t is used to refer to observations in string form, so if you have a
cross-section sample you may just use d = (t="123"); of course, if the dataset has data labels,
use the corresponding label. For example, if you open the dataset mrw.gdt, supplied with gretl
among the examples, a dummy variable for Italy could be generated via

genr DIta = (t="Italy")

Note that this method does not require scripting at all. In fact, you might as well use the GUI Menu
“Add/Define new variable” for the same purpose, with the same syntax.

Generating an ARMA(1,1)

Problem: Generate yt = 0.9yt−1 + εt − 0.5εt−1, with εt ∼ NIID(0,1).
Solution:

alpha = 0.9
theta = -0.5
series e = normal()
series y = 0
series y = alpha * y(-1) + e + theta * e(-1)
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Comment: The statement series y = 0 is necessary because the next statement evaluates y re-
cursively, so y[1] must be set. Note that you must use the keyword series here instead of writing
genr y = 0 or simply y = 0, to ensure that y is a series and not a scalar.

Conditional assignment

Problem: Generate yt via the following rule:

yt =
{
xt for dt > a
zt for dt ≤ a

Solution:

series y = (d > a) ? x : z

Comment: There are several alternatives to the one presented above. One is a brute force solution
using loops. Another one, more efficient but still suboptimal, would be

series y = (d>a)*x + (d<=a)*z

However, the ternary conditional assignment operator is not only the most numerically efficient
way to accomplish what we want, it is also remarkably transparent to read when one gets used to
it. Some readers may find it helpful to note that the conditional assignment operator works exactly
the same way as the =IF() function in spreadsheets.

Generating a time index for panel datasets

Problem: Gretl has a $unit accessor, but not the equivalent for time. What should I use?

Solution:

series x = time

Comment: The special construct genr time and its variants are aware of whether a dataset is a
panel.

13.3 Neat tricks

Interaction dummies

Problem: You want to estimate the model yi = xiβ1 + ziβ2 + diβ3 + (di · zi)β4 + εt , where di is a
dummy variable while xi and zi are vectors of explanatory variables.

Solution:

list X = x1 x2 x3
list Z = z1 z2
list dZ = null
loop foreach i Z
series d$i = d * $i
list dZ = dZ d$i

end loop

ols y X Z d dZ

Comment: It’s amazing what string substitution can do for you, isn’t it?
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Realized volatility

Problem: Given data by the minute, you want to compute the “realized volatility” for the hour as
RVt = 1

60

∑60
τ=1y

2
t:τ . Imagine your sample starts at time 1:1.

Solution:

smpl full
genr time
genr minute = int(time/60) + 1
genr second = time % 60
setobs minute second --panel
genr rv = psd(y)^2
setobs 1 1
smpl second=1 --restrict
store foo rv

Comment: Here we trick gretl into thinking that our dataset is a panel dataset, where the minutes
are the “units” and the seconds are the “time”; this way, we can take advantage of the special
function psd(), panel standard deviation. Then we simply drop all observations but one per minute
and save the resulting data (store foo rv translates as “store in the gretl datafile foo.gdt the
series rv”).

Looping over two paired lists

Problem: Suppose you have two lists with the same number of elements, and you want to apply
some command to corresponding elements over a loop.

Solution:

list L1 = a b c
list L2 = x y z

k1 = 1
loop foreach i L1 --quiet

k2 = 1
loop foreach j L2 --quiet

if k1=k2
ols $i 0 $j

endif
k2++

end loop
k1++

end loop

Comment: The simplest way to achieve the result is to loop over all possible combinations and
filter out the unneeded ones via an if condition, as above. That said, in some cases variable names
can help. For example, if

list Lx = x1 x2 x3
list Ly = y1 y2 y3

looping over the integers is quite intuitive and certainly more elegant:

loop for i=1..3
ols y$i const x$i

end loop



Part II

Econometric methods
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Chapter 14

Robust covariance matrix estimation

14.1 Introduction

Consider (once again) the linear regression model

y = Xβ+u (14.1)

where y and u are T -vectors, X is a T × k matrix of regressors, and β is a k-vector of parameters.
As is well known, the estimator of β given by Ordinary Least Squares (OLS) is

β̂ = (X′X)−1X′y (14.2)

If the condition E(u|X) = 0 is satisfied, this is an unbiased estimator; under somewhat weaker
conditions the estimator is biased but consistent. It is straightforward to show that when the OLS
estimator is unbiased (that is, when E(β̂− β) = 0), its variance is

Var(β̂) = E
(
(β̂− β)(β̂− β)′

)
= (X′X)−1X′ΩX(X′X)−1 (14.3)

where Ω = E(uu′) is the covariance matrix of the error terms.

Under the assumption that the error terms are independently and identically distributed (iid) we
can write Ω = σ 2I, where σ 2 is the (common) variance of the errors (and the covariances are zero).
In that case (14.3) simplifies to the “classical” formula,

Var(β̂) = σ 2(X′X)−1 (14.4)

If the iid assumption is not satisfied, two things follow. First, it is possible in principle to construct
a more efficient estimator than OLS — for instance some sort of Feasible Generalized Least Squares
(FGLS). Second, the simple “classical” formula for the variance of the least squares estimator is no
longer correct, and hence the conventional OLS standard errors — which are just the square roots
of the diagonal elements of the matrix defined by (14.4) — do not provide valid means of statistical
inference.

In the recent history of econometrics there are broadly two approaches to the problem of non-
iid errors. The “traditional” approach is to use an FGLS estimator. For example, if the departure
from the iid condition takes the form of time-series dependence, and if one believes that this
could be modeled as a case of first-order autocorrelation, one might employ an AR(1) estimation
method such as Cochrane–Orcutt, Hildreth–Lu, or Prais–Winsten. If the problem is that the error
variance is non-constant across observations, one might estimate the variance as a function of the
independent variables and then perform weighted least squares, using as weights the reciprocals
of the estimated variances.

While these methods are still in use, an alternative approach has found increasing favor: that
is, use OLS but compute standard errors (or more generally, covariance matrices) that are robust
with respect to deviations from the iid assumption. This is typically combined with an emphasis on
using large datasets — large enough that the researcher can place some reliance on the (asymptotic)
consistency property of OLS. This approach has been enabled by the availability of cheap computing
power. The computation of robust standard errors and the handling of very large datasets were
daunting tasks at one time, but now they are unproblematic. The other point favoring the newer
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methodology is that while FGLS offers an efficiency advantage in principle, it often involves making
additional statistical assumptions which may or may not be justified, which may not be easy to test
rigorously, and which may threaten the consistency of the estimator — for example, the “common
factor restriction” that is implied by traditional FGLS “corrections” for autocorrelated errors.

James Stock and Mark Watson’s Introduction to Econometrics illustrates this approach at the level of
undergraduate instruction: many of the datasets they use comprise thousands or tens of thousands
of observations; FGLS is downplayed; and robust standard errors are reported as a matter of course.
In fact, the discussion of the classical standard errors (labeled “homoskedasticity-only”) is confined
to an Appendix.

Against this background it may be useful to set out and discuss all the various options offered
by gretl in respect of robust covariance matrix estimation. The first point to notice is that gretl
produces “classical” standard errors by default (in all cases apart from GMM estimation). In script
mode you can get robust standard errors by appending the --robust flag to estimation commands.
In the GUI program the model specification dialog usually contains a “Robust standard errors”
check box, along with a “configure” button that is activated when the box is checked. The configure
button takes you to a configuration dialog (which can also be reached from the main menu bar:
Tools → Preferences → General → HCCME). There you can select from a set of possible robust
estimation variants, and can also choose to make robust estimation the default.

The specifics of the available options depend on the nature of the data under consideration —
cross-sectional, time series or panel — and also to some extent the choice of estimator. (Although
we introduced robust standard errors in the context of OLS above, they may be used in conjunction
with other estimators too.) The following three sections of this chapter deal with matters that are
specific to the three sorts of data just mentioned. Note that additional details regarding covariance
matrix estimation in the context of GMM are given in chapter 18.

We close this introduction with a brief statement of what “robust standard errors” can and cannot
achieve. They can provide for asymptotically valid statistical inference in models that are basically
correctly specified, but in which the errors are not iid. The “asymptotic” part means that they
may be of little use in small samples. The “correct specification” part means that they are not a
magic bullet: if the error term is correlated with the regressors, so that the parameter estimates
themselves are biased and inconsistent, robust standard errors will not save the day.

14.2 Cross-sectional data and the HCCME

With cross-sectional data, the most likely departure from iid errors is heteroskedasticity (non-
constant variance).1 In some cases one may be able to arrive at a judgment regarding the likely
form of the heteroskedasticity, and hence to apply a specific correction. The more common case,
however, is where the heteroskedasticity is of unknown form. We seek an estimator of the covari-
ance matrix of the parameter estimates that retains its validity, at least asymptotically, in face of
unspecified heteroskedasticity. It is not obvious, a priori, that this should be possible, but White
(1980) showed that

V̂arh(β̂) = (X′X)−1X′Ω̂X(X′X)−1 (14.5)

does the trick. (As usual in statistics, we need to say “under certain conditions”, but the conditions
are not very restrictive.) Ω̂ is in this context a diagonal matrix, whose non-zero elements may be
estimated using squared OLS residuals. White referred to (14.5) as a heteroskedasticity-consistent
covariance matrix estimator (HCCME).

Davidson and MacKinnon (2004, chapter 5) offer a useful discussion of several variants on White’s
HCCME theme. They refer to the original variant of (14.5) — in which the diagonal elements of Ω̂
are estimated directly by the squared OLS residuals, û2

t — as HC0. (The associated standard errors
are often called “White’s standard errors”.) The various refinements of White’s proposal share a

1In some specialized contexts spatial autocorrelation may be an issue. Gretl does not have any built-in methods to
handle this and we will not discuss it here.
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common point of departure, namely the idea that the squared OLS residuals are likely to be “too
small” on average. This point is quite intuitive. The OLS parameter estimates, β̂, satisfy by design
the criterion that the sum of squared residuals,∑

û2
t =

∑(
yt −Xtβ̂

)2

is minimized for given X and y . Suppose that β̂ ≠ β. This is almost certain to be the case: even is
OLS is not biased, it would be a miracle if the β̂ calculated from any finite sample were exactly equal
to β. But in that case the sum of squares of the true, unobserved errors,

∑
u2
t =

∑
(yt − Xtβ)2 is

bound to be greater than
∑
û2
t . The elaborated variants on HC0 take this point on board as follows:

• HC1: Applies a degrees-of-freedom correction, multiplying the HC0 matrix by T/(T − k).

• HC2: Instead of using û2
t for the diagonal elements of Ω̂, uses û2

t /(1 − ht), where ht =
Xt(X′X)−1X′t , the tth diagonal element of the projection matrix, P , which has the property
that P · y = ŷ . The relevance of ht is that if the variance of all the ut is σ 2, the expectation
of û2

t is σ 2(1−ht), or in other words, the ratio û2
t /(1−ht) has expectation σ 2. As Davidson

and MacKinnon show, 0 ≤ ht < 1 for all t, so this adjustment cannot reduce the the diagonal
elements of Ω̂ and in general revises them upward.

• HC3: Uses û2
t /(1 − ht)2. The additional factor of (1 − ht) in the denominator, relative to

HC2, may be justified on the grounds that observations with large variances tend to exert a
lot of influence on the OLS estimates, so that the corresponding residuals tend to be under-
estimated. See Davidson and MacKinnon for a fuller explanation.

The relative merits of these variants have been explored by means of both simulations and the-
oretical analysis. Unfortunately there is not a clear consensus on which is “best”. Davidson and
MacKinnon argue that the original HC0 is likely to perform worse than the others; nonetheless,
“White’s standard errors” are reported more often than the more sophisticated variants and there-
fore, for reasons of comparability, HC0 is the default HCCME in gretl.

If you wish to use HC1, HC2 or HC3 you can arrange for this in either of two ways. In script mode,
you can do, for example,

set hc_version 2

In the GUI program you can go to the HCCME configuration dialog, as noted above, and choose any
of these variants to be the default.

14.3 Time series data and HAC covariance matrices

Heteroskedasticity may be an issue with time series data too, but it is unlikely to be the only, or
even the primary, concern.

One form of heteroskedasticity is common in macroeconomic time series, but is fairly easily dealt
with. That is, in the case of strongly trending series such as Gross Domestic Product, aggregate
consumption, aggregate investment, and so on, higher levels of the variable in question are likely
to be associated with higher variability in absolute terms. The obvious “fix”, employed in many
macroeconometric studies, is to use the logs of such series rather than the raw levels. Provided the
proportional variability of such series remains roughly constant over time, the log transformation
is effective.

Other forms of heteroskedasticity may resist the log transformation, but may demand a special
treatment distinct from the calculation of robust standard errors. We have in mind here autore-
gressive conditional heteroskedasticity, for example in the behavior of asset prices, where large
disturbances to the market may usher in periods of increased volatility. Such phenomena call for
specific estimation strategies, such as GARCH (see chapter 20).
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Despite the points made above, some residual degree of heteroskedasticity may be present in time
series data: the key point is that in most cases it is likely to be combined with serial correlation
(autocorrelation), hence demanding a special treatment. In White’s approach, Ω̂, the estimated
covariance matrix of the ut , remains conveniently diagonal: the variances, E(u2

t ), may differ by
t but the covariances, E(utus), are all zero. Autocorrelation in time series data means that at
least some of the the off-diagonal elements of Ω̂ should be non-zero. This introduces a substantial
complication and requires another piece of terminology; estimates of the covariance matrix that
are asymptotically valid in face of both heteroskedasticity and autocorrelation of the error process
are termed HAC (heteroskedasticity and autocorrelation consistent).

The issue of HAC estimation is treated in more technical terms in chapter 18. Here we try to
convey some of the intuition at a more basic level. We begin with a general comment: residual
autocorrelation is not so much a property of the data, as a symptom of an inadequate model. Data
may be persistent though time, and if we fit a model that does not take this aspect into account
properly, we end up with a model with autocorrelated disturbances. Conversely, it is often possible
to mitigate or even eliminate the problem of autocorrelation by including relevant lagged variables
in a time series model, or in other words, by specifying the dynamics of the model more fully. HAC
estimation should not be seen as the first resort in dealing with an autocorrelated error process.

That said, the “obvious” extension of White’s HCCME to the case of autocorrelated errors would
seem to be this: estimate the off-diagonal elements of Ω̂ (that is, the autocovariances, E(utus))
using, once again, the appropriate OLS residuals: ω̂ts = ûtûs . This is basically right, but demands
an important amendment. We seek a consistent estimator, one that converges towards the true Ω
as the sample size tends towards infinity. This can’t work if we allow unbounded serial depen-
dence. Bigger samples will enable us to estimate more of the true ωts elements (that is, for t and
s more widely separated in time) but will not contribute ever-increasing information regarding the
maximally separated ωts pairs, since the maximal separation itself grows with the sample size.
To ensure consistency, we have to confine our attention to processes exhibiting temporally limited
dependence, or in other words cut off the computation of the ω̂ts values at some maximum value
of p = t − s (where p is treated as an increasing function of the sample size, T , although it cannot
increase in proportion to T ).

The simplest variant of this idea is to truncate the computation at some finite lag order p, where
p grows as, say, T 1/4. The trouble with this is that the resulting Ω̂ may not be a positive definite
matrix. In practical terms, we may end up with negative estimated variances. One solution to this
problem is offered by The Newey–West estimator (Newey and West, 1987), which assigns declining
weights to the sample autocovariances as the temporal separation increases.

To understand this point it is helpful to look more closely at the covariance matrix given in (14.5),
namely,

(X′X)−1(X′Ω̂X)(X′X)−1

This is known as a “sandwich” estimator. The bread, which appears on both sides, is (X′X)−1.
This is a k× k matrix, and is also the key ingredient in the computation of the classical covariance
matrix. The filling in the sandwich is

Σ̂ = X′ Ω̂ X
(k×k) (k×T) (T×T) (T×k)

Since Ω = E(uu′), the matrix being estimated here can also be written as

Σ = E(X′uu′X)
which expresses Σ as the long-run covariance of the random k-vector X′u.

From a computational point of view, it is not necessary or desirable to store the (potentially very
large) T × T matrix Ω̂ as such. Rather, one computes the sandwich filling by summation as

Σ̂ = Γ̂(0)+ p∑
j=1

wj
(Γ̂(j)+ Γ̂ ′(j))
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where the k× k sample autocovariance matrix Γ̂(j), for j ≥ 0, is given by

Γ̂(j) = 1
T

T∑
t=j+1

ûtût−j X′t Xt−j

and wj is the weight given to the autocovariance at lag j > 0.

This leaves two questions. How exactly do we determine the maximum lag length or “bandwidth”,
p, of the HAC estimator? And how exactly are the weights wj to be determined? We will return to
the (difficult) question of the bandwidth shortly. As regards the weights, Gretl offers three variants.
The default is the Bartlett kernel, as used by Newey and West. This sets

wj =

 1− j
p+1 j ≤ p

0 j > p

so the weights decline linearly as j increases. The other two options are the Parzen kernel and the
Quadratic Spectral (QS) kernel. For the Parzen kernel,

wj =


1− 6a2

j + 6a3
j 0 ≤ aj ≤ 0.5

2(1− aj)3 0.5 < aj ≤ 1

0 aj > 1

where aj = j/(p + 1), and for the QS kernel,

wj =
25

12π2d2
j

(
sinmj

mj
− cosmj

)

where dj = j/p and mj = 6πdi/5.

Figure 14.1 shows the weights generated by these kernels, for p = 4 and j = 1 to 9.

Figure 14.1: Three HAC kernels

Bartlett Parzen QS

In gretl you select the kernel using the set command with the hac_kernel parameter:

set hac_kernel parzen
set hac_kernel qs
set hac_kernel bartlett

Selecting the HAC bandwidth

The asymptotic theory developed by Newey, West and others tells us in general terms how the
HAC bandwidth, p, should grow with the sample size, T — that is, p should grow in proportion
to some fractional power of T . Unfortunately this is of little help to the applied econometrician,
working with a given dataset of fixed size. Various rules of thumb have been suggested, and gretl
implements two such. The default is p = 0.75T 1/3, as recommended by Stock and Watson (2003).
An alternative is p = 4(T/100)2/9, as in Wooldridge (2002b). In each case one takes the integer
part of the result. These variants are labeled nw1 and nw2 respectively, in the context of the set
command with the hac_lag parameter. That is, you can switch to the version given by Wooldridge
with
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set hac_lag nw2

As shown in Table 14.1 the choice between nw1 and nw2 does not make a great deal of difference.

T p (nw1) p (nw2)

50 2 3

100 3 4

150 3 4

200 4 4

300 5 5

400 5 5

Table 14.1: HAC bandwidth: two rules of thumb

You also have the option of specifying a fixed numerical value for p, as in

set hac_lag 6

In addition you can set a distinct bandwidth for use with the Quadratic Spectral kernel (since this
need not be an integer). For example,

set qs_bandwidth 3.5

Prewhitening and data-based bandwidth selection

An alternative approach is to deal with residual autocorrelation by attacking the problem from two
sides. The intuition behind the technique known as VAR prewhitening (Andrews and Monahan,
1992) can be illustrated by a simple example. Let xt be a sequence of first-order autocorrelated
random variables

xt = ρxt−1 +ut
The long-run variance of xt can be shown to be

VLR(xt) =
VLR(ut)
(1− ρ)2

In most cases, ut is likely to be less autocorrelated than xt , so a smaller bandwidth should suffice.
Estimation of VLR(xt) can therefore proceed in three steps: (1) estimate ρ; (2) obtain a HAC estimate
of ût = xt − ρ̂xt−1; and (3) divide the result by (1− ρ)2.

The application of the above concept to our problem implies estimating a finite-order Vector Au-
toregression (VAR) on the vector variables ξt = Xtût . In general, the VAR can be of any order, but
in most cases 1 is sufficient; the aim is not to build a watertight model for ξt , but just to “mop up”
a substantial part of the autocorrelation. Hence, the following VAR is estimated

ξt = Aξt−1 + εt

Then an estimate of the matrix X′ΩX can be recovered via

(I − Â)−1Σ̂ε(I − Â′)−1

where Σ̂ε is any HAC estimator, applied to the VAR residuals.

You can ask for prewhitening in gretl using

set hac_prewhiten on
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There is at present no mechanism for specifying an order other than 1 for the initial VAR.

A further refinement is available in this context, namely data-based bandwidth selection. It makes
intuitive sense that the HAC bandwidth should not simply be based on the size of the sample,
but should somehow take into account the time-series properties of the data (and also the kernel
chosen). A nonparametric method for doing this was proposed by Newey and West (1994); a good
concise account of the method is given in Hall (2005). This option can be invoked in gretl via

set hac_lag nw3

This option is the default when prewhitening is selected, but you can override it by giving a specific
numerical value for hac_lag.

Even the Newey–West data-based method does not fully pin down the bandwidth for any particular
sample. The first step involves calculating a series of residual covariances. The length of this series
is given as a function of the sample size, but only up to a scalar multiple — for example, it is given
as O(T 2/9) for the Bartlett kernel. Gretl uses an implied multiple of 1.

14.4 Special issues with panel data

Since panel data have both a time-series and a cross-sectional dimension one might expect that, in
general, robust estimation of the covariance matrix would require handling both heteroskedasticity
and autocorrelation (the HAC approach). In addition, some special features of panel data require
attention.

• The variance of the error term may differ across the cross-sectional units.

• The covariance of the errors across the units may be non-zero in each time period.

• If the “between” variation is not removed, the errors may exhibit autocorrelation, not in the
usual time-series sense but in the sense that the mean error for unit i may differ from that of
unit j. (This is particularly relevant when estimation is by pooled OLS.)

Gretl currently offers two robust covariance matrix estimators specifically for panel data. These are
available for models estimated via fixed effects, pooled OLS, and pooled two-stage least squares.
The default robust estimator is that suggested by Arellano (2003), which is HAC provided the panel
is of the “large n, small T ” variety (that is, many units are observed in relatively few periods). The
Arellano estimator is

Σ̂A =
(
X′X

)−1

 n∑
i=1

X′iûiû
′
iXi

(X′X)−1

where X is the matrix of regressors (with the group means subtracted, in the case of fixed effects)
ûi denotes the vector of residuals for unit i, and n is the number of cross-sectional units. Cameron
and Trivedi (2005) make a strong case for using this estimator; they note that the ordinary White
HCCME can produce misleadingly small standard errors in the panel context because it fails to take
autocorrelation into account.

In cases where autocorrelation is not an issue, however, the estimator proposed by Beck and Katz
(1995) and discussed by Greene (2003, chapter 13) may be appropriate. This estimator, which takes
into account contemporaneous correlation across the units and heteroskedasticity by unit, is

Σ̂BK =
(
X′X

)−1

 n∑
i=1

n∑
j=1

σ̂ijX′iXj

(X′X)−1

The covariances σ̂ij are estimated via

σ̂ij =
û′iûj
T
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where T is the length of the time series for each unit. Beck and Katz call the associated standard
errors “Panel-Corrected Standard Errors” (PCSE). This estimator can be invoked in gretl via the
command

set pcse on

The Arellano default can be re-established via

set pcse off

(Note that regardless of the pcse setting, the robust estimator is not used unless the --robust flag
is given, or the “Robust” box is checked in the GUI program.)



Chapter 15

Panel data

15.1 Estimation of panel models

Pooled Ordinary Least Squares

The simplest estimator for panel data is pooled OLS. In most cases this is unlikely to be adequate,
but it provides a baseline for comparison with more complex estimators.

If you estimate a model on panel data using OLS an additional test item becomes available. In the
GUI model window this is the item “panel diagnostics” under the Tests menu; the script counterpart
is the hausman command.

To take advantage of this test, you should specify a model without any dummy variables represent-
ing cross-sectional units. The test compares pooled OLS against the principal alternatives, the fixed
effects and random effects models. These alternatives are explained in the following section.

The fixed and random effects models

In gretl version 1.6.0 and higher, the fixed and random effects models for panel data can be es-
timated in their own right. In the graphical interface these options are found under the menu
item “Model/Panel/Fixed and random effects”. In the command-line interface one uses the panel
command, with or without the --random-effects option.

This section explains the nature of these models and comments on their estimation via gretl.

The pooled OLS specification may be written as

yit = Xitβ+uit (15.1)

where yit is the observation on the dependent variable for cross-sectional unit i in period t, Xit
is a 1 × k vector of independent variables observed for unit i in period t, β is a k × 1 vector of
parameters, and uit is an error or disturbance term specific to unit i in period t.

The fixed and random effects models have in common that they decompose the unitary pooled
error term, uit . For the fixed effects model we write uit = αi + εit , yielding

yit = Xitβ+αi + εit (15.2)

That is, we decomposeuit into a unit-specific and time-invariant component, αi, and an observation-
specific error, εit .1 The αis are then treated as fixed parameters (in effect, unit-specific y-intercepts),
which are to be estimated. This can be done by including a dummy variable for each cross-sectional
unit (and suppressing the global constant). This is sometimes called the Least Squares Dummy Vari-
ables (LSDV) method. Alternatively, one can subtract the group mean from each of variables and
estimate a model without a constant. In the latter case the dependent variable may be written as

ỹit = yit − ȳi
The “group mean”, ȳi, is defined as

ȳi =
1
Ti

Ti∑
t=1

yit

1It is possible to break a third component out of uit , namely wt , a shock that is time-specific but common to all the
units in a given period. In the interest of simplicity we do not pursue that option here.
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where Ti is the number of observations for unit i. An exactly analogous formulation applies to the
independent variables. Given parameter estimates, β̂, obtained using such de-meaned data we can
recover estimates of the αis using

α̂i =
1
Ti

Ti∑
t=1

(
yit −Xitβ̂

)

These two methods (LSDV, and using de-meaned data) are numerically equivalent. Gretl takes the
approach of de-meaning the data. If you have a small number of cross-sectional units, a large num-
ber of time-series observations per unit, and a large number of regressors, it is more economical
in terms of computer memory to use LSDV. If need be you can easily implement this manually. For
example,

genr unitdum
ols y x du_*

(See Chapter 5 for details on unitdum).

The α̂i estimates are not printed as part of the standard model output in gretl (there may be a large
number of these, and typically they are not of much inherent interest). However you can retrieve
them after estimation of the fixed effects model if you wish. In the graphical interface, go to the
“Save” menu in the model window and select “per-unit constants”. In command-line mode, you can
do genr newname = $ahat, where newname is the name you want to give the series.

For the random effects model we write uit = vi + εit , so the model becomes

yit = Xitβ+ vi + εit (15.3)

In contrast to the fixed effects model, the vis are not treated as fixed parameters, but as random
drawings from a given probability distribution.

The celebrated Gauss–Markov theorem, according to which OLS is the best linear unbiased esti-
mator (BLUE), depends on the assumption that the error term is independently and identically
distributed (IID). In the panel context, the IID assumption means that E(u2

it), in relation to equa-
tion 15.1, equals a constant, σ 2

u, for all i and t, while the covariance E(uisuit) equals zero for all
s ≠ t and the covariance E(ujtuit) equals zero for all j ≠ i.

If these assumptions are not met — and they are unlikely to be met in the context of panel data
— OLS is not the most efficient estimator. Greater efficiency may be gained using generalized least
squares (GLS), taking into account the covariance structure of the error term.

Consider observations on a given unit i at two different times s and t. From the hypotheses above
it can be worked out that Var(uis) = Var(uit) = σ 2

v +σ 2
ε , while the covariance between uis and uit

is given by E(uisuit) = σ 2
v .

In matrix notation, we may group all the Ti observations for unit i into the vector yi and write it as

yi = Xiβ+ ui (15.4)

The vector ui, which includes all the disturbances for individual i, has a variance–covariance matrix
given by

Var(ui) = Σi = σ 2
ε I + σ 2

vJ (15.5)

where J is a square matrix with all elements equal to 1. It can be shown that the matrix

Ki = I −
θ
Ti
J,

where θ = 1−
√

σ2
ε

σ2
ε +Tiσ2

v
, has the property

KiΣK′i = σ 2
ε I
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It follows that the transformed system

Kiyi = KiXiβ+Kiui (15.6)

satisfies the Gauss–Markov conditions, and OLS estimation of (15.6) provides efficient inference.
But since

Kiyi = yi − θȳi

GLS estimation is equivalent to OLS using “quasi-demeaned” variables; that is, variables from which
we subtract a fraction θ of their average. Notice that for σ 2

ε → 0, θ → 1, while for σ 2
v → 0, θ → 0.

This means that if all the variance is attributable to the individual effects, then the fixed effects
estimator is optimal; if, on the other hand, individual effects are negligible, then pooled OLS turns
out, unsurprisingly, to be the optimal estimator.

To implement the GLS approach we need to calculate θ, which in turn requires estimates of the
variances σ 2

ε and σ 2
v . (These are often referred to as the “within” and “between” variances respec-

tively, since the former refers to variation within each cross-sectional unit and the latter to variation
between the units). Several means of estimating these magnitudes have been suggested in the liter-
ature (see Baltagi, 1995); gretl uses the method of Swamy and Arora (1972): σ 2

ε is estimated by the
residual variance from the fixed effects model, and the sum σ 2

ε + Tiσ 2
v is estimated as Ti times the

residual variance from the “between” estimator,

ȳi = X̄iβ+ ei

The latter regression is implemented by constructing a data set consisting of the group means of
all the relevant variables.

Choice of estimator

Which panel method should one use, fixed effects or random effects?

One way of answering this question is in relation to the nature of the data set. If the panel comprises
observations on a fixed and relatively small set of units of interest (say, the member states of the
European Union), there is a presumption in favor of fixed effects. If it comprises observations on a
large number of randomly selected individuals (as in many epidemiological and other longitudinal
studies), there is a presumption in favor of random effects.

Besides this general heuristic, however, various statistical issues must be taken into account.

1. Some panel data sets contain variables whose values are specific to the cross-sectional unit
but which do not vary over time. If you want to include such variables in the model, the fixed
effects option is simply not available. When the fixed effects approach is implemented using
dummy variables, the problem is that the time-invariant variables are perfectly collinear with
the per-unit dummies. When using the approach of subtracting the group means, the issue is
that after de-meaning these variables are nothing but zeros.

2. A somewhat analogous prohibition applies to the random effects estimator. This estimator is
in effect a matrix-weighted average of pooled OLS and the “between” estimator. Suppose we
have observations on n units or individuals and there are k independent variables of interest.
If k > n, the “between” estimator is undefined — since we have only n effective observations
— and hence so is the random effects estimator.

If one does not fall foul of one or other of the prohibitions mentioned above, the choice between
fixed effects and random effects may be expressed in terms of the two econometric desiderata,
efficiency and consistency.

From a purely statistical viewpoint, we could say that there is a tradeoff between robustness and
efficiency. In the fixed effects approach, we do not make any hypotheses on the “group effects”
(that is, the time-invariant differences in mean between the groups) beyond the fact that they exist
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— and that can be tested; see below. As a consequence, once these effects are swept out by taking
deviations from the group means, the remaining parameters can be estimated.

On the other hand, the random effects approach attempts to model the group effects as drawings
from a probability distribution instead of removing them. This requires that individual effects are
representable as a legitimate part of the disturbance term, that is, zero-mean random variables,
uncorrelated with the regressors.

As a consequence, the fixed-effects estimator “always works”, but at the cost of not being able to
estimate the effect of time-invariant regressors. The richer hypothesis set of the random-effects
estimator ensures that parameters for time-invariant regressors can be estimated, and that esti-
mation of the parameters for time-varying regressors is carried out more efficiently. These advan-
tages, though, are tied to the validity of the additional hypotheses. If, for example, there is reason
to think that individual effects may be correlated with some of the explanatory variables, then the
random-effects estimator would be inconsistent, while fixed-effects estimates would still be valid.
It is precisely on this principle that the Hausman test is built (see below): if the fixed- and random-
effects estimates agree, to within the usual statistical margin of error, there is no reason to think
the additional hypotheses invalid, and as a consequence, no reason not to use the more efficient RE
estimator.

Testing panel models

If you estimate a fixed effects or random effects model in the graphical interface, you may notice
that the number of items available under the “Tests” menu in the model window is relatively limited.
Panel models carry certain complications that make it difficult to implement all of the tests one
expects to see for models estimated on straight time-series or cross-sectional data.

Nonetheless, various panel-specific tests are printed along with the parameter estimates as a matter
of course, as follows.

When you estimate a model using fixed effects, you automatically get an F -test for the null hy-
pothesis that the cross-sectional units all have a common intercept. That is to say that all the αis
are equal, in which case the pooled model (15.1), with a column of 1s included in the X matrix, is
adequate.

When you estimate using random effects, the Breusch–Pagan and Hausman tests are presented
automatically.

The Breusch–Pagan test is the counterpart to the F -test mentioned above. The null hypothesis is
that the variance of vi in equation (15.3) equals zero; if this hypothesis is not rejected, then again
we conclude that the simple pooled model is adequate.

The Hausman test probes the consistency of the GLS estimates. The null hypothesis is that these
estimates are consistent — that is, that the requirement of orthogonality of the vi and the Xi
is satisfied. The test is based on a measure, H, of the “distance” between the fixed-effects and
random-effects estimates, constructed such that under the null it follows the χ2 distribution with
degrees of freedom equal to the number of time-varying regressors in the matrix X. If the value of
H is “large” this suggests that the random effects estimator is not consistent and the fixed-effects
model is preferable.

There are two ways of calculating H, the matrix-difference method and the regression method. The
procedure for the matrix-difference method is this:

• Collect the fixed-effects estimates in a vector β̃ and the corresponding random-effects esti-
mates in β̂, then form the difference vector (β̃− β̂).

• Form the covariance matrix of the difference vector as Var(β̃ − β̂) = Var(β̃) − Var(β̂) = Ψ ,
where Var(β̃) and Var(β̂) are estimated by the sample variance matrices of the fixed- and
random-effects models respectively.2

2Hausman (1978) showed that the covariance of the difference takes this simple form when β̂ is an efficient estimator
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• Compute H =
(
β̃− β̂

)′ Ψ−1
(
β̃− β̂

)
.

Given the relative efficiencies of β̃ and β̂, the matrix Ψ “should be” positive definite, in which case
H is positive, but in finite samples this is not guaranteed and of course a negative χ2 value is not
admissible. The regression method avoids this potential problem. The procedure is:

• Treat the random-effects model as the restricted model, and record its sum of squared resid-
uals as SSRr .

• Estimate via OLS an unrestricted model in which the dependent variable is quasi-demeaned y
and the regressors include both quasi-demeaned X (as in the RE model) and the de-meaned
variants of all the time-varying variables (i.e. the fixed-effects regressors); record the sum of
squared residuals from this model as SSRu.

• Compute H = n(SSRr − SSRu) /SSRu, where n is the total number of observations used. On
this variant H cannot be negative, since adding additional regressors to the RE model cannot
raise the SSR.

By default gretl computes the Hausman test via the matrix-difference method (largely for compara-
bility with other software), but it uses the regression method if you pass the option --hausman-reg
to the panel command.

Robust standard errors

For most estimators, gretl offers the option of computing an estimate of the covariance matrix that
is robust with respect to heteroskedasticity and/or autocorrelation (and hence also robust standard
errors). In the case of panel data, robust covariance matrix estimators are available for the pooled
and fixed effects model but not currently for random effects. Please see section 14.4 for details.

15.2 Dynamic panel models

Special problems arise when a lag of the dependent variable is included among the regressors in a
panel model. Consider a dynamic variant of the pooled model (15.1):

yit = Xitβ+ ρyit−1 +uit (15.7)

First, if the error uit includes a group effect, vi, then yit−1 is bound to be correlated with the error,
since the value of vi affects yi at all t. That means that OLS applied to (15.7) will be inconsistent
as well as inefficient. The fixed-effects model sweeps out the group effects and so overcomes this
particular problem, but a subtler issue remains, which applies to both fixed and random effects
estimation. Consider the de-meaned representation of fixed effects, as applied to the dynamic
model,

ỹit = X̃itβ+ ρỹi,t−1 + εit
where ỹit = yit−ȳi and εit = uit−ūi (or uit−αi, using the notation of equation 15.2). The trouble
is that ỹi,t−1 will be correlated with εit via the group mean, ȳi. The disturbance εit influences yit
directly, which influences ȳi, which, by construction, affects the value of ỹit for all t. The same
issue arises in relation to the quasi-demeaning used for random effects. Estimators which ignore
this correlation will be consistent only as T → ∞ (in which case the marginal effect of εit on the
group mean of y tends to vanish).

One strategy for handling this problem, and producing consistent estimates of β and ρ, was pro-
posed by Anderson and Hsiao (1981). Instead of de-meaning the data, they suggest taking the first
difference of (15.7), an alternative tactic for sweeping out the group effects:

∆yit = ∆Xitβ+ ρ∆yi,t−1 + ηit (15.8)

and β̃ is inefficient.
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where ηit = ∆uit = ∆(vi + εit) = εit − εi,t−1. We’re not in the clear yet, given the structure of the
error ηit : the disturbance εi,t−1 is an influence on both ηit and ∆yi,t−1 = yit −yi,t−1. The next step
is then to find an instrument for the “contaminated” ∆yi,t−1. Anderson and Hsiao suggest using
either yi,t−2 or ∆yi,t−2, both of which will be uncorrelated with ηit provided that the underlying
errors, εit , are not themselves serially correlated.

The Anderson–Hsiao estimator is not provided as a built-in function in gretl, since gretl’s sensible
handling of lags and differences for panel data makes it a simple application of regression with
instrumental variables — see Example 15.1, which is based on a study of country growth rates by
Nerlove (1999).3

Example 15.1: The Anderson–Hsiao estimator for a dynamic panel model

# Penn World Table data as used by Nerlove
open penngrow.gdt
# Fixed effects (for comparison)
panel Y 0 Y(-1) X
# Random effects (for comparison)
panel Y 0 Y(-1) X --random-effects
# take differences of all variables
diff Y X
# Anderson-Hsiao, using Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X Y(-2)
# Anderson-Hsiao, using d_Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X d_Y(-2)

Although the Anderson–Hsiao estimator is consistent, it is not most efficient: it does not make the
fullest use of the available instruments for ∆yi,t−1, nor does it take into account the differenced
structure of the error ηit . It is improved upon by the methods of Arellano and Bond (1991) and
Blundell and Bond (1998).

Gretl implements natively the Arellano–Bond estimator. The rationale behind it is, strictly speaking,
that of a GMM estimator, but it can be illustrated briefly as follows (see Arellano (2003) for a com-
prehensive exposition). Consider again equation (15.8): if for each individual we have observations
dated from 1 to T , we may write the following system:

∆yi,3 = ∆Xi,3β+ ρ∆yi,2 + ηi,3 (15.9)∆yi,4 = ∆Xi,4β+ ρ∆yi,4 + ηi,4 (15.10)
...∆yi,T = ∆Xi,Tβ+ ρ∆yi,T + ηi,T (15.11)

Following the same logic as for the Anderson–Hsiao estimator, we see that the only possible in-
strument for ∆yi,2 in equation (15.9) is yi,1, but for equation (15.10) we can use both yi,1 and yi,2
as instruments for ∆yi,3, thereby gaining efficiency. Likewise, for the final period T we can use as
instruments all values of yi,t up to t = T − 2. The Arellano–Bond technique estimates the above
system, with an increasing number of instruments for each equation.

Estimation is typically carried out in two steps: in step 1 the parameters are estimated on the

3Also see Clint Cummins’ benchmarks page, http://www.stanford.edu/~clint/bench/.

http://www.stanford.edu/~clint/bench/
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assumption that the covariance matrix of the ηi,t terms is proportional to

2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

. . .
...

0 0 0 · · · 2


as should be the case if the disturbances in the original model ui,t were homoskedastic and uncor-
related. This yields a consistent, but not necessarily efficient, estimator.

Step 2 uses the parameters estimated in step 1 to compute an estimate of the covariance of the ηi,t ,
and re-estimates the parameters based on that. This procedure has the double effect of handling
heteroskedasticity and/or serial correlation, plus producing estimators that are asymptotically ef-
ficient.

One-step estimators have sometimes been preferred on the grounds that they are more robust.
Moreover, computing the covariance matrix of the 2-step estimator via the standard GMM formulae
has been shown to produce grossly biased results in finite samples. Gretl, however, implements the
finite-sample correction devised by Windmeijer (2005), so standard errors for the 2-step estimator
can be considered relatively accurate.

By default, gretl’s arbond command estimates the parameters in

A(L)yi,t = Xi,tβ+ vi +ui,t

via the 1-step procedure. The dependent variable is automatically differenced (but note that the
right-hand side variables are not automatically differenced), and all available instruments are used.
However, these choices (plus some others) can be overridden: please see the documentation for the
arbond command in the Gretl Command Reference and the arbond91 example file supplied with
gretl.

15.3 Panel illustration: the Penn World Table

The Penn World Table (homepage at pwt.econ.upenn.edu) is a rich macroeconomic panel dataset,
spanning 152 countries over the years 1950–1992. The data are available in gretl format; please see
the gretl data site (this is a free download, although it is not included in the main gretl package).

Example 15.2 opens pwt56_60_89.gdt, a subset of the PWT containing data on 120 countries,
1960–89, for 20 variables, with no missing observations (the full data set, which is also supplied
in the pwt package for gretl, has many missing observations). Total growth of real GDP, 1960–89,
is calculated for each country and regressed against the 1960 level of real GDP, to see if there is
evidence for “convergence” (i.e. faster growth on the part of countries starting from a low base).

http://pwt.econ.upenn.edu/
http://gretl.sourceforge.net/gretl_data.html


Chapter 15. Panel data 117

Example 15.2: Use of the Penn World Table

open pwt56_60_89.gdt
# for 1989 (the last obs), lag 29 gives 1960, the first obs
genr gdp60 = RGDPL(-29)
# find total growth of real GDP over 30 years
genr gdpgro = (RGDPL - gdp60)/gdp60
# restrict the sample to a 1989 cross-section
smpl --restrict YEAR=1989
# convergence: did countries with a lower base grow faster?
ols gdpgro const gdp60
# result: No! Try an inverse relationship?
genr gdp60inv = 1/gdp60
ols gdpgro const gdp60inv
# no again. Try treating Africa as special?
genr afdum = (CCODE = 1)
genr afslope = afdum * gdp60
ols gdpgro const afdum gdp60 afslope
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Nonlinear least squares

16.1 Introduction and examples

Gretl supports nonlinear least squares (NLS) using a variant of the Levenberg–Marquardt algorithm.
The user must supply a specification of the regression function; prior to giving this specification
the parameters to be estimated must be “declared” and given initial values. Optionally, the user
may supply analytical derivatives of the regression function with respect to each of the parameters.
The tolerance (criterion for terminating the iterative estimation procedure) can be adjusted using
the set command.

The syntax for specifying the function to be estimated is the same as for the genr command. Here
are two examples, with accompanying derivatives.

Example 16.1: Consumption function from Greene

nls C = alpha + beta * Y^gamma
deriv alpha = 1
deriv beta = Y^gamma
deriv gamma = beta * Y^gamma * log(Y)
end nls

Example 16.2: Nonlinear function from Russell Davidson

nls y = alpha + beta * x1 + (1/beta) * x2
deriv alpha = 1
deriv beta = x1 - x2/(beta*beta)
end nls

Note the command words nls (which introduces the regression function), deriv (which introduces
the specification of a derivative), and end nls, which terminates the specification and calls for
estimation. If the --vcv flag is appended to the last line the covariance matrix of the parameter
estimates is printed.

16.2 Initializing the parameters

The parameters of the regression function must be given initial values prior to the nls command.
This can be done using the genr command (or, in the GUI program, via the menu item “Variable,
Define new variable”).

In some cases, where the nonlinear function is a generalization of (or a restricted form of) a linear
model, it may be convenient to run an ols and initialize the parameters from the OLS coefficient
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estimates. In relation to the first example above, one might do:

ols C 0 Y
genr alpha = $coeff(0)
genr beta = $coeff(Y)
genr gamma = 1

And in relation to the second example one might do:

ols y 0 x1 x2
genr alpha = $coeff(0)
genr beta = $coeff(x1)

16.3 NLS dialog window

It is probably most convenient to compose the commands for NLS estimation in the form of a
gretl script but you can also do so interactively, by selecting the item “Nonlinear Least Squares”
under the “Model, Nonlinear models” menu. This opens a dialog box where you can type the
function specification (possibly prefaced by genr lines to set the initial parameter values) and the
derivatives, if available. An example of this is shown in Figure 16.1. Note that in this context you
do not have to supply the nls and end nls tags.

Figure 16.1: NLS dialog box

16.4 Analytical and numerical derivatives

If you are able to figure out the derivatives of the regression function with respect to the para-
meters, it is advisable to supply those derivatives as shown in the examples above. If that is not
possible, gretl will compute approximate numerical derivatives. The properties of the NLS algo-
rithm may not be so good in this case (see Section 16.7).

If analytical derivatives are supplied, they are checked for consistency with the given nonlinear
function. If the derivatives are clearly incorrect estimation is aborted with an error message. If the
derivatives are “suspicious” a warning message is issued but estimation proceeds. This warning
may sometimes be triggered by incorrect derivatives, but it may also be triggered by a high degree
of collinearity among the derivatives.
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Note that you cannot mix analytical and numerical derivatives: you should supply expressions for
all of the derivatives or none.

16.5 Controlling termination

The NLS estimation procedure is an iterative process. Iteration is terminated when the criterion for
convergence is met or when the maximum number of iterations is reached, whichever comes first.

Let k denote the number of parameters being estimated. The maximum number of iterations is
100 × (k + 1) when analytical derivatives are given, and 200 × (k + 1) when numerical derivatives
are used.

Let ε denote a small number. The iteration is deemed to have converged if at least one of the
following conditions is satisfied:

• Both the actual and predicted relative reductions in the error sum of squares are at most ε.

• The relative error between two consecutive iterates is at most ε.

This default value of ε is the machine precision to the power 3/4,1 but it can be adjusted using the
set command with the parameter nls_toler. For example

set nls_toler .0001

will relax the value of ε to 0.0001.

16.6 Details on the code

The underlying engine for NLS estimation is based on the minpack suite of functions, available
from netlib.org. Specifically, the following minpack functions are called:

lmder Levenberg–Marquardt algorithm with analytical derivatives

chkder Check the supplied analytical derivatives

lmdif Levenberg–Marquardt algorithm with numerical derivatives

fdjac2 Compute final approximate Jacobian when using numerical derivatives

dpmpar Determine the machine precision

On successful completion of the Levenberg–Marquardt iteration, a Gauss–Newton regression is used
to calculate the covariance matrix for the parameter estimates. If the --robust flag is given a
robust variant is computed. The documentation for the set command explains the specific options
available in this regard.

Since NLS results are asymptotic, there is room for debate over whether or not a correction for
degrees of freedom should be applied when calculating the standard error of the regression (and
the standard errors of the parameter estimates). For comparability with OLS, and in light of the
reasoning given in Davidson and MacKinnon (1993), the estimates shown in gretl do use a degrees
of freedom correction.

16.7 Numerical accuracy

Table 16.1 shows the results of running the gretl NLS procedure on the 27 Statistical Reference
Datasets made available by the U.S. National Institute of Standards and Technology (NIST) for test-
ing nonlinear regression software.2 For each dataset, two sets of starting values for the parameters

1On a 32-bit Intel Pentium machine a likely value for this parameter is 1.82× 10−12.
2For a discussion of gretl’s accuracy in the estimation of linear models, see Appendix D.

http://www.netlib.org/minpack/
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are given in the test files, so the full test comprises 54 runs. Two full tests were performed, one
using all analytical derivatives and one using all numerical approximations. In each case the default
tolerance was used.3

Out of the 54 runs, gretl failed to produce a solution in 4 cases when using analytical derivatives,
and in 5 cases when using numeric approximation. Of the four failures in analytical derivatives
mode, two were due to non-convergence of the Levenberg–Marquardt algorithm after the maximum
number of iterations (on MGH09 and Bennett5, both described by NIST as of “Higher difficulty”) and
two were due to generation of range errors (out-of-bounds floating point values) when computing
the Jacobian (on BoxBOD and MGH17, described as of “Higher difficulty” and “Average difficulty”
respectively). The additional failure in numerical approximation mode was on MGH10 (“Higher diffi-
culty”, maximum number of iterations reached).

The table gives information on several aspects of the tests: the number of outright failures, the
average number of iterations taken to produce a solution and two sorts of measure of the accuracy
of the estimates for both the parameters and the standard errors of the parameters.

For each of the 54 runs in each mode, if the run produced a solution the parameter estimates
obtained by gretl were compared with the NIST certified values. We define the “minimum correct
figures” for a given run as the number of significant figures to which the least accurate gretl esti-
mate agreed with the certified value, for that run. The table shows both the average and the worst
case value of this variable across all the runs that produced a solution. The same information is
shown for the estimated standard errors.4

The second measure of accuracy shown is the percentage of cases, taking into account all parame-
ters from all successful runs, in which the gretl estimate agreed with the certified value to at least
the 6 significant figures which are printed by default in the gretl regression output.

Table 16.1: Nonlinear regression: the NIST tests

Analytical derivatives Numerical derivatives

Failures in 54 tests 4 5

Average iterations 32 127

Mean of min. correct figures, 8.120 6.980

parameters

Worst of min. correct figures, 4 3

parameters

Mean of min. correct figures, 8.000 5.673

standard errors

Worst of min. correct figures, 5 2

standard errors

Percent correct to at least 6 figures, 96.5 91.9

parameters

Percent correct to at least 6 figures, 97.7 77.3

standard errors

Using analytical derivatives, the worst case values for both parameters and standard errors were

3The data shown in the table were gathered from a pre-release build of gretl version 1.0.9, compiled with gcc 3.3,
linked against glibc 2.3.2, and run under Linux on an i686 PC (IBM ThinkPad A21m).

4For the standard errors, I excluded one outlier from the statistics shown in the table, namely Lanczos1. This is an odd
case, using generated data with an almost-exact fit: the standard errors are 9 or 10 orders of magnitude smaller than the
coefficients. In this instance gretl could reproduce the certified standard errors to only 3 figures (analytical derivatives)
and 2 figures (numerical derivatives).
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improved to 6 correct figures on the test machine when the tolerance was tightened to 1.0e−14.
Using numerical derivatives, the same tightening of the tolerance raised the worst values to 5
correct figures for the parameters and 3 figures for standard errors, at a cost of one additional
failure of convergence.

Note the overall superiority of analytical derivatives: on average solutions to the test problems
were obtained with substantially fewer iterations and the results were more accurate (most notably
for the estimated standard errors). Note also that the six-digit results printed by gretl are not 100
percent reliable for difficult nonlinear problems (in particular when using numerical derivatives).
Having registered this caveat, the percentage of cases where the results were good to six digits or
better seems high enough to justify their printing in this form.
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Maximum likelihood estimation

17.1 Generic ML estimation with gretl

Maximum likelihood estimation is a cornerstone of modern inferential procedures. Gretl provides
a way to implement this method for a wide range of estimation problems, by use of the mle com-
mand. We give here a few examples.

To give a foundation for the examples that follow, we start from a brief reminder on the basics
of ML estimation. Given a sample of size T , it is possible to define the density function1 for the
whole sample, namely the joint distribution of all the observations f(Y;θ), where Y =

{
y1, . . . , yT

}
.

Its shape is determined by a k-vector of unknown parameters θ, which we assume is contained in
a set Θ, and which can be used to evaluate the probability of observing a sample with any given
characteristics.

After observing the data, the values Y are given, and this function can be evaluated for any legiti-
mate value of θ. In this case, we prefer to call it the likelihood function; the need for another name
stems from the fact that this function works as a density when we use the yts as arguments and θ
as parameters, whereas in this context θ is taken as the function’s argument, and the data Y only
have the role of determining its shape.

In standard cases, this function has a unique maximum. The location of the maximum is unaffected
if we consider the logarithm of the likelihood (or log-likelihood for short): this function will be
denoted as

`(θ) = logf(Y;θ)

The log-likelihood functions that gretl can handle are those where `(θ) can be written as

`(θ) =
T∑
t=1

`t(θ)

which is true in most cases of interest. The functions `t(θ) are called the log-likelihood contribu-
tions.

Moreover, the location of the maximum is obviously determined by the data Y. This means that the
value

θ̂(Y) =Argmax
θ∈Θ `(θ) (17.1)

is some function of the observed data (a statistic), which has the property, under mild conditions,
of being a consistent, asymptotically normal and asymptotically efficient estimator of θ.

Sometimes it is possible to write down explicitly the function θ̂(Y); in general, it need not be so. In
these circumstances, the maximum can be found by means of numerical techniques. These often
rely on the fact that the log-likelihood is a smooth function of θ, and therefore on the maximum
its partial derivatives should all be 0. The gradient vector, or score vector, is a function that enjoys
many interesting statistical properties in its own right; it will be denoted here as g(θ). It is a

1We are supposing here that our data are a realization of continuous random variables. For discrete random variables,
everything continues to apply by referring to the probability function instead of the density. In both cases, the distribution
may be conditional on some exogenous variables.

123
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k-vector with typical element

gi(θ) =
∂`(θ)
∂θi

=
T∑
t=1

∂`t(θ)
∂θi

Gradient-based methods can be shortly illustrated as follows:

1. pick a point θ0 ∈ Θ;

2. evaluate g(θ0);

3. if g(θ0) is “small”, stop. Otherwise, compute a direction vector d(g(θ0));

4. evaluate θ1 = θ0 + d(g(θ0));

5. substitute θ0 with θ1;

6. restart from 2.

Many algorithms of this kind exist; they basically differ from one another in the way they compute
the direction vector d(g(θ0)), to ensure that `(θ1) > `(θ0) (so that we eventually end up on the
maximum).

The method gretl uses to maximize the log-likelihood is a gradient-based algorithm known as the
BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. This technique is used in most econometric
and statistical packages, as it is well-established and remarkably powerful. Clearly, in order to make
this technique operational, it must be possible to compute the vector g(θ) for any value of θ. In
some cases this vector can be written explicitly as a function of Y. If this is not possible or too
difficult the gradient may be evaluated numerically.

The choice of the starting value, θ0, is crucial in some contexts and inconsequential in others. In
general, however, it is advisable to start the algorithm from “sensible” values whenever possible. If
a consistent estimator is available, this is usually a safe and efficient choice: this ensures that in
large samples the starting point will be likely close to θ̂ and convergence can be achieved in few
iterations.

The maxmimum number of iterations allowed for the BFGS procedure, and the relative tolerance
for assessing convergence, can be adjusted using the set command: the relevant variables are
bfgs_maxiter (default value 500) and bfgs_toler (default value, the machine precision to the
power 3/4).

Covariance matrix and standard errors

By default the covariance matrix of the parameter estimates is based on the Outer Product of the
Gradient. That is,

V̂arOPG(θ̂) =
(
G′(θ̂)G(θ̂)

)−1

where G(θ̂) is the T × k matrix of contributions to the gradient. Two other options are available. If
the --hessian flag is given, the covariance matrix is computed from a numerical approximation to
the Hessian at convergence. If the --robust option is selected, the quasi-ML “sandwich” estimator
is used:

V̂arQML(θ̂) = H(θ̂)−1G′(θ̂)G(θ̂)H(θ̂)−1

where H denotes the numerical approximation to the Hessian.
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17.2 Gamma estimation

Suppose we have a sample of T independent and identically distributed observations from a
Gamma distribution. The density function for each observation xt is

f(xt) =
αpΓ(p)xp−1

t exp (−αxt) (17.2)

The log-likelihood for the entire sample can be written as the logarithm of the joint density of all
the observations. Since these are independent and identical, the joint density is the product of the
individual densities, and hence its log is

`(α,p) =
T∑
t=1

log

[
αpΓ(p)xp−1

t exp (−αxt)
]
=

T∑
t=1

`t (17.3)

where
`t = p · log(αxt)− γ(p)− logxt −αxt

and γ(·) is the log of the gamma function. In order to estimate the parameters α and p via ML, we
need to maximize (17.3) with respect to them. The corresponding gretl code snippet is

scalar alpha = 1
scalar p = 1

mle logl = p*ln(alpha * x) - lngamma(p) - ln(x) - alpha * x
end mle

The two statements

alpha = 1
p = 1

are necessary to ensure that the variables p and alpha exist before the computation of logl is
attempted. The values of these variables will be changed by the execution of the mle command;
upon successful completion, they will be replaced by the ML estimates. The starting value is 1 for
both; this is arbitrary and does not matter much in this example (more on this later).

The above code can be made more readable, and marginally more efficient, by defining a variable
to hold α · xt . This command can be embedded into the mle block as follows:

scalar alpha = 1
scalar p = 1

mle logl = p*ln(ax) - lngamma(p) - ln(x) - ax
series ax = alpha*x
params alpha p

end mle

In this case, it is necessary to include the line params alpha p to set the symbols p and alpha
apart from ax, which is a temporarily generated variable and not a parameter to be estimated.

In a simple example like this, the choice of the starting values is almost inconsequential; the algo-
rithm is likely to converge no matter what the starting values are. However, consistent method-of-
moments estimators of p and α can be simply recovered from the sample meanm and variance V :
since it can be shown that

E(xt) = p/α V(xt) = p/α2
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it follows that the following estimators

ᾱ = m/V
p̄ = m · ᾱ

are consistent, and therefore suitable to be used as starting point for the algorithm. The gretl script
code then becomes

scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle logl = p*ln(ax) - lngamma(p) - ln(x) - ax
series ax = alpha*x
params alpha p

end mle

Another thing to note is that sometimes parameters are constrained within certain boundaries: in
this case, for example, both α and p must be positive numbers. Gretl does not check for this: it
is the user’s responsibility to ensure that the function is always evaluated at an admissible point
in the parameter space during the iterative search for the maximum. An effective technique is to
define a variable for checking that the parameters are admissible and setting the log-likelihood as
undefined if the check fails. An example, which uses the conditional assignment operator, follows:

scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle logl = check ? p*ln(ax) - lngamma(p) - ln(x) - ax : NA
series ax = alpha*x
scalar check = (alpha>0) & (p>0)

params alpha p
end mle

17.3 Stochastic frontier cost function

When modeling a cost function, it is sometimes worthwhile to incorporate explicitly into the sta-
tistical model the notion that firms may be inefficient, so that the observed cost deviates from the
theoretical figure not only because of unobserved heterogeneity between firms, but also because
two firms could be operating at a different efficiency level, despite being identical under all other
respects. In this case we may write

Ci = C∗i +ui + vi
where Ci is some variable cost indicator, C∗i is its “theoretical” value, ui is a zero-mean disturbance
term and vi is the inefficiency term, which is supposed to be nonnegative by its very nature.

A linear specification for C∗i is often chosen. For example, the Cobb–Douglas cost function arises
when C∗i is a linear function of the logarithms of the input prices and the output quantities.

The stochastic frontier model is a linear model of the form yi = xiβ + εi in which the error term
εi is the sum of ui and vi. A common postulate is that ui ∼ N(0, σ 2

u) and vi ∼
∣∣N(0, σ 2

v)
∣∣. If

independence between ui and vi is also assumed, then it is possible to show that the density
function of εi has the form:

f(εi) =
√

2
π
Φ(λεi

σ

)
1
σ
φ
(
εi
σ

)
(17.4)

where Φ(·) andφ(·) are, respectively, the distribution and density function of the standard normal,

σ =
√
σ 2
u + σ 2

v and λ = σu
σv .
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As a consequence, the log-likelihood for one observation takes the form (apart form an irrelevant
constant)

`t = logΦ(λεi
σ

)
−
[

log(σ)+
ε2
i

2σ 2

]
Therefore, a Cobb–Douglas cost function with stochastic frontier is the model described by the
following equations:

logCi = logC∗i + εi

logC∗i = c +
m∑
j=1

βj logyij +
n∑
j=1

αj logpij

εi = ui + vi
ui ∼ N(0, σ 2

u)

vi ∼
∣∣∣N(0, σ 2

v)
∣∣∣

In most cases, one wants to ensure that the homogeneity of the cost function with respect to
the prices holds by construction. Since this requirement is equivalent to

∑n
j=1αj = 1, the above

equation for C∗i can be rewritten as

logCi − logpin = c +
m∑
j=1

βj logyij +
n∑
j=2

αj(logpij − logpin)+ εi (17.5)

The above equation could be estimated by OLS, but it would suffer from two drawbacks: first,
the OLS estimator for the intercept c is inconsistent because the disturbance term has a non-zero
expected value; second, the OLS estimators for the other parameters are consistent, but inefficient
in view of the non-normality of εi. Both issues can be addressed by estimating (17.5) by maximum
likelihood. Nevertheless, OLS estimation is a quick and convenient way to provide starting values
for the MLE algorithm.

Example 17.1 shows how to implement the model described so far. The banks91 file contains part
of the data used in Lucchetti, Papi and Zazzaro (2001).

17.4 GARCH models

GARCH models are handled by gretl via a native function. However, it is instructive to see how they
can be estimated through the mle command.

The following equations provide the simplest example of a GARCH(1,1) model:

yt = µ + εt
εt = ut · σt
ut ∼ N(0,1)
ht = ω+αε2

t−1 + βht−1.

Since the variance of yt depends on past values, writing down the log-likelihood function is not
simply a matter of summing the log densities for individual observations. As is common in time
series models, yt cannot be considered independent of the other observations in our sample, and
consequently the density function for the whole sample (the joint density for all observations) is
not just the product of the marginal densities.

Maximum likelihood estimation, in these cases, is achieved by considering conditional densities, so
what we maximize is a conditional likelihood function. If we define the information set at time t as

Ft =
{
yt , yt−1, . . .

}
,



Chapter 17. Maximum likelihood estimation 128

Example 17.1: Estimation of stochastic frontier cost function

open banks91

# Cobb-Douglas cost function

ols cost const y p1 p2 p3

# Cobb-Douglas cost function with homogeneity restrictions

genr rcost = cost - p3
genr rp1 = p1 - p3
genr rp2 = p2 - p3

ols rcost const y rp1 rp2

# Cobb-Douglas cost function with homogeneity restrictions
# and inefficiency

scalar b0 = $coeff(const)
scalar b1 = $coeff(y)
scalar b2 = $coeff(rp1)
scalar b3 = $coeff(rp2)

scalar su = 0.1
scalar sv = 0.1

mle logl = ln(cnorm(e*lambda/ss)) - (ln(ss) + 0.5*(e/ss)^2)
scalar ss = sqrt(su^2 + sv^2)
scalar lambda = su/sv
series e = rcost - b0*const - b1*y - b2*rp1 - b3*rp2
params b0 b1 b2 b3 su sv

end mle

then the density of yt conditional on Ft−1 is normal:

yt|Ft−1 ∼ N [µ,ht] .

By means of the properties of conditional distributions, the joint density can be factorized as
follows

f(yt , yt−1, . . .) =
 T∏
t=1

f(yt|Ft−1)

 · f(y0)

If we treat y0 as fixed, then the term f(y0) does not depend on the unknown parameters, and there-
fore the conditional log-likelihood can then be written as the sum of the individual contributions
as

`(µ,ω,α,β) =
T∑
t=1

`t (17.6)

where

`t = log

[
1√
ht
φ
(
yt − µ√
ht

)]
= −1

2

[
log(ht)+

(yt − µ)2
ht

]

The following script shows a simple application of this technique, which uses the data file djclose;
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it is one of the example dataset supplied with gretl and contains daily data from the Dow Jones
stock index.

open djclose

series y = 100*ldiff(djclose)

scalar mu = 0.0
scalar omega = 1
scalar alpha = 0.4
scalar beta = 0.0

mle ll = -0.5*(log(h) + (e^2)/h)
series e = y - mu
series h = var(y)
series h = omega + alpha*(e(-1))^2 + beta*h(-1)
params mu omega alpha beta

end mle

17.5 Analytical derivatives

Computation of the score vector is essential for the working of the BFGS method. In all the previous
examples, no explicit formula for the computation of the score was given, so the algorithm was fed
numerically evaluated gradients. Numerical computation of the score for the i-th parameter is
performed via a finite approximation of the derivative, namely

∂`(θ1, . . . , θn)
∂θi

' `(θ1, . . . , θi + h, . . . , θn)− `(θ1, . . . , θi − h, . . . , θn)
2h

where h is a small number.

In many situations, this is rather efficient and accurate. However, one might want to avoid the
approximation and specify an exact function for the derivatives. As an example, consider the
following script:

nulldata 1000

genr x1 = normal()
genr x2 = normal()
genr x3 = normal()

genr ystar = x1 + x2 + x3 + normal()
genr y = (ystar > 0)

scalar b0 = 0
scalar b1 = 0
scalar b2 = 0
scalar b3 = 0

mle logl = y*ln(P) + (1-y)*ln(1-P)
series ndx = b0 + b1*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
params b0 b1 b2 b3

end mle --verbose

Here, 1000 data points are artificially generated for an ordinary probit model:2 yt is a binary
variable, which takes the value 1 if y∗t = β1x1t +β2x2t +β3x3t + εt > 0 and 0 otherwise. Therefore,

2Again, gretl does provide a native probit command (see section 22.1), but a probit model makes for a nice example
here.
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yt = 1 with probability Φ(β1x1t+β2x2t+β3x3t) = πt . The probability function for one observation
can be written as

P(yt) = πytt (1−πt)1−yt

Since the observations are independent and identically distributed, the log-likelihood is simply the
sum of the individual contributions. Hence

` =
T∑
t=1

yt log(πt)+ (1−yt) log(1−πt)

The --verbose switch at the end of the end mle statement produces a detailed account of the
iterations done by the BFGS algorithm.

In this case, numerical differentiation works rather well; nevertheless, computation of the analytical
score is straightforward, since the derivative ∂`

∂βi can be written as

∂`
∂βi

= ∂`
∂πt

· ∂πt
∂βi

via the chain rule, and it is easy to see that

∂`
∂πt

= yt
πt
− 1−yt

1−πt
∂πt
∂βi

= φ(β1x1t + β2x2t + β3x3t) · xit

The mle block in the above script can therefore be modified as follows:

mle logl = y*ln(P) + (1-y)*ln(1-P)
series ndx = b0 + b1*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
series tmp = dnorm(ndx)*(y/P - (1-y)/(1-P))
deriv b0 = tmp
deriv b1 = tmp*x1
deriv b2 = tmp*x2
deriv b3 = tmp*x3

end mle --verbose

Note that the params statement has been replaced by a series of deriv statements; these have the
double function of identifying the parameters over which to optimize and providing an analytical
expression for their respective score elements.

17.6 Debugging ML scripts

We have discussed above the main sorts of statements that are permitted within an mle block,
namely

• auxiliary commands to generate helper variables;

• deriv statements to specify the gradient with respect to each of the parameters; and

• a params statement to identify the parameters in case analytical derivatives are not given.

For the purpose of debugging ML estimators one additional sort of statement is allowed: you can
print the value of a relevant variable at each step of the iteration. This facility is more restricted
then the regular print command. The command word print should be followed by the name of
just one variable (a scalar, series or matrix).
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In the last example above a key variable named tmp was generated, forming the basis for the
analytical derivatives. To track the progress of this variable one could add a print statement within
the ML block, as in

series tmp = dnorm(ndx)*(y/P - (1-y)/(1-P))
print tmp

17.7 Using functions

The mle command allows you to estimate models that gretl does not provide natively: in some
cases, it may be a good idea to wrap up the mle block in a user-defined function (see Chapter 10),
so as to extend gretl’s capabilities in a modular and flexible way.

As an example, we will take a simple case of a model that gretl does not yet provide natively:
the zero-inflated Poisson model, or ZIP for short.3 In this model, we assume that we observe a
mixed population: for some individuals, the variable yt is (conditionally on a vector of exogenous
covariates xt) distributed as a Poisson random variate; for some others, yt is identically 0. The
trouble is, we don’t know which category a given individual belongs to.

For instance, suppose we have a sample of women, and the variable yt represents the number of
children that woman t has. There may be a certain proportion, α, of women for whom yt = 0 with
certainty (maybe out of a personal choice, or due to physical impossibility). But there may be other
women for whom yt = 0 just as a matter of chance — they haven’t happened to have any children
at the time of observation.

In formulae:

P(yt = k|xt) = αdt + (1−α)
[
e−µt

µytt
yt !

]
µt = exp(xtβ)

dt =
{

1 for yt = 0

0 for yt > 0

Writing a mle block for this model is not difficult:

mle ll = logprob
series xb = exp(b0 + b1 * x)
series d = (y=0)
series poiprob = exp(-xb) * xb^y / gamma(y+1)
series logprob = (alpha>0) && (alpha<1) ? \
log(alpha*d + (1-alpha)*poiprob) : NA

params alpha b0 b1
end mle -v

However, the code above has to be modified each time we change our specification by, say, adding
an explanatory variable. Using functions, we can simplify this task considerably and eventually be
able to write something easy like

list X = const x
zip(y, X)

Let’s see how this can be done. First we need to define a function called zip() that will take
two arguments: a dependent variable y and a list of explanatory variables X. An example of such
function can be seen in script 17.2. By inspecting the function code, you can see that the actual
estimation does not happen here: rather, the zip() function merely formats and prints out the
results coming from another user-written function, namely zip_estimate().

3The actual ZIP model is in fact a bit more general than the one presented here. The specialized version discussed in
this section was chosen for the sake of simplicity. For futher details, see Greene (2003).
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Example 17.2: Zero-inflated Poisson Model — user-level function

/*
user-level function: estimate the model and print out
the results

*/
function zip(series y, list X)

matrix ret = zip_estimate(y, X)
matrix coef = ret[,1]
matrix vcv = ret[,2:cols(ret)]

printf "\nZero-inflated Poisson model:\n\n"
scalar c = coef[1]
scalar se = sqrt(vcv[1,1])
scalar zs = c/se
scalar pv = 2*pvalue(n, zs)
printf " alpha%9.4f%9.4f%8.3f%8.3f\n", c, se, zs, pv

k = 2
loop foreach i X -q

sprintf s "$i"
scalar c = coef[k]
scalar se = sqrt(vcv[k,k])
scalar zs = c/se
scalar pv = 2*pvalue(n, zs)
printf "%10s%9.4f%9.4f%8.3f%8.3f\n", s, c, se, zs, pv
k++

end loop
end function

The function zip_estimate() is not meant to be executed directly; it just contains the number-
crunching part of the job, whose results are then picked up by the end function zip(). In turn,
zip_estimate() calls other user-written functions to perform other tasks. The whole set of “in-
ternal” functions is shown in the panel 17.3.

All the functions shown in 17.2 and 17.3 can be stored in a separate inp file and executed once, at
the beginning of our job, by means of the include command. Assuming the name of this script
file is zip_est.inp, the following is an example script which

• includes the script file;

• generates a simulated dataset;

• performs the estimation of a ZIP model on the artificial data.

set echo off
set messages off

# include the user-written functions
include zip_est.inp

# generate the artificial data
nulldata 1000
set seed 732237
scalar truep = 0.2
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scalar b0 = 0.2
scalar b1 = 0.5
series x = normal()
series y = (uniform()<truep) ? 0 : genpois(exp(b0 + b1*x))
list X = const x

# estimate the zero-inflated Poisson model
zip(y, X)

The results are as follows:

Zero-inflated Poisson model:

alpha 0.2031 0.0238 8.531 0.000
const 0.2570 0.0417 6.162 0.000

x 0.4667 0.0321 14.527 0.000

A further step may then be creating a function package for accessing your new zip() function via
gretl’s graphical interface. For details on how to do this, see section 10.5.
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Example 17.3: Zero-inflated Poisson Model — internal functions

/*
compute the log probabilities for the plain Poisson model

*/
function ln_poi_prob(series y, list X, matrix beta)

series xb = lincomb(X, beta)
series ret = -exp(xb) + y*xb - lngamma(y+1)
return series ret

end function

/*
compute the log probabilities for the zero-inflated Poisson model

*/
function ln_zip_prob(series y, list X, matrix beta, scalar p0)

# check if the probability is in [0,1]; otherwise, return NA
if (p0>1) || (p0<0)

series ret = NA
else

series ret = ln_poi_prob(y, X, beta) + ln(1-p0)
series ret = (y=0) ? ln(p0 + exp(ret)) : ret

endif
return series ret

end function

/*
do the actual estimation (silently)

*/
function zip_estimate(series y, list X)

# initialize alpha to a "sensible" value: half the frequency
# of zeros in the sample
scalar alpha = mean(y=0)/2
# initialize the coeffs (we assume the first explanatory
# variable is the constant here)
matrix coef = zeros(nelem(X), 1)
coef[1] = mean(y) / (1-alpha)
# do the actual ML estimation
mle ll = ln_zip_prob(y, X, coef, alpha)

params alpha coef
end mle --hessian --quiet
matrix ret = $coeff ~ $vcv
return matrix ret

end function
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GMM estimation

18.1 Introduction and terminology

The Generalized Method of Moments (GMM) is a very powerful and general estimation method,
which encompasses practically all the parametric estimation techniques used in econometrics. It
was introduced in Hansen (1982) and Hansen and Singleton (1982); an excellent and thorough
treatment is given in Davidson and MacKinnon (1993), chapter 17.

The basic principle on which GMM is built is rather straightforward. Suppose we wish to estimate
a scalar parameter θ based on a sample x1, x2, . . . , xT . Let θ0 indicate the “true” value of θ. Theo-
retical considerations (either of statistical or economic nature) may suggest that a relationship like
the following holds:

E
[
xt − g(θ)

]
= 0 a θ = θ0, (18.1)

with g(·) a continuous and invertible function. That is to say, there exists a function of the data
and the parameter, with the property that it has expectation zero if and only if it is evaluated at the
true parameter value. For example, economic models with rational expectations lead to expressions
like (18.1) quite naturally.

If the sampling model for the xts is such that some version of the Law of Large Numbers holds,
then

X̄ = 1
T

T∑
t=1

xt
p−→ g(θ0);

hence, since g(·) is invertible, the statistic

θ̂ = g−1(X̄)
p−→ θ0,

so θ̂ is a consistent estimator of θ. A different way to obtain the same outcome is to choose, as an
estimator of θ, the value that minimizes the objective function

F(θ) =
 1
T

T∑
t=1

(xt − g(θ))
2

=
[
X̄ − g(θ)

]2
; (18.2)

the minimum is trivially reached at θ̂ = g−1(X̄), since the expression in square brackets equals 0.

The above reasoning can be generalized as follows: suppose θ is an n-vector and we have m
relations like

E [fi(xt , θ)] = 0 for i = 1 . . .m, (18.3)

where E[·] is a conditional expectation on a set of p variables zt , called the instruments. In the
above simple example, m = 1 and f(xt , θ) = xt − g(θ), and the only instrument used is zt = 1.
Then, it must also be true that

E
[
fi(xt , θ) · zj,t

]
= E

[
fi,j,t(θ)

]
= 0 for i = 1 . . .m and j = 1 . . . p; (18.4)

equation (18.4) is known as an orthogonality condition, or moment condition. The GMM estimator is
defined as the minimum of the quadratic form

F(θ,W) = f̄′W f̄, (18.5)
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where f̄ is a (1×m · p) vector holding the average of the orthogonality conditions and W is some
symmetric, positive definite matrix, known as the weights matrix. A necessary condition for the
minimum to exist is the order condition n ≤m · p.

The statistic
θ̂ =Argmin

θ
F(θ,W) (18.6)

is a consistent estimator of θ whatever the choice of W . However, to achieve maximum asymp-
totic efficiency W must be proportional to the inverse of the long-run covariance matrix of the
orthogonality conditions; if W is not known, a consistent estimator will suffice.

These considerations lead to the following empirical strategy:

1. Choose a positive definite W and compute the one-step GMM estimator θ̂1. Customary choices
for W are Im·p or Im ⊗ (Z′Z)−1.

2. Use θ̂1 to estimate V(fi,j,t(θ)) and use its inverse as the weights matrix. The resulting esti-
mator θ̂2 is called the two-step estimator.

3. Re-estimate V(fi,j,t(θ)) by means of θ̂2 and obtain θ̂3; iterate until convergence. Asymp-
totically, these extra steps are unnecessary, since the two-step estimator is consistent and
efficient; however, the iterated estimator often has better small-sample properties and should
be independent of the choice of W made at step 1.

In the special case when the number of parameters n is equal to the total number of orthogonality
conditions m · p, the GMM estimator θ̂ is the same for any choice of the weights matrix W , so the
first step is sufficient; in this case, the objective function is 0 at the minimum.

If, on the contrary, n < m · p, the second step (or successive iterations) is needed to achieve
efficiency, and the estimator so obtained can be very different, in finite samples, from the one-
step estimator. Moreover, the value of the objective function at the minimum, suitably scaled by
the number of observations, yields Hansen’s J statistic; this statistic can be interpreted as a test
statistic that has a χ2 distribution with m · p −n degrees of freedom under the null hypothesis of
correct specification. See Davidson and MacKinnon (1993), section 17.6 for details.

In the following sections we will show how these ideas are implemented in gretl through some
examples.

18.2 OLS as GMM

It is instructive to start with a somewhat contrived example: consider the linear model yt = xtβ+
ut . Although most of us are used to read it as the sum of a hazily defined “systematic part” plus an
equally hazy “disturbance”, a more rigorous interpretation of this familiar expression comes from
the hypothesis that the conditional mean E(yt|xt) is linear and the definition of ut as yt−E(yt|xt).
From the definition of ut , it follows that E(ut|xt) = 0. The following orthogonality condition is
therefore available:

E [f(β)] = 0, (18.7)

where f(β) = (yt − xtβ)xt . The definitions given in the previous section therefore specialize here
to:

• θ is β;

• the instrument is xt ;

• fi,j,t(θ) is (yt−xtβ)xt = utxt ; the orthogonality condition is interpretable as the requirement
that the regressors should be uncorrelated with the disturbances;
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• W can be any symmetric positive definite matrix, since the number of parameters equals the
number of orthogonality conditions. Let’s say we choose I.

• The function F(θ,W) is in this case

F(θ,W) =
 1
T

T∑
t=1

(ûtxt)

2

and it is easy to see why OLS and GMM coincide here: the GMM objective function has the
same minimizer as the objective function of OLS, the residual sum of squares. Note, however,
that the two functions are not equal to one another: at the minimum, F(θ,W) = 0 while the
minimized sum of squared residuals is zero only in the special case of a perfect linear fit.

The code snippet contained in Example 18.1 uses gretl’s gmm command to make the above opera-
tional.

Example 18.1: OLS via GMM

/* initialize stuff */
series e = 0
scalar beta = 0
matrix V = I(1)

/* proceed with estimation */
gmm
series e = y - x*beta
orthog e ; x
weights V
params beta

end gmm

We feed gretl the necessary ingredients for GMM estimation in a command block, starting with gmm
and ending with end gmm. After the end gmm statement two mutually exclusive options can be
specified: --two-step or --iterate, whose meaning should be obvious.

Three elements are compulsory within a gmm block:

1. one or more orthog statements

2. one weights statement

3. one params statement

The three elements should be given in the stated order.

The orthog statements are used to specify the orthogonality conditions. They must follow the
syntax

orthog x ; Z

where x may be a series, matrix or list of series and Z may also be a series, matrix or list. In
example 18.1, the series e holds the “residuals” and the series x holds the regressor. If x had been
a list (a matrix), the orthog statement would have generated one orthogonality condition for each
element (column) of x. Note the structure of the orthogonality condition: it is assumed that the
term to the left of the semicolon represents a quantity that depends on the estimated parameters
(and so must be updated in the process of iterative estimation), while the term on the right is a
constant function of the data.
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The weights statement is used to specify the initial weighting matrix and its syntax is straightfor-
ward. Note, however, that when more than one step is required that matrix will contain the final
weight matrix, which most likely will be different from its initial value.

The params statement specifies the parameters with respect to which the GMM criterion should be
minimized; it follows the same logic and rules as in the mle and nls commands.

The minimum is found through numerical minimization via BFGS (see section 5.9 and chapter 17).
The progress of the optimization procedure can be observed by appending the --verbose switch
to the end gmm line. (In this example GMM estimation is clearly a rather silly thing to do, since a
closed form solution is easily given by OLS.)

18.3 TSLS as GMM

Moving closer to the proper domain of GMM, we now consider two-stage least squares (TSLS) as a
case of GMM.

TSLS is employed in the case where one wishes to estimate a linear model of the form yt = Xtβ+ut ,
but where one or more of the variables in the matrix X are potentially endogenous — correlated
with the error term, u. We proceed by identifying a set of instruments, Zt , which are explanatory
for the endogenous variables in X but which are plausibly uncorrelated with u. The classic two-
stage procedure is (1) regress the endogenous elements of X on Z ; then (2) estimate the equation
of interest, with the endogenous elements of X replaced by their fitted values from (1).

An alternative perspective is given by GMM. We define the residual ût as yt − Xtβ̂, as usual. But
instead of relying on E(u|X) = 0 as in OLS, we base estimation on the condition E(u|Z) = 0. In this
case it is natural to base the initial weighting matrix on the covariance matrix of the instruments.
Example 18.2 presents a model from Stock and Watson’s Introduction to Econometrics. The demand
for cigarettes is modeled as a linear function of the logs of price and income; income is treated as
exogenous while price is taken to be endogenous and two measures of tax are used as instruments.
Since we have two instruments and one endogenous variable the model is over-identified and there-
fore the weights matrix will influence the solution. Partial output from this script is shown in 18.3.
The estimated standard errors from GMM are robust by default; if we supply the --robust option
to the tsls command we get identical results.1

18.4 Covariance matrix options

The covariance matrix of the estimated parameters depends on the choice of W through

Σ̂ = (J′WJ)−1J′WΩWJ(J′WJ)−1 (18.8)

where J is a Jacobian term

Jij =
∂f̄i
∂θj

and Ω is the long-run covariance matrix of the orthogonality conditions.

Gretl computes J by numeric differentiation (there is no provision for specifying a user-supplied
analytical expression for J at the moment). As for Ω, a consistent estimate is needed. The simplest
choice is the sample covariance matrix of the fts:

Ω̂0(θ) =
1
T

T∑
t=1

ft(θ)ft(θ)′ (18.9)

This estimator is robust with respect to heteroskedasticity, but not with respect to autocorrela-
tion. A heteroskedasticity- and autocorrelation-consistent (HAC) variant can be obtained using the

1The data file used in this example is available in the Stock and Watson package for gretl. See http://gretl.
sourceforge.net/gretl_data.html.

http://gretl.sourceforge.net/gretl_data.html
http://gretl.sourceforge.net/gretl_data.html
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Example 18.2: TSLS via GMM

open cig_ch10.gdt
# real avg price including sales tax
genr ravgprs = avgprs / cpi
# real avg cig-specific tax
genr rtax = tax / cpi
# real average total tax
genr rtaxs = taxs / cpi
# real average sales tax
genr rtaxso = rtaxs - rtax
# logs of consumption, price, income
genr lpackpc = log(packpc)
genr lravgprs = log(ravgprs)
genr perinc = income / (pop*cpi)
genr lperinc = log(perinc)
# restrict sample to 1995 observations
smpl --restrict year=1995
# Equation (10.16) by tsls
list xlist = const lravgprs lperinc
list zlist = const rtaxso rtax lperinc
tsls lpackpc xlist ; zlist --robust

# setup for gmm
matrix Z = { zlist }
matrix W = inv(Z’Z)
series e = 0
scalar b0 = 1
scalar b1 = 1
scalar b2 = 1

gmm e = lpackpc - b0 - b1*lravgprs - b2*lperinc
orthog e ; Z
weights W
params b0 b1 b2

end gmm

Bartlett kernel or similar. A univariate version of this is used in the context of the lrvar() function
— see equation (5.1). The multivariate version is set out in equation (18.10).

Ω̂k(θ) = 1
T

T−k∑
t=k

 k∑
i=−k

wift(θ)ft−i(θ)′
 , (18.10)

Gretl computes the HAC covariance matrix by default when a GMM model is estimated on time
series data. You can control the kernel and the bandwidth (that is, the value of k in 18.10) using
the set command. See chapter 14 for further discussion of HAC estimation. You can also ask gretl
not to use the HAC version by saying

set force_hc on
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Example 18.3: TSLS via GMM: partial output

Model 1: TSLS estimates using the 48 observations 1-48
Dependent variable: lpackpc
Instruments: rtaxso rtax
Heteroskedasticity-robust standard errors, variant HC0

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

const 9.89496 0.928758 10.654 <0.00001 ***
lravgprs -1.27742 0.241684 -5.286 <0.00001 ***
lperinc 0.280405 0.245828 1.141 0.25401

Model 2: 1-step GMM estimates using the 48 observations 1-48
e = lpackpc - b0 - b1*lravgprs - b2*lperinc

PARAMETER ESTIMATE STDERROR T STAT P-VALUE

b0 9.89496 0.928758 10.654 <0.00001 ***
b1 -1.27742 0.241684 -5.286 <0.00001 ***
b2 0.280405 0.245828 1.141 0.25401

GMM criterion = 0.0110046

18.5 A real example: the Consumption Based Asset Pricing Model

To illustrate gretl’s implementation of GMM, we will replicate the example given in chapter 3 of
Hall (2005). The model to estimate is a classic application of GMM, and provides an example of a
case when orthogonality conditions do not stem from statistical considerations, but rather from
economic theory.

A rational individual who must allocate his income between consumption and investment in a
financial asset must in fact choose the consumption path of his whole lifetime, since investment
translates into future consumption. It can be shown that an optimal consumption path should
satisfy the following condition:

pU ′(ct) = δkE
[
rt+kU ′(ct+k)|Ft

]
, (18.11)

where p is the asset price, U(·) is the individual’s utility function, δ is the individual’s subjective
discount rate and rt+k is the asset’s rate of return between time t and time t + k. Ft is the infor-
mation set at time t; equation (18.11) says that the utility “lost” at time t by purchasing the asset
instead of consumption goods must be matched by a corresponding increase in the (discounted)
future utility of the consumption financed by the asset’s return. Since the future is uncertain, the
individual considers his expectation, conditional on what is known at the time when the choice is
made.

We have said nothing about the nature of the asset, so equation (18.11) should hold whatever asset
we consider; hence, it is possible to build a system of equations like (18.11) for each asset whose
price we observe.

If we are willing to believe that

• the economy as a whole can be represented as a single gigantic and immortal representative
individual, and

• the function U(x) = xα−1
α is a faithful representation of the individual’s preferences,
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then, setting k = 1, equation (18.11) implies the following for any asset j:

E
[
δ
rj,t+1

pj,t

(
Ct+1

Ct

)α−1 ∣∣∣∣Ft
]
= 1, (18.12)

where Ct is aggregate consumption and α and δ are the risk aversion and discount rate of the
representative individual. In this case, it is easy to see that the “deep” parameters α and δ can be
estimated via GMM by using

et = δ
rj,t+1

pj,t

(
Ct+1

Ct

)α−1

− 1

as the moment condition, while any variable known at time t may serve as an instrument.

Example 18.4: Estimation of the Consumption Based Asset Pricing Model

open hall.gdt
set force_hc on

scalar alpha = 0.5
scalar delta = 0.5
series e = 0

list inst = const consrat(-1) consrat(-2) ewr(-1) ewr(-2)

matrix V0 = 100000*I(nelem(inst))
matrix Z = { inst }
matrix V1 = $nobs*inv(Z’Z)

gmm e = delta*ewr*consrat^(alpha-1) - 1
orthog e ; inst
weights V0
params alpha delta

end gmm

gmm e = delta*ewr*consrat^(alpha-1) - 1
orthog e ; inst
weights V1
params alpha delta

end gmm

gmm e = delta*ewr*consrat^(alpha-1) - 1
orthog e ; inst
weights V0
params alpha delta

end gmm --iterate

gmm e = delta*ewr*consrat^(alpha-1) - 1
orthog e ; inst
weights V1
params alpha delta

end gmm --iterate

In the example code given in 18.4, we replicate selected portions of table 3.7 in Hall (2005). The
variable consrat is defined as the ratio of monthly consecutive real per capita consumption (ser-
vices and nondurables) for the US, and ewr is the return–price ratio of a fictitious asset constructed
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by averaging all the stocks in the NYSE. The instrument set contains the constant and two lags of
each variable.

The command set force_hc on on the second line of the script has the sole purpose of replicating
the given example: as mentioned above, it forces gretl to compute the long-run variance of the
orthogonality conditions according to equation (18.9) rather than (18.10).

We run gmm four times: one-step estimation for each of two initial weights matrices, then iterative
estimation starting from each set of initial weights. Since the number of orthogonality conditions
(5) is greater than the number of estimated parameters (2), the choice of intial weights should
make a difference, and indeed we see fairly substantial differences between the one-step estimates
(Models 1 and 2). On the other hand, iteration reduces these differences almost to the vanishing
point (Models 3 and 4).

Part of the output is given in 18.5. It should be noted that the J test leads to a rejection of the
hypothesis of correct specification. This is perhaps not surprising given the heroic assumptions
required to move from the microeconomic principle in equation (18.11) to the aggregate system
that is actually estimated.

18.6 Caveats

A few words of warning are in order: despite its ingenuity, GMM is possibly the most fragile esti-
mation method in econometrics. The number of non-obvious choices one has to make when using
GMM is high, and in finite samples each of these can have dramatic consequences on the eventual
output. Some of the factors that may affect the results are:

1. Orthogonality conditions can be written in more than one way: for example, if E(xt − µ) = 0,
then E(xt/µ − 1) = 0 holds too. It is possible that a different specification of the moment
conditions leads to different results.

2. As with all other numerical optimization algorithms, weird things may happen when the ob-
jective function is nearly flat in some directions or has multiple minima. BFGS is usually quite
good, but there is no guarantee that it always delivers a sensible solution, if one at all.

3. The 1-step and, to a lesser extent, the 2-step estimators may be sensitive to apparently trivial
details, like the re-scaling of the instruments. Different choices for the initial weights matrix
can also have noticeable consequences.

4. With time-series data, there is no hard rule on the appropriate number of lags to use when
computing the long-run covariance matrix (see section 18.4). Our advice is to go by trial and
error, since results may be greatly influenced by a poor choice. Future versions of gretl will
include more options on covariance matrix estimation.

One of the consequences of this state of things is that replicating various well-known published
studies may be extremely difficult. Any non-trivial result is virtually impossible to reproduce unless
all details of the estimation procedure are carefully recorded.
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Example 18.5: Estimation of the Consumption Based Asset Pricing Model — output

Model 1: 1-step GMM estimates using the 465 observations 1959:04-1997:12
e = d*ewr*consrat^(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT P-VALUE

alpha -3.14475 6.84439 -0.459 0.64590
d 0.999215 0.0121044 82.549 <0.00001 ***

GMM criterion = 2778.08

Model 2: 1-step GMM estimates using the 465 observations 1959:04-1997:12
e = d*ewr*consrat^(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT P-VALUE

alpha 0.398194 2.26359 0.176 0.86036
d 0.993180 0.00439367 226.048 <0.00001 ***

GMM criterion = 14.247

Model 3: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d*ewr*consrat^(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT P-VALUE

alpha -0.344325 2.21458 -0.155 0.87644
d 0.991566 0.00423620 234.070 <0.00001 ***

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)

Model 4: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d*ewr*consrat^(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT P-VALUE

alpha -0.344315 2.21359 -0.156 0.87639
d 0.991566 0.00423469 234.153 <0.00001 ***

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)



Chapter 19

Model selection criteria

19.1 Introduction

In some contexts the econometrician chooses between alternative models based on a formal hy-
pothesis test. For example, one might choose a more general model over a more restricted one if
the restriction in question can be formulated as a testable null hypothesis, and the null is rejected
on an appropriate test.

In other contexts one sometimes seeks a criterion for model selection that somehow measures the
balance between goodness of fit or likelihood, on the one hand, and parsimony on the other. The
balancing is necessary because the addition of extra variables to a model cannot reduce the degree
of fit or likelihood, and is very likely to increase it somewhat even if the additional variables are
not truly relevant to the data-generating process.

The best known such criterion, for linear models estimated via least squares, is the adjusted R2,

R̄2 = 1− SSR/(n− k)
TSS/(n− 1)

where n is the number of observations in the sample, k denotes the number of parameters esti-
mated, and SSR and TSS denote the sum of squared residuals and the total sum of squares for
the dependent variable, respectively. Compared to the ordinary coefficient of determination or
unadjusted R2,

R2 = 1− SSR
TSS

the “adjusted” calculation penalizes the inclusion of additional parameters, other things equal.

19.2 Information criteria

A more general criterion in a similar spirit is Akaike’s (1974) “Information Criterion” (AIC). The
original formulation of this measure is

AIC = −2`(θ̂)+ 2k (19.1)

where `(θ̂) represents the maximum loglikelihood as a function of the vector of parameter esti-
mates, θ̂, and k (as above) denotes the number of “independently adjusted parameters within the
model.” In this formulation, with AIC negatively related to the likelihood and positively related to
the number of parameters, the researcher seeks the minimum AIC.

The AIC can be confusing, in that several variants of the calculation are “in circulation.” For exam-
ple, Davidson and MacKinnon (2004) present a simplified version,

AIC = `(θ̂)− k

which is just −2 times the original: in this case, obviously, one wants to maximize AIC.

In the case of models estimated by least squares, the loglikelihood can be written as

`(θ̂) = −n
2
(1+ log 2π − logn)− n

2
log SSR (19.2)

144



Chapter 19. Model selection criteria 145

Substituting (19.2) into (19.1) we get

AIC = n(1+ log 2π − logn)+n log SSR+ 2k

which can also be written as

AIC = n log
(

SSR
n

)
+ 2k+n(1+ log 2π) (19.3)

Some authors simplify the formula for the case of models estimated via least squares. For instance,
William Greene writes

AIC = log
(

SSR
n

)
+ 2k
n

(19.4)

This variant can be derived from (19.3) by dividing through by n and subtracting the constant
1+ log 2π . That is, writing AICG for the version given by Greene, we have

AICG =
1
n

AIC− (1+ log 2π)

Finally, Ramanathan gives a further variant:

AICR =
(

SSR
n

)
e2k/n

which is the exponential of the one given by Greene.

Gretl began by using the Ramanathan variant, but since version 1.3.1 the program has used the
original Akaike formula (19.1), and more specifically (19.3) for models estimated via least squares.

Although the Akaike criterion is designed to favor parsimony, arguably it does not go far enough
in that direction. For instance, if we have two nested models with k − 1 and k parameters respec-
tively, and if the null hypothesis that parameter k equals 0 is true, in large samples the AIC will
nonetheless tend to select the less parsimonious model about 16 percent of the time (see Davidson
and MacKinnon, 2004, chapter 15).

An alternative to the AIC which avoids this problem is the Schwarz (1978) “Bayesian information
criterion” (BIC). The BIC can be written (in line with Akaike’s formulation of the AIC) as

BIC = −2`(θ̂)+ k logn

The multiplication of k by logn in the BIC means that the penalty for adding extra parameters
grows with the sample size. This ensures that, asymptotically, one will not select a larger model
over a correctly specified parsimonious model.

A further alternative to AIC, which again tends to select more parsimonious models than AIC,
is the Hannan–Quinn criterion or HQC (Hannan and Quinn, 1979). Written consistently with the
formulations above, this is

HQC = −2`(θ̂)+ 2k log logn

The Hannan–Quinn calculation is based on the law of the iterated logarithm (note that the last term
is the log of the log of the sample size). The authors argue that their procedure provides a “strongly
consistent estimation procedure for the order of an autoregression”, and that “compared to other
strongly consistent procedures this procedure will underestimate the order to a lesser degree.”

Gretl reports the AIC, BIC and HQC (calculated as explained above) for most sorts of models. The
key point in interpreting these values is to know whether they are calculated such that smaller
values are better, or such that larger values are better. In gretl, smaller values are better: one wants
to minimize the chosen criterion.
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Time series models

20.1 Introduction

Time series models are discussed in this chapter and the next. In this chapter we concentrate on
ARIMA models, unit root tests, and GARCH. The following chapter deals with cointegration and
error correction.

20.2 ARIMA models

Representation and syntax

The arma command performs estimation of AutoRegressive, Integrated, Moving Average (ARIMA)
models. These are models that can be written in the form

φ(L)yt = θ(L)εt (20.1)

where φ(L), and θ(L) are polynomials in the lag operator, L, defined such that Lnxt = xt−n, and
εt is a white noise process. The exact content of yt , of the AR polynomial φ(), and of the MA
polynomial θ(), will be explained in the following.

Mean terms

The process yt as written in equation (20.1) has, without further qualifications, mean zero. If the
model is to be applied to real data, it is necessary to include some term to handle the possibility
that yt has non-zero mean. There are two possible ways to represent processes with nonzero
mean: one is to define µt as the unconditional mean of yt , namely the central value of its marginal
distribution. Therefore, the series ỹt = yt − µt has mean 0, and the model (20.1) applies to ỹt . In
practice, assuming that µt is a linear function of some observable variables xt , the model becomes

φ(L)(yt − xtβ) = θ(L)εt (20.2)

This is sometimes known as a “regression model with ARMA errors”; its structure may be more
apparent if we represent it using two equations:

yt = xtβ+ut
φ(L)ut = θ(L)εt

The model just presented is also sometimes known as “ARMAX” (ARMA + eXogenous variables). It
seems to us, however, that this label is more appropriately applied to a different model: another
way to include a mean term in (20.1) is to base the representation on the conditional mean of yt ,
that is the central value of the distribution of yt given its own past. Assuming, again, that this can
be represented as a linear combination of some observable variables zt , the model would expand
to

φ(L)yt = ztγ + θ(L)εt (20.3)

The formulation (20.3) has the advantage that γ can be immediately interpreted as the vector of
marginal effects of the zt variables on the conditional mean of yt . And by adding lags of zt to
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this specification one can estimate Transfer Function models (which generalize ARMA by adding
the effects of exogenous variable distributed across time).

Gretl provides a way to estimate both forms. Models written as in (20.2) are estimated by maximum
likelihood; models written as in (20.3) are estimated by conditional maximum likelihood. (For more
on these options see the section on “Estimation” below.)

In the special case when xt = zt = 1 (that is, the models include a constant but no exogenous
variables) the two specifications discussed above reduce to

φ(L)(yt − µ) = θ(L)εt (20.4)

and
φ(L)yt = α+ θ(L)εt (20.5)

respectively. These formulations are essentially equivalent, but if they represent one and the same
process µ and α are, fairly obviously, not numerically identical; rather

α =
(
1−φ1 − . . .−φp

)
µ

The gretl syntax for estimating (20.4) is simply

arma p q ; y

The AR and MA lag orders, p and q, can be given either as numbers or as pre-defined scalars.
The parameter µ can be dropped if necessary by appending the option --nc (“no constant”) to the
command. If estimation of (20.5) is needed, the switch --conditional must be appended to the
command, as in

arma p q ; y --conditional

Generalizing this principle to the estimation of (20.2) or (20.3), you get that

arma p q ; y const x1 x2

would estimate the following model:

yt − xtβ = φ1
(
yt−1 − xt−1β

)
+ . . .+φp

(
yt−p − xt−pβ

)
+ εt + θ1εt−1 + . . .+ θqεt−q

where in this instance xtβ = β0 + xt,1β1 + xt,2β2. Appending the --conditional switch, as in

arma p q ; y const x1 x2 --conditional

would estimate the following model:

yt = xtγ +φ1yt−1 + . . .+φpyt−p + εt + θ1εt−1 + . . .+ θqεt−q

Ideally, the issue broached above could be made moot by writing a more general specification that
nests the alternatives; that is

φ(L)
(
yt − xtβ

)
= ztγ + θ(L)εt ; (20.6)

we would like to generalize the arma command so that the user could specify, for any estimation
method, whether certain exogenous variables should be treated as xts or zts, but we’re not yet at
that point (and neither are most other software packages).



Chapter 20. Time series models 148

Seasonal models

A more flexible lag structure is desirable when analyzing time series that display strong seasonal
patterns. Model (20.1) can be expanded to

φ(L)Φ(Ls)yt = θ(L)Θ(Ls)εt . (20.7)

For such cases, a fuller form of the syntax is available, namely,

arma p q ; P Q ; y

where p and q represent the non-seasonal AR and MA orders, and P and Q the seasonal orders. For
example,

arma 1 1 ; 1 1 ; y

would be used to estimate the following model:

(1−φL)(1− ΦLs)(yt − µ) = (1+ θL)(1+ΘLs)εt
If yt is a quarterly series (and therefore s = 4), the above equation can be written more explicitly as

yt − µ = φ(yt−1 − µ)+ Φ(yt−4 − µ)− (φ · Φ)(yt−5 − µ)+ εt + θεt−1 +Θεt−4 + (θ ·Θ)εt−5

Such a model is known as a “multiplicative seasonal ARMA model”.

Gaps in the lag structure

The standard way to specify an ARMA model in gretl is via the AR and MA orders, p and q respec-
tively. In this case all lags from 1 to the given order are included. In some cases one may wish to
include only certain specific AR and/or MA lags. This can be done in either of two ways.

• One can construct a matrix containing the desired lags (positive integer values) and supply
the name of this matrix in place of p or q.

• One can give a space-separated list of lags, enclosed in braces, in place of p or q.

The following code illustrates these options:

matrix pvec = {1, 4}
arma pvec 1 ; y
arma {1 4} 1 ; y

Both forms above specify an ARMA model in which AR lags 1 and 4 are used (but not 2 and 3).

This facility is available only for the non-seasonal component of the ARMA specification.

Differencing and ARIMA

The above discussion presupposes that the time series yt has already been subjected to all the
transformations deemed necessary for ensuring stationarity (see also section 20.3). Differencing is
the most common of these transformations, and gretl provides a mechanism to include this step
into the arma command: the syntax

arma p d q ; y

would estimate an ARMA(p, q) model on ∆dyt . It is functionally equivalent to
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series tmp = y
loop for i=1..d
tmp = diff(tmp)

end loop
arma p q ; tmp

except with regard to forecasting after estimation (see below).

When the series yt is differenced before performing the analysis the model is known as ARIMA (“I”
for Integrated); for this reason, gretl provides the arima command as an alias for arma.

Seasonal differencing is handled similarly, with the syntax

arma p d q ; P D Q ; y

where D is the order for seasonal differencing. Thus, the command

arma 1 0 0 ; 1 1 1 ; y

would produce the same parameter estimates as

genr dsy = sdiff(y)
arma 1 0 ; 1 1 ; dsy

where we use the sdiff function to create a seasonal difference (e.g. for quarterly data, yt −yt−4).

Estimation

The default estimation method for ARMA models is exact maximum likelihood estimation (under
the assumption that the error term is normally distributed), using the Kalman filter in conjunc-
tion with the BFGS maximization algorithm. The gradient of the log-likelihood with respect to the
parameter estimates is approximated numerically. This method produces results that are directly
comparable with many other software packages. The constant, and any exogenous variables, are
treated as in equation (20.2). The covariance matrix for the parameters is computed using a nu-
merical approximation to the Hessian at convergence.

The alternative method, invoked with the --conditional switch, is conditional maximum like-
lihood (CML), also known as “conditional sum of squares” — see Hamilton (1994, p. 132). This
method was exemplified in the script 9.3, and only a brief description will be given here. Given a
sample of size T , the CML method minimizes the sum of squared one-step-ahead prediction errors
generated by the model for the observations t0, . . . , T . The starting point t0 depends on the orders
of the AR polynomials in the model. The numerical maximization method used is BHHH, and the
covariance matrix is computed using a Gauss–Newton regression.

The CML method is nearly equivalent to maximum likelihood under the hypothesis of normality;
the difference is that the first (t0 − 1) observations are considered fixed and only enter the like-
lihood function as conditioning variables. As a consequence, the two methods are asymptotically
equivalent under standard conditions — except for the fact, discussed above, that our CML imple-
mentation treats the constant and exogenous variables as per equation (20.3).

The two methods can be compared as in the following example

open data10-1
arma 1 1 ; r
arma 1 1 ; r --conditional

which produces the estimates shown in Table 20.1. As you can see, the estimates of φ and θ are
quite similar. The reported constants differ widely, as expected — see the discussion following
equations (20.4) and (20.5). However, dividing the CML constant by 1−φ we get 7.38, which is not
far from the ML estimate of 6.93.
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Table 20.1: ML and CML estimates

Parameter ML CML

µ 6.93042 (0.923882) 1.07322 (0.488661)

φ 0.855360 (0.0511842) 0.852772 (0.0450252)

θ 0.588056 (0.0986096) 0.591838 (0.0456662)

Convergence and initialization

The numerical methods used to maximize the likelihood for ARMA models are not guaranteed
to converge. Whether or not convergence is achieved, and whether or not the true maximum of
the likelihood function is attained, may depend on the starting values for the parameters. Gretl
employs one of the following two initialization mechanisms, depending on the specification of the
model and the estimation method chosen.

1. Estimate a pure AR model by Least Squares (nonlinear least squares if the model requires
it, otherwise OLS). Set the AR parameter values based on this regression and set the MA
parameters to a small positive value (0.0001).

2. The Hannan–Rissanen method: First estimate an autoregressive model by OLS and save the
residuals. Then in a second OLS pass add appropriate lags of the first-round residuals to the
model, to obtain estimates of the MA parameters.

To see the details of the ARMA estimation procedure, add the --verbose option to the command.
This prints a notice of the initialization method used, as well as the parameter values and log-
likelihood at each iteration.

Besides the build-in initialization mechanisms, the user has the option of specifying a set of starting
values manually. This is done via the set command: the first argument should be the keyword
initvals and the second should be the name of a pre-specified matrix containing starting values.
For example

matrix start = { 0, 0.85, 0.34 }
set initvals start
arma 1 1 ; y

The specified matrix should have just as many parameters as the model: in the example above
there are three parameters, since the model implicitly includes a constant. The constant, if present,
is always given first; otherwise the order in which the parameters are expected is the same as the
order of specification in the arma or arima command. In the example the constant is set to zero,
φ1 to 0.85, and θ1 to 0.34.

You can get gretl to revert to automatic initialization via the command set initvals auto.

Estimation via X-12-ARIMA

As an alternative to estimating ARMA models using “native” code, gretl offers the option of using
the external program X-12-ARIMA. This is the seasonal adjustment software produced and main-
tained by the U.S. Census Bureau; it is used for all official seasonal adjustments at the Bureau.

Gretl includes a module which interfaces with X-12-ARIMA: it translates arma commands using the
syntax outlined above into a form recognized by X-12-ARIMA, executes the program, and retrieves
the results for viewing and further analysis within gretl. To use this facility you have to install
X-12-ARIMA separately. Packages for both MS Windows and GNU/Linux are available from the gretl
website, http://gretl.sourceforge.net/.

http://gretl.sourceforge.net/
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To invoke X-12-ARIMA as the estimation engine, append the flag --x-12-arima, as in

arma p q ; y --x-12-arima

As with native estimation, the default is to use exact ML but there is the option of using conditional
ML with the --conditional flag. However, please note that when X-12-ARIMA is used in conditional
ML mode, the comments above regarding the variant treatments of the mean of the process yt do
not apply. That is, when you use X-12-ARIMA the model that is estimated is (20.2), regardless of
whether estimation is by exact ML or conditional ML.

Forecasting

ARMA models are often used for forecasting purposes. The autoregressive component, in particu-
lar, offers the possibility of forecasting a process “out of sample” over a substantial time horizon.

Gretl supports forecasting on the basis of ARMA models using the method set out by Box and
Jenkins (1976).1 The Box and Jenkins algorithm produces a set of integrated AR coefficients which
take into account any differencing of the dependent variable (seasonal and/or non-seasonal) in the
ARIMA context, thus making it possible to generate a forecast for the level of the original variable.
By contrast, if you first difference a series manually and then apply ARMA to the differenced series,
forecasts will be for the differenced series, not the level. This point is illustrated in Example 20.1.
The parameter estimates are identical for the two models. The forecasts differ but are mutually
consistent: the variable fcdiff emulates the ARMA forecast (static, one step ahead within the
sample range, and dynamic out of sample).

20.3 Unit root tests

The ADF test

The Augmented Dickey–Fuller (ADF) test is, as implemented in gretl, the t-statistic on ϕ in the
following regression:

∆yt = µt +ϕyt−1 +
p∑
i=1

γi∆yt−i + εt . (20.8)

This test statistic is probably the best-known and most widely used unit root test. It is a one-sided
test whose null hypothesis is ϕ = 0 versus the alternative ϕ < 0. Under the null, yt must be
differenced at least once to achieve stationarity; under the alternative, yt is already stationary and
no differencing is required. Hence, large negative values of the test statistic lead to the rejection of
the null.

One peculiar aspect of this test is that its limit distribution is non-standard under the null hy-
pothesis: moreover, the shape of the distribution, and consequently the critical values for the test,
depends on the form of the µt term. A full analysis of the various cases is inappropriate here:
Hamilton (1994) contains an excellent discussion, but any recent time series textbook covers this
topic. Suffice it to say that gretl allows the user to choose the specification for µt among four
different alternatives:

µt command option

0 --nc

µ0 --c

µ0 + µ1t --ct

µ0 + µ1t + µ1t2 --ctt

1See in particular their “Program 4” on p. 505ff.
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These options are not mutually exclusive; when they are used together the statistic will be reported
separately for each case. By default, gretl uses by default the combination --c --ct --ctt. For
each case, approximate p-values are calculated by means of the algorithm developed in MacKinnon
(1996).

The gretl command used to perform the test is adf; for example

adf 4 x1 --c --ct

would compute the test statistic as the t-statistic forϕ in equation 20.8 with p = 4 in the two cases
µt = µ0 and µt = µ0 + µ1t.

The number of lags (p in equation 20.8) should be chosen as to ensure that (20.8) is a parame-
trization flexible enough to represent adequately the short-run persistence of ∆yt . Setting p too
low results in size distortions in the test, whereas setting p too high would lead to low power.
As a convenience to the user, the parameter p can be automatically determined. Setting p to a
negative number triggers a sequential procedure that starts with p lags and decrements p until the
t-statistic for the parameter γp exceeds 1.645 in absolute value.

The KPSS test

The KPSS test (Kwiatkowski, Phillips, Schmidt and Shin, 1992) is a unit root test in which the null
hypothesis is opposite to that in the ADF test: under the null, the series in question is stationary;
the alternative is that the series is I(1).

The basic intuition behind this test statistic is very simple: if yt can be written as yt = µ + ut ,
where ut is some zero-mean stationary process, then not only does the sample average of the yt ’s
provide a consistent estimator of µ, but the long-run variance of ut is a well-defined, finite number.
Neither of these properties hold under the alternative.

The test itself is based on the following statistic:

η =
∑T
i=1 S

2
t

T 2σ̄ 2
(20.9)

where St =
∑t
s=1 es and σ̄ 2 is an estimate of the long-run variance of et = (yt − ȳ). Under the null,

this statistic has a well-defined (nonstandard) asymptotic distribution, which is free of nuisance
parameters and has been tabulated by simulation. Under the alternative, the statistic diverges.

As a consequence, it is possible to construct a one-sided test based on η, where H0 is rejected if η
is bigger than the appropriate critical value; gretl provides the 90%, 95%, 97.5% and 99% quantiles.

Usage example:

kpss m y

where m is an integer representing the bandwidth or window size used in the formula for estimating
the long run variance:

σ̄ 2 =
m∑

i=−m

(
1− |i|

m+ 1

)
γ̂i

The γ̂i terms denote the empirical autocovariances of et from order −m through m. For this
estimator to be consistent, m must be large enough to accommodate the short-run persistence of
et , but not too large compared to the sample size T . In the GUI interface of gretl, this value defaults

to the integer part of 4
(
T

100

)1/4
.

The above concept can be generalized to the case where yt is thought to be stationary around a
deterministic trend. In this case, formula (20.9) remains unchanged, but the series et is defined as
the residuals from an OLS regression of yt on a constant and a linear trend. This second form of
the test is obtained by appending the --trend option to the kpss command:
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kpss n y --trend

Note that in this case the asymptotic distribution of the test is different and the critical values
reported by gretl differ accordingly.

Cointegration tests

FIXME discuss Engle—Granger here, and refer forward to the next chapter for the Johansen tests.

20.4 ARCH and GARCH

Heteroskedasticity means a non-constant variance of the error term in a regression model. Autore-
gressive Conditional Heteroskedasticity (ARCH) is a phenomenon specific to time series models,
whereby the variance of the error displays autoregressive behavior; for instance, the time series ex-
hibits successive periods where the error variance is relatively large, and successive periods where
it is relatively small. This sort of behavior is reckoned to be quite common in asset markets: an
unsettling piece of news can lead to a period of increased volatility in the market.

An ARCH error process of order q can be represented as

ut = σtεt ; σ 2
t ≡ E(u2

t |Ωt−1) = α0 +
q∑
i=1

αiu2
t−i

where the εts are independently and identically distributed (iid) with mean zero and variance 1,
and where σt is taken to be the positive square root of σ 2

t . Ωt−1 denotes the information set as of
time t−1 and σ 2

t is the conditional variance: that is, the variance conditional on information dated
t − 1 and earlier.

It is important to notice the difference between ARCH and an ordinary autoregressive error process.
The simplest (first-order) case of the latter can be written as

ut = ρut−1 + εt ; −1 < ρ < 1

where the εts are independently and identically distributed with mean zero and variance σ 2. With
an AR(1) error, if ρ is positive then a positive value of ut will tend to be followed, with probability
greater than 0.5, by a positive ut+1. With an ARCH error process, a disturbance ut of large absolute
value will tend to be followed by further large absolute values, but with no presumption that the
successive values will be of the same sign. ARCH in asset prices is a “stylized fact” and is consistent
with market efficiency; on the other hand autoregressive behavior of asset prices would violate
market efficiency.

One can test for ARCH of order q in the following way:

1. Estimate the model of interest via OLS and save the squared residuals, û2
t .

2. Perform an auxiliary regression in which the current squared residual is regressed on a con-
stant and q lags of itself.

3. Find the TR2 value (sample size times unadjusted R2) for the auxiliary regression.

4. Refer the TR2 value to the χ2 distribution with q degrees of freedom, and if the p-value is
“small enough” reject the null hypothesis of homoskedasticity in favor of the alternative of
ARCH(q).

This test is implemented in gretl via the arch command. This command may be issued following
the estimation of a time-series model by OLS, or by selection from the “Tests” menu in the model
window (again, following OLS estimation). The result of the test is reported and if the TR2 from the
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auxiliary regression has a p-value less than 0.10, ARCH estimates are also reported. These estimates
take the form of Generalized Least Squares (GLS), specifically weighted least squares, using weights
that are inversely proportional to the predicted variances of the disturbances, σ̂t , derived from the
auxiliary regression.

In addition, the ARCH test is available after estimating a vector autoregression (VAR). In this case,
however, there is no provision to re-estimate the model via GLS.

GARCH

The simple ARCH(q) process is useful for introducing the general concept of conditional het-
eroskedasticity in time series, but it has been found to be insufficient in empirical work. The
dynamics of the error variance permitted by ARCH(q) are not rich enough to represent the patterns
found in financial data. The generalized ARCH or GARCH model is now more widely used.

The representation of the variance of a process in the GARCH model is somewhat (but not exactly)
analogous to the ARMA representation of the level of a time series. The variance at time t is allowed
to depend on both past values of the variance and past values of the realized squared disturbance,
as shown in the following system of equations:

yt = Xtβ+ut (20.10)

ut = σtεt (20.11)

σ 2
t = α0 +

q∑
i=1

αiu2
t−i +

p∑
j=1

δiσ 2
t−j (20.12)

As above, εt is an iid sequence with unit variance. Xt is a matrix of regressors (or in the simplest
case, just a vector of 1s allowing for a non-zero mean of yt). Note that if p = 0, GARCH collapses to
ARCH(q): the generalization is embodied in the δi terms that multiply previous values of the error
variance.

In principle the underlying innovation, εt , could follow any suitable probability distribution, and
besides the obvious candidate of the normal or Gaussian distribution the t distribution has been
used in this context. Currently gretl only handles the case where εt is assumed to be Gaussian.
However, when the --robust option to the garch command is given, the estimator gretl uses for
the covariance matrix can be considered Quasi-Maximum Likelihood even with non-normal distur-
bances. See below for more on the options regarding the GARCH covariance matrix.

Example:

garch p q ; y const x

where p ≥ 0 and q > 0 denote the respective lag orders as shown in equation (20.12). These values
can be supplied in numerical form or as the names of pre-defined scalar variables.

GARCH estimation

Estimation of the parameters of a GARCH model is by no means a straightforward task. (Con-
sider equation 20.12: the conditional variance at any point in time, σ 2

t , depends on the conditional
variance in earlier periods, but σ 2

t is not observed, and must be inferred by some sort of Maxi-
mum Likelihood procedure.) Gretl uses the method proposed by Fiorentini, Calzolari and Panattoni
(1996),2 which was adopted as a benchmark in the study of GARCH results by McCullough and
Renfro (1998). It employs analytical first and second derivatives of the log-likelihood, and uses a
mixed-gradient algorithm, exploiting the information matrix in the early iterations and then switch-
ing to the Hessian in the neighborhood of the maximum likelihood. (This progress can be observed
if you append the --verbose option to gretl’s garch command.)

2The algorithm is based on Fortran code deposited in the archive of the Journal of Applied Econometrics by the authors,
and is used by kind permission of Professor Fiorentini.
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Several options are available for computing the covariance matrix of the parameter estimates in
connection with the garch command. At a first level, one can choose between a “standard” and a
“robust” estimator. By default, the Hessian is used unless the --robust option is given, in which
case the QML estimator is used. A finer choice is available via the set command, as shown in
Table 20.2.

Table 20.2: Options for the GARCH covariance matrix

command effect

set garch_vcv hessian Use the Hessian

set garch_vcv im Use the Information Matrix

set garch_vcv op Use the Outer Product of the Gradient

set garch_vcv qml QML estimator

set garch_vcv bw Bollerslev–Wooldridge “sandwich” estimator

It is not uncommon, when one estimates a GARCH model for an arbitrary time series, to find that
the iterative calculation of the estimates fails to converge. For the GARCH model to make sense,
there are strong restrictions on the admissible parameter values, and it is not always the case
that there exists a set of values inside the admissible parameter space for which the likelihood is
maximized.

The restrictions in question can be explained by reference to the simplest (and much the most
common) instance of the GARCH model, where p = q = 1. In the GARCH(1, 1) model the conditional
variance is

σ 2
t = α0 +α1u2

t−1 + δ1σ 2
t−1 (20.13)

Taking the unconditional expectation of (20.13) we get

σ 2 = α0 +α1σ 2 + δ1σ 2

so that
σ 2 = α0

1−α1 − δ1

For this unconditional variance to exist, we require that α1 + δ1 < 1, and for it to be positive we
require that α0 > 0.

A common reason for non-convergence of GARCH estimates (that is, a common reason for the non-
existence of αi and δi values that satisfy the above requirements and at the same time maximize
the likelihood of the data) is misspecification of the model. It is important to realize that GARCH, in
itself, allows only for time-varying volatility in the data. If the mean of the series in question is not
constant, or if the error process is not only heteroskedastic but also autoregressive, it is necessary
to take this into account when formulating an appropriate model. For example, it may be necessary
to take the first difference of the variable in question and/or to add suitable regressors, Xt , as in
(20.10).
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Example 20.1: ARIMA forecasting

open greene18_2.gdt
# log of quarterly U.S. nominal GNP, 1950:1 to 1983:4
genr y = log(Y)
# and its first difference
genr dy = diff(y)
# reserve 2 years for out-of-sample forecast
smpl ; 1981:4
# Estimate using ARIMA
arima 1 1 1 ; y
# forecast over full period
smpl --full
fcast fc1
# Return to sub-sample and run ARMA on the first difference of y
smpl ; 1981:4
arma 1 1 ; dy
smpl --full
fcast fc2
genr fcdiff = (t<=1982:1)*(fc1 - y(-1)) + (t>1982:1)*(fc1 - fc1(-1))
# compare the forecasts over the later period
smpl 1981:1 1983:4
print y fc1 fc2 fcdiff --byobs

The output from the last command is:

y fc1 fc2 fcdiff
1981:1 7.964086 7.940930 0.02668 0.02668
1981:2 7.978654 7.997576 0.03349 0.03349
1981:3 8.009463 7.997503 0.01885 0.01885
1981:4 8.015625 8.033695 0.02423 0.02423
1982:1 8.014997 8.029698 0.01407 0.01407
1982:2 8.026562 8.046037 0.01634 0.01634
1982:3 8.032717 8.063636 0.01760 0.01760
1982:4 8.042249 8.081935 0.01830 0.01830
1983:1 8.062685 8.100623 0.01869 0.01869
1983:2 8.091627 8.119528 0.01891 0.01891
1983:3 8.115700 8.138554 0.01903 0.01903
1983:4 8.140811 8.157646 0.01909 0.01909
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Cointegration and Vector Error Correction Models

21.1 Introduction

The twin concepts of cointegration and error correction have drawn a good deal of attention in
macroeconometrics over recent years. The attraction of the Vector Error Correction Model (VECM)
is that it allows the researcher to embed a representation of economic equilibrium relationships
within a relatively rich time-series specification. This approach overcomes the old dichotomy be-
tween (a) structural models that faithfully represented macroeconomic theory but failed to fit the
data, and (b) time-series models that were accurately tailored to the data but difficult if not impos-
sible to interpret in economic terms.

The basic idea of cointegration relates closely to the concept of unit roots (see section 20.3). Sup-
pose we have a set of macroeconomic variables of interest, and we find we cannot reject the hypoth-
esis that some of these variables, considered individually, are non-stationary. Specifically, suppose
we judge that a subset of the variables are individually integrated of order 1, or I(1). That is, while
they are non-stationary in their levels, their first differences are stationary. Given the statistical
problems associated with the analysis of non-stationary data (for example, the threat of spurious
regression), the traditional approach in this case was to take first differences of all the variables
before proceeding with the analysis.

But this can result in the loss of important information. It may be that while the variables in
question are I(1) when taken individually, there exists a linear combination of the variables that
is stationary without differencing, or I(0). (There could be more than one such linear combina-
tion.) That is, while the ensemble of variables may be “free to wander” over time, nonetheless the
variables are “tied together” in certain ways. And it may be possible to interpret these ties, or
cointegrating vectors, as representing equilibrium conditions.

For example, suppose we find some or all of the following variables are I(1): money stock, M , the
price level, P , the nominal interest rate, R, and output, Y . According to standard theories of the
demand for money, we would nonetheless expect there to be an equilibrium relationship between
real balances, interest rate and output; for example

m− p = γ0 + γ1y + γ2r γ1 > 0, γ2 < 0

where lower-case variable names denote logs. In equilibrium, then,

m− p − γ1y − γ2r = γ0

Realistically, we should not expect this condition to be satisfied each period. We need to allow for
the possibility of short-run disequilibrium. But if the system moves back towards equilibrium fol-
lowing a disturbance, it follows that the vector x = (m,p,y, r)′ is bound by a cointegrating vector
β′ = (β1, β2, β3, β4), such that β′x is stationary (with a mean of γ0). Furthermore, if equilibrium is
correctly characterized by the simple model above, we have β2 = −β1, β3 < 0 and β4 > 0. These
things are testable within the context of cointegration analysis.

There are typically three steps in this sort of analysis:

1. Test to determine the number of cointegrating vectors, the cointegrating rank of the system.

2. Estimate a VECM with the appropriate rank, but subject to no further restrictions.

157
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3. Probe the interpretation of the cointegrating vectors as equilibrium conditions by means of
restrictions on the elements of these vectors.

The following sections expand on each of these points, giving further econometric details and
explaining how to implement the analysis using gretl.

21.2 Vector Error Correction Models as representation of a cointegrated system

Consider a VAR of order p with a deterministic part given by µt (typically, a polynomial in time).
One can write the n-variate process yt as

yt = µt +A1yt−1 +A2yt−2 + · · · +Apyt−p + εt (21.1)

But since yt−1 ≡ yt −∆yt and yt−i ≡ yt−1 − (∆yt−1 +∆yt−2 + · · · +∆yt−i+1), we can re-write the
above as

∆yt = µt +Πyt−1 +
p−1∑
i=1

Γi∆yt−i + εt , (21.2)

where Π =∑pi=1Ai and Γk = −∑pi=kAi. This is the VECM representation of (21.1).

The interpretation of (21.2) depends crucially on r , the rank of the matrix Π.

• If r = 0, the processes are all I(1) and not cointegrated.

• If r = n, then Π is invertible and the processes are all I(0).

• Cointegration occurs in between, when 0 < r < n and Π can be written as αβ′. In this case,
yt is I(1), but the combination zt = β′yt is I(0). If, for example, r = 1 and the first element
of β was −1, then one could write zt = −y1,t + β2y2,t + · · · + βnyn,t , which is equivalent to
saying that

y1t = β2y2,t + · · · + βnyn,t − zt
is a long-run equilibrium relationship: the deviations zt may not be 0 but they are stationary.
In this case, (21.2) can be written as

∆yt = µt +αβ′yt−1 +
p−1∑
i=1

Γi∆yt−i + εt . (21.3)

If β were known, then zt would be observable and all the remaining parameters could be
estimated via OLS. In practice, the procedure estimates β first and then the rest.

The rank of Π is investigated by computing the eigenvalues of a closely related matrix whose rank
is the same as Π: however, this matrix is by construction symmetric and positive semidefinite. As a
consequence, all its eigenvalues are real and non-negative, and tests on the rank of Π can therefore
be carried out by testing how many eigenvalues are 0.

If all the eigenvalues are significantly different from 0, then all the processes are stationary. If,
on the contrary, there is at least one zero eigenvalue, then the yt process is integrated, although
some linear combination β′yt might be stationary. At the other extreme, if no eigenvalues are
significantly different from 0, then not only is the process yt non-stationary, but the same holds
for any linear combination β′yt ; in other words, no cointegration occurs.

Estimation typically proceeds in two stages: first, a sequence of tests is run to determine r , the
cointegration rank. Then, for a given rank the parameters in equation (21.3) are estimated. The two
commands that gretl offers for estimating these systems are coint2 and vecm, respectively.

The syntax for coint2 is

coint2 p ylist [ ; xlist [ ; zlist ] ]
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where p is the number of lags in (21.1); ylist is a list containing the yt variables; xlist is an
optional list of exogenous variables; and zlist is another optional list of exogenous variables
whose effects are assumed to be confined to the cointegrating relationships.

The syntax for vecm is

vecm p r ylist [ ; xlist [ ; zlist ] ]

where p is the number of lags in (21.1); r is the cointegration rank; and the lists ylist, xlist and
zlist have the same interpretation as in coint2.

Both commands can be given specific options to handle the treatment of the deterministic compo-
nent µt . These are discussed in the following section.

21.3 Interpretation of the deterministic components

Statistical inference in the context of a cointegrated system depends on the hypotheses one is
willing to make on the deterministic terms, which leads to the famous “five cases.”

In equation (21.2), the term µt is usually understood to take the form

µt = µ0 + µ1 · t.

In order to have the model mimic as closely as possible the features of the observed data, there is a
preliminary question to settle. Do the data appear to follow a deterministic trend? If so, is it linear
or quadratic?

Once this is established, one should impose restrictions on µ0 and µ1 that are consistent with this
judgement. For example, suppose that the data do not exhibit a discernible trend. This means that∆yt is on average zero, so it is reasonable to assume that its expected value is also zero. Write
equation (21.2) as Γ(L)∆yt = µ0 + µ1 · t +αzt−1 + εt , (21.4)

where zt = β′yt is assumed to be stationary and therefore to possess finite moments. Taking
unconditional expectations, we get

0 = µ0 + µ1 · t +αmz.

Since the left-hand side does not depend on t, the restriction µ1 = 0 is a safe bet. As for µ0, there are
just two ways to make the above expression true: either µ0 = 0 with mz = 0, or µ0 equals −αmz.
The latter possibility is less restrictive in that the vector µ0 may be non-zero, but is constrained to
be a linear combination of the columns of α. In that case, µ0 can be written as α · c, and one may
write (21.4) as

Γ(L)∆yt = α [β′ c
][ yt−1

1

]
+ εt .

The long-run relationship therefore contains an intercept. This type of restriction is usually written

α′⊥µ0 = 0,

where α⊥ is the left null space of the matrix α.

An intuitive understanding of the issue can be gained by means of a simple example. Consider a
series xt which behaves as follows

xt =m+ xt−1 + εt
where m is a real number and εt is a white noise process: xt is then a random walk with drift m.
In the special case m = 0, the drift disappears and xt is a pure random walk.

Consider now another process yt , defined by

yt = k+ xt +ut
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where, again, k is a real number and ut is a white noise process. Since ut is stationary by definition,
xt and yt cointegrate: that is, their difference

zt = yt − xt = k+ut

is a stationary process. For k = 0, zt is simple zero-mean white noise, whereas for k 6= 0 the process
zt is white noise with a non-zero mean.

After some simple substitutions, the two equations above can be represented jointly as a VAR(1)
system [

yt
xt

]
=
[
k+m
m

]
+
[

0 1

0 1

][
yt−1

xt−1

]
+
[
ut + εt
εt

]
or in VECM form[ ∆yt∆xt

]
=

[
k+m
m

]
+
[
−1 1

0 0

][
yt−1

xt−1

]
+
[
ut + εt
εt

]
=

=
[
k+m
m

]
+
[
−1

0

][
1 −1

][ yt−1

xt−1

]
+
[
ut + εt
εt

]
=

= µ0 +αβ′
[
yt−1

xt−1

]
+ ηt = µ0 +αzt−1 + ηt ,

where β is the cointegration vector and α is the “loadings” or “adjustments” vector.

We are now ready to consider three possible cases:

1. m 6= 0: In this case xt is trended, as we just saw; it follows that yt also follows a linear trend
because on average it keeps at a fixed distance k from xt . The vector µ0 is unrestricted.

2. m = 0 and k 6= 0: In this case, xt is not trended and as a consequence neither is yt . However,
the mean distance between yt and xt is non-zero. The vector µ0 is given by

µ0 =
[
k
0

]

which is not null and therefore the VECM shown above does have a constant term. The
constant, however, is subject to the restriction that its second element must be 0. More
generally, µ0 is a multiple of the vector α. Note that the VECM could also be written as

[ ∆yt∆xt
]
=
[
−1

0

][
1 −1 −k

]
yt−1

xt−1

1

+
[
ut + εt
εt

]

which incorporates the intercept into the cointegration vector. This is known as the “restricted
constant” case.

3. m = 0 and k = 0: This case is the most restrictive: clearly, neither xt nor yt are trended, and
the mean distance between them is zero. The vector µ0 is also 0, which explains why this case
is referred to as “no constant.”

In most cases, the choice between these three possibilities is based on a mix of empirical obser-
vation and economic reasoning. If the variables under consideration seem to follow a linear trend
then we should not place any restriction on the intercept. Otherwise, the question arises of whether
it makes sense to specify a cointegration relationship which includes a non-zero intercept. One ex-
ample where this is appropriate is the relationship between two interest rates: generally these are
not trended, but the VAR might still have an intercept because the difference between the two (the
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“interest rate spread”) might be stationary around a non-zero mean (for example, because of a risk
or liquidity premium).

The previous example can be generalized in three directions:

1. If a VAR of order greater than 1 is considered, the algebra gets more convoluted but the
conclusions are identical.

2. If the VAR includes more than two endogenous variables the cointegration rank r can be
greater than 1. In this case, α is a matrix with r columns, and the case with restricted constant
entails the restriction that µ0 should be some linear combination of the columns of α.

3. If a linear trend is included in the model, the deterministic part of the VAR becomes µ0+µ1t.
The reasoning is practically the same as above except that the focus now centers on µ1 rather
than µ0. The counterpart to the “restricted constant” case discussed above is a “restricted
trend” case, such that the cointegration relationships include a trend but the first differences
of the variables in question do not. In the case of an unrestricted trend, the trend appears
in both the cointegration relationships and the first differences, which corresponds to the
presence of a quadratic trend in the variables themselves (in levels).

In order to accommodate the five cases, gretl provides the following options to the coint2 and
vecm commands:

µt option flag description

0 --nc no constant

µ0, α′⊥µ0 = 0 --rc restricted constant

µ0 default unrestricted constant

µ0 + µ1t,α′⊥µ1 = 0 --crt constant + restricted trend

µ0 + µ1t --ct constant + unrestricted trend

Note that for this command the above options are mutually exclusive. In addition, you have the
option of using the --seasonal options, for augmenting µt with centered seasonal dummies. In
each case, p-values are computed via the approximations by Doornik (1998).

21.4 The Johansen cointegration tests

The two Johansen tests for cointegration are used to establish the rank of β; in other words, how
many cointegration vectors the system has. These are the “λ-max” test, for hypotheses on indi-
vidual eigenvalues, and the “trace” test, for joint hypotheses. Suppose that the eigenvalues λi are
sorted from largest to smallest. The null hypothesis for the “λ-max” test on the i-th eigenvalue is
that λi = 0. The corresponding trace test, instead, considers the hypothesis λj = 0 for all j ≥ i.
The gretl command coint2 performs these two tests. The corresponding menu entry in the GUI is
“Model, Time Series, Cointegration Test, Johansen”.

As in the ADF test, the asymptotic distribution of the tests varies with the deterministic component
µt one includes in the VAR (see section 21.3 above). The following code uses the denmark data file,
supplied with gretl, to replicate Johansen’s example found in his 1995 book.

open denmark
coint2 2 LRM LRY IBO IDE --rc --seasonal

In this case, the vector yt in equation (21.2) comprises the four variables LRM, LRY, IBO, IDE. The
number of lags equals p in (21.2) (that is, the number of lags of the model written in VAR form).
Part of the output is reported below:
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Johansen test:
Number of equations = 4
Lag order = 2
Estimation period: 1974:3 - 1987:3 (T = 53)

Case 2: Restricted constant
Rank Eigenvalue Trace test p-value Lmax test p-value

0 0.43317 49.144 [0.1284] 30.087 [0.0286]
1 0.17758 19.057 [0.7833] 10.362 [0.8017]
2 0.11279 8.6950 [0.7645] 6.3427 [0.7483]
3 0.043411 2.3522 [0.7088] 2.3522 [0.7076]

Both the trace and λ-max tests accept the null hypothesis that the smallest eigenvalue is 0 (see the
last row of the table), so we may conclude that the series are in fact non-stationary. However, some
linear combination may be I(0), since the λ-max test rejects the hypothesis that the rank of Π is 0
(though the trace test gives less clear-cut evidence for this, with a p-value of 0.1284).

21.5 Identification of the cointegration vectors

The core problem in the estimation of equation (21.2) is to find an estimate of Π that has by con-
struction rank r , so it can be written as Π = αβ′, where β is the matrix containing the cointegration
vectors and α contains the “adjustment” or “loading” coefficients whereby the endogenous vari-
ables respond to deviation from equilibrium in the previous period.

Without further specification, the problem has multiple solutions (in fact, infinitely many). The
parameters α and β are under-identified: if all columns of β are cointegration vectors, then any
arbitrary linear combinations of those columns is a cointegration vector too. To put it differently,
if Π = α0β′0 for specific matrices α0 and β0, then Π also equals (α0Q)(Q−1β′0) for any conformable
non-singular matrix Q. In order to find a unique solution, it is therefore necessary to impose
some restrictions on α and/or β. It can be shown that the minimum number of restrictions that
is necessary to guarantee identification is r 2. Normalizing one coefficient per column to 1 (or −1,
according to taste) is a trivial first step, which also helps in that the remaining coefficients can be
interpreted as the parameters in the equilibrium relations, but this only suffices when r = 1.

The method that gretl uses by default is known as the “Phillips normalization”, or “triangular
representation”.1 The starting point is writing β in partitioned form as in

β =
[
β1

β2

]
,

where β1 is an r × r matrix and β2 is (n − r) × r . Assuming that β1 has full rank, β can be
post-multiplied by β−1

1 , giving

β̂ =
[

I
β2β−1

1

]
=
[
I
−B

]
,

The coefficients that gretl produces are β̂, with B known as the matrix of unrestricted coefficients.
In terms of the underlying equilibrium relationship, the Phillips normalization expresses the system

1For comparison with other studies, you may wish to normalize β differently. Using the set command you can do
set vecm_norm diag to select a normalization that simply scales the columns of the original β such that βij = 1
for i = j and i ≤ r , as used in the empirical section of Boswijk and Doornik (2004). Another alternative is
set vecm_norm first, which scales β such that the elements on the first row equal 1. To suppress normalization
altogether, use set vecm_norm none. (To return to the default: set vecm_norm phillips.)
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of r equilibrium relations as

y1,t = b1,r+1yr+1,t + . . .+ b1,nyn,t
y2,t = b2,r+1yr+1,t + . . .+ b2,nyn,t

...

yr ,t = br ,r+1yr+1,t + . . .+ br ,nyr ,t

where the first r variables are expressed as functions of the remaining n− r .

Although the triangular representation ensures that the statistical problem of estimating β is
solved, the resulting equilibrium relationships may be difficult to interpret. In this case, the user
may want to achieve identification by specifying manually the system of r 2 constraints that gretl
will use to produce an estimate of β.

As an example, consider the money demand system presented in section 9.6 of Verbeek (2004). The
variables used are m (the log of real money stock M1), infl (inflation), cpr (the commercial paper
rate), y (log of real GDP) and tbr (the Treasury bill rate).2

Estimation of β can be performed via the commands

open money.gdt
smpl 1954:1 1994:4
vecm 6 2 m infl cpr y tbr --rc

and the relevant portion of the output reads

Maximum likelihood estimates, observations 1954:1-1994:4 (T = 164)
Cointegration rank = 2
Case 2: Restricted constant

beta (cointegrating vectors, standard errors in parentheses)

m 1.0000 0.0000
(0.0000) (0.0000)

infl 0.0000 1.0000
(0.0000) (0.0000)

cpr 0.56108 -24.367
(0.10638) (4.2113)

y -0.40446 -0.91166
(0.10277) (4.0683)

tbr -0.54293 24.786
(0.10962) (4.3394)

const -3.7483 16.751
(0.78082) (30.909)

Interpretation of the coefficients of the cointegration matrix β would be easier if a meaning could
be attached to each of its columns. This is possible by hypothesizing the existence of two long-run
relationships: a money demand equation

m = c1 + β1infl+ β2y+ β3tbr

and a risk premium equation

cpr = c2 + β4infl+ β5y+ β6tbr

2This data set is available in the verbeek data package; see http://gretl.sourceforge.net/gretl_data.html.

http://gretl.sourceforge.net/gretl_data.html
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which imply that the cointegration matrix can be normalized as

β =



−1 0

β1 β4

0 −1

β2 β5

β3 β6

c1 c2


This renormalization can be accomplished by means of the restrict command, to be given after
the vecm command or, in the graphical interface, by selecting the “Test, Linear Restrictions” menu
entry. The syntax for entering the restrictions should be fairly obvious:3

restrict
b[1,1] = -1
b[1,3] = 0
b[2,1] = 0
b[2,3] = -1

end restrict

which produces

Cointegrating vectors (standard errors in parentheses)

m -1.0000 0.0000
(0.0000) (0.0000)

infl -0.023026 0.041039
(0.0054666) (0.027790)

cpr 0.0000 -1.0000
(0.0000) (0.0000)

y 0.42545 -0.037414
(0.033718) (0.17140)

tbr -0.027790 1.0172
(0.0045445) (0.023102)

const 3.3625 0.68744
(0.25318) (1.2870)

21.6 Over-identifying restrictions

One purpose of imposing restrictions on a VECM system is simply to achieve identification. If these
restrictions are simply normalizations, they are not testable and should have no effect on the max-
imized likelihood. In addition, however, one may wish to formulate constraints on β and/or α that
derive from the economic theory underlying the equilibrium relationships; substantive restrictions
of this sort are then testable via a likelihood-ratio statistic.

Gretl is capable of testing general linear restrictions of the form

Rbvec(β) = q (21.5)

and/or
Ravec(α) = 0 (21.6)

Note that the β restriction may be non-homogeneous (q ≠ 0) but the α restriction must be homo-
geneous. Nonlinear restrictions are not supported, and neither are restrictions that cross between

3Note that in this context we are bending the usual matrix indexation convention, using the leading index to refer to
the column of β (the particular cointegrating vector). This is standard practice in the literature, and defensible insofar as
it is the columns of β (the cointegrating relations or equilibrium errors) that are of primary interest.
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β and α. In the case where r > 1 such restrictions may be in common across all the columns of β
(or α) or may be specific to certain columns of these matrices. This is the case discussed in Boswijk
(1995) and Boswijk and Doornik (2004, section 4.4).

The restrictions (21.5) and (21.6) may be written in explicit form as

vec(β) = Hφ+ h0 (21.7)

and
vec(α′) = Gψ (21.8)

respectively, where φ and ψ are the free parameter vectors associated with β and α respectively.
We may refer to the free parameters collectively as θ (the column vector formed by concatenating
φ and ψ). Gretl uses this representation internally when testing the restrictions.

If the list of restrictions that is passed to the restrict command contains more constraints than
necessary to achieve identification, then an LR test is performed; moreover, the restrict com-
mand can be given the --full switch, in which case full estimates for the restricted system are
printed (including the Γi terms), and the system thus restricted becomes the “current model” for
the purposes of further tests. Thus you are able to carry out cumulative tests, as in Chapter 7 of
Johansen (1995).

Syntax

The full syntax for specifying the restriction is an extension of the one exemplified in the previous
section. Inside a restrict. . . end restrict block, valid statements are of the form

parameter linear combination = scalar

where a parameter linear combination involves a weighted sum of individual elements of β or α
(but not both in the same combination); the scalar on the right-hand side must be 0 for combina-
tions involving α, but can be any real number for combinations involving β. Below, we give a few
examples of valid restrictions:

b[1,1] = 1.618
b[1,4] + 2*b[2,5] = 0
a[1,3] = 0
a[1,1] - a[1,2] = 0

A special syntax is reserved for the case when a certain constraint should be applied to all columns
of β: in this case, one index is given for each b term, and the square brackets are dropped. Hence,
the following syntax

restrict
b1 + b2 = 0

end restrict

corresponds to

β =


β11 β21

−β11 −β21

β13 β23

β14 β24


The same convention is used for α: when only one index is given for each a term, the restriction is
presumed to apply to all r rows of α, or in other words the given variables are weakly exogenous.
For instance, the formulation
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restrict
a3 = 0
a4 = 0

end restrict

specifies that variables 3 and 4 do not respond to the deviation from equilibrium in the previous
period.

Finally, a short-cut is available for setting up complex restrictions (but currently only in relation
to β): you can specify Rb and q, as in Rbvec(β) = q, by giving the names of previously defined
matrices. For example,

matrix I4 = I(4)
matrix vR = I4**(I4~zeros(4,1))
matrix vq = mshape(I4,16,1)
restrict
R = vR
q = vq

end restrict

which manually imposes Phillips normalization on the β estimates for a system with cointegrating
rank 4.

An example

Brand and Cassola (2004) propose a money demand system for the Euro area, in which they postu-
late three long-run equilibrium relationships:

money demand m = βll+ βyy
Fisher equation π = φl
Expectation theory of l = s
interest rates

where m is real money demand, l and s are long- and short-term interest rates, y is output and
π is inflation.4 (The names for these variables in the gretl data file are m_p, rl, rs, y and infl,
respectively.)

The cointegration rank assumed by the authors is 3 and there are 5 variables, giving 15 elements
in the β matrix. 3 × 3 = 9 restrictions are required for identification, and a just-identified system
would have 15 − 9 = 6 free parameters. However, the postulated long-run relationships feature
only three free parameters, so the over-identification rank is 3.

Example 21.1 replicates Table 4 on page 824 of the Brand and Cassola article.5 Note that we use
the $lnl accessor after the vecm command to store the unrestricted log-likelihood and the $rlnl
accessor after restrict for its restricted counterpart.

The example continues in script 21.2, where we perform further testing to check whether (a) the
income elasticity in the money demand equation is 1 (βy = 1) and (b) the Fisher relation is homo-
geneous (φ = 1). Since the --full switch was given to the initial restrict command, additional
restrictions can be applied without having to repeat the previous ones. (The second script contains
a few printf commands, which are not strictly necessary, to format the output nicely.) It turns out
that both of the additional hypotheses are rejected by the data, with p-values of 0.002 and 0.004.

4A traditional formulation of the Fisher equation would reverse the roles of the variables in the second equation,
but this detail is immaterial in the present context; moreover, the expectation theory of interest rates implies that the
third equilibrium relationship should include a constant for the liquidity premium. However, since in this example the
system is estimated with the constant term unrestricted, the liquidity premium gets merged in the system intercept and
disappears from zt .

5Modulo what appear to be a few typos in the article.
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Example 21.1: Estimation of a money demand system with constraints on β
Input:

open brand_cassola.gdt

# perform a few transformations
m_p = m_p*100
y = y*100
infl = infl/4
rs = rs/4
rl = rl/4

# replicate table 4, page 824
vecm 2 3 m_p infl rl rs y -q
genr ll0 = $lnl

restrict --full
b[1,1] = 1
b[1,2] = 0
b[1,4] = 0
b[2,1] = 0
b[2,2] = 1
b[2,4] = 0
b[2,5] = 0
b[3,1] = 0
b[3,2] = 0
b[3,3] = 1
b[3,4] = -1
b[3,5] = 0

end restrict
genr ll1 = $rlnl

Partial output:

Unrestricted loglikelihood (lu) = 116.60268
Restricted loglikelihood (lr) = 115.86451
2 * (lu - lr) = 1.47635
P(Chi-Square(3) > 1.47635) = 0.68774

beta (cointegrating vectors, standard errors in parentheses)

m_p 1.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

infl 0.0000 1.0000 0.0000
(0.0000) (0.0000) (0.0000)

rl 1.6108 -0.67100 1.0000
(0.62752) (0.049482) (0.0000)

rs 0.0000 0.0000 -1.0000
(0.0000) (0.0000) (0.0000)

y -1.3304 0.0000 0.0000
(0.030533) (0.0000) (0.0000)
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Example 21.2: Further testing of money demand system
Input:

restrict
b[1,5] = -1

end restrict
genr ll_uie = $rlnl

restrict
b[2,3] = -1

end restrict
genr ll_hfh = $rlnl

# replicate table 5, page 824
printf "Testing zero restrictions in cointegration space:\n"
printf " LR-test, rank = 3: chi^2(3) = %6.4f [%6.4f]\n", 2*(ll0-ll1), \

pvalue(X, 3, 2*(ll0-ll1))

printf "Unit income elasticity: LR-test, rank = 3:\n"
printf " chi^2(4) = %g [%6.4f]\n", 2*(ll0-ll_uie), \

pvalue(X, 4, 2*(ll0-ll_uie))

printf "Homogeneity in the Fisher hypothesis:\n"
printf " LR-test, rank = 3: chi^2(4) = %6.3f [%6.4f]\n", 2*(ll0-ll_hfh), \

pvalue(X, 4, 2*(ll0-ll_hfh))

Output:

Testing zero restrictions in cointegration space:
LR-test, rank = 3: chi^2(3) = 1.4763 [0.6877]

Unit income elasticity: LR-test, rank = 3:
chi^2(4) = 17.2071 [0.0018]

Homogeneity in the Fisher hypothesis:
LR-test, rank = 3: chi^2(4) = 15.547 [0.0037]

Another type of test that is commonly performed is the “weak exogeneity” test. In this context, a
variable is said to be weakly exogenous if all coefficients on the corresponding row in the α matrix
are zero. If this is the case, that variable does not adjust to deviations from any of the long-run
equilibria and can be considered an autonomous driving force of the whole system.

The code in Example 21.3 performs this test for each variable in turn, thus replicating the first
column of Table 6 on page 825 of Brand and Cassola (2004). The results show that weak exogeneity
might perhaps be accepted for the long-term interest rate and real GDP (p-values 0.07 and 0.08
respectively).

Identification and testability

One point regarding VECM restrictions that can be confusing at first is that identification (does
the restriction identify the system?) and testability (is the restriction testable?) are quite separate
matters. Restrictions can be identifying but not testable; less obviously, they can be testable but
not identifying.

This can be seen quite easily in relation to a rank-1 system. The restriction β1 = 1 is identifying
(it pins down the scale of β) but, being a pure scaling, it is not testable. On the other hand, the
restriction β1+β2 = 0 is testable — the system with this requirement imposed will almost certainly
have a lower maximized likelihood — but it is not identifying; it still leaves open the scale of β.

We said above that the number of restrictions must equal at least r 2, where r is the cointegrating
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Example 21.3: Testing for weak exogeneity
Input:

restrict
a1 = 0

end restrict
ts_m = 2*(ll0 - $rlnl)

restrict
a2 = 0

end restrict
ts_p = 2*(ll0 - $rlnl)

restrict
a3 = 0

end restrict
ts_l = 2*(ll0 - $rlnl)

restrict
a4 = 0

end restrict
ts_s = 2*(ll0 - $rlnl)

restrict
a5 = 0

end restrict
ts_y = 2*(ll0 - $rlnl)

loop foreach i m p l s y --quiet
printf "\Delta $i\t%6.3f [%6.4f]\n", ts_$i, pvalue(X, 6, ts_$i)

end loop

Output (variable, LR test, p-value):

\Delta m 18.111 [0.0060]
\Delta p 21.067 [0.0018]
\Delta l 11.819 [0.0661]
\Delta s 16.000 [0.0138]
\Delta y 11.335 [0.0786]

rank, for identification. This is a necessary and not a sufficient condition. In fact, when r > 1 it can
be quite tricky to assess whether a given set of restrictions is identifying. Gretl uses the method
suggested by Doornik (1995), where identification is assessed via the rank of the information ma-
trix.

It can be shown that for restrictions of the sort (21.7) and (21.8) the information matrix has the
same rank as the Jacobian matrix

J(θ) =
[
(Ip ⊗ β)G : (α⊗ Ip1)H

]
A sufficient condition for identification is that the rank of J(θ) equals the number of free para-
meters. The rank of this matrix is evaluated by examination of its singular values at a randomly
selected point in the parameter space. For practical purposes we treat this condition as if it were
both necessary and sufficient; that is, we disregard the special cases where identification could be
achieved without this condition being met.6

6See Boswijk and Doornik (2004, pp. 447–8) for discussion of this point.
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21.7 Numerical solution methods

In general, the ML estimator for the restricted VECM problem has no closed form solution, hence
the maximum must be found via numerical methods.7 In some cases convergence may be difficult,
and gretl provides several choices to solve the problem.

Switching and LBFGS

Two maximization methods are available in gretl. The default is the switching algorithm set out
in Boswijk and Doornik (2004). The alternative is a limited-memory variant of the BFGS algorithm
(LBFGS), using analytical derivatives. This is invoked using the --lbfgs flag with the restrict
command.

The switching algorithm works by explicitly maximizing the likelihood at each iteration, with re-
spect to φ̂, ψ̂ and Ω̂ (the covariance matrix of the residuals) in turn. This method shares a feature
with the basic Johansen eigenvalues procedure, namely, it can handle a set of restrictions that does
not fully identify the parameters.

LBFGS, on the other hand, requires that the model be fully identified. When using LBFGS, therefore,
you may have to supplement the restrictions of interest with normalizations that serve to identify
the parameters. For example, one might use all or part of the Phillips normalization (see section
21.5).

Neither the switching algorithm nor LBFGS is guaranteed to find the global ML solution.8 The
optimizer may end up at a local maximum (or, in the case of the switching algorithm, at a saddle
point).

The solution (or lack thereof) may be sensitive to the initial value selected for θ. By default, gretl
selects a starting point using a deterministic method based on Boswijk (1995), but two further
options are available: the initialization may be adjusted using simulated annealing, or the user may
supply an explicit initial value for θ.

The default initialization method is:

1. Calculate the unrestricted ML β̂ using the Johansen procedure.

2. If the restriction on β is non-homogeneous, use the method proposed by Boswijk (1995):

φ0 = −[(Ir ⊗ β̂⊥)′H]+(Ir ⊗ β̂⊥)′h0 (21.9)

where β̂′⊥β̂ = 0 and A+ denotes the Moore–Penrose inverse of A. Otherwise

φ0 = (H′H)−1H′vec(β̂) (21.10)

3. vec(β0) = Hφ0 + h0.

4. Calculate the unrestricted ML α̂ conditional on β0, as per Johansen:

α̂ = S01β0(β′0S11β0)−1 (21.11)

5. If α is restricted by vec(α′) = Gψ, then ψ0 = (G′G)−1G′ vec(α̂′) and vec(α′0) = Gψ0.

7The exception is restrictions that are homogeneous, common to all β or all α (in case r > 1), and involve either β
only or α only. Such restrictions are handled via the modified eigenvalues method set out by Johansen (1995). We solve
directly for the ML estimator, without any need for iterative methods.

8In developing gretl’s VECM-testing facilities we have considered a fair number of “tricky cases” from various sources.
We’d like to thank Luca Fanelli of the University of Bologna and Sven Schreiber of Goethe University Frankfurt for their
help in devising torture-tests for gretl’s VECM code.
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Alternative initialization methods

As mentioned above, gretl offers the option of adjusting the initialization using simulated anneal-
ing. This is invoked by adding the --jitter option to the restrict command.

The basic idea is this: we start at a certain point in the parameter space, and for each of n iterations
(currently n = 4096) we randomly select a new point within a certain radius of the previous one,
and determine the likelihood at the new point. If the likelihood is higher, we jump to the new
point; otherwise, we jump with probability P (and remain at the previous point with probability
1− P ). As the iterations proceed, the system gradually “cools” — that is, the radius of the random
perturbation is reduced, as is the probability of making a jump when the likelihood fails to increase.

In the course of this procedure many points in the parameter space are evaluated, starting with the
point arrived at by the deterministic method, which we’ll call θ0. One of these points will be “best”
in the sense of yielding the highest likelihood: call it θ∗. This point may or may not have a greater
likelihood than θ0. And the procedure has an end point, θn, which may or may not be “best”.

The rule followed by gretl in selecting an initial value for θ based on simulated annealing is this: use
θ∗ if θ∗ > θ0, otherwise use θn. That is, if we get an improvement in the likelihood via annealing,
we make full use of this; on the other hand, if we fail to get an improvement we nonetheless allow
the annealing to randomize the starting point. Experiments indicated that the latter effect can be
helpful.

Besides annealing, a further alternative is manual initialization. This is done by passing a prede-
fined vector to the set command with parameter initvals, as in

set initvals myvec

The details depend on whether the switching algorithm or LBFGS is used. For the switching algo-
rithm, there are two options for specifying the initial values. The more user-friendly one (for most
people, we suppose) is to specify a matrix that contains vec(β) followed by vec(α). For example:

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals

matrix BA = {1, -1, 6, -6, -6, -0.2, 0.1, 0.02, 0.03}
set initvals BA
restrict
b[1] = 1
b[1] + b[2] = 0
b[3] + b[4] = 0

end restrict

In this example — from Johansen (1995) — the cointegration rank is 1 and there are 4 variables.
However, the model includes a restricted constant (the --rc flag) so that β has 5 elements. The α
matrix has 4 elements, one per equation. So the matrix BA may be read as

(β1, β2, β3, β4, β5, α1, α2, α3, α4)

The other option, which is compulsory when using LBFGS, is to specify the initial values in terms
of the free parameters, φ and ψ. Getting this right is somewhat less obvious. As mentioned above,
the implicit-form restriction Rvec(β) = q has explicit form vec(β) = Hφ + h0, where H = R⊥, the
right nullspace of R. The vector φ is shorter, by the number of restrictions, than vec(β). The
savvy user will then see what needs to be done. The other point to take into account is that if α is
unrestricted, the effective length of ψ is 0, since it is then optimal to compute α using Johansen’s
formula, conditional on β (equation 21.11 above). The example above could be rewritten as:

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals
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matrix phi = {-8, -6}
set initvals phi
restrict --lbfgs
b[1] = 1
b[1] + b[2] = 0
b[3] + b[4] = 0

end restrict

In this more economical formulation the initializer specifies only the two free parameters in φ (5
elements in β minus 3 restrictions). There is no call to give values for ψ since α is unrestricted.

Scale removal

Consider a simpler version of the restriction discussed in the previous section, namely,

restrict
b[1] = 1
b[1] + b[2] = 0

end restrict

This restriction comprises a substantive, testable requirement — that β1 and β2 sum to zero —
and a normalization or scaling, β1 = 1. The question arises, might it be easier and more reliable
to maximize the likelihood without imposing β1 = 1?9 If so, we could record this normalization,
remove it for the purpose of maximizing the likelihood, then reimpose it by scaling the result.

Unfortunately it is not possible to say in advance whether “scale removal” of this sort will give
better results, for any particular estimation problem. However, this does seem to be the case more
often than not. Gretl therefore performs scale removal where feasible, unless you

• explicitly forbid this, by giving the --no-scaling option flag to the restrict command; or

• provide a specific vector of initial values; or

• select the LBFGS algorithm for maximization.

Scale removal is deemed infeasible if there are any cross-column restrictions on β, or any non-
homogeneous restrictions involving more than one element of β.

In addition, experimentation has suggested to us that scale removal is inadvisable if the system is
just identified with the normalization(s) included, so we do not do it in that case. By “just identified”
we mean that the system would not be identified if any of the restrictions were removed. On that
criterion the above example is not just identified, since the removal of the second restriction would
not affect identification; and gretl would in fact perform scale removal in this case unless the user
specified otherwise.

9As a numerical matter, that is. In principle this should make no difference.
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Discrete and censored dependent variables

22.1 Logit and probit models

It often happens that one wants to specify and estimate a model in which the dependent variable
is not continuous, but discrete. A typical example is a model in which the dependent variable is
the occupational status of an individual (1 = employed, 0 = unemployed). A convenient way of
formalizing this situation is to consider the variable yi as a Bernoulli random variable and analyze
its distribution conditional on the explanatory variables xi. That is,

yi =
{

1 Pi
0 1− Pi

(22.1)

where Pi = P(yi = 1|xi) is a given function of the explanatory variables xi.

In most cases, the function Pi is a cumulative distribution function F , applied to a linear combi-
nation of the xis. In the probit model, the normal cdf is used, while the logit model employs the
logistic function Λ(). Therefore, we have

probit Pi = F(zi) = Φ(zi) (22.2)

logit Pi = F(zi) = Λ(zi) = 1
1+ e−zi (22.3)

zi =
k∑
j=1

xijβj (22.4)

where zi is commonly known as the index function. Note that in this case the coefficients βj cannot
be interpreted as the partial derivatives of E(yi|xi) with respect to xij . However, for a given value
of xi it is possible to compute the vector of “slopes”, that is

slopej(x̄) =
∂F(z)
∂xj

∣∣∣∣∣
z=z̄

Gretl automatically computes the slopes, setting each explanatory variable at its sample mean.

Another, equivalent way of thinking about this model is in terms of an unobserved variable y∗i
which can be described thus:

y∗i =
k∑
j=1

xijβj + εi = zi + εi (22.5)

We observe yi = 1 whenever y∗i > 0 and yi = 0 otherwise. If εi is assumed to be normal, then we
have the probit model. The logit model arises if we assume that the density function of εi is

λ(εi) =
∂Λ(εi)
∂εi

= e−εi
(1+ e−εi)2

Both the probit and logit model are estimated in gretl via maximum likelihood, where the log-
likelihood can be written as

L(β) =
∑
yi=0

ln[1− F(zi)]+
∑
yi=1

lnF(zi), (22.6)

173
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which is always negative, since 0 < F(·) < 1. Since the score equations do not have a closed form
solution, numerical optimization is used. However, in most cases this is totally transparent to the
user, since usually only a few iterations are needed to ensure convergence. The --verbose switch
can be used to track the maximization algorithm.

Example 22.1: Estimation of simple logit and probit models

open greene19_1

logit GRADE const GPA TUCE PSI
probit GRADE const GPA TUCE PSI

As an example, we reproduce the results given in Greene (2000), chapter 21, where the effective-
ness of a program for teaching economics is evaluated by the improvements of students’ grades.
Running the code in example 22.1 gives the following output:

Model 1: Logit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)

const -13.0213 4.93132 -2.641
GPA 2.82611 1.26294 2.238 0.533859
TUCE 0.0951577 0.141554 0.672 0.0179755
PSI 2.37869 1.06456 2.234 0.449339

Mean of GRADE = 0.344
Number of cases ’correctly predicted’ = 26 (81.2%)
f(beta’x) at mean of independent vars = 0.189
McFadden’s pseudo-R-squared = 0.374038
Log-likelihood = -12.8896
Likelihood ratio test: Chi-square(3) = 15.4042 (p-value 0.001502)
Akaike information criterion (AIC) = 33.7793
Schwarz Bayesian criterion (BIC) = 39.6422
Hannan-Quinn criterion (HQC) = 35.7227

Predicted
0 1

Actual 0 18 3
1 3 8

Model 2: Probit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)

const -7.45232 2.54247 -2.931
GPA 1.62581 0.693883 2.343 0.533347
TUCE 0.0517288 0.0838903 0.617 0.0169697
PSI 1.42633 0.595038 2.397 0.467908

Mean of GRADE = 0.344
Number of cases ’correctly predicted’ = 26 (81.2%)
f(beta’x) at mean of independent vars = 0.328
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McFadden’s pseudo-R-squared = 0.377478
Log-likelihood = -12.8188
Likelihood ratio test: Chi-square(3) = 15.5459 (p-value 0.001405)
Akaike information criterion (AIC) = 33.6376
Schwarz Bayesian criterion (BIC) = 39.5006
Hannan-Quinn criterion (HQC) = 35.581

Predicted
0 1

Actual 0 18 3
1 3 8

In this context, the $uhat accessor function takes a special meaning: it returns generalized resid-
uals as defined in Gourieroux et al (1987), which can be interpreted as unbiased estimators of the
latent disturbances εt . These are defined as

ui =

 yi − P̂i for the logit model

yi · φ(ẑi)Φ(ẑi) − (1−yi) · φ(ẑi)
1−Φ(ẑi) for the probit model

(22.7)

Among other uses, generalized residuals are often used for diagnostic purposes. For example, it is
very easy to set up an omitted variables test equivalent to the familiar LM test in the context of a
linear regression; example 22.2 shows how to perform a variable addition test.

Example 22.2: Variable addition test in a probit model

open greene19_1

probit GRADE const GPA PSI
series u = $uhat
%$
ols u const GPA PSI TUCE -q
printf "Variable addition test for TUCE:\n"
printf "Rsq * T = %g (p. val. = %g)\n", $trsq, pvalue(X,1,$trsq)

The perfect prediction problem

One curious characteristic of logit and probit models is that (quite paradoxically) estimation is not
feasible if a model fits the data perfectly; this is called the perfect prediction problem. The reason
why this problem arises is easy to see by considering equation (22.6): if for some vector β and scalar
k it’s the case that zi < k whenever yi = 0 and zi > k whenever yi = 1, the same thing is true
for any multiple of β. Hence, L(β) can be made arbitrarily close to 0 simply by choosing enormous
values for β. As a consequence, the log-likelihood has no maximum, despite being bounded.

Gretl has a mechanism for preventing the algorithm from iterating endlessly in search of a non-
existent maximum. One sub-case of interest is when the perfect prediction problem arises because
of a single binary explanatory variable. In this case, the offending variable is dropped from the
model and estimation proceeds with the reduced specification. Nevertheless, it may happen that
no single “perfect classifier” exists among the regressors, in which case estimation is simply impos-
sible and the algorithm stops with an error. This behavior is triggered during the iteration process
if

maxzi
i:yi=0

<minzi
i:yi=1
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If this happens, unless your model is trivially mis-specified (like predicting if a country is an oil
exporter on the basis of oil revenues), it is normally a small-sample problem: you probably just
don’t have enough data to estimate your model. You may want to drop some of your explanatory
variables.

22.2 Ordered response models

These models constitute a simple variation on ordinary logit/probit models, and are usually applied
when the dependent variable is a discrete and ordered measurement — not simply binary, but on
an ordinal rather than an interval scale. For example, this sort of model may be applied when the
dependent variable is a qualitative assessment such as “Good”, “Average” and “Bad”.

In the general case, consider an ordered response variable, y , that can take on any of the J+1 values
0,1,2, . . . , J. We suppose, as before, that underlying the observed response is a latent variable,

y∗ = Xβ+ ε = z + ε
Now define “cut points”, α1 < α2 < · · · < αJ , such that

y = 0 if y∗ ≤ α1

y = 1 if α1 < y∗ ≤ α2
...

y = J if y∗ > αJ

For example, if the response takes on three values there will be two such cut points, α1 and α2.

The probability that individual i exhibits response j, conditional on the characteristics xi, is then
given by

P(yi = j |xi) =


P(y∗ ≤ α1 |xi) = F(α1 − zi) for j = 0

P(αj < y∗ ≤ αj+1 |xi) = F(αj+1 − zi)− F(αj − zi) for 0 < j < J
P(y∗ > αJ |xi) = 1− F(αJ − zi) for j = J

(22.8)

The unknown parameters αj are estimated jointly with the βs via maximum likelihood. The α̂j
estimates are reported by gretl as cut1, cut2 and so on.

In order to apply these models in gretl, the dependent variable must either take on only non-
negative integer values, or be explicitly marked as discrete. (In case the variable has non-integer
values, it will be recoded internally.) Note that gretl does not provide a separate command for
ordered models: the logit and probit commands automatically estimate the ordered version if
the dependent variable is acceptable, but not binary.

Example 22.3 reproduces the results presented in section 15.10 of Wooldridge (2002a). The ques-
tion of interest in this analysis is what difference it makes, to the allocation of assets in pension
funds, whether individual plan participants have a choice in the matter. The response variable is
an ordinal measure of the weight of stocks in the pension portfolio. Having reported the results
of estimation of the ordered model, Wooldridge illustrates the effect of the choice variable by ref-
erence to an “average” participant. The example script shows how one can compute this effect in
gretl.

After estimating ordered models, the $uhat accessor yields generalized residuals as in binary mod-
els; additionally, the $yhat accessor function returns ẑi, so it is possible to compute an unbiased
estimator of the latent variable y∗i simply by adding the two together.

22.3 Multinomial logit

When the dependent variable is not binary and does not have a natural ordering, multinomial
models are used. Gretl does not provide a native implementation of these yet, but simple models
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Example 22.3: Ordered probit model

/*
Replicate the results in Wooldridge, Econometric Analysis of Cross
Section and Panel Data, section 15.10, using pension-plan data from
Papke (AER, 1998).

The dependent variable, pctstck (percent stocks), codes the asset
allocation responses of "mostly bonds", "mixed" and "mostly stocks"
as {0, 50, 100}.

The independent variable of interest is "choice", a dummy indicating
whether individuals are able to choose their own asset allocations.

*/

open pension.gdt

# demographic characteristics of participant
list DEMOG = age educ female black married
# dummies coding for income level
list INCOME = finc25 finc35 finc50 finc75 finc100 finc101

# Papke’s OLS approach
ols pctstck const choice DEMOG INCOME wealth89 prftshr
# save the OLS choice coefficient
choice_ols = $coeff(choice)

# estimate ordered probit
probit pctstck choice DEMOG INCOME wealth89 prftshr

k = $ncoeff
matrix b = $coeff[1:k-2]
a1 = $coeff[k-1]
a2 = $coeff[k]

/*
Wooldridge illustrates the ’choice’ effect in the ordered probit
by reference to a single, non-black male aged 60, with 13.5 years
of education, income in the range $50K - $75K and wealth of $200K,
participating in a plan with profit sharing.

*/
matrix X = {60, 13.5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 200, 1}

# with ’choice’ = 0
scalar Xb = (0 ~ X) * b
P0 = cdf(N, a1 - Xb)
P50 = cdf(N, a2 - Xb) - P0
P100 = 1 - cdf(N, a2 - Xb)
E0 = 50 * P50 + 100 * P100

# with ’choice’ = 1
Xb = (1 ~ X) * b
P0 = cdf(N, a1 - Xb)
P50 = cdf(N, a2 - Xb) - P0
P100 = 1 - cdf(N, a2 - Xb)
E1 = 50 * P50 + 100 * P100

printf "\nWith choice, E(y) = %.2f, without E(y) = %.2f\n", E1, E0
printf "Estimated choice effect via ML = %.2f (OLS = %.2f)\n", E1 - E0,
choice_ols
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can be handled via the mle command (see chapter 17). We give here an example of a multinomial
logit model. Let the dependent variable, yi, take on integer values 0,1, . . . p. The probability that
yi = k is given by

P(yi = k|xi) =
exp(xiβk)∑p
j=0 exp(xiβj)

For the purpose of identification one of the outcomes must be taken as the “baseline”; it is usually
assumed that β0 = 0, in which case

P(yi = k|xi) =
exp(xiβk)

1+
∑p
j=1 exp(xiβj)

and

P(yi = 0|xi) =
1

1+
∑p
j=1 exp(xiβj)

.

Example 22.4 reproduces Table 15.2 in Wooldridge (2002a), based on data on career choice from
Keane and Wolpin (1997). The dependent variable is the occupational status of an individual (0 = in
school; 1 = not in school and not working; 2 = working), and the explanatory variables are education
and work experience (linear and square) plus a “black” binary variable. The full data set is a panel;
here the analysis is confined to a cross-section for 1987. For explanations of the matrix methods
employed in the script, see chapter 12.

Example 22.4: Multinomial logit

function mlogitlogprobs(series y, matrix X, matrix theta)

scalar n = max(y)
scalar k = cols(X)
matrix b = mshape(theta,k,n)

matrix tmp = X*b
series ret = -ln(1 + sumr(exp(tmp)))

loop for i=1..n --quiet
series x = tmp[,i]
ret += (y=$i) ? x : 0

end loop

return series ret

end function

open Keane.gdt
status = status-1 # dep. var. must be 0-based
smpl (year=87 & ok(status)) --restrict

matrix X = { educ exper expersq black const }
scalar k = cols(X)
matrix theta = zeros(2*k, 1)

mle loglik = mlogitlogprobs(status,X,theta)
params theta

end mle --verbose --hessian
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22.4 The Tobit model

The Tobit model is used when the dependent variable of a model is censored.1 Assume a latent
variable y∗i can be described as

y∗i =
k∑
j=1

xijβj + εi,

where εi ∼ N(0, σ 2). If y∗i were observable, the model’s parameters could be estimated via ordinary
least squares. On the contrary, suppose that we observe yi, defined as

yi =
{
y∗i for y∗i > 0

0 for y∗i ≤ 0
(22.9)

In this case, regressing yi on the xis does not yield consistent estimates of the parameters β,
because the conditional mean E(yi|xi) is not equal to

∑k
j=1 xijβj . It can be shown that restricting

the sample to non-zero observations would not yield consistent estimates either. The solution is to
estimate the parameters via maximum likelihood. The syntax is simply

tobit depvar indvars

As usual, progress of the maximization algorithm can be tracked via the --verbose switch, while
$uhat returns the generalized residuals. Note that in this case the generalized residual is defined
as ûi = E(εi|yi = 0) for censored observations, so the familiar equality ûi = yi − ŷi only holds for
uncensored observations, that is, when yi > 0.

An important difference between the Tobit estimator and OLS is that the consequences of non-
normality of the disturbance term are much more severe: non-normality implies inconsistency for
the Tobit estimator. For this reason, the output for the tobit model includes the Chesher–Irish
(1987) normality test by default.

22.5 Interval regression

The interval regression model arises when the dependent variable is unobserved for some (possibly
all) observations; what we observe instead is an interval in which the dependent variable lies. In
other words, the data generating process is assumed to be

y∗i = xiβ+ εi

but we only know that mi ≤ y∗i ≤ Mi, where the interval may be left- or right-unbounded (but
not both). If mi = Mi, we effectively observe y∗i and no information loss occurs. In practice, each
observation belongs to one of four categories:

1. left-unbounded, when mi = −∞,

2. right-unbounded, when Mi = ∞,

3. bounded, when −∞ <mi < Mi <∞ and

4. point observations when mi = Mi.

It is interesting to note that this model bears similarities to other models in several special cases:

• When all observations are point observations the model trivially reduces to the ordinary linear
regression model.

1We assume here that censoring occurs from below at 0. Censoring from above, or at a point different from zero,
can be rather easily handled by re-defining the dependent variable appropriately. For the more general case of two-sided
censoring the intreg command may be used (see below).
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• When mi = Mi when y∗i > 0, while mi = −∞ and Mi = 0 otherwise, we have the Tobit model
(see 22.4).

• The interval model could be thought of an ordered probit model (see 22.2) in which the cut
points (the αj coefficients in eq. 22.8) are observed and don’t need to be estimated.

The gretl command intreg estimates interval models by maximum likelihood, assuming normality
of the disturbance term εi. Its syntax is

intreg minvar maxvar X

where minvar contains the mi series, with NAs for left-unbounded observations, and maxvar con-
tains Mi, with NAs for right-unbounded observations. By default, standard errors are computed
using the negative inverse of the Hessian. If the --robust flag is given, then QML or Huber–White
standard errors are calculated instead. In this case the estimated covariance matrix is a “sandwich”
of the inverse of the estimated Hessian and the outer product of the gradient.

If the model specification contains regressors other than just a constant, the output includes a
chi-square statistic for testing the joint null hypothesis that none of these regressors has any effect
on the outcome. This is a Wald statistic based on the estimated covariance matrix. If you wish
to construct a likelihood ratio test, this is easily done by estimating both the full model and the
null model (containing only the constant), saving the log-likelihood in both cases via the $lnl
accessor, and then referring twice the difference between the two log-likelihoods to the chi-square
distribution with k degrees of freedom, where k is the number of additional regressors (see the
pvalue command in the Gretl Command Reference). An example is contained in the sample script
wtp.inp, provided with the gretl distribution.

As with the probit and Tobit models, after a model has been estimated the $uhat accessor returns
the generalized residual, which is an estimate of εi: more precisely, it equals yi − xiβ̂ for point
observations and E(εi|mi,Mi, xi) otherwise. Note that it is possible to compute an unbiased pre-
dictor of y∗i by summing this estimate to xiβ̂. Script 22.5 shows an example. As a further similarity
with Tobit, the interval regression model may deliver inconsistent estimates if the disturbances are
non-normal; hence, the Chesher–Irish (1987) test for normality is included by default here too.

22.6 Sample selection model

In the sample selection model (also known as “Tobit II” model), there are two latent variables:

y∗i =
k∑
j=1

xijβj + εi (22.10)

s∗i =
p∑
j=1

zijγj + ηi (22.11)

and the observation rule is given by

yi =
{
y∗i for s∗i > 0

♦ for s∗i ≤ 0
(22.12)

In this context, the ♦ symbol indicates that for some observations we simply do not have data on
y : yi may be 0, or missing, or anything else. A dummy variable di is normally used to set censored
observations apart.

One of the most popular applications of this model in econometrics is a wage equation coupled
with a labor force participation equation: we only observe the wage for the employed. If y∗i and s∗i
were (conditionally) independent, there would be no reason not to use OLS for estimating equation
(22.10); otherwise, OLS does not yield consistent estimates of the parameters βj .
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Since conditional independence between y∗i and s∗i is equivalent to conditional independence be-
tween εi and ηi, one may model the co-dependence between εi and ηi as

εi = ληi + vi;

substituting the above expression in (22.10), you obtain the model that is actually estimated:

yi =
k∑
j=1

xijβj + λη̂i + vi,

so the hypothesis that censoring does not matter is equivalent to the hypothesis H0 : λ = 0, which
can be easily tested.

The parameters can be estimated via maximum likelihood under the assumption of joint normality
of εi and ηi; however, a widely used alternative method yields the so-called Heckit estimator, named
after Heckman (1979). The procedure can be briefly outlined as follows: first, a probit model is fit
on equation (22.11); next, the generalized residuals are inserted in equation (22.10) to correct for
the effect of sample selection.

Gretl provides the heckit command to carry out estimation; its syntax is

heckit y X ; d Z

where y is the dependent variable, X is a list of regressors, d is a dummy variable holding 1 for
uncensored observations and Z is a list of explanatory variables for the censoring equation.

Since in most cases maximum likelihood is the method of choice, by default gretl computes ML
estimates. The 2-step Heckit estimates can be obtained by using the --two-step option. After
estimation, the $uhat accessor contains the generalized residuals. As in the ordinary Tobit model,
the residuals equal the difference between actual and fitted yi only for uncensored observations
(those for which di = 1).

Example 22.6 shows two estimates from the dataset used in Mroz (1987): the first one replicates
Table 22.7 in Greene (2003),2 while the second one replicates table 17.1 in Wooldridge (2002a).

2Note that the estimates given by gretl do not coincide with those found in the printed volume. They do, however,
match those found on the errata web page for Greene’s book: http://pages.stern.nyu.edu/~wgreene/Text/Errata/
ERRATA5.htm.

http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
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Example 22.5: Interval model on artificial data
Input:

nulldata 100
# generate artificial data
set seed 201449
x = normal()
epsilon = 0.2*normal()
ystar = 1 + x + epsilon
lo_bound = floor(ystar)
hi_bound = ceil(ystar)

# run the interval model
intreg lo_bound hi_bound const x

# estimate ystar
gen_resid = $uhat
yhat = $yhat + gen_resid
corr ystar yhat

Output (selected portions):

Model 1: Interval estimates using the 100 observations 1-100
Lower limit: lo_bound, Upper limit: hi_bound

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.993762 0.0338325 29.37 1.22e-189 ***
x 0.986662 0.0319959 30.84 8.34e-209 ***

Chi-square(1) 950.9270 p-value 8.3e-209
Log-likelihood -44.21258 Akaike criterion 94.42517
Schwarz criterion 102.2407 Hannan-Quinn 97.58824

sigma = 0.223273
Left-unbounded observations: 0
Right-unbounded observations: 0
Bounded observations: 100
Point observations: 0

...

corr(ystar, yhat) = 0.98960092
Under the null hypothesis of no correlation:
t(98) = 68.1071, with two-tailed p-value 0.0000



Chapter 22. Discrete and censored dependent variables 183

Example 22.6: Heckit model

open mroz87.gdt

genr EXP2 = AX^2
genr WA2 = WA^2
genr KIDS = (KL6+K618)>0

# Greene’s specification

list X = const AX EXP2 WE CIT
list Z = const WA WA2 FAMINC KIDS WE

heckit WW X ; LFP Z --two-step
heckit WW X ; LFP Z

# Wooldridge’s specification

series NWINC = FAMINC - WW*WHRS
series lww = log(WW)
list X = const WE AX EXP2
list Z = X NWINC WA KL6 K618

heckit lww X ; LFP Z --two-step
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Quantile regression

23.1 Introduction

In Ordinary Least Squares (OLS) regression, the fitted values, ŷi = Xiβ̂, represent the conditional
mean of the dependent variable — conditional, that is, on the regression function and the values
of the independent variables. In median regression, by contrast and as the name implies, fitted
values represent the conditional median of the dependent variable. It turns out that the principle of
estimation for median regression is easily stated (though not so easily computed), namely, choose
β̂ so as to minimize the sum of absolute residuals. Hence the method is known as Least Absolute
Deviations or LAD. While the OLS problem has a straightforward analytical solution, LAD is a linear
programming problem.

Quantile regression is a generalization of median regression: the regression function predicts the
conditional τ-quantile of the dependent variable — for example the first quartile (τ = .25) or the
ninth decile (τ = .90).

If the classical conditions for the validity of OLS are satisfied — that is, if the error term is inde-
pendently and identically distributed, conditional on X — then quantile regression is redundant:
all the conditional quantiles of the dependent variable will march in lockstep with the conditional
mean. Conversely, if quantile regression reveals that the conditional quantiles behave in a manner
quite distinct from the conditional mean, this suggests that OLS estimation is problematic.

As of version 1.7.5, gretl offers quantile regression functionality (in addition to basic LAD regres-
sion, which has been available since early in gretl’s history via the lad command).1

23.2 Basic syntax

The basic invocation of quantile regression is

quantreg tau reglist

where

• reglist is a standard gretl regression list (dependent variable followed by regressors, including
the constant if an intercept is wanted); and

• tau is the desired conditional quantile, in the range 0.01 to 0.99, given either as a numerical
value or the name of a pre-defined scalar variable (but see below for a further option).

Estimation is via the Frisch–Newton interior point solver (Portnoy and Koenker, 1997), which is sub-
stantially faster than the “traditional” Barrodale–Roberts (1974) simplex approach for large prob-
lems.

1We gratefully acknowledge our borrowing from the quantreg package for GNU R (version 4.17). The core of the
quantreg package is composed of Fortran code written by Roger Koenker; this is accompanied by various driver and
auxiliary functions written in the R language by Koenker and Martin Mächler. The latter functions have been re-worked
in C for gretl. We have added some guards against potential numerical problems in small samples.

184



Chapter 23. Quantile regression 185

By default, standard errors are computed according to the asymptotic formula given by Koenker
and Bassett (1978). Alternatively, if the --robust option is given, we use the sandwich estimator
developed in Koenker and Zhao (1994).2

23.3 Confidence intervals

An option --intervals is available. When this is given we print confidence intervals for the para-
meter estimates instead of standard errors. These intervals are computed using the rank inversion
method and in general they are asymmetrical about the point estimates — that is, they are not
simply “plus or minus so many standard errors”. The specifics of the calculation are inflected by
the --robust option: without this, the intervals are computed on the assumption of IID errors
(Koenker, 1994); with it, they use the heteroskedasticity-robust estimator developed by Koenker
and Machado (1999).

By default, 90 percent intervals are produced. You can change this by appending a confidence value
(expressed as a decimal fraction) to the intervals option, as in

quantreg tau reglist --intervals=.95

When the confidence intervals option is selected, the parameter estimates are calculated using
the Barrodale–Roberts method. This is simply because the Frisch–Newton code does not currently
support the calculation of confidence intervals.

Two further details. First, the mechanisms for generating confidence intervals for quantile esti-
mates require that the model has at least two regressors (including the constant). If the --intervals
option is given for a model containing only one regressor, an error is flagged. Second, when a model
is estimated in this mode, you can retrieve the confidence intervals using the accessor $coeff_ci.
This produces a k × 2 matrix, where k is the number of regressors. The lower bounds are in the
first column, the upper bounds in the second. See also section 23.5 below.

23.4 Multiple quantiles

As a further option, you can give tau as a matrix — either the name of a predefined matrix or in
numerical form, as in {.05, .25, .5, .75, .95}. The given model is estimated for all the τ
values and the results are printed in a special form, as shown below (in this case the --intervals
option was also given).

Model 1: Quantile estimates using the 235 observations 1-235
Dependent variable: foodexp
With 90 percent confidence intervals

VARIABLE TAU COEFFICIENT LOWER UPPER

const 0.05 124.880 98.3021 130.517
0.25 95.4835 73.7861 120.098
0.50 81.4822 53.2592 114.012
0.75 62.3966 32.7449 107.314
0.95 64.1040 46.2649 83.5790

income 0.05 0.343361 0.343327 0.389750
0.25 0.474103 0.420330 0.494329
0.50 0.560181 0.487022 0.601989
0.75 0.644014 0.580155 0.690413
0.95 0.709069 0.673900 0.734441

2These correspond to the iid and nid options in R’s quantreg package, respectively.
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Figure 23.1: Regression of food expenditure on income; Engel’s data

The gretl GUI has an entry for Quantile Regression (under /Model/Robust estimation), and you can
select multiple quantiles there too. In that context, just give space-separated numerical values (as
per the predefined options, shown in a drop-down list).

When you estimate a model in this way most of the standard menu items in the model window
are disabled, but one extra item is available — graphs showing the τ sequence for a given coef-
ficient in comparison with the OLS coefficient. An example is shown in Figure 23.1. This sort of
graph provides a simple means of judging whether quantile regression is redundant (OLS is fine) or
informative.

In the example shown — based on data on household income and food expenditure gathered by
Ernst Engel (1821–1896) — it seems clear that simple OLS regression is potentially misleading. The
“crossing” of the OLS estimate by the quantile estimates is very marked.

However, it is not always clear what implications should be drawn from this sort of conflict. With
the Engel data there are two issues to consider. First, Engel’s famous “law” claims an income-
elasticity of food consumption that is less than one, and talk of elasticities suggests a logarithmic
formulation of the model. Second, there are two apparently anomalous observations in the data
set: household 105 has the third-highest income but unexpectedly low expenditure on food (as
judged from a simple scatter plot), while household 138 (which also has unexpectedly low food
consumption) has much the highest income, almost twice that of the next highest.

With n = 235 it seems reasonable to consider dropping these observations. If we do so, and adopt
a log–log formulation, we get the plot shown in Figure 23.2. The quantile estimates still cross the
OLS estimate, but the “evidence against OLS” is much less compelling: the 90 percent confidence
bands of the respective estimates overlap at all the quantiles considered.

23.5 Large datasets

As noted above, when you give the --intervals option with the quantreg command, which calls
for estimation of confidence intervals via rank inversion, gretl switches from the default Frisch–
Newton algorithm to the Barrodale–Roberts simplex method.
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Figure 23.2: Log–log regression; 2 observations dropped from full Engel data set.

This is OK for moderately large datasets (up to, say, a few thousand observations) but on very large
problems the simplex algorithm may become seriously bogged down. For example, Koenker and
Hallock (2001) present an analysis of the determinants of birth weights, using 198377 observations
and with 15 regressors. Generating confidence intervals via Barrodale–Roberts for a single value of
τ took about half an hour on a Lenovo Thinkpad T60p with 1.83GHz Intel Core 2 processor.

If you want confidence intervals in such cases, you are advised not to use the --intervals option,
but to compute them using the method of “plus or minus so many standard errors”. (One Frisch–
Newton run took about 8 seconds on the same machine, showing the superiority of the interior
point method.) The script below illustrates:

quantreg .10 y 0 xlist
scalar crit = qnorm(.95)
matrix ci = $coeff - crit * $stderr
ci = ci~($coeff + crit * $stderr)
print ci

The matrix ci will contain the lower and upper bounds of the (symmetrical) 90 percent confidence
intervals.

To avoid a situation where gretl becomes unresponsive for a very long time we have set the maxi-
mum number of iterations for the Borrodale–Roberts algorithm to the (somewhat arbitrary) value
of 1000. We will experiment further with this, but for the meantime if you really want to use this
method on a large dataset, and don’t mind waiting for the results, you can increase the limit using
the set command with parameter rq_maxiter, as in

set rq_maxiter 5000



Part III

Technical details
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Chapter 24

Gretl and TEX

24.1 Introduction

TEX — initially developed by Donald Knuth of Stanford University and since enhanced by hundreds
of contributors around the world — is the gold standard of scientific typesetting. Gretl provides
various hooks that enable you to preview and print econometric results using the TEX engine, and
to save output in a form suitable for further processing with TEX.

This chapter explains the finer points of gretl’s TEX-related functionality. The next section describes
the relevant menu items; section 24.3 discusses ways of fine-tuning TEX output; section 24.4 ex-
plains how to handle the encoding of characters not found in English; and section 24.5 gives some
pointers on installing (and learning) TEX if you do not already have it on your computer. (Just to
be clear: TEX is not included with the gretl distribution; it is a separate package, including several
programs and a large number of supporting files.)

Before proceeding, however, it may be useful to set out briefly the stages of production of a final
document using TEX. For the most part you don’t have to worry about these details, since, in regard
to previewing at any rate, gretl handles them for you. But having some grasp of what is going on
behind the scences will enable you to understand your options better.

The first step is the creation of a plain text “source” file, containing the text or mathematics to be
typset, interspersed with mark-up that defines how it should be formatted. The second step is to
run the source through a processing engine that does the actual formatting. Typically this is either:

• a program called latex that generates so-called DVI (device-independent) output, or

• a program called pdflatex that generates PDF output.1

For previewing, one uses either a DVI viewer (typically xdvi on GNU/Linux systems) or a PDF viewer
(for example, Adobe’s Acrobat Reader or xpdf), depending on how the source was processed. If
the DVI route is taken, there’s then a third step to produce printable output, typically using the
program dvips to generate a PostScript file. If the PDF route is taken, the output is ready for
printing without any further processing.

On the MS Windows and Mac OS X platforms, gretl calls pdflatex to process the source file, and
expects the operating system to be able to find the default viewer for PDF output; DVI is not
supported. On GNU/Linux the default is to take the DVI route, but if you prefer to use PDF you
can do the following: select the menu item “Tools, Preferences, General” then the “Programs” tab.
Find the item titled “Command to compile TeX files”, and set this to pdflatex. Make sure the
“Command to view PDF files” is set to something appropriate.

24.2 TEX-related menu items

The model window

The fullest TEX support in gretl is found in the GUI model window. This has a menu item titled
“LaTeX” with sub-items “View”, “Copy”, “Save” and “Equation options” (see Figure 24.1).

1Experts will be aware of something called “plain TEX”, which is processed using the program tex. The great majority
of TEX users, however, use the LATEX macros, initially developed by Leslie Lamport. Gretl does not support plain TEX.
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Figure 24.1: LATEX menu in model window

The first three sub-items have branches titled “Tabular” and “Equation”. By “Tabular” we mean that
the model is represented in the form of a table; this is the fullest and most explicit presentation of
the results. See Table 24.1 for an example; this was pasted into the manual after using the “Copy,
Tabular” item in gretl (a few lines were edited out for brevity).

Table 24.1: Example of LATEX tabular output

Model 1: OLS estimates using the 51 observations 1–51
Dependent variable: ENROLL

Variable Coefficient Std. Error t-statistic p-value

const 0.241105 0.0660225 3.6519 0.0007

CATHOL 0.223530 0.0459701 4.8625 0.0000

PUPIL −0.00338200 0.00271962 −1.2436 0.2198

WHITE −0.152643 0.0407064 −3.7499 0.0005

Mean of dependent variable 0.0955686

S.D. of dependent variable 0.0522150

Sum of squared residuals 0.0709594

Standard error of residuals (σ̂ ) 0.0388558

Unadjusted R2 0.479466

Adjusted R̄2 0.446241

F(3,47) 14.4306

The “Equation” option is fairly self-explanatory — the results are written across the page in equa-
tion format, as below:

ÆENROLL = 0.241105
(0.066022)

+ 0.223530
(0.04597)

CATHOL− 0.00338200
(0.0027196)

PUPIL− 0.152643
(0.040706)

WHITE

T = 51 R̄2 = 0.4462 F(3,47) = 14.431 σ̂ = 0.038856

(standard errors in parentheses)

The distinction between the “Copy” and “Save” options (for both tabular and equation) is twofold.
First, “Copy” puts the TEX source on the clipboard while with “Save” you are prompted for the name
of a file into which the source should be saved. Second, with “Copy” the material is copied as a
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“fragment” while with “Save” it is written as a complete file. The point is that a well-formed TEX
source file must have a header that defines the documentclass (article, report, book or whatever)
and tags that say \begin{document} and \end{document}. This material is included when you do
“Save” but not when you do “Copy”, since in the latter case the expectation is that you will paste
the data into an existing TEX source file that already has the relevant apparatus in place.

The items under “Equation options” should be self-explanatory: when printing the model in equa-
tion form, do you want standard errors or t-ratios displayed in parentheses under the parameter
estimates? The default is to show standard errors; if you want t-ratios, select that item.

Other windows

Several other sorts of output windows also have TEX preview, copy and save enabled. In the case of
windows having a graphical toolbar, look for the TEX button. Figure 24.2 shows this icon (second
from the right on the toolbar) along with the dialog that appears when you press the button.

Figure 24.2: TEX icon and dialog

One aspect of gretl’s TEX support that is likely to be particularly useful for publication purposes is
the ability to produce a typeset version of the “model table” (see section 3.4). An example of this is
shown in Table 24.2.

24.3 Fine-tuning typeset output

There are three aspects to this: adjusting the appearance of the output produced by gretl in
LATEX preview mode; adjusting the formatting of gretl’s tabular output for models when using the
tabprint command; and incorporating gretl’s output into your own TEX files.

Previewing in the GUI

As regards preview mode, you can control the appearance of gretl’s output using a file named
gretlpre.tex, which should be placed in your gretl user directory (see the Gretl Command Ref-
erence). If such a file is found, its contents will be used as the “preamble” to the TEX source. The
default value of the preamble is as follows:

\documentclass[11pt]{article}
\usepackage[latin1]{inputenc} %% but see below
\usepackage{amsmath}
\usepackage{dcolumn,longtable}
\begin{document}
\thispagestyle{empty}
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Table 24.2: Example of model table output

OLS estimates
Dependent variable: ENROLL

Model 1 Model 2 Model 3

const 0.2907∗∗ 0.2411∗∗ 0.08557

(0.07853) (0.06602) (0.05794)

CATHOL 0.2216∗∗ 0.2235∗∗ 0.2065∗∗

(0.04584) (0.04597) (0.05160)

PUPIL −0.003035 −0.003382 −0.001697

(0.002727) (0.002720) (0.003025)

WHITE −0.1482∗∗ −0.1526∗∗

(0.04074) (0.04071)

ADMEXP −0.1551

(0.1342)

n 51 51 51

R̄2 0.4502 0.4462 0.2956

` 96.09 95.36 88.69

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Note that the amsmath and dcolumn packages are required. (For some sorts of output the longtable
package is also needed.) Beyond that you can, for instance, change the type size or the font by al-
tering the documentclass declaration or including an alternative font package.

The line \usepackage[latin1]{inputenc} is automatically changed if gretl finds itself running
on a system where UTF-8 is the default character encoding — see section 24.4 below.

In addition, if you should wish to typeset gretl output in more than one language, you can set
up per-language preamble files. A “localized” preamble file is identified by a name of the form
gretlpre_xx.tex, where xx is replaced by the first two letters of the current setting of the LANG
environment variable. For example, if you are running the program in Polish, using LANG=pl_PL,
then gretl will do the following when writing the preamble for a TEX source file.

1. Look for a file named gretlpre_pl.tex in the gretl user directory. If this is not found, then

2. look for a file named gretlpre.tex in the gretl user directory. If this is not found, then

3. use the default preamble.

Conversely, suppose you usually run gretl in a language other than English, and have a suitable
gretlpre.tex file in place for your native language. If on some occasions you want to produce TEX
output in English, then you could create an additional file gretlpre_en.tex: this file will be used
for the preamble when gretl is run with a language setting of, say, en_US.
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Command-line options

After estimating a model via a script — or interactively via the gretl console or using the command-
line program gretlcli — you can use the commands tabprint or eqnprint to print the model to
file in tabular format or equation format respectively. These options are explained in the Gretl
Command Reference.

If you wish alter the appearance of gretl’s tabular output for models in the context of the tabprint
command, you can specify a custom row format using the --format flag. The format string must
be enclosed in double quotes and must be tied to the flag with an equals sign. The pattern for the
format string is as follows. There are four fields, representing the coefficient, standard error, t-
ratio and p-value respectively. These fields should be separated by vertical bars; they may contain
a printf-type specification for the formatting of the numeric value in question, or may be left
blank to suppress the printing of that column (subject to the constraint that you can’t leave all the
columns blank). Here are a few examples:

--format="%.4f|%.4f|%.4f|%.4f"
--format="%.4f|%.4f|%.3f|"
--format="%.5f|%.4f||%.4f"
--format="%.8g|%.8g||%.4f"

The first of these specifications prints the values in all columns using 4 decimal places. The second
suppresses the p-value and prints the t-ratio to 3 places. The third omits the t-ratio. The last one
again omits the t, and prints both coefficient and standard error to 8 significant figures.

Once you set a custom format in this way, it is remembered and used for the duration of the gretl
session. To revert to the default formatting you can use the special variant --format=default.

Further editing

Once you have pasted gretl’s TEX output into your own document, or saved it to file and opened it
in an editor, you can of course modify the material in any wish you wish. In some cases, machine-
generated TEX is hard to understand, but gretl’s output is intended to be human-readable and
-editable. In addition, it does not use any non-standard style packages. Besides the standard LATEX
document classes, the only files needed are, as noted above, the amsmath, dcolumn and longtable
packages. These should be included in any reasonably full TEX implementation.

24.4 Character encodings

People using gretl in English-speaking locales are unlikely to have a problem with this, but if you’re
generating TEX output in a locale where accented characters (not in the ASCII character set) are
employed, you may want to pay attention here.

Gretl generates TEX output using whatever character encoding is standard on the local system. If
the system encoding is in the ISO-8859 family, this will probably be OK wihout any special effort on
the part of the user. Newer GNU/Linux systems, however, typically use Unicode (UTF-8). This is also
OK so long as your TEX system can handle UTF-8 input, which requires use of the latex-ucs package.
So: if you are using gretl to generate TEX in a non-English locale, where the system encoding is UTF-
8, you will need to ensure that the latex-ucs package is installed. This package may or may not be
installed by default when you install TEX.

For reference, if gretl detects a UTF-8 environment, the following lines are used in the TEX preamble:

\usepackage{ucs}
\usepackage[utf8x]{inputenc}
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24.5 Installing and learning TEX

This is not the place for a detailed exposition of these matters, but here are a few pointers.

So far as we know, every GNU/Linux distribution has a package or set of packages for TEX, and in
fact these are likely to be installed by default. Check the documentation for your distribution. For
MS Windows, several packaged versions of TEX are available: one of the most popular is MiKTEX at
http://www.miktex.org/. For Mac OS X a nice implementation is iTEXMac, at http://itexmac.
sourceforge.net/. An essential starting point for online TEX resources is the Comprehensive TEX
Archive Network (CTAN) at http://www.ctan.org/.

As for learning TEX, many useful resources are available both online and in print. Among online
guides, Tony Roberts’ “LATEX: from quick and dirty to style and finesse” is very helpful, at

http://www.sci.usq.edu.au/staff/robertsa/LaTeX/latexintro.html

An excellent source for advanced material is The LATEX Companion (Goossens et al., 2004).

http://www.miktex.org/
http://itexmac.sourceforge.net/
http://itexmac.sourceforge.net/
http://www.ctan.org/
http://www.sci.usq.edu.au/staff/robertsa/LaTeX/latexintro.html
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Gretl and R

25.1 Introduction

R is, by far, the largest free statistical project.1 Like gretl, it is a GNU project and the two have a
lot in common; however, gretl’s approach focuses on ease of use much more than R, which instead
aims to encompass the widest possible range of statistical procedures.

As is natural in the free software ecosystem, we don’t view ourselves as competitors to R,2 but
rather as projects sharing a common goal who should support each other whenever possible. For
this reason, gretl provides a way to interact with R and thus enable users to pool the capabilities of
the two packages.

In this chapter, we will explain how to exploit R’s power from within gretl. We assume that the
reader has a working installation of R available and a basic grasp of R’s syntax.3

Despite several valiant attempts, no graphical shell has gained wide acceptance in the R community:
by and large, the standard method of working with R is by writing scripts, or by typing commands
at the R prompt, much in the same way as one would write gretl scripts or work with the gretl
console. In this chapter, the focus will be on the methods available to execute R commands without
leaving gretl.

25.2 Starting an interactive R session

The easiest way to use R from gretl is in interactive mode. Once you have your data loaded in gretl,
you can select the menu item “Tools, Start GNU R” and an interactive R session will be started, with
your dataset automatically pre-loaded.

A simple example: OLS on cross-section data

For this example we use Ramanathan’s dataset data4-1, one of the sample files supplied with gretl.
We first run, in gretl, an OLS regression of price on sqft, bedrms and baths. The basic results are
shown in Table 25.1.

Table 25.1: OLS house price regression via gretl

Variable Coefficient Std. Error t-statistic p-value

const 129.062 88.3033 1.4616 0.1746

sqft 0.154800 0.0319404 4.8465 0.0007

bedrms −21.587 27.0293 −0.7987 0.4430

baths −12.192 43.2500 −0.2819 0.7838

1R’s homepage is at http://www.r-project.org/.
2OK, who are we kidding? But it’s friendly competition!
3The main reference for R documentation is http://cran.r-project.org/manuals.html. In addition, R tutorials

abound on the Net; as always, Google is your friend.
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We will now replicate the above results using R. Select the menu item “Tools, Start GNU R”. A
window similar to the one shown in figure 25.1 should appear.

Figure 25.1: R window

The actual look of the R window may be somewhat different from what you see in Figure 25.1
(especially for Windows users), but this is immaterial. The important point is that you have a
window where you can type commands to R. If the above procedure doesn’t work and no R window
opens, it means that gretl was unable to launch R. You should ensure that R is installed and working
on your system and that gretl knows where it is. The relevant settings can be found by selecting
the “Tools, Preferences, General” menu entry, under the “Programs” tab.

Assuming R was launched successfully, you will notice that two commands have been executed
automatically:

gretldata <- read.table("/home/jack/.gretl/Rdata.tmp", header=TRUE)
attach(gretldata)

These commands have the effect of loading our dataset into the R workspace in the form of a data
frame (one of several forms in which R can store data). Use of a data frame enables the subsequent
attach() command, which sets things up so that the variable names defined in the gretl workspace
are available as valid identifiers within R.

In order to replicate gretl’s OLS estimation, go into the R window and type at the prompt

model <- lm(price ~ sqft + bedrms + baths)
summary(model)

You should see something similar to Figure 25.2. Surprise — the estimates coincide! To get out,
just close the R window or type q() at the R prompt.

Time series data

We now turn to an example which uses time series data: we will compare gretl’s and R’s estimates
of Box and Jenkins’ immortal “airline” model. The data are contained in the bjg sample dataset.
The following gretl code
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Figure 25.2: OLS regression on house prices via R

open bjg
arima 0 1 1 ; 0 1 1 ; lg --nc

produces the estimates shown in Table 25.2.

Table 25.2: Airline model from Box and Jenkins (1976) — selected portion of gretl’s estimates

Variable Coefficient Std. Error t-statistic p-value

θ1 −0.401824 0.0896421 −4.4825 0.0000Θ1 −0.556936 0.0731044 −7.6184 0.0000

Variance of innovations 0.00134810

Log-likelihood 244.696

Akaike information criterion −483.39

If we now open an R session as described in the previous subsection, the data-passing mechanism
is slightly different. The R commands that read the data from gretl are in this case

# load data from gretl
gretldata <- read.table("/home/jack/.gretl/Rdata.tmp", header=TRUE)
gretldata <- ts(gretldata, start=c(1949, 1), frequency = 12)

Since our data were defined in gretl as time series, we use an R time-series object (ts for short)
for the transfer. In this way we can retain in R useful information such as the periodicity of the
data and the sample limits. The downside is that the names of individual series, as defined in
gretl, are not valid identifiers. In order to extract the variable lg, one needs to use the syntax
lg <- gretldata[, "lg"].

ARIMA estimation can be carried out by issuing the following two R commands:
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lg <- gretldata[, "lg"]
arima(lg, c(0,1,1), seasonal=c(0,1,1))

which yield

Coefficients:
ma1 sma1

-0.4018 -0.5569
s.e. 0.0896 0.0731

sigma^2 estimated as 0.001348: log likelihood = 244.7, aic = -483.4

Happily, the estimates again coincide.

25.3 Running an R script

Opening an R window and keying in commands is a convenient method when the job is small. In
some cases, however, it would be preferable to have R execute a script prepared in advance. One
way to do this is via the source() command in R. Alternatively, gretl offers the facility to edit an R
script and run it, having the current dataset pre-loaded automatically. This feature can be accessed
via the “File, Script Files” menu entry. By selecting “User file”, one can load a pre-existing R script;
if you want to create a new script instead, select the “New script, R script” menu entry.

Figure 25.3: Editing window for R scripts

In either case, you are presented with a window very similar to the editor window used for ordinary
gretl scripts, as in Figure 25.3.

There are two main differences. First, you get syntax highlighting for R’s syntax instead of gretl’s.
Second, clicking on the Execute button (the gears icon), launches an instance of R in which your
commands are executed. Before R is actually run, you are asked if you want to run R interactively
or not (see Figure 25.4).

An interactive run opens an R instance similar to the one seen in the previous section: your data
will be pre-loaded (if the “pre-load data” box is checked) and your commands will be executed.
Once this is done, you will find yourself at the R prompt, where you can enter more commands.

A non-interactive run, on the other hand, will execute your script, collect the output from R and
present it to you in an output window; R will be run in the background. If, for example, the script
in Figure 25.3 is run non-interactively, a window similar to Figure 25.5 will appear.

25.4 Taking stuff back and forth

As regards the passing of data between the two programs, so far we have only considered passing
series from gretl to R. In order to achieve a satisfactory degree of interoperability, more is needed.
In the following sub-sections we see how matrices can be exchanged, and how data can be passed
from R back to gretl.
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Figure 25.4: Editing window for R scripts

Passing matrices from gretl to R

For passing matrices from gretl to R, you can use the mwrite matrix function described in section
12.6. For example, the following gretl code fragment generates the matrix

A =


3 7 11

4 8 12

5 9 13

6 10 14


and stores it into the file mymatfile.mat.

matrix A = mshape(seq(3,14),4,3)
err = mwrite(A, "mymatfile.mat")

In order to retrieve this matrix from R, all you have to do is

A <- as.matrix(read.table("mymatfile.mat", skip=1))

Although in principle you can give your matrix file any valid filename, a couple of conventions may
prove useful. First, you may want to use an informative file suffix such as “.mat”, but this is a
matter of taste. More importantly, the exact location of the file created by mwrite could be an
issue. By default, if no path is specified in the file name, gretl stores matrix files in the current
work directory. However, it may be wise for the purpose at hand to use the directory in which gretl
stores all its temporary files, whose name is stored in the built-in string dotdir (see section 11.2).
The value of this string is automatically passed to R as the string variable gretl.dotdir, so the
above example may be rewritten more cleanly as

Gretl side:

matrix A = mshape(seq(3,14),4,3)
err = mwrite(A, "@dotdir/mymatfile.mat")

R side:

fname <- paste(gretl.dotdir, "mymatfile.mat", sep="")
A <- as.matrix(read.table(fname, skip=1))

Passing data from R to gretl

For passing data in the opposite direction, gretl defines a special function that can be used in the R
environment. An R object will be written as a temporary file in gretl’s dotdir directory, from where
it can be easily retrieved from within gretl.
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Figure 25.5: Output from a non-interactive R run

The name of this function is gretl.export(), and it accepts one argument, the object to be ex-
ported. At present, the objects that can be exported with this method are matrices, data frames
and time-series objects. The function creates a text file, with the same name as the exported object,
in gretl’s temporary directory. Data frames and time-series objects are stored as CSV files, and can
be retrieved by using gretl’s append command. Matrices are stored in a special text format that is
understood by gretl (see section 12.6); the file suffix is in this case .mat, and to read the matrix in
gretl you must use the mread() function.

As an example, we take the airline data and use them to estimate a structural time series model à
la Harvey (1989). The model we will use is the Basic Structural Model (BSM), in which a time series
is decomposed into three terms:

yt = µt + γt + εt
where µt is a trend component, γt is a seasonal component and εt is a noise term. In turn, the
following is assumed to hold:

∆µt = βt−1 + ηt∆βt = ζt∆sγt = ∆ωt
where ∆s is the seasonal differencing operator, (1 − Ls), and ηt , ζt and ωt are mutually uncorre-
lated white noise processes. The object of the analysis is to estimate the variances of the noise
components (which may be zero) and to recover estimates of the latent processes µt (the “level”),
βt (the “slope”) and γt .

Gretl does not provide (yet) a command for estimating this class of models, so we will use R’s
StructTS command and import the results back into gretl. Once the bjg dataset is loaded in gretl,
we pass the data to R and execute the following script:

# extract the log series
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y <- gretldata[, "lg"]
# estimate the model
strmod <- StructTS(y)
# save the fitted components (smoothed)
compon <- as.ts(tsSmooth(strmod))
# save the estimated variances
vars <- as.matrix(strmod$coef)

# export into gretl’s temp dir
gretl.export(compon)
gretl.export(vars)

In this case, running the above in R produces nothing more that the echoing of commands:

> # load data from gretl
> gretldata <- read.table("/home/jack/.gretl/Rdata.tmp", header=TRUE)

> gretldata <- ts(gretldata, start=c(1949, 1), frequency = 12)

> # load script from gretl
> # extract the log series
> y <- gretldata[, "lg"]

> # estimate the model
> strmod <- StructTS(y)

> # save the fitted components (smoothed)
> compon <- as.ts(tsSmooth(strmod))

> # save the estimated variances
> vars <- as.matrix(strmod$coef)

> # export into gretl’s temp dir
> gretl.export(compon)

> gretl.export(vars)

However, we see from the output that the two gretl.export() commands ran without errors.
Hence, we are ready to pull the results back into gretl by executing the following commands, either
from the console or by creating a small script:4

append @dotdir/compon.csv
vars = mread("@dotdir/vars.mat")

The first command reads the estimated time-series components from a CSV file, which is the format
that the passing mechanism employs for series. The matrix vars is read from the file vars.mat.

After the above commands have been executed, three new series will have appeared in the gretl
workspace, namely the estimates of the three components; by plotting them together with the
original data, you should get a graph similar to Figure 25.6. The estimates of the variances can be
seen by printing the vars matrix, as in

? print vars
vars (4 x 1)

0.00077185

4This example will work on Linux and presumably on OSX without modifications. On the Windows platform, you may
have to substitute the “/” character with “\”.
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Figure 25.6: Estimated components from BSM

0.0000
0.0013969

0.0000

That is,
σ̂ 2
η = 0.00077185, σ̂ 2

ζ = 0, σ̂ 2
ω = 0.0013969, σ̂ 2

ε = 0

Notice that, since σ̂ 2
ζ = 0, the estimate for βt is constant and the level component is simply a

random walk with a drift.

25.5 Interacting with R from the command line

Up to this point we have spoken only of interaction with R via the GUI program. In order to do the
same from the command line interface, gretl provides the foreign command. This enables you to
embed non-native commands within a gretl script.5

A “foreign” block takes the form

foreign language=R [--send-data] [--quiet]
... R commands ...

end foreign

and achieves the same effect as submitting the enclosed R commands via the GUI in the non-
interactive mode (see section 25.3 above). The --send-data option arranges for auto-loading of
the data present in the gretl session. The --quiet option prevents the output from R from being
echoed in the gretl output.

Using this method, replicating the example in the previous subsection is rather easy: basically, all it
takes is encapsulating the content of the R script in a foreign. . . end foreign block; see example
25.1.

5In future this facility may be extended to handle interaction with other programs, but for the present only R commands
are accepted.
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Example 25.1: Estimation of the Basic Structural Model — simple

open bjg.gdt

foreign language=R --send-data
y <- gretldata[, "lg"]
strmod <- StructTS(y)
compon <- as.ts(tsSmooth(strmod))
vars <- as.matrix(strmod$coef)

gretl.export(compon)
gretl.export(vars)

end foreign

append @dotdir/compon.csv
rename level lg_level
rename slope lg_slope
rename sea lg_seas

vars = mread("@dotdir/vars.mat")

Example 25.2: Estimation of the Basic Structural Model — via a function

function RStructTS(series myseries)

smpl ok(myseries) --restrict
sx = argname(myseries)

foreign language=R --send-data --quiet
@sx <- gretldata[, "myseries"]
strmod <- StructTS(@sx)
compon <- as.ts(tsSmooth(strmod))
gretl.export(compon)

end foreign

append @dotdir/compon.csv
rename level @sx_level
rename slope @sx_slope
rename sea @sx_seas

list ret = @sx_level @sx_slope @sx_seas
return list ret

end function

# ------------ main -------------------------

open bjg.gdt
list X = RStructTS(lg)
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The above syntax, despite being already quite useful by itself, shows its full power when it is used
in conjunction with user-written functions. Example 25.2 shows how to define a gretl function that
calls R internally.

A note on performance: at present, when R is called from within gretl using a foreign block, the
R program is started up on each invocation, which can be quite time consuming. For maximum
performance, you should organize your script so as to group together as many R operations as
possible, hence minimizing the number of distinct foreign blocks.6

6In future we may be able to improve on this, using calls to the R shared library in place of invocations of the program.
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Troubleshooting gretl

26.1 Bug reports

Bug reports are welcome. Hopefully, you are unlikely to find bugs in the actual calculations done
by gretl (although this statement does not constitute any sort of warranty). You may, however,
come across bugs or oddities in the behavior of the graphical interface. Please remember that the
usefulness of bug reports is greatly enhanced if you can be as specific as possible: what exactly
went wrong, under what conditions, and on what operating system? If you saw an error message,
what precisely did it say?

26.2 Auxiliary programs

As mentioned above, gretl calls some other programs to accomplish certain tasks (gnuplot for
graphing, LATEX for high-quality typesetting of regression output, GNU R). If something goes wrong
with such external links, it is not always easy for gretl to produce an informative error message.
If such a link fails when accessed from the gretl graphical interface, you may be able to get more
information by starting gretl from the command prompt rather than via a desktop menu entry or
icon. On the X window system, start gretl from the shell prompt in an xterm; on MS Windows, start
the program gretlw32.exe from a console window or “DOS box” using the -g or --debug option
flag. Additional error messages may be displayed on the terminal window.

Also please note that for most external calls, gretl assumes that the programs in question are
available in your “path” — that is, that they can be invoked simply via the name of the program,
without supplying the program’s full location.1 Thus if a given program fails, try the experiment of
typing the program name at the command prompt, as shown below.

Graphing Typesetting GNU R

X window system gnuplot latex, xdvi R

MS Windows wgnuplot.exe pdflatex RGui.exe

If the program fails to start from the prompt, it’s not a gretl issue but rather that the program’s
home directory is not in your path, or the program is not installed (properly). For details on
modifying your path please see the documentation or online help for your operating system or
shell.

1The exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is given.
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The command line interface

The gretl package includes the command-line program gretlcli. On Linux it can be run from a
terminal window (xterm, rxvt, or similar), or at the text console. Under MS Windows it can be run in
a console window (sometimes inaccurately called a “DOS box”). gretlcli has its own help file, which
may be accessed by typing “help” at the prompt. It can be run in batch mode, sending output
directly to a file (see also the Gretl Command Reference).

If gretlcli is linked to the readline library (this is automatically the case in the MS Windows version;
also see Appendix C), the command line is recallable and editable, and offers command completion.
You can use the Up and Down arrow keys to cycle through previously typed commands. On a given
command line, you can use the arrow keys to move around, in conjunction with Emacs editing
keystokes.1 The most common of these are:

Keystroke Effect

Ctrl-a go to start of line

Ctrl-e go to end of line

Ctrl-d delete character to right

where “Ctrl-a” means press the “a” key while the “Ctrl” key is also depressed. Thus if you want
to change something at the beginning of a command, you don’t have to backspace over the whole
line, erasing as you go. Just hop to the start and add or delete characters. If you type the first
letters of a command name then press the Tab key, readline will attempt to complete the command
name for you. If there’s a unique completion it will be put in place automatically. If there’s more
than one completion, pressing Tab a second time brings up a list.

Probably the most useful mode for heavy-duty work with gretlcli is batch (non-interactive) mode,
in which the program reads and processes a script, and sends the output to file. For example

gretlcli -b scriptfile > outputfile

Note that scriptfile is treated as a program argument; only the output file requires redirection (>).
Don’t forget the -b (batch) switch, otherwise the program will wait for user input after executing
the script (and if output is redirected, the program will appear to “hang”).

1Actually, the key bindings shown below are only the defaults; they can be customized. See the readline manual.
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Appendix A

Data file details

A.1 Basic native format

In gretl’s native data format, a data set is stored in XML (extensible mark-up language). Data
files correspond to the simple DTD (document type definition) given in gretldata.dtd, which is
supplied with the gretl distribution and is installed in the system data directory (e.g. /usr/share/
gretl/data on Linux.) Data files may be plain text or gzipped. They contain the actual data values
plus additional information such as the names and descriptions of variables, the frequency of the
data, and so on.

Most users will probably not have need to read or write such files other than via gretl itself, but
if you want to manipulate them using other software tools you should examine the DTD and also
take a look at a few of the supplied practice data files: data4-1.gdt gives a simple example;
data4-10.gdt is an example where observation labels are included.

A.2 Traditional ESL format

For backward compatibility, gretl can also handle data files in the “traditional” format inherited
from Ramanathan’s ESL program. In this format (which was the default in gretl prior to version
0.98) a data set is represented by two files. One contains the actual data and the other information
on how the data should be read. To be more specific:

1. Actual data: A rectangular matrix of white-space separated numbers. Each column represents
a variable, each row an observation on each of the variables (spreadsheet style). Data columns
can be separated by spaces or tabs. The filename should have the suffix .gdt. By default the
data file is ASCII (plain text). Optionally it can be gzip-compressed to save disk space. You
can insert comments into a data file: if a line begins with the hash mark (#) the entire line is
ignored. This is consistent with gnuplot and octave data files.

2. Header : The data file must be accompanied by a header file which has the same basename as
the data file plus the suffix .hdr. This file contains, in order:

• (Optional) comments on the data, set off by the opening string (* and the closing string
*), each of these strings to occur on lines by themselves.

• (Required) list of white-space separated names of the variables in the data file. Names
are limited to 8 characters, must start with a letter, and are limited to alphanumeric
characters plus the underscore. The list may continue over more than one line; it is
terminated with a semicolon, ;.

• (Required) observations line of the form 1 1 85. The first element gives the data fre-
quency (1 for undated or annual data, 4 for quarterly, 12 for monthly). The second and
third elements give the starting and ending observations. Generally these will be 1 and
the number of observations respectively, for undated data. For time-series data one can
use dates of the form 1959.1 (quarterly, one digit after the point) or 1967.03 (monthly,
two digits after the point). See Chapter 15 for special use of this line in the case of panel
data.

• The keyword BYOBS.
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Here is an example of a well-formed data header file.

(*
DATA9-6:
Data on log(money), log(income) and interest rate from US.
Source: Stock and Watson (1993) Econometrica
(unsmoothed data) Period is 1900-1989 (annual data).
Data compiled by Graham Elliott.

*)
lmoney lincome intrate ;
1 1900 1989 BYOBS

The corresponding data file contains three columns of data, each having 90 entries. Three further
features of the “traditional” data format may be noted.

1. If the BYOBS keyword is replaced by BYVAR, and followed by the keyword BINARY, this indi-
cates that the corresponding data file is in binary format. Such data files can be written from
gretlcli using the store command with the -s flag (single precision) or the -o flag (double
precision).

2. If BYOBS is followed by the keyword MARKERS, gretl expects a data file in which the first column
contains strings (8 characters maximum) used to identify the observations. This may be handy
in the case of cross-sectional data where the units of observation are identifiable: countries,
states, cities or whatever. It can also be useful for irregular time series data, such as daily
stock price data where some days are not trading days — in this case the observations can
be marked with a date string such as 10/01/98. (Remember the 8-character maximum.) Note
that BINARY and MARKERS are mutually exclusive flags. Also note that the “markers” are not
considered to be a variable: this column does not have a corresponding entry in the list of
variable names in the header file.

3. If a file with the same base name as the data file and header files, but with the suffix .lbl,
is found, it is read to fill out the descriptive labels for the data series. The format of the
label file is simple: each line contains the name of one variable (as found in the header
file), followed by one or more spaces, followed by the descriptive label. Here is an example:
price New car price index, 1982 base year

If you want to save data in traditional format, use the -t flag with the store command, either in
the command-line program or in the console window of the GUI program.

A.3 Binary database details

A gretl database consists of two parts: an ASCII index file (with filename suffix .idx) containing
information on the series, and a binary file (suffix .bin) containing the actual data. Two examples
of the format for an entry in the idx file are shown below:

G0M910 Composite index of 11 leading indicators (1987=100)
M 1948.01 - 1995.11 n = 575
currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128 charac-
ters). On the second line the first field is a frequency code: M for monthly, Q for quarterly, A for
annual, B for business-daily (daily with five days per week) and D for daily (seven days per week).
No other frequencies are accepted at present. Then comes the starting date (N.B. with two digits
following the point for monthly data, one for quarterly data, none for annual), a space, a hyphen,
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another space, the ending date, the string “n = ” and the integer number of observations. In the
case of daily data the starting and ending dates should be given in the form YYYY/MM/DD. This
format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (up to 64 characters) on the
source and nature of the data, following a hash mark. For example:

# Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that is, single-
precision floating-point numbers, typically taking four bytes apiece. The numbers are packed “by
variable”, so that the first n numbers are the observations of variable 1, the next m the observations
on variable 2, and so on.
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Data import via ODBC

Since version 1.7.5, gretl provides a method for retrieving data from databases which support the
ODBC standard. Most users won’t be interested in this, but there may be some for whom this
feature matters a lot: typically, those who work in an environment where huge data collections are
accessible via a Data Base Management System (DBMS).

ODBC is the de facto standard for interacting with such systems. In the next section we provide
some background information on how ODBC works. What you actually need to do to have gretl
retrieve data from a database is explained in section B.2.

B.1 ODBC base concepts

ODBC is short for Open DataBase Connectivity, a group of software methods that enable a client to
interact with a database server. The most common operation is when the client fetches some data
from the server. ODBC acts as an intermediate layer between client and server, so the client “talks”
to ODBC rather than accessing the server directly (see Figure B.1).

ODBC

query

data

Figure B.1: Retrieving data via ODBC

For the above mechanism to work, it is necessary that the relevant ODBC software is installed
and working on the client machine (contact your DB administrator for details). At this point, the
database (or databases) that the server provides will be accessible to the client as a data source
with a specific identifier (a Data Source Name or DSN); in most cases, a username and a password
are required to connect to the data source.

Once the connection is established, the user sends a query to ODBC, which contacts the database
manager, collects the results and sends them back to the user. The query is almost invariably
formulated in a special language used for the purpose, namely SQL.1 We will not provide here an
SQL tutorial: there are many such tutorials on the Net; besides, each database manager tends to
support its own SQL dialect so the precise form of an SQL query may vary slightly if the DBMS on
the other end is Oracle, MySQL, PostgreSQL or something else.

Suffice it to say that the main statement for retrieving data is the SELECT statement. Within a DBMS,
data are organized in tables, which are roughly equivalent to spreadsheets. The SELECT statement
returns a subset of a table, which is itself a table. For example, imagine that the database holds a
table called “NatAccounts”, containing the data shown in Table B.1.

The SQL statement

SELECT qtr, tradebal, gdp FROM NatAccounts WHERE year=1970;

1See http://en.wikipedia.org/wiki/SQL.
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year qtr gdp consump tradebal

1970 1 584763 344746.9 −5891.01

1970 2 597746 350176.9 −7068.71

1970 3 604270 355249.7 −8379.27

1970 4 609706 361794.7 −7917.61

1971 1 609597 362490 −6274.3

1971 2 617002 368313.6 −6658.76

1971 3 625536 372605 −4795.89

1971 4 630047 377033.9 −6498.13

Table B.1: The “NatAccounts” table

produces the subset of the original data shown in Table B.2.

qtr tradebal gdp

1 −5891.01 584763

2 −7068.71 597746

3 −8379.27 604270

4 −7917.61 609706

Table B.2: Result of a SELECT statement

Gretl provides a mechanism for forwarding your query to the DBMS via ODBC and including the
results in your currently open dataset.

B.2 Syntax

At present, ODBC import is only possible via the command line interface.2 The two commands that
gretl uses at present for fetching data via an ODBC connection are open and data.

The open command is used for connecting to a DBMS: its syntax is

open dsn=database [user=username] [password=password] --odbc

The user and password items are optional; the effect of this command is to initiate an ODBC
connection. It is assumed that the machine gretl runs on has a working ODBC client installed.

In order to actually retrieve the data, the data command is used. Its syntax is:

data series [obs-format=format-string] query-string --odbc

where:

series is the name of the gretl series to contain the incoming data, which needs not exist prior to
the query. Note that the data command imports one series at a time.

format-string is an optional parameter, used to handle cases when a “rectangular” organisation of
the database cannot be assumed (more on this later);

query-string is a string containing the SQL statement used to extract the data.

2Since designing a graphical interface for this is conceptually simple but rather time-consuming, what we’re aiming at
is a robust and reasonably powerful implementation of the data transfer. Once all the issues are sorted out, we’ll start
implementing a GUI interface.
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The query-string can, in principle, contain any valid SQL statement which results in a table: a “;”
character at the end will be added automatically. This string may be specified directly within the
command, as in

data x "SELECT foo FROM bar" --odbc

which will store into the gretl variable x the content of the column foo from the table bar. However,
since in a real-life situation the string containing the SQL statement will be rather long, it may be
best to create it just before the call to data. For example:

string SqlQry = "SELECT foo FROM bar"
data x SqlQry --odbc

If the optional parameter obs-format is absent, as in the above example, the SQL query should
return exactly one column of data, which is used to fill the variable x sequentially. It may be
necessary to include a smpl command before the data command to set up the right “window”
for the incoming data. In addition, if one cannot assume that the data will be delivered in the
correct order (typically, chronological order), the SQL query should contain an appropriate ORDER
BY clause.

The optional format string is used for those cases when there is no certainty that the data from the
query will arrive in the same order as the gretl dataset. This may happen when missing values are
interspersed within a column, or with data that do not have a natural ordering, e.g. cross-sectional
data. In this case, the SQL statement should return a table with n columns, where the first n − 1
columns are used to identify which observation the value in the n-th column belongs to. The format
string is used to translate the first n − 1 fields into a string which matches the string gretl uses
to identify observations in the currently open dataset. At present, n should be between 2 and 4,
which should cover most, if not all, cases.

For example, consider the following fictitious case: we have a 5-days-per-week dataset, to which we
want to add the stock index for the Verdurian market;3 it so happens that in Verduria Saturdays
are working days but Wednesdays are not. We want a column which does not contain data on
Saturdays, because we wouldn’t know where to put them, but at the same time we want to place
missing values on all the Wednesdays.

In this case, the following syntax could be used

string QRY="SELECT year,month,day,VerdSE FROM AlmeaIndexes"
data y obs-format="%d/%d/%d" @QRY --odbc

The column VerdSE holds the data to be fetched, which will go into the gretl series y. The first three
columns are used to construct a string which identifies the day. Since a string like "2008/04/26"
does not correspond to any observation in our dataset (it’s a Saturday), that row is simply discarded.
On the other hand, since no string "2008/04/23" was found in the data coming from the DBMS
(it’s a Wednesday), that entry is left blank in our variable y.

B.3 Examples

In the following examples, we will assume that access is available to a database known to ODBC
with the data source name “AWM”, with username “Otto” and password “Bingo”. The database
“AWM” contains quarterly data in two tables (see B.3 and B.4):

The table Consump is the classic “rectangular” dataset; that is, its internal organization is the same
as in a spreadsheet or in an econometrics package like gretl itself: each row is a data point and each
column is a variable. On the other hand, the structure of the DATA table is different: each record is
one figure, stored in the column xval, and the other fields keep track of which variable it belongs
to, for which date.

3See http://www.almeopedia.com/index.php/Verduria.

http://www.almeopedia.com/index.php/Verduria
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Table Consump Table DATA

Field Type

time decimal(7,2)

income decimal(16,6)

consump decimal(16,6)

Field Type

year decimal(4,0)

qtr decimal(1,0)

varname varchar(16)

xval decimal(20,10)

Table B.3: Example AWM database – structure

Table Consump Table DATA

1970.00 424278.975500 344746.944000

1970.25 433218.709400 350176.890400

1970.50 440954.219100 355249.672300

1970.75 446278.664700 361794.719900

1971.00 447752.681800 362489.970500

1971.25 453553.860100 368313.558500

1971.50 460115.133100 372605.015300

. . .

1970 1 CAN −517.9085000000

1970 2 CAN 662.5996000000

1970 3 CAN 1130.4155000000

1970 4 CAN 467.2508000000

1970 1 COMPR 18.4000000000

1970 2 COMPR 18.6341000000

1970 3 COMPR 18.3000000000

1970 4 COMPR 18.2663000000

1970 1 D1 1.0000000000

1970 2 D1 0.0000000000

. . .

Table B.4: Example AWM database — data

Example B.1 shows two elementary queries: first we set up an empty quarterly dataset. Then, we
connect to the database by the open statement. Once the connection is established we retrieve, one
column at a time, the data from the Consump table. In this case, no observation string is necessary
because the data are already arranged in a matrix-like structure, so we only need to bring over the
relevant columns.

In example B.2, on the contrary, we make use of the observation string, since we are drawing data
from the DATA table, which is not rectangular. The SQL statement stored in the string S produces
a table with three columns. The ORDER BY clause ensures that the rows will be in chronological
order, although this is not strictly necessary in this case.
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Example B.1: Simple query from a rectangular table

nulldata 160
setobs 4 1970:1 --time
open dsn=AWM user=Otto password=Bingo --odbc

string Qry1 = "SELECT consump FROM Consump"
data cons @Qry1 --odbc

string Qry2 = "SELECT income FROM Consump"
data inc @Qry2 --odbc

Example B.2: Simple query from a non-rectangular table

string S = "select year, qtr, xval from DATA \
where varname=’WLN’ ORDER BY year, qtr"

data wln obs-format="%d:%d" @S --odbc
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Example B.3: Handling of missing values for a non-rectangular table

string foo = "select year, qtr, xval from DATA \
where varname=’STN’ AND qtr>1"

data bar obs-format="%d,%d" @foo --odbc
print bar --byobs

Example B.3 shows what happens if the rows in the outcome from the SELECT statement do not
match the observations in the currently open gretl dataset. The query includes a condition which
filters out all the data from the first quarter. The query result (invisible to the user) would be
something like

+------+------+---------------+
| year | qtr | xval |
+------+------+---------------+
| 1970 | 2 | 7.8705000000 |
| 1970 | 3 | 7.5600000000 |
| 1970 | 4 | 7.1892000000 |
| 1971 | 2 | 5.8679000000 |
| 1971 | 3 | 6.2442000000 |
| 1971 | 4 | 5.9811000000 |
| 1972 | 2 | 4.6883000000 |
| 1972 | 3 | 4.6302000000 |
...

Internally, gretl fills the variable bar with the corresponding value if it finds a match; otherwise, NA
is used. Printing out the variable bar thus produces

Obs bar

1970:1
1970:2 7.8705
1970:3 7.5600
1970:4 7.1892
1971:1
1971:2 5.8679
1971:3 6.2442
1971:4 5.9811
1972:1
1972:2 4.6883
1972:3 4.6302

...
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Building gretl

C.1 Requirements

Gretl is written in the C programming language, abiding as far as possible by the ISO/ANSI C
Standard (C90) although the graphical user interface and some other components necessarily make
use of platform-specific extensions.

The program was developed under Linux. The shared library and command-line client should
compile and run on any platform that supports ISO/ANSI C and has the libraries listed in Table C.1.
If the GNU readline library is found on the host system this will be used for gretcli, providing a
much enhanced editable command line. See the readline homepage.

Library purpose website

zlib data compression info-zip.org

libxml2 XML manipulation xmlsoft.org

LAPACK linear algebra netlib.org

FFTW3 Fast Fourier Transform fftw.org

glib-2.0 Numerous utilities gtk.org

Table C.1: Libraries required for building gretl

The graphical client program should compile and run on any system that, in addition to the above
requirements, offers GTK version 2.4.0 or higher (see gtk.org).1

Gretl calls gnuplot for graphing. You can find gnuplot at gnuplot.info. As of this writing the
most recent official release is 4.2 (of March, 2007). The MS Windows version of gretl comes with a
Windows version gnuplot 4.2; the gretl website also offers an rpm of gnuplot 3.8j0 for x86 Linux
systems.

Some features of gretl make use of portions of Adrian Feguin’s gtkextra library. The relevant parts
of this package are included (in slightly modified form) with the gretl source distribution.

A binary version of the program is available for the Microsoft Windows platform (Windows 98
or higher). This version was cross-compiled under Linux using mingw (the GNU C compiler, gcc,
ported for use with win32) and linked against the Microsoft C library, msvcrt.dll. It uses Tor
Lillqvist’s port of GTK 2.0 to win32. The (free, open-source) Windows installer program is courtesy
of Jordan Russell (jrsoftware.org).

C.2 Build instructions: a step-by-step guide

In this section we give instructions detailed enough to allow a user with only a basic knowledge of
a Unix-type system to build gretl. These steps were tested on a fresh installation of Debian Etch.
For other Linux distributions (especially Debian-based ones, like Ubuntu and its derivatives) little
should change. Other Unix-like operating systems such as MacOSX and BSD would probably require
more substantial adjustments.

1Up till version 1.5.1, gretl could also be built using GTK 1.2. Support for this was dropped at version 1.6.0 of gretl.
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In this guided example, we will build gretl complete with documentation. This introduces a few
more requirements, but gives you the ability to modify the documentation files as well, like the
help files or the manuals.

Installing the prerequisites

We assume that the basic GNU utilities are already installed on the system, together with these
other programs:

• some TEX/LATEXsystem (tetex or texlive will do beautifully)

• Gnuplot

• ImageMagick

We also assume that the user has administrative privileges and knows how to install packages. The
examples below are carried out using the apt-get shell command, but they can be performed with
menu-based utilities like aptitude, dselect or the GUI-based program synaptic. Users of Linux
distributions which employ rpm packages (e.g. Red Hat/Fedora, Mandriva, SuSE) may want to refer
to the dependencies page on the gretl website.

The first step is installing the C compiler and related utilities. On a Debian system, these are
contained in a bunch of packages that can be installed via the command

apt-get install gcc autoconf automake1.9 libtool flex bison gcc-doc \
libc6-dev libc-dev libgfortran1 libgfortran1-dev gettext pkgconfig

Then it is necessary to install the “development” (dev) packages for the libraries that gretl uses:

Library command

GLIB apt-get install libglib2.0-dev

GTK 2.0 apt-get install libgtk2.0-dev

PNG apt-get install libpng12-dev

XSLT apt-get install libxslt1-dev

LAPACK apt-get install lapack3-dev

FFTW apt-get install fftw3-dev

READLINE apt-get install libreadline5-dev

GMP apt-get install libgmp3-dev

(GMP is optional, but recommended.) The dev packages for these libraries are necessary to compile
gretl — you’ll also need the plain, non-dev library packages to run gretl, but most of these should
already be part of a standard installation. In order to enable other optional features, like audio
support, you may need to install more libraries.

Getting the source: release or CVS

At this point, it is possible to build from the source. You have two options here: obtain the latest
released source package, or retrieve the current CVS version of gretl (CVS = Concurrent Versions
System). The usual caveat applies to the CVS version, namely, that it may not build correctly and
may contain “experimental” code; on the other hand, CVS often contains bug-fixes relative to the
released version. If you want to help with testing and to contribute bug reports, we recommend
using CVS gretl.

To work with the released source:

http://gretl.sourceforge.net/depend.html
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1. Download the gretl source package from gretl.sourceforge.net.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar xvfz gretl-N.tar.gz (replace N with the specific version number of the file
you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gretl-1.6.6).

4. Proceed to the next section, “Configure and make”.

To work with CVS you’ll first need to install the cvs client program if it’s not already on your sys-
tem. Relevant resources you may wish to consult include the CVS website at www.nongnu.org/cvs,
general information on sourceforge CVS on the SourceForge CVS page, and instructions specific to
gretl at the SF gretl CVS page.

When grabbing the CVS sources for the first time, you should first decide where you want to store
the code. For example, you might create a directory called cvs under your home directory. Open a
terminal window, cd into this directory, and type the following commands:

cvs -d:pserver:anonymous@gretl.cvs.sourceforge.net:/cvsroot/gretl login
cvs -z3 -d:pserver:anonymous@gretl.cvs.sourceforge.net:/cvsroot/gretl co -P gretl

After the first command you will be prompted for a password: just hit the Enter key. After the
second command, cvs should create a subdirectory named gretl and fill it with the current sources.

When you want to update the source, this is very simple: just move into the gretl directory and
type

cvs update -d -P

Assuming you’re now in the CVS gretl directory, you can proceed in the same manner as with the
released source package.

Configure the source

The next command you need is ./configure; this is a complex script that detects which tools you
have on your system and sets things up. The configure command accepts many options; you may
want to run

./configure --help

first to see what options are available. One option you way wish to tweak is --prefix. By default
the installation goes under /usr/local but you can change this. For example

./configure --prefix=/usr

will put everything under the /usr tree. Another useful option refers to the fact that, by default,
gretl offers support for the gnome desktop. If you want to suppress the gnome-specific features
you can pass the option --without-gnome to configure.

In order to have the documentation built, we need to pass the relevant option to configure, as in

./configure --enable-build-doc

You will see a number of checks being run, and if everything goes according to plan, you should
see a summary similar to that displayed in Example C.1.

+ If you’re using CVS, it’s a good idea to re-run the configure script after doing an update. This is not
always necessary, but sometimes it is, and it never does any harm. For this purpose, you may want to write
a little shell script that calls configure with any options you want to use.

http://gretl.sourceforge.net/
http://www.nongnu.org/cvs/
http://sourceforge.net/docman/display_doc.php?docid=14035&group_id=1
http://sourceforge.net/cvs/?group_id=36234
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Example C.1: Output from ./configure --enable-build-doc

Configuration:

Installation path: /usr/local
Use readline library: yes
Use gnuplot for graphs: yes
Use PNG for gnuplot graphs: yes
Use LaTeX for typesetting output: yes
Gnu Multiple Precision support: yes
MPFR support: no
LAPACK support: yes
FFTW3 support: yes
Build with GTK version: 2.0
Script syntax highlighting: yes
Use installed gtksourceview: yes
Build with gnome support: no
Build gretl documentation: yes
Build message catalogs: yes
Gnome installation prefix: NA
X-12-ARIMA support: yes
TRAMO/SEATS support: yes
Experimental audio support: no

Now type ’make’ to build gretl.

Build and install

We are now ready to undertake the compilation proper: this is done by running the make command,
which takes care of compiling all the necessary source files in the correct order. All you need to do
is type

make

This step will likely take several minutes to complete; a lot of output will be produced on screen.
Once this is done, you can install your freshly baked copy of gretl on your system via

make install

On most systems, the make install command requires you to have administrative privileges.
Hence, either you log in as root before launching make install or you may want to use the sudo
utility:

sudo make install
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Numerical accuracy

Gretl uses double-precision arithmetic throughout — except for the multiple-precision plugin in-
voked by the menu item “Model, Other linear models, High precision OLS” which represents floating-
point values using a number of bits given by the environment variable GRETL_MP_BITS (default
value 256).

The normal equations of Least Squares are by default solved via Cholesky decomposition, which
is highly accurate provided the matrix of cross-products of the regressors, X′X, is not very ill
conditioned. If this problem is detected, gretl automatically switches to use QR decomposition.

The program has been tested rather thoroughly on the statistical reference datasets provided by
NIST (the U.S. National Institute of Standards and Technology) and a full account of the results may
be found on the gretl website (follow the link “Numerical accuracy”).

To date, two published reviews have discussed gretl’s accuracy: Giovanni Baiocchi and Walter Dis-
taso (2003), and Talha Yalta and Yasemin Yalta (2007). We are grateful to these authors for their
careful examination of the program. Their comments have prompted several modifications includ-
ing the use of Stephen Moshier’s cephes code for computing p-values and other quantities relating
to probability distributions (see netlib.org), changes to the formatting of regression output to en-
sure that the program displays a consistent number of significant digits, and attention to compiler
issues in producing the MS Windows version of gretl (which at one time was slighly less accurate
than the Linux version).

Gretl now includes a “plugin” that runs the NIST linear regression test suite. You can find this under
the “Tools” menu in the main window. When you run this test, the introductory text explains the
expected result. If you run this test and see anything other than the expected result, please send a
bug report to cottrell@wfu.edu.

All regression statistics are printed to 6 significant figures in the current version of gretl (except
when the multiple-precision plugin is used, in which case results are given to 12 figures). If you want
to examine a particular value more closely, first save it (for example, using the genr command) then
print it using print --long (see the Gretl Command Reference). This will show the value to 10
digits (or more, if you set the internal variable longdigits to a higher value via the set command).
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Related free software

Gretl’s capabilities are substantial, and are expanding. Nonetheless you may find there are some
things you can’t do in gretl, or you may wish to compare results with other programs. If you are
looking for complementary functionality in the realm of free, open-source software we recommend
the following programs. The self-description of each program is taken from its website.

• GNU R r-project.org: “R is a system for statistical computation and graphics. It consists of
a language plus a run-time environment with graphics, a debugger, access to certain system
functions, and the ability to run programs stored in script files. . . It compiles and runs on a
wide variety of UNIX platforms, Windows and MacOS.” Comment: There are numerous add-on
packages for R covering most areas of statistical work.

• GNU Octave www.octave.org: “GNU Octave is a high-level language, primarily intended for
numerical computations. It provides a convenient command line interface for solving linear
and nonlinear problems numerically, and for performing other numerical experiments using
a language that is mostly compatible with Matlab. It may also be used as a batch-oriented
language.”

• JMulTi www.jmulti.de: “JMulTi was originally designed as a tool for certain econometric pro-
cedures in time series analysis that are especially difficult to use and that are not available
in other packages, like Impulse Response Analysis with bootstrapped confidence intervals for
VAR/VEC modelling. Now many other features have been integrated as well to make it possi-
ble to convey a comprehensive analysis.” Comment: JMulTi is a java GUI program: you need
a java run-time environment to make use of it.

As mentioned above, gretl offers the facility of exporting data in the formats of both Octave and
R. In the case of Octave, the gretl data set is saved as a single matrix, X. You can pull the X matrix
apart if you wish, once the data are loaded in Octave; see the Octave manual for details. As for R,
the exported data file preserves any time series structure that is apparent to gretl. The series are
saved as individual structures. The data should be brought into R using the source() command.

In addition, gretl has a convenience function for moving data quickly into R. Under gretl’s “Tools”
menu, you will find the entry “Start GNU R”. This writes out an R version of the current gretl
data set (in the user’s gretl directory), and sources it into a new R session. The particular way
R is invoked depends on the internal gretl variable Rcommand, whose value may be set under the
“Tools, Preferences” menu. The default command is RGui.exe under MS Windows. Under X it is
xterm -e R. Please note that at most three space-separated elements in this command string will
be processed; any extra elements are ignored.
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Listing of URLs

Below is a listing of the full URLs of websites mentioned in the text.

Estima (RATS) http://www.estima.com/

FFTW3 http://www.fftw.org/

Gnome desktop homepage http://www.gnome.org/

GNU Multiple Precision (GMP) library http://swox.com/gmp/

GNU Octave homepage http://www.octave.org/

GNU R homepage http://www.r-project.org/

GNU R manual http://cran.r-project.org/doc/manuals/R-intro.pdf

Gnuplot homepage http://www.gnuplot.info/

Gnuplot manual http://ricardo.ecn.wfu.edu/gnuplot.html

Gretl data page http://gretl.sourceforge.net/gretl_data.html

Gretl homepage http://gretl.sourceforge.net/

GTK+ homepage http://www.gtk.org/

GTK+ port for win32 http://www.gimp.org/~tml/gimp/win32/

Gtkextra homepage http://gtkextra.sourceforge.net/

InfoZip homepage http://www.info-zip.org/pub/infozip/zlib/

JMulTi homepage http://www.jmulti.de/

JRSoftware http://www.jrsoftware.org/

Mingw (gcc for win32) homepage http://www.mingw.org/

Minpack http://www.netlib.org/minpack/

Penn World Table http://pwt.econ.upenn.edu/

Readline homepage http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

Readline manual http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Xmlsoft homepage http://xmlsoft.org/
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