GRL Engineers, Inc.

1540 E. Dundee Road, Suite 102 Palatine, IL 60074 USA Phone: (847) 221-2750 Fax: (847) 221-2752

TRANSMITTAL

To: Mr. Kevin Weber	From: Rory Flynn			
Company: Lunda Construction Co.	No. of Sheets: 48			
E-mail: kweber@lundaconstruction.com	Date: June 17, 2015			

RE: Dynamic Testing Results – USH 10 over Little Lake Butte des Morts Structure B-70-403 - Pier 20 Winnebago County, Wisconsin

On June 15, 2015, Pier 20 #1, Pier 20 #36, and Pier 20 #44 at the above structure were dynamically tested during initial driving. The piles were tested during restrike on June 16. Project plans indicated that the exterior row piles have a required driving resistance, or ultimate capacity, of 480 kips (240 tons) and the interior row piles have a required driving resistance of 400 kips (200 tons). The piles have a required minimum tip elevation of EL 691. The HP 14x73 H-piles were equipped with driving shoes and were driven with an APE D30-42 hammer (number PD 0256) operated on fuel setting 4. The reference elevation for the piles was the top of the cofferdam at EL 740.1 to EL 740.9. The pier was excavated to an elevation of EL 720.1.

Pier 20 #1 was driven to a depth of 52.0 feet, which corresponds to a pile tip elevation of EL 688.1. The blow count over the final increment of driving was 10 blows for 2 $1/_2$ inches of penetration at an average hammer stroke of 7.8 feet. The blow count at the beginning of restrike was 10 blows per for 2 $3/_4$ inches of penetration at an average hammer stroke of 7.8 feet.

Pier 20 #36 was driven to a depth of 46.3 feet, which corresponds to a pile tip elevation of EL 694.6. The blow count over the final increment of driving was 10 blows for 2 $^{1}/_{4}$ inches of penetration at an average hammer stroke of 8.2 feet. The blow count at the beginning of restrike was 10 blows for 1 $^{1}/_{2}$ inches of penetration at an average hammer stroke of 7.9 feet.

Pier 20 #44 was driven to a depth of 45.6 feet, which corresponds to a pile tip elevation of EL 694.5. The blow count over the final increment of driving was 10 blows for 2 1/4 inch of penetration at an average hammer stroke of 7.9 feet. The blow count at the beginning of restrike was 10 blows for 2 1/4 inches of penetration at an average hammer stroke of 7.6 feet

We recommend that the production piles at Pier 20 of Structure B-70-403, driven with an APE D30-42 hammer PD 0256, obtain the minimum recommended blow count, noted below, based on the field observed hammer stroke. We recommend maintaining the minimum blow count for **three consecutive inches** of driving at the recommended average hammer stroke.

Field Observed	Exterior Piles (480 kips) Recommended Minimum Blow Count	Interior Piles (400 kips) Recommended Minimum Blow Count
	DIOW COUNT	Diow Count
(feet)	(blows per inch)	(blows per inch)
7.0	5	3
7.5	4	3
8.0	4	3
8.5	3	3
9.0	3	3

Following additional discussion with WisDOT geotechnical personnel, the minimum pile tip elevation was revised to EL 696 at Pier 20. We recommend immediately terminating driving **if the blow counts exceed 10** blows over an increment of one inch or less at hammer strokes of 8.0 feet. If the piles terminate above the revised minimum pile tip elevation please notify the engineer of record.

These criteria should not be used for acceptance of piles under restrike and/or re-drive conditions. After splicing or any other delays, we recommend not applying the criteria until two feet of driving has occurred beyond the termination depth associated with the delay, unless the blow count exceeds 10 blows per inch.

Please call if you have any questions on these recommendations.

GRL Engineers, Inc.

Rory Flynn, E.I.

Travis Coleman, P.E.

cc: Jeff Horsfall - jeffrey.horsfall@dot.wi.gov

Attachments:

Dynamic Test Results(pages 3 - 18)CAPWAP Analysis Results- (pages 19 - 38)

1 - Reported Reference EL 740.1 - Mudline EL 720.1

USH ⁻ OP: T	10 over LLBE C	OM - PIER 2	0 #1				APE D	030-42, HF 0ate: 15-Ju	P 14 x 73 une-2015
AR: LE:	21.40 in ² 77.50 ft							SP: 0 EM: 30	0.492 k/ft³ 0,000 ksi
WS: 1	16,807.9 f/s							JC:	1.00 []
CSX:	Max Measu	red Compr.	Stress		EN	IX: Max Tra	Insferred E	nergy	
CSB:	Compressio	on Stress at	Bottom		BP	M: Blows p	er Minute	•	
<u>SIK:</u>	O.E. Diesel	Hammer St		001		9: Max Ca	se Method	Capacity (<u>JC=0.9)</u>
BL#	Depth	BLC blows/ft	TTPE	CSX	CSB	SIK		BPIVI	KX9 king
32	32 00	DIOWS/IL 4	A\/31	17.4	4 7	4.0	22	59 7	61
52	52.00	т	MAX	24.8	8.3	5.5	34	69.0	143
			MIN	10.3	1.9	2.7	11	50.0	0
35	33.00	3	AV3	23.1	6.9	5.1	32	52.0	110
			MAX	23.9	7.0	5.3	34	53.0	114
			MIIN	22.1	6.7	4.9	29	50.9	106
39	34.00	4	AV4	23.1	7.5	5.1	30	51.8	118
			MAX	23.8	7.9	5.3	32	52.8	121
			MIN	22.3	7.0	4.9	29	50.9	110
46	35.00	7	AV7	23.5	7.8	5.2	28	51.2	157
			MAX	24.2	8.7	5.4	29	52.1	182
			MIN	23.0	7.0	5.0	26	50.3	139
52	36.00	6	AV6	25.0	9.6	5.6	31	49.8	209
-		-	MAX	25.6	10.1	5.7	32	50.8	233
			MIN	24.0	8.4	5.3	29	49.0	186
60	37 00	8	AV8	25.4	10.2	57	31	49.2	229
00	07.00	Ũ	MAX	26.4	11.0	6.0	33	50.6	241
			MIN	24.3	9.6	5.4	28	48.1	220
69	38.00	9	AV9	25.2	92	57	31	49.3	194
00	00.00	0	MAX	25.7	10.2	5.8	32	50.3	216
			MIN	24.4	7.4	5.4	29	48.8	150
79	39.00	10	AV10	24.7	9.6	5.5	29	50.0	197
			MAX	26.6	13.3	6.1	32	53.0	254
			MIN	22.2	6.7	4.9	24	47.6	136
87	40.00	8	AV8	27.6	15.8	6.3	34	46.8	320
			MAX	28.9	16.6	6.7	37	48.5	348
			MIN	25.8	14.5	5.9	30	45.5	276
98	41.00	11	AV11	28.3	17.4	6.6	35	45.9	361
			MAX	30.1	18.6	7.1	39	46.7	383
			MIN	27.6	16.5	6.3	33	44.3	337
115	42.00	17	AV17	29.6	19.9	6.9	37	44.7	429
			MAX	30.8	21.5	7.3	39	45.4	462
			MIN	28.8	18.2	6.7	35	43.6	386
136	43.00	21	AV21	29.8	20.6	7.1	36	44.3	466
			MAX	30.9	21.6	7.4	38	45.1	487
			MIN	29.0	19.7	6.8	34	43.5	450

PDIPLOT2 2015.1.50.1 - Printed 17-June-2015

Page 1

Page 2
DDIDLOT2 2015 1 50 1 Drinted 17 June 2015
PDIPLOTZ 2015.1.50.1 - Primed 17-June-2015

USH 10 over LLBDM - PIER 20 #1 OP: TC APE D30-42, HP 14 x 73 Date: 15-June-2015

<u>UF. IC</u>								Date. 10-J	une-2015
BL#	Depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
163	44 00	27	۵\/27	30.2	21.0	72	37	43.9	499
100	44.00	27	MAX	31.5	21.0	7.5	39	45.0	521
			MIN	28.8	20.1	6.8	34	43.0	477
195	45.00	32	AV32	30.2	18.3	7.2	36	44.0	474
			MAX	31.4	20.3	7.6	39	44.8	498
			IVITIN	29.2	10.7	6.9	34	42.9	455
227	46.00	32	AV32	30.3	15.5	7.2	37	44.0	456
			MAX	31.1	16.8	7.5	38	45.2	476
			MIN	28.8	14.1	6.8	34	43.2	436
257	47 00	30	۵\/30	30.1	13 7	72	37	44 0	425
207	47.00	00	MAX	31.6	14.5	7.8	40	44.8	445
			MIN	29.0	12.6	6.9	35	42.4	404
								10.0	
286	48.00	29	AV29	30.1	13.4	7.2	37	43.9	419
				31.Z 20.1	14.0	7.5 6.0	39 35	44.9	430
				23.1	12.5	0.5	55	40.0	407
313	49.00	27	AV27	30.6	15.0	7.4	37	43.5	427
			MAX	31.3	16.3	7.6	39	44.5	447
			MIN	29.3	13.5	7.0	35	42.7	413
344	50.00	31	AV31	31.3	18.4	7.6	38	42.8	463
•••			MAX	32.7	22.8	8.1	41	43.5	524
			MIN	30.3	15.6	7.4	37	41.6	432
380	51.00	45	۵\/45	31 7	22.5	78	30	42.2	527
000	01.00	-10	MAX	33.1	23.9	8.3	41	43.2	542
			MIN	30.6	20.7	7.5	36	41.1	503
100	E1 20	E 1	AV/10	21.0	<u></u>	7.0	20	40.1	E 2 1
406	51.30	ЭI	AV 19 MAX	31.0 32.0	23.3 24 3	7.9	39 /1	42.1 /2.8	5/8
			MIN	30.9	24.5	7.6	37	42.0	517
				00.0	22.0	7.0	07	11.2	017
418	51.58	48	AV10	31.8	23.1	7.9	39	42.0	526
			MAX	33.2	24.5	8.3	42	42.7	535
			MIN	30.9	22.1	7.6	37	41.0	516
428	51.79	48	AV10	32.0	23.3	7.9	39	42.0	525
			MAX	32.6	23.8	8.1	40	42.6	535
			MIN	31.5	22.6	7.7	38	41.5	515
437	51 98	48	۵\/8	31.6	22.6	7 8	38	42.2	510
407	01.00	-0	MAX	32.4	23.4	8.1	40	42.7	525
			MIN	31.0	22.2	7.6	37	41.6	<u>51</u> 4
			Average	29.0	16.5	6.9	35	45.4	406
			Maximum	33.2	24.5	8.3	42	69.0	548
			Minimum	10.3	1.9	2.7	11	41.0	0

Total number of blows analyzed: 435

USH 10 over LLBDM - PIER 20 #1 OP: TC APE D30-42, HP 14 x 73 Date: 15-June-2015

BL# Sensors

1-434 F1: [D815] 93.0 (1.00); F2: [K769] 91.9 (1.00); A1: [K3550] 360.0 (1.00); A2: [K3658] 362.0 (1.00)

435-435 F1: [D815] 93.0 (1.00); F2: [K769] 91.9 (1.00); A1: [K3550] 360.0 (0.98); A2: [K3658] 362.0 (0.98)

436-437 F1: [D815] 93.0 (1.00); F2: [K769] 91.9 (1.00); A1: [K3550] 360.0 (1.00); A2: [K3658] 362.0 (1.00)

BL# Comments

2 Reported Reference EL 740.1 - Mudline EL 720.1

435 CW

Time Summary

Drive 9 minutes 41 seconds 12:18 PM - 12:28 PM BN 1 - 437

	Page I
PDIPLOT2 2015.1.50.1 - Printed 17-Ju	une-2015

38

40

36

38

41

34

42.9

43.6

42.3

42.8

44.4

41.8

USH 10 over LLBDM - PIER 20 #1 RESTRIKE APE D30-42, HP 14 x 73 OP: RF Date: 16-June-2015 AR: 21.40 in² SP: 0.492 k/ft³ LE: 77.50 ft EM: 30,000 ksi WS: 16,807.9 f/s JC: CSX: Max Measured Compr. Stress EMX: Max Transferred Energy CSB: Compression Stress at Bottom **BPM: Blows per Minute** STK: O.E. Diesel Hammer Stroke Max Case Method Capacity (JC=0.9) RX9: BL# Depth BLC TYPE CSX CSB STK EMX BPM ft blows/ft ksi ksi ft k-ft bpm 10 44 AV9 26.3 7.8 39 42.3 52.23 32.7 MAX 33.2 26.8 8.0 41 43.0 MIN 32.0 25.4 7.5 37 41.8 20 37 31.8 7.5 37 43.1 52.50 AV10 24.7 MAX 32.5 25.9 7.8 39 44.4 MIN 30.6 22.9 7.0 34 42.3

Total number of blows analyzed: 33

32.0

32.9

31.2

32.1

33.2

30.6

24.7

25.3

23.9

25.1

26.8

22.9

7.6

7.8

7.3

7.6

8.0

7.0

BL# Sensors

35

52.88

1-35 F1: [D815] 93.0 (1.00); F2: [K769] 91.9 (1.00); A1: [K3550] 360.0 (1.00); A2: [K3658] 362.0 (1.00)

Time Summary

Drive 47 seconds 6:50 AM - 6:50 AM BN 1 - 35

40

AV14

MAX

MIN

Average

Maximum

Minimum

Dama 1

1.00 []

RX9

kips

550

564

541

515

546

483

527

537

499

530

564

483

1 - Reported Reference EL 740.9 - Mudline EL 720.1

GRL Engineers, Inc.	
Case Method & iCAP® Result	s

77.50 ft

LE:

Pag	je 1
PDIPLOT2 2015.1.50.1 - Printed 17-June-20	15

USH 10 over LLBDM - PIER 20 #36 OP: TC AR: 21.40 in²

APE D30-42, HP 14 x 73 Date: 15-June-2015 SP: 0.492 k/ft³

SP.	0.492	K/11 ⁻
EM:	30,000	ksi

JC:	1.00	[]	
		_	

WS: 1	16,807.9 f/s							JC:	1.00 []
CSX:	Max Measu	red Compr.	Stress		EMX: Max Transferred Energy				
CSB:	Compressio	on Stress at	Bottom		BP	M: Blows p	per Minute	.	
<u>STK:</u>	O.E. Diesel	Hammer St	roke		RX	<u>9: Max Ca</u>	se Method	Capacity	(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	SIK	EMX	BPM	RX9
26	π 24.00	blows/ft	۸\/10	KSI 19.0	KSI	TT 4 4	K-ft 27	bpm	KIPS
20	34.00	Z	AVIO	10.9	0.1 0.2	4.4	27	20.1 72.5	125
			MIN	23.4	0.3	5.5 2.4	30 1	73.5 50 Q	125
			IVIIIN	5.2	0.4	2.4	4	50.5	0
33	35.00	7	AV7	22.9	7.6	5.2	28	51.1	140
		-	MAX	23.5	8.1	5.4	30	51.8	152
			MIN	22.4	7.3	5.1	27	50.2	132
40	36.00	7	AV7	22.9	7.9	5.3	28	51.1	154
			MAX	23.6	8.5	5.4	30	51.4	180
			MIN	22.6	7.3	5.2	27	50.3	132
10	27.00	0	۸١/٥	22.0	0.1	5 5	20	E0 1	100
40	37.00	0		23.8 24.9	9.1	5.5 5.9	20 21	50.1 52.2	100
			MIN	24.0	79	5.0	25	48.8	130
				21.0	7.0	0.0	20	40.0	100
57	38.00	9	AV9	23.4	7.6	5.3	27	50.7	156
			MAX	24.3	8.5	5.5	28	52.1	183
			MIN	22.1	6.7	5.0	25	49.8	128
64	39.00	7	AV7	22.8	6.9	5.1	27	51.7	129
			MAX	23.5	7.5	5.3	29	52.2	138
			MIN	22.4	6.6	5.0	26	50.9	118
71	40.00	7	۵\/7	24.0	8.6	55	29	50.2	157
/ 1	40.00	/	MAX	24.0	10.3	5.7	31	52.2	177
			MIN	22.3	7.6	5.0	26	49.1	127
79	41.00	8	AV8	23.3	7.4	5.3	27	51.0	133
			MAX	25.2	7.9	5.8	30	51.8	140
			MIN	22.5	6.7	5.1	26	48.9	121
07	40.00		A) (O	04.0	10.0	F 7	00	40.0	107
87	42.00	8	AV8	24.9	10.0	5.7	29	49.3	197
				27.5	13.0	0.5	33	50.9 46.2	280 120
			IVIIIN	23.4	7.5	5.5	20	40.2	155
101	43.00	14	AV14	28.3	17.1	6.6	33	45.7	348
			MAX	30.2	18.9	7.1	36	46.6	403
			MIN	27.5	15.1	6.4	31	44.1	294
123	44.00	22	AV22	29.7	21.2	7.1	35	44.2	463
			MAX	31.5	23.1	7.7	39	45.5	506
			MIN	28.3	18.9	6.7	32	42.5	418
152	45.00	20	۷۱/۵0	21.0	247	75	26	120	E30
155	45.00	30	MAX	32.8	24.7	7.5 8.1	30 <u>4</u> 0	43.0 ⊿२.8	536
			MIN	30.0	23.4	72	35	41.4	509

USH 10 over LLBDM - PIER 20 #36 OP: TC

APE D30-42, HP 14 x 73 Date: 15- lune-2015

OP: IC	,							Jate: 15-Jur	1e-2015
BL#	Depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
182	45 77	38	AV29	32.3	28.5	8.0	39	41.9	620
.02	10.77		MAX	33.7	30.8	8.4	41	43.1	656
			MIN	31.0	25.6	7.5	36	40.8	560
192	45.96	53	AV10	33.0	30.3	8.2	40	41.3	657
			MAX	33.3	30.8	8.3	41	41.6	666
			MIN	32.5	30.0	8.1	39	41.0	646
202	46.15	53	AV10	33.1	30.3	8.3	40	41.2	657
			MAX	33.7	30.8	8.4	41	41.7	668
			MIN	32.4	29.7	8.0	39	40.8	649
206	46.22	53	AV4	33.0	30.2	8.2	40	41.3	665
			MAX	33.3	30.8	8.4	40	41.6	679
			MIN	32.7	29.9	8.1	39	40.9	652
			Average	27.7	18.1	6.6	33	46.5	383
			Maximum	33.7	30.8	8.4	41	73.5	679
			Minimum	3.2	0.4	2.4	4	40.8	0
			T			1 400			

Total number of blows analyzed: 198

BL# Sensors

1-206 F1: [K769] 91.9 (1.00); F2: [D815] 93.0 (1.00); A1: [K3658] 362.0 (1.00); A2: [K3550] 360.0 (1.00)

BL# Comments

4 Reported Reference EL 740.9 - Mudline EL 720.1

203 CŴ

Time Summary

Drive 5 minutes 20 seconds 12:42 PM - 12:48 PM BN 1 - 206

	Page I
PDIPLOT2 2015.1.50.1 - Printed 17-Ju	une-2015

40

43

37

8.0

8.3

41.9

43.1

41.0

684

703

653

ι **TRIKE** APE D30-42, HP 14 x 73 Date: 16-June-2015 C SP: 0.492 k/ft³ AR: 21.40 in² 77.50 ft LE: WS: 16,807.9 f/s CSX: Max Measured Compr. Stress EMX: Max Transferred Energy CSB: Compression Stress at Bottom **BPM: Blows per Minute** STK: O.E. Diesel Hammer Stroke Max Case Method Capacity (JC=0.9) RX9: BL# Depth BLC TYPE CSX CSB STK EMX BPM RX9 ft blows/ft ksi ksi ft k-ft bpm kips 10 80 AV9 7.9 40 42.1 46.46 32.3 31.6 680 MAX 32.8 33.0 8.1 41 43.1 694 MIN 30.0 7.5 37 41.5 31.2 653 20 69 32.9 32.1 8.1 694 46.60 AV10 41 41.5 MAX 33.5 33.0 8.3 43 42.0 703 MIN 32.5 31.6 7.9 40 41.0 685 31 46.76 69 AV10 32.4 31.3 7.9 40 42.0 678 MAX 33.0 32.3 8.1 42 42.6 690 MIN 31.7 30.7 7.7 39 41.4 669

> Minimum 31.2 30.0 7.5 Total number of blows analyzed: 29

31.7

33.0

32.6

33.5

Average

Maximum

BL# Sensors

1-31 F1: [D815] 93.0 (1.00); F2: [K769] 91.9 (1.00); A1: [K3550] 360.0 (1.00); A2: [K3658] 362.0 (1.00)

Time Summary Drive 42 seconds 7:01 AM - 7:01 AM BN 1 - 31

JSH 1 DP: R	10 over LLBDM F	1 - PIER 20 #36 REST
۵R	21 40 in ²	

Dama 1

EM:	30,000	KSI
JC:	1.00	П

GRL Engineers, Inc.
Case Method & iCAP® Results

77.50 ft

LE:

Page	e 1
PDIPLOT2 2015.1.50.1 - Printed 17-June-201	5

USH 10 over LLBDM - PIER 20 #44 OP: TC AR: 21.40 in²

APE D30-42, HP 14 x 73

Date: 15-June-2015 SP: 0.492 k/ft³

0	<i>י</i> יי	0.452	IV IL
E	M:	30,000	ksi
	~	4 00	

<u>WS:</u> 1	16,807.9 f/s							JC:	1.00 []
CSX:	Max Measu	red Compr.	Stress		EN	MX: Max Tra	ansferred E	inergy	
CSB:	B: Compression Stress at Bottom BPM: Blows per Mi								
STK:	O.E. Diesel	Hammer St	roke		R)	K9: Max Ca	se Method	Capacity	(JC=0.9)
BL#	Depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
11	33.00	1	AV7	18.5	3.6	4.0	26	58.4	29
			MAX	22.8	6.3	4.8	38	66.6	80
			MIN	11.6	1.4	3.0	14	53.1	0
13	34.00	2	AV2	22.0	6.7	4.9	31	52.6	93
			MAX	22.1	6.9	5.0	31	52.8	97
			MIN	21.9	6.5	4.9	31	52.3	88
20	35.00	7	AV7	21.9	7.4	5.0	26	52.3	135
			MAX	22.5	8.1	5.1	27	53.5	143
			MIN	21.1	6.7	4.8	24	51.8	126
27	36.00	7	AV7	22.4	7.2	5.1	27	51.6	129
			MAX	23.3	8.0	5.4	29	53.6	146
			MIN	20.7	6.3	4.7	24	50.5	112
34	37.00	7	AV7	22.8	8.0	5.3	27	51.0	156
			MAX	23.5	8.7	5.4	28	51.9	181
			MIN	21.9	6.5	5.1	25	50.4	128
42	38.00	8	AV8	22.0	7.0	5.1	25	51.8	133
			MAX	23.9	7.9	5.5	28	53.2	157
			MIN	20.9	5.9	4.8	23	50.0	111
49	39.00	7	AV/7	22.2	72	51	25	517	127
45	55.00	,	ΜΔΥ	22.2	7.2 8.1	54	23	53.7	127
			MIN	20.4	6.1	4.7	23	50.6	101
58	40.00	Q	۵۱/۹	23.3	8 9	54	26	50.4	167
00	40.00	0	MAX	20.0	10.9	5.8	28	52.7	182
			MIN	21.2	6.4	4.9	23	48.9	121
70	<i>4</i> 1.00	12	۵\/12	25.0	123	6 1	30	177	253
70	41.00	12	ΜΔΧ	23.3	15.6	6.7	35	47.7	200
			MIN	24.4	9.3	5.6	26	45.6	201
87	12 00	17	۵\/17	26.7	13.1	64	30	46.7	302
07	42.00	17	ΜΔΧ	28.0	15.1	6.8	32	40.7	364
			MIN	24.4	9.2	5.7	25	45.3	216
100	\ 3 00	21	۵\/ว1	20.3	10.6	71	34	11 2	121
100	45.00	21	ΜΔΥ	29.5	25.6	7.1	27	44.2	404 522
			MIN	27.8	16.0	6.6	32	43.7 43.0	362
			14111 N	27.0	10.0	0.0	52	40.0	002
146	44.00	38	AV38	31.2	26.1	7.7	36	42.5	562
			MIN	32.3 30.0	20.0 23.3	0.1 7.3	39 34	43.0 41.4	516
				00.0	_0.0				0.0

USH 10) over LLB	DM - PIER	20 #44		APE I	D30-42, HP	14 x 73		
OP: TC							[Date: 15-Jur	1e-2015
BL#	Depth	BLC	TYPE	CSX	CSB	STK	EMX	BPM	RX9
	ft	blows/ft		ksi	ksi	ft	k-ft	bpm	kips
188	44.98	43	AV42	32.0	27.2	7.9	37	41.9	599
			MAX	32.8	28.3	8.2	39	42.8	628
			MIN	31.0	26.2	7.6	35	41.2	576
198	45.19	48	AV10	31.9	27.6	7.9	37	42.0	615
			MAX	32.3	28.1	8.0	38	42.6	621
			MIN	31.4	27.2	7.7	36	41.7	606
208	45.40	48	AV10	31.7	27.4	7.9	37	42.1	610
			MAX	32.9	28.4	8.2	39	42.9	620
			MIN	30.8	26.7	7.6	35	41.2	602
216	45.55	53	AV7	31.7	27.1	7.9	37	42.0	603
			MAX	32.7	27.4	8.2	38	42.5	610
			MIN	31.0	26.9	7.7	36	41.2	596
			Average	28.2	19.1	6.8	33	45.6	413
			Maximum	32.9	28.4	8.2	39	66.6	628
			Minimum	11.6	1.4	3.0	14	41.2	0

Total number of blows analyzed: 211

BL# Sensors

1-216 F1: [K769] 91.9 (1.00); F2: [D815] 93.0 (1.00); A1: [K3658] 362.0 (1.00); A2: [K3550] 360.0 (1.00)

BL# Comments

Reported Reference EL 740.1 - Mudline EL 720.1 3

213 CW

Time Summary

Drive 5 minutes 33 seconds 12:58 PM - 1:04 PM BN 1 - 216

	Page I
PDIPLOT2 2015.1.50.1 - Printed 17-June	-2015

39

36

38

41

36

USH 10 over LI RDM DIED 20 #44 DESTDIKE APE D30-42, HP 14 x 73 Date: 16-June-2015 SP: 0.492 k/ft3 JC: 1.00 [] Max Transferred Energy Blows per Minute Max Case Method Capacity (JC=0.9) STK EMX BPM RX9 ft k-ft bpm kips 10 45.77 53 AV9 31.8 26.9 7.6 38 42.8 594 MAX 33.1 28.0 7.9 41 43.6 613 MIN 31.1 25.8 7.3 36 41.9 578 20 48 AV10 31.9 26.3 7.6 38 42.8 567 45.98 MAX 32.3 27.2 7.8 40 43.2 582 MIN 31.3 25.3 7.5 37 42.4 554 32 46.25 44 AV12 31.5 24.8 7.5 38 43.2 545

Total number of blows analyzed: 31

25.6

23.7

25.9

28.0

23.7

7.6

7.3

7.5

7.9

7.3

32.1

30.8

31.7

33.1

30.8

BL# Sensors

1-32 F1: [K769] 91.9 (1.00); F2: [D815] 93.0 (1.00); A1: [K3658] 362.0 (1.00); A2: [K3550] 360.0 (1.00)

Time Summary Drive 43 seconds 7:11 AM - 7:12 AM BN 1 - 32

OP: R	F		0 #44 NESI				
AR:	21.40 in ²						
LE:	77.50 ft						
WS: 1	<u>16,807.9 f/s</u>						
CSX:	Max Measu	ured Compr.	Stress		EMX:		
CSB: Compression Stress at Bottom							
STK: O.E. Diesel Hammer Stroke							
BL#	Depth	BLC	TYPE	CSX	CSB		
	ft	blows/ft		ksi	ksi		

MAX

MIN

Average

Maximum

Minimum

D 1

559

530

566

613

530

43.6

42.7

43.0

43.6

41.9

EM: 30,000 ksi

USH 10 over LLBDM; Pile: PIER 20 #1 EOID APE D30-42, HP 14 x 73; Blow: 435 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: PIER 20 #1 EOID APE D30-42, HP 14 x 73; Blow: 435 GRL Engineers, Inc.

				CAPW	AP SUMMARY	RESULTS				
Tota	L CAPV	WAP Capacit	y: 501	.0; along	Shaft	96.0; at	Тое	405.0	kips	
S	oil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	s Smith
Sg	mnt	Below	Below		in Pile	of	Re	sist.	Resist	. Damping
	No.	Gages	Grade			Ru	(D	epth)	(Area)) Factor
		ft	ft	kips	kips	kips	ki	ps/ft	ksi	s/ft
					501.0					
	1	30.3	4.8	0.0	501.0	0.0		0.00	0.00	0.00
	2	37.1	11.5	0.0	501.0	0.0		0.00	0.00	0.00
	3	43.8	18.2	2.0	499.0	2.0		0.30	0.06	5 0.22
	4	50.5	25.0	3.0	496.0	5.0		0.45	0.09	0.22
	5	57.3	31.7	12.0	484.0	17.0		1.78	0.38	3 0.22
	6	64.0	38.5	19.0	465.0	36.0		2.82	0.60	0.22
	7	70.8	45.2	30.0	435.0	66.0		4.45	0.95	5 0.22
	8	77.5	51.9	30.0	405.0	96.0		4.45	0.95	5 0.22
Av	g. Sh	aft		12.0				1.85	0.39	0.22
	То	e		405.0					293.80	0.07
Soil	Model	Parameter	s/Extensio	ons			Shaft	То	e	
Quake	е		(ir	1)			0.09	0.5	1	
Case	Dampi	ing Factor					0.55	0.7	4	
Damp:	ing Ty	/pe				Vi	scous	Sm+Vis	C	
Unloa	ading	Quake	(%	of loadi	ng quake)		55	6	9	
Reloa	ading	Level	(%	of Ru)			100	10	0	
Unloa	ading	Level	(%	of Ru)			86			
Resi	stance	e Gap (incl	uded in To	oe Quake)	(in)			0.0	3	
Soil	Plug	Weight	(ki	ps)			0.035	0.04	5	
CAPW	AP mat	ch quality	· =	3.32	(Wa	ve Up Matc	h) ;]	RSA = 0		
Obsei	rved:	Final Set	=	0.25 i	n; Blo	w Count	=	48	b/ft	
Compu	uted:	Final Set	=	0.22 i	n; Blo	w Count	=	55	b/ft	
Transd	ucer	F3(D815) A3(K3550)	CAL: 93.0; 1 CAL: 360; 1	RF: 1.00; F4 RF: 0.98; A4	(K769) CAL: (K3658) CAL:	91.9; RF: 1.00 362; RF: 0.98				
max.	Тор (Comp. Stres	s =	31.4 k	si (T	= 36.1 ms	, max=	= 1.052	x Top)	
max.	Comp	Stress	=	33.0 k	si (Z	= 57.3 ft	, T=	39.5 ms)	
max.	Tens	Stress	=	-4.40 k	si (Z	= 57.3 ft	, T=	63.6 ms)	
max.	Energ	JY (EMX)	=	38.3 k	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.14 in

USH 10 over LLBDM; Pile: PIER 20 #1 EOID APE D30-42, HP 14 x 73; Blow: 435 GRL Engineers, Inc.

	EXTREMA TABLE									
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.		
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.		
No.	Gages			Stress	Stress	Energy				
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in		
1	3.4	672.6	-15.8	31.4	-0.74	38.3	16.9	1.14		
2	6.7	672.9	-16.5	31.4	-0.77	38.2	16.8	1.13		
4	13.5	673.6	-19.7	31.5	-0.92	37.7	16.8	1.09		
5	16.8	674.4	-23.5	31.5	-1.10	37.4	16.7	1.06		
6	20.2	675.6	-31.3	31.6	-1.46	36.9	16.7	1.04		
7	23.6	676.9	-38.6	31.6	-1.80	36.4	16.6	1.01		
8	27.0	678.0	-44.9	31.7	-2.10	35.9	16.6	0.98		
9	30.3	679.2	-52.2	31.7	-2.44	35.3	16.5	0.95		
10	33.7	680.5	-60.0	31.8	-2.80	34.7	16.5	0.92		
11	37.1	682.2	-67.2	31.9	-3.14	34.1	16.4	0.89		
12	40.4	685.5	-73.6	32.0	-3.44	33.5	16.3	0.86		
13	43.8	688.5	-79.2	32.2	-3.70	32.9	16.2	0.83		
14	47.2	683.8	-82.2	31.9	-3.84	31.9	16.1	0.80		
15	50.5	693.7	-87.7	32.4	-4.10	31.2	15.9	0.77		
16	53.9	692.8	-89.2	32.4	-4.17	30.0	15.5	0.74		
17	57.3	707.4	-94.2	33.0	-4.40	29.4	15.2	0.71		
18	60.7	674.3	-83.7	31.5	-3.91	26.6	14.7	0.68		
19	64.0	698.4	-87.9	32.6	-4.11	26.0	14.3	0.65		
20	67.4	644.2	-70.4	30.1	-3.29	22.4	14.9	0.62		
21	70.8	629.5	-74.5	29.4	-3.48	21.9	16.8	0.59		
22	74.1	501.4	-46.2	23.4	-2.16	17.0	17.7	0.56		
23	77.5	521.9	-50.1	24.4	-2.34	13.4	17.6	0.54		
Absolute	57.3			33.0			(T =	39.5 ms)		
	57.3				-4.40		(T =	63.6 ms)		

	CASE METHOD												
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
RP	629.6	488.7	347.8	206.8	65.9								
RX	682.3	624.6	568.4	536.7	523.6	515.8	511.5	509.4	508.6	507.8			
RU	629.6	488.7	347.8	206.8	65.9								

RAU = 504.4 (kips); RA2 = 563.9 (kips)

Current CAPWAP Ru = 501.0 (kips); Corresponding J(RP)= 0.18; matches RX20 within 5%

KEB	QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips/in	kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
844	667.2	38.8	0.25	0.25	1.14	680.1	680.1	654.1	36.09	17.1

PILE PROFILE AND PILE MODEL												
Depth	Area	E-Modulus	Spec. Weight	Perim.								
ft	in ²	ksi	lb/ft ³	ft								
0.0	21.4	29992.2	492.000	4.70								
77.5	21.4	29992.2	492.000	4.70								
Toe Area	198.5	in ²										

USH 10 c	over LLB	DM; Pile:		Test: 15-Jun-2015 12:2						
APE D30-	-42, HP	14 x 73;	Blow: 435	5				C	APWAP(R)	2014-1
GRL Engi	neers,	Inc.								OP: TC
Segmnt	Dist.In	npedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	ftki	ips/ft/s	%	in		in		ft	ft/s	kips
1	3.4	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.000
22	74.1	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.010
23	77.5	38.20	0.00	0.00	0.000	-0.00	0.000	4.70	16807.9	0.025

Wave Speed: Pile Top 16807.9, Elastic 16807.9, Overall 16807.9 ft/s Pile Damping 1.00 %, Time Incr 0.200 ms, 2L/c 9.2 ms Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: PIER 20 #1 RESTRIKE APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

			CAPWA	P SUMMARY	RESULTS					
Total CAP	WAP Capacit	y: 546	.0; along	Shaft	111.0; at	Тое	435.0	kips		
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	t	Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist	. г	amping
No.	Gages	Grade			Ru	(D	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	ki	ps/ft	ksi	£	s/ft
				546.0						
1	30.3	4.9	0.0	546.0	0.0		0.00	0.0	0	0.00
2	37.1	11.7	0.0	546.0	0.0		0.00	0.0	0	0.00
3	43.8	18.4	0.0	546.0	0.0		0.00	0.0	0	0.00
4	50.5	25.1	20.0	526.0	20.0		2.97	0.63	3	0.24
5	57.3	31.9	29.0	497.0	49.0		4.30	0.93	2	0.24
6	64.0	38.6	20.0	477.0	69.0		2.97	0.63	3	0.24
7	70.8	45.4	20.0	457.0	89.0		2.97	0.63	3	0.24
8	77.5	52.1	22.0	435.0	111.0		3.26	0.69	9	0.24
Avg. S	haft		13.9				2.13	0.4	5	0.24
T	be		435.0					315.50	б	0.06
Soil Mode	l Parameter	s/Extensio	ons			Shaft	То	e		
Quake		(ir	.)			0.10	0.4	7		
Case Dam	ing Factor	·	-,			0.69	0.6	8		
Damping 7	lype				Vi	scous	Sm+Vis	2		
Unloading	Quake	(%	of loadir	g quake)		100	3	1		
Reloading	r Level	(%	of Ru)			100	10	0		
Unloading	Level	(%	of Ru)			56				
Resistanc	e Gap (incl	uded in To	oe Quake)	(in)			0.0	8		
Soil Plug	Weight	(ki	.ps)				0.13	5		
CADWAD ma	tab avality		2 54	(14)-	TTO ITO Mata	b)	BGA - 0			
Observed:	Einal Set	_	2.34 0 27 ir		w Count	···· -	ASA = 0 44	b/f+		
Computed:	Final Set	_	0.27 11	BIC BIC	w Count	_	46	b/ft		
Transducer	F11121 Sec F3(D815)	CAL: 93.0:1	RF: 0.99; F4(K769) CAL:	91.9: RF: 0.99	, –	-10	D/IC		
	A3(K3550)	CAL: 360; 1	RF: 1.01; A4(K3658) CAL:	362; RF: 1.01					
max. Top	Comp. Stres	s =	32.0 ks	si (I	'= 36.1 ms	, max	= 1.104	x Top)		
max. Comp	. Stress	=	35.4 ka	si (2	= 50.5 ft	, T=	39.1 ms)		
max. Tens	. Stress	=	-6.40 ka	si (2	= 50.5 ft	, T=	60.9 ms)		
max. Ener	gy (EMX)	=	39.4 ki	.p-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.11	in

USH	10 over	LLE	BDM;	Pile	: PIER	20	#1	RESTRIKE
APE	D30-42,	HP	14 2	ĸ 73;	Blow:	4		
GRL	Engineer	rs,	Inc	•				

Test: 16-Jun-2015 06:50 CAPWAP(R) 2014-1 OP: RF

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	685.9	-40.5	32.0	-1.89	39.4	17.2	1.12
2	6.7	686.2	-46.0	32.1	-2.15	39.3	17.1	1.11
4	13.5	687.0	-62.2	32.1	-2.91	38.8	17.1	1.07
5	16.8	687.5	-72.2	32.1	-3.37	38.4	17.1	1.04
6	20.2	688.0	-83.7	32.1	-3.91	37.9	17.0	1.02
7	23.6	688.9	-95.0	32.2	-4.44	37.3	17.0	0.99
8	27.0	690.0	-105.8	32.2	-4.94	36.8	16.9	0.96
9	30.3	691.1	-115.6	32.3	-5.40	36.2	16.9	0.93
10	33.7	692.3	-123.6	32.3	-5.77	35.6	16.9	0.90
11	37.1	693.6	-130.1	32.4	-6.08	34.9	16.8	0.87
12	40.4	696.5	-133.2	32.5	-6.22	34.3	16.8	0.84
13	43.8	713.6	-134.6	33.3	-6.29	33.5	16.5	0.80
14	47.2	734.3	-136.6	34.3	-6.38	32.8	15.9	0.77
15	50.5	757.3	-137.1	35.4	-6.40	32.0	15.4	0.73
16	53.9	692.9	-118.7	32.4	-5.55	27.6	14.7	0.70
17	57.3	709.2	-120.6	33.1	-5.63	26.9	14.2	0.67
18	60.7	603.8	-96.8	28.2	-4.52	21.4	13.7	0.64
19	64.0	617.8	-96.8	28.9	-4.52	20.7	13.5	0.61
20	67.4	548.1	-81.0	25.6	-3.78	17.1	14.9	0.58
21	70.8	528.5	-81.8	24.7	-3.82	16.5	16.5	0.55
22	74.1	495.7	-62.3	23.2	-2.91	13.1	17.7	0.52
23	77.5	506.7	-60.9	23.7	-2.84	10.7	17.6	0.49
Absolute	50.5			35.4			(T =	39.1 ms)
	50.5				-6.40		(T =	60.9 ms)

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	662.8	525.3	387.8	250.3	112.8							
RX	710.6	655.5	605.0	575.3	558.3	543.5	529.8	520.2	513.4	506.6		
RU	671.0	533.0	394.9	256.9	118.9							

RAU = 461.6 (kips); RA2 = 609.1 (kips)

Current CAPWAP Ru = 546.0 (kips); Corresponding J(RP)= 0.17; J(RX) = 0.97

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.4	36.09	658.6	691.7	697.6	1.11	0.28	0.27	39.7	687.5	1130

		PILE PROF	ILE AND PILE MOD	EL	
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
тое	Area	198.5	in^2		
Тор	Segment Length	3.37 ft, Top Imp	edance 38 1	kips/ft/s	
Wav Pil	e Speed: Pile Top 3 e Damping 1.00 %	16807.9, Elastic 16 , Time Incr 0.200 ;	807.9, Overall 10 ms, 2L/c 9.2 mg	6807.9 ft/s s	

Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000

USH 10 over LLBDM; Pile: PIER 20 #36 EOID APE D30-42, HP 14 x 73; Blow: 208 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

USH	10 over	LLBDM;	Pile:	PIER	20	#36	EOID
APE	D30-42,	HP 14 :	x 73;	Blow:	208	3	
GRL	Engineer	s, Inc	•				

				CAPWA	P SUMMARY	RESULTS					
Total	CAPWAP (Capacity:	601.0	; along	Shaft	76.0; at	Тое	525.0	kips		
So	il D:	ist.	Depth	Ru	Force	Sum		Unit	Uni	t	Smith
Sgm	nt Be	elow :	Below		in Pile	of	Re	sist.	Resist	. г	Damping
No	o. Ga	ages	Grade			Ru	(D	epth)	(Area)	Factor
		ft	ft	kips	kips	kips	ki	ps/ft	ks	f	s/ft
					601.0						
	1 3	37.1	5.8	0.0	601.0	0.0		0.00	0.0	0	0.00
	2 4	43.8	12.6	0.0	601.0	0.0		0.00	0.0	0	0.00
	3 !	50.5	19.3	5.0	596.0	5.0		0.74	0.1	6	0.20
	4 5	57.3	26.0	7.0	589.0	12.0		1.04	0.2	2	0.20
	5 6	54.0	32.8	15.0	574.0	27.0		2.23	0.4	7	0.20
	6	70.8	39.5	22.0	552.0	49.0		3.26	0.6	9	0.20
	7	77.5	46.3	27.0	525.0	76.0		4.01	0.8	5	0.20
Avg	. Shaft			10.9				1.64	0.3	5	0.20
	Toe			525.0					380.8	5	0.07
Soil M	Iodel Par	rameters/	Extension	ıs			Shaft	То	e		
Quake			(in)				0.06	0.4	7		
Case I	amping I	Factor					0.40	0.9	6		
Dampin	ig Type					Vi	scous	Sm+Vis	с		
Unload	ling Qual	ce	(% o	f loadir	ng quake)		35	4	7		
Reload	ling Leve	əl	(% o	f Ru)			100	10	0		
Resist	ance Gar	o (includ	led in Toe	Quake)	(in)			0.0	5		
Soil F	lug Weig	ght	(kip	s)				0.04	5		
CAPWAF	match o	quality	=	3.51	(Wa	ave Up Mato	.h) ; 1	RSA = 0			
Observ	red: Fina	al Set	=	0.23 in	n; Blo	w Count	=	53	b/ft		
Comput	ed: Fina	al Set	=	0.19 in	n; Blo	w Count	=	65	b/ft		
Transduc	er	F3(K769) C#	L: 91.9; RF	: 1.00; F4(D815) CAL:	93.0; RF: 1.00)				
		A3(K3658) CA	L: 362; RF	: 1.00; A4(K3550) CAL:	360; RF: 1.00)				
max. I	op Comp	. Stress	=	32.5 ka	si (1	.= 36.1 ms	, max	= 1.024	x Top)		
max. C	lomp. Sti	ress	=	33.3 ks	si (2	S= 50.5 ft	, T=	39.1 ms)		
max. I	ens. Sti	ress	=	-6.98 ks	si (2	S= 47.2 ft	, T=	61.7 ms)		
max. E	nergy (I	EMX)	=	39.3 ki	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.17	in

USH	10 0	over	LLE	BDM ;	E	eile:	PIER	20	#36	EOID
APE	D30-	-42,	$_{\rm HP}$	14	x	73;	Blow:	208	3	
GRL	Eng	ineer	cs,	Inc						

Test: 15-Jun-2015 12:47 CAPWAP(R) 2014-1 OP: TC

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	695.8	-40.8	32.5	-1.91	39.3	17.4	1.17
2	6.7	696.1	-47.3	32.5	-2.21	39.1	17.4	1.15
4	13.5	696.8	-62.9	32.6	-2.94	38.4	17.3	1.11
5	16.8	697.2	-70.9	32.6	-3.31	37.9	17.3	1.08
6	20.2	697.6	-83.4	32.6	-3.89	37.4	17.3	1.05
7	23.6	698.0	-96.4	32.6	-4.51	36.9	17.3	1.02
8	27.0	698.6	-108.1	32.6	-5.05	36.3	17.2	0.99
9	30.3	699.0	-118.8	32.7	-5.55	35.8	17.2	0.96
10	33.7	699.5	-129.2	32.7	-6.04	35.1	17.2	0.93
11	37.1	700.1	-138.0	32.7	-6.45	34.5	17.1	0.90
12	40.4	700.7	-145.4	32.7	-6.79	33.9	17.1	0.87
13	43.8	702.4	-149.2	32.8	-6.97	33.2	17.0	0.84
14	47.2	707.5	-149.5	33.1	-6.98	32.4	16.8	0.81
15	50.5	712.9	-148.8	33.3	-6.95	31.6	16.7	0.77
16	53.9	697.9	-141.8	32.6	-6.62	29.8	16.5	0.74
17	57.3	709.8	-141.7	33.2	-6.62	28.9	16.3	0.70
18	60.7	694.9	-133.8	32.5	-6.25	26.8	15.9	0.66
19	64.0	710.1	-135.3	33.2	-6.32	25.9	15.5	0.63
20	67.4	661.0	-116.6	30.9	-5.45	22.6	17.2	0.59
21	70.8	653.5	-117.6	30.5	-5.49	21.7	18.9	0.55
22	74.1	642.6	-90.8	30.0	-4.24	17.8	19.9	0.52
23	77.5	663.0	-90.4	31.0	-4.22	14.9	18.8	0.48
Absolute	50.5			33.3			(T =	39.1 ms)
	47.2				-6.98		(т =	61.7 ms)

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	606.6	451.9	297.1	142.4	0.0							
RX	786.6	743.2	699.8	676.0	665.8	655.5	645.3	635.6	626.1	616.7		
RU	606.6	451.9	297.1	142.4	0.0							

RAU = 578.9 (kips); RA2 = 675.4 (kips)

Current CAPWAP Ru = 601.0 (kips); Corresponding J(RP) = 0.01; matches RX20 within 5%

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.7	36.09	675.6	704.8	704.8	1.17	0.22	0.23	39.4	679.7	1250

	Depth	PILE PROF	E-Modulus	EL Spec Weight	Derim
	ft	in ²	ksi	lb/ft ³	ferim.
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Тое	Area	198.5	in ²		
Тор	Segment Length	3.37 ft, Top Impe	edance 38 1	kips/ft/s	
Wave Pile	Speed: Pile Top 1 Damping 1.00 %,	16807.9, Elastic 168 , Time Incr 0.200 n	807.9, Overall 10 ms, 2L/c 9.2 mg	6807.9 ft/s s	

USH 10 over LLBDM; Pile: PIER 20 #36 EOID APE D30-42, HP 14 x 73; Blow: 208 GRL Engineers, Inc.

Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: PIER 20 #36 RESTRIKE APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc.

	CAPWAP SUMMARY RESULTS										
Total	LCAP	WAP Capaci	ty: 663	.0; along	Shaft	104.0; at	Тое	559.0	kips		
S	oil	Dist.	Depth	Ru	Force	Sum		Unit	Uni	t	Smith
Sgi	mnt	Below	Below		in Pile	of	Re	sist.	Resist	. с	amping
1	No.	Gages	Grade			Ru	(D	epth)	(Area)	Factor
		ft	ft	kips	kips	kips	ki	ps/ft	ks	£	s/ft
					663.0						
	1	37.1	5.9	0.0	663.0	0.0		0.00	0.0	0	0.00
	2	43.8	12.7	0.0	663.0	0.0		0.00	0.0	0	0.00
	3	50.5	19.4	0.0	663.0	0.0		0.00	0.0	0	0.00
	4	57.3	26.2	19.0	644.0	19.0		2.82	0.6	0	0.24
	5	64.0	32.9	29.0	615.0	48.0		4.30	0.9	2	0.24
	6	70.8	39.6	26.0	589.0	74.0		3.86	0.8	2	0.24
	7	77.5	46.4	30.0	559.0	104.0		4.45	0.9	5	0.24
Av	g. Sh	aft		14.9				2.24	0.4	8	0.24
	То	e		559.0					405.5	2	0.07
Soil	Mode	l Paramete	ers/Extensi	ons			Shaft	То	e		
Ouake	2		(i)	n)			0.10	0.3	7		
Case	Damp	ing Factor					0.65	1.1	0		
Dampi	ing T	vpe				Vi	scous	Sm+Vis	с		
- Unloa	ading	Quake	(%	of loadir	ng quake)		100	9	0		
Reloa	ading	Level	(%	of Ru)			100	10	0		
Unloa	ading	Level	(%	of Ru)			72				
Resis	stance	e Gap (inc	luded in T	oe Quake)	(in)			0.1	0		
	D mai	-ch qualit		2 60	(W=	we In Mato	h) • 1	RSA = 0			
Obser		Final Set	- =	0 15 ir	. Blo	w Count	=	80	b/ft		
Comp	ited.	Final Set		0.15 1	Blo Blo	w Count	_	108	b/ft		
Transdu	lcer	F3(D815) CAL: 93.0;	RF: 1.00; F4(K769) CAL:	91.9; RF: 1.00) —	100	D/ 10		
		A3(K355	0) CAL: 360;	RF: 1.00; A4(K3658) CAL:	362; RF: 1.00)				
max.	Тор (Comp. Stre	ess =	31.7 ks	si (1	.= 36.1 ms	, max:	= 1.097	х Тор)		
max.	Comp	. Stress	=	34.8 ks	si (2	S= 57.3 ft	, T=	39.5 ms)		
max.	Tens	. Stress	=	-7.93 ka	si (2	4= 57.3 ft	, T=	61.1 ms)		
max.	Energ	JY (EMX)	=	39.1 ki	lp-ft; ma	x. Measure	d Top	Displ.	(DMX)=	1.13	in

USH 10 over LLBDM; Pile: PIER 20 #36 RESTRIKE APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. Test: 16-Jun-2015 07:01 CAPWAP(R) 2014-1 OP: RF

	EXTREMA TABLE												
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.					
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.					
No.	Gages			Stress	Stress	Energy							
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in					
1	3.4	679.1	-35.6	31.7	-1.66	39.1	17.0	1.14					
2	6.7	679.4	-39.6	31.7	-1.85	38.8	17.0	1.12					
4	13.5	679.9	-49.5	31.8	-2.31	37.8	17.0	1.07					
5	16.8	680.2	-62.1	31.8	-2.90	37.2	16.9	1.04					
6	20.2	680.5	-75.5	31.8	-3.53	36.6	16.9	1.01					
7	23.6	681.0	-89.2	31.8	-4.17	35.9	16.9	0.97					
8	27.0	681.4	-101.6	31.8	-4.75	35.2	16.8	0.94					
9	30.3	681.9	-113.2	31.9	-5.29	34.6	16.8	0.91					
10	33.7	682.7	-123.8	31.9	-5.78	33.9	16.8	0.88					
11	37.1	683.8	-132.7	31.9	-6.20	33.1	16.7	0.84					
12	40.4	685.0	-140.4	32.0	-6.56	32.3	16.7	0.81					
13	43.8	686.2	-146.8	32.1	-6.86	31.4	16.6	0.77					
14	47.2	688.5	-153.6	32.2	-7.18	30.4	16.6	0.73					
15	50.5	703.3	-160.4	32.9	-7.49	29.5	16.4	0.70					
16	53.9	723.5	-166.3	33.8	-7.77	28.5	15.8	0.66					
17	57.3	744.9	-169.7	34.8	-7.93	27.4	15.4	0.62					
18	60.7	685.3	-150.4	32.0	-7.03	23.1	14.6	0.58					
19	64.0	703.8	-149.9	32.9	-7.00	22.0	14.8	0.53					
20	67.4	648.2	-120.1	30.3	-5.61	16.9	16.7	0.50					
21	70.8	671.0	-120.4	31.3	-5.62	15.9	18.3	0.46					
22	74.1	646.1	-99.5	30.2	-4.65	11.8	18.8	0.42					
23	77.5	664.1	-101.3	31.0	-4.73	9.3	17.4	0.38					
Absolute	57.3			34.8			(T =	39.5 ms)					
	57.3				-7.93		(T =	61.1 ms)					

	CASE METHOD											
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8		
RP	748.0	627.3	506.7	386.1	265.5							
RX	817.5	775.0	738.1	701.2	673.4	661.5	650.2	639.0	627.8	616.6		
RU	748.0	627.3	506.7	386.1	265.5							

RAU = 601.6 (kips); RA2 = 684.6 (kips)

Current CAPWAP Ru = 663.0 (kips); Corresponding J(RP)= 0.14; J(RX) = 0.97

VMX	TVP	VT1*Z	FT1	тмх	тмх	DFN	SET	EMX	OUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
17.3	35.89	661.8	689.3	689.3	1.13	0.15	0.15	39.3	735.8	2098

			PILE PROFI	LE AND PILE MODE	Ľ	
		Depth	Area	E-Modulus	Spec. Weight	Perim.
		ft	in²	ksi	lb/ft ³	ft
		0.0	21.4	29992.2	492.000	4.70
		77.5	21.4	29992.2	492.000	4.70
Тое	Area		198.5	in ²		
Тор	Segment	Length	3.37 ft, Top Imped	lance 38 k	ips/ft/s	
Wav Pil	e Speed: e Damping	Pile Top g 1.00 %	16807.9, Elastic 1680 , Time Incr 0.200 mg)7.9, Overall 16 s, 2L/c 9.2 ms	807.9 ft/s	

Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000

USH 10 over LLBDM; Pile: PIER 20 #44 EOID APE D30-42, HP 14 x 73; Blow: 214 GRL Engineers, Inc.

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. USH 10 over LLBDM; Pile: PIER 20 #44 EOID APE D30-42, HP 14 x 73; Blow: 214 GRL Engineers, Inc.

				CAPW	AP SUMMARY	RESULTS					
Total	CAPW	AP Capacit	y: 578	.0; along	Shaft	79.0; at	Тое	499.0	kips		
Sc	oil	Dist.	Depth	Ru	Force	Sum		Unit	Uni	t	Smith
Sgr	nt	Below	Below		in Pile	of	Re	sist.	Resist	. 1	Damping
1	ю.	Gages	Grade			Ru	(D	epth)	(Area)	Factor
_		ft	ft	kips	kips	kips	ki	ps/ft	ks	f	s/ft
					578.0						
	1	37.1	5.1	0.0	578.0	0.0		0.00	0.0	0	0.00
	2	43.8	11.8	0.0	578.0	0.0		0.00	0.0	0	0.00
	3	50.5	18.6	2.0	576.0	2.0		0.30	0.0	6	0.21
	4	57.3	25.3	12.0	564.0	14.0		1.78	0.3	8	0.21
	5	64.0	32.0	18.0	546.0	32.0		2.67	0.5	7	0.21
	6	70.8	38.8	22.0	524.0	54.0		3.26	0.6	9	0.21
	7	77.5	45.5	25.0	499.0	79.0		3.71	0.7	9	0.21
Ave	J. Sha	aft		11.3				1.74	0.3	7	0.21
	Toe	2		499.0					361.9	9	0.06
Soil	Model	Parameter	s/Extensi	ons			Shaft	Тс	e		
Quake			(i)	1)			0.05	0.4	7		
Case	Dampi	ng Factor					0.43	0.7	8		
Dampi	ng Ty	ре				Vi	scous	Sm+Vis	C		
Unloa	ding	Quake	(%	of loadi	ng quake)		34	4	7		
Reloa	ding	Level	(%	of Ru)			100	10	0		
Resis	tance	Gap (incl	uded in T	oe Quake)	(in)			0.0	4		
Soil	Plug	Weight	(k:	ips)				0.12	1		
CAPWA	P mat	ch quality		2.93	(Wa	ve Up Matc	h);	RSA = 0			
Obser	ved:	Final Set	=	0.23 i	n; Blo	w Count	=	53	b/ft		
Compu	ted:	Final Set	=	0.19 i	n; Blo	w Count	=	65	b/ft		
Transdu	cer	F3(K769)	CAL: 91.9;	RF: 1.00; F4	(D815) CAL:	93.0; RF: 1.00)				
		A3(K3658)	CAL: 362;	RF: 1.00; A4	(K3550) CAL:	360; RF: 1.00)				
max.	Тор С	omp. Stres	s =	30.6 k	si (I	= 36.1 ms	, max:	= 1.066	х Тор)		
max.	Comp.	Stress	=	32.7 k	si (Z	= 57.3 ft	, T=	39.5 ms	3)		
max.	Tens.	Stress	=	-6.63 k	si (Z	= 50.5 ft	, T=	62.3 ms	5)		
max.	Enera	V (EMX)	=	36.3 k	ip-ft; ma	x. Measure	d Top	Displ.	(DMX) =	1.14	in

USH	10 o	ver	LLE	BDM;	F	vile:	PIER	20	#44	EOID
APE	D30-	42,	$_{\rm HP}$	14	x	73;	Blow:	214	4	
GRL	Engi	neer	cs,	Inc	•					

Test: 15-Jun-2015 13:04 CAPWAP(R) 2014-1 OP: TC

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.4	656.0	-37.8	30.6	-1.77	36.3	16.3	1.12
2	6.7	656.5	-45.0	30.7	-2.10	36.1	16.2	1.11
4	13.5	658.1	-61.0	30.7	-2.85	35.6	16.2	1.07
5	16.8	659.1	-68.7	30.8	-3.21	35.2	16.1	1.04
6	20.2	660.0	-75.0	30.8	-3.51	34.7	16.1	1.01
7	23.6	661.1	-83.3	30.9	-3.89	34.1	16.1	0.98
8	27.0	662.1	-91.1	30.9	-4.25	33.6	16.0	0.96
9	30.3	663.3	-100.3	31.0	-4.69	33.1	16.0	0.93
10	33.7	664.3	-108.7	31.0	-5.08	32.5	16.0	0.90
11	37.1	665.3	-117.0	31.1	-5.47	31.9	16.0	0.87
12	40.4	666.7	-124.6	31.1	-5.82	31.3	15.9	0.84
13	43.8	669.2	-132.4	31.3	-6.18	30.7	15.9	0.81
14	47.2	672.3	-138.9	31.4	-6.49	30.0	15.8	0.78
15	50.5	682.4	-142.0	31.9	-6.63	29.4	15.6	0.74
16	53.9	685.3	-140.1	32.0	-6.55	28.3	15.2	0.71
17	57.3	699.4	-140.2	32.7	-6.55	27.5	14.9	0.68
18	60.7	664.2	-126.3	31.0	-5.90	24.7	14.5	0.64
19	64.0	679.0	-126.5	31.7	-5.91	23.9	14.2	0.61
20	67.4	617.2	-104.0	28.8	-4.86	20.4	15.1	0.58
21	70.8	595.5	-103.6	27.8	-4.84	19.7	16.9	0.54
22	74.1	580.2	-75.8	27.1	-3.54	15.9	18.1	0.51
23	77.5	596.9	-75.7	27.9	-3.53	13.2	17.8	0.47
Absolute	57.3			32.7			(T =	39.5 ms)
	50.5				-6.63		(т =	62.3 ms)

	CASE METHOD										
J =	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
RP	586.3	446.3	306.2	166.1	26.0						
RX	724.7	675.4	635.1	619.3	603.5	587.7	572.9	567.3	566.9	566.6	
RU	586.3	446.3	306.2	166.1	26.0						

RAU = 501.7 (kips); RA2 = 638.1 (kips)

Current CAPWAP Ru = 578.0 (kips); Corresponding J(RP)= 0.01; J(RX) = 1.13

	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
f	t/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
1	.6.3	35.89	624.4	662.4	662.4	1.14	0.23	0.23	36.6	643.8	1160

		PILE PROFI	LE AND PILE MODE	EL.	
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		
Top Segment	t Length	3.37 ft, Top Impe	dance 38 k	ips/ft/s	
Wave Speed: Pile Dampir	: Pile Top 1 ng 1.00 %,	L6807.9, Elastic 168 , Time Incr 0.200 m	07.9, Overall 16 s, 2L/c 9.2 ms	807.9 ft/s s	

USH 10 over LLBDM; Pile: PIER 20 #44 EOID APE D30-42, HP 14 x 73; Blow: 214 GRL Engineers, Inc.

Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000

About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result.

USH	10	over	LLI	BDM;	Pile	:	PIER	20	#44	RESTRIKE
APE	D30)-42,	$_{\rm HP}$	14 :	x 73;	в	Blow:	4		
GRL	Enc	inee	rs,	Inc	•					

				CAPWAP SUMM	ARY RESU	LTS			
Total CA	PWAP Capa	city:	612.0; a	along Shaft	112.0); at Toe	500.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	in
				612.0					
1	37.1	5.2	0.0	612.0	0.0	0.00	0.00	0.00	0.06
2	43.8	12.0	0.0	612.0	0.0	0.00	0.00	0.00	0.06
3	50.5	18.7	0.0	612.0	0.0	0.00	0.00	0.00	0.06
4	57.3	25.4	22.0	590.0	22.0	3.26	0.69	0.25	0.06
5	64.0	32.2	26.0	564.0	48.0	3.86	0.82	0.25	0.06
6	70.8	38.9	32.0	532.0	80.0	4.75	1.01	0.25	0.06
7	77.5	45.7	32.0	500.0	112.0	4.75	1.01	0.25	0.06
Avg. Sh	aft		16.0			2.45	0.52	0.25	0.06
тс	be		500.0				362.72	0.05	0.40
Soil Mod	el Parame	ters/Ext	ensions			Shaft	Тое	9	
Case Dam	ping Fact	or				0.73	0.65	5	
Damping	Гуре					Viscous	Sm+Visc	!	
Unloadin	g Quake		(% of 1	oading quak	ce)	81	44		
Reloadin	g Level		(% of R	tu)		100	100	1	
Resistan	ce Gap (i	ncluded	in Toe Qu	uake) (in)			0.05	;	
Soil Plu	g Weight		(kips)				0.018	}	
CAPWAP m	atch qual	ity	= 2.	88	(Wave Up	Match) ;	RSA = 0		
Observed	: Final S	let	= 0.	23 in;	Blow Cou	nt =	53 k	o/ft	
Computed	: Final S	let	= 0.	19 in;	Blow Cou	nt =	65 k	o/ft	
Transducer	F3(K7	69) CAL:	91.9; RF: 1.	00; F4(D815) C2	AL: 93.0; F	2F: 1.00			
	A3(K3	8658) CAL:	362; RF: 1.	00; A4(K3550) C2	AL: 360; F	2F: 1.00			
max. Top	Comp. St	ress	= 31	.4 ksi	(T= 36	.1 ms, max	= 1.113 x	Top)	
max. Com	p. Stress	5	= 35	.0 ksi	(Z= 57	.3 ft, T=	39.5 ms)	1	
max. Ten	s. Stress	5	= -8.	00 ksi	(Z= 57	.3 ft, T=	60.9 ms)	1	
max. Ene:	rgy (EMX)		= 37	.7 kip-ft;	max. Me	asured Top	Displ. (DMX)= 1.1	1 in

USH 10 over LLBDM; Pile: PIER 20 #44 RESTRIKE APE D30-42, HP 14 x 73; Blow: 4 GRL Engineers, Inc. Test: 16-Jun-2015 07:11 CAPWAP(R) 2014-1 OP: RF

EXTREMA TABLE											
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.			
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.			
No.	Gages			Stress	Stress	Energy					
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in			
1	3.4	672.9	-40.2	31.4	-1.88	37.7	16.6	1.09			
2	6.7	673.5	-46.7	31.5	-2.18	37.5	16.6	1.07			
4	13.5	675.0	-66.0	31.5	-3.08	36.7	16.5	1.03			
5	16.8	675.8	-75.7	31.6	-3.53	36.2	16.5	1.00			
6	20.2	676.6	-86.4	31.6	-4.04	35.6	16.5	0.97			
7	23.6	677.5	-98.1	31.7	-4.58	35.0	16.4	0.94			
8	27.0	678.5	-110.3	31.7	-5.15	34.3	16.4	0.91			
9	30.3	679.6	-121.5	31.7	-5.68	33.7	16.4	0.88			
10	33.7	680.8	-132.2	31.8	-6.18	33.0	16.3	0.84			
11	37.1	682.0	-141.6	31.9	-6.61	32.4	16.3	0.81			
12	40.4	683.4	-149.4	31.9	-6.98	31.7	16.2	0.78			
13	43.8	684.8	-156.2	32.0	-7.30	31.0	16.2	0.75			
14	47.2	686.8	-162.1	32.1	-7.57	30.3	16.1	0.72			
15	50.5	706.1	-167.2	33.0	-7.81	29.5	15.8	0.68			
16	53.9	724.3	-170.2	33.8	-7.95	28.7	15.2	0.65			
17	57.3	748.9	-171.2	35.0	-8.00	27.8	14.7	0.61			
18	60.7	670.1	-143.9	31.3	-6.72	23.4	14.0	0.57			
19	64.0	696.2	-143.8	32.5	-6.72	22.5	13.4	0.54			
20	67.4	601.4	-111.8	28.1	-5.22	18.0	14.1	0.50			
21	70.8	592.6	-112.1	27.7	-5.23	17.2	15.9	0.47			
22	74.1	558.3	-73.4	26.1	-3.43	12.6	16.7	0.44			
23	77.5	565.0	-73.3	26.4	-3.42	9.5	15.7	0.40			
Absolute	57.3			35.0			(T =	39.5 ms)			
	57.3				-8.00		(T =	60.9 ms)			

				CAS	E METHOD)				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	703.9	642.1	580.3	518.5	456.7	394.9	333.1	271.3	209.5	147.7
RX	739.3	716.0	693.2	670.6	648.9	630.7	620.5	611.2	602.5	594.4
RU	703.9	642.1	580.3	518.5	456.7	394.9	333.1	271.3	209.5	147.7
RAU =	546.3 (ki	lps); RA	<u>2 = 6</u>	543.3 (ki	ps)					

Current CAPWAP Ru = 612.0 (kips); Corresponding J(RP)= 0.15; J(RX) = 0.69

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
16.9	35.89	647.3	674.8	674.8	1.11	0.23	0.23	38.0	680.6	1423

		PILE PROF	ILE AND PILE MOD	EL	
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft ³	ft
	0.0	21.4	29992.2	492.000	4.70
	77.5	21.4	29992.2	492.000	4.70
Toe Area		198.5	in ²		
Top Segme	nt Length	3.37 ft, Top Impe	edance 38 1	kips/ft/s	
Wave Spee	d: Pile Top	16807.9, Elastic 168	807.9, Overall 1	6807.9 ft/s	
Pile Damp	ing 1.00 %	, Time Incr 0.200 m	ms, 2L/c 9.2 m	S	

Total volume: 11.517 ft³, Volume ratio considering added impedance: 1.000