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ABSTRACT
We present the preliminary results of GrooveNet, a generative sys-
tem that learns to synthesize dance movements for a given audio
track in real-time. Our intended application for GrooveNet is a pub-
lic interactive installation in which the audience can provide their
own music to interact with an avatar. We investigate training artifi-
cial neural networks, in particular, Factored Conditional Restricted
Boltzmann Machines (FCRBM) and Recurrent Neural Networks
(RNN), on a small dataset of four synchronized music and motion
capture recordings of dance movements that we have captured for
this project. Our initial results show that we can train the FCRBM
on this small dataset to generate dance movements. However, the
model cannot generalize well to music tracks beyond the training
data. We outline our plans to further develop GrooveNet.
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1 INTRODUCTION
Generating human movement remains one of the most challenging
problems in computational modelling: movement is continuous,
highly dimensional, and fundamentally expressive. Recognizing
and generating everyday movements such as walking demands the
development of elaborate models that can capture the coordination
of a large set of joints [1, 27].

In this paper, we address the problem of movement generation
for the case of dance, a creative activity that best illustrates the
complexity and expressiveness of human movement. Dancing in-
volves complex cognitive and sensorimotor processes: it requires
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both fine motor control and equilibrium, accurate timing and rhyth-
mic synchronization, memory, and imagery, as well as aesthetic
qualities [3]. The way we dance in response to music depends on
the genre of both dance and music, the expertise of the dancer,
and their interpretation of the music in real-time. Beyond mere
synchronization processes, there is no well-established relationship
between movements features and musical features, except in simpli-
fied cases such as sound tracing [6, 20]. As a result, generating dance
movements from music is a highly non-linear and time-dependent
mapping problem.

We investigate how machine learning can capture the cross-
modal dependencies between synchronized sequences of musical
features andmovement parameters.We presentGrooveNet, a system
for real-time music-driven dance generation that uses artificial
neural networks to learn the relationships between audio features
and motion capture data.

The generation of human-like creative movement is necessary
for a wide range of applications, spanning animation, gaming, vir-
tual reality, and virtual characters. Our primary field of applica-
tion is artistic and aims to explore the possibilities of computer-
generated movement for creative purposes. Our music-to-dance
generative system will be used in a public interactive installation
allowing the audience to affect the movements of a dancing avatar
by playing their own music. The avatar will be rendered with non-
realistic visualizations of human movement through a holographic
display.

GrooveNet relies on a machine learning model trained on a set
of recordings of dance movements performed with dance music.
We formulate this problem as learning the effects of one sequence
on another sequence, in which both sequences are defined along
a relatively dense time dimension (e.g., as opposed to text). The
model is trained on synchronized sequences of dance and music
features, in order to generate new movements from a new music
track.

The development of GrooveNet faces a number of challenges re-
lated to the task of learning how dance movements are coordinated
with music. First, as we already discussed, the mapping between
audio features and movement parameters is highly non-linear, and
it requires the model to learn and embed complex temporal struc-
tures. Second, there are no publicly available datasets that contain
synchronized pairs of dance and music in the form of motion cap-
ture data and raw audio features. Therefore, we have recorded a
dataset of four dance performances, raising about 23 minutes of syn-
chronized movement and audio data. As a result, the model should
learn efficiently from a relatively small dataset. Third, our main
application consists of a public interactive installation allowing
the audience to provide their own music to a dancing avatar. This
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demands that movements are generated in real-time from an audio
stream and that the algorithm generalizes to new, and possibly
unheard, music sequences.

2 RELATEDWORK
In this section, we reviewmovement generation techniques that rely
on machine learning with a particular focus on dance movements
and audio-driven approaches.

2.1 Machine-Learning-Based Movement
Generation

A variety of machine learning models are used for learning and
generating human movement in the form of motion capture data.
They range from dimensionality reduction techniques [24, 27], to
Hidden Markov Models [5], Gaussian Processes [28], and neural
networks [8, 17, 26].

Dimensionality reduction techniques can capture the underly-
ing correlations behind the joint rotations representing the pos-
tures in motion capture data [24, 27]. However, such techniques
require pre-processing steps such as sequence alignments and fixed-
length representation of the data, which limit their application to
real-world dance data. Most importantly, their inability to directly
model the temporality of the movement data is critically limiting
for movement generation. Gaussian Process Latent Variable Mod-
els (GPLVMs) [28] can efficiently generalize over the variations in
human movement, but they are limited by needing heavy compu-
tational and memory resources, which makes them unsuitable for
real-time generation. Hidden Markov Models (HMMs) overcome
the limitations of the two aforementioned families of models [5],
but provide a limited expressive power in terms of capturing the
variations in the data.

Neural networks provide a better expressive power than HMMs
and depending on their size and architecture they can generate
new samples in real-time. Convolutional Autoencoders have shown
promising results in generating motion capture data with offline
control [17]. Factored Conditional Restricted Boltzmann Machine
(FCRBM), with its special architecture that is designed to support
controlling the properties of the generated data, has shown to be
able to generate movements in real-time, and learn a generalized
space of the movement variations [1, 26]. In addition, Recurrent
Neural Networks (RNNs), and in particular Long Short-Term Mem-
ory RNNs (LSTM-RNNs) are used to learning and generation move-
ments [8] in an unsupervised and uncontrolled manner.

GrooveNet employs a similar machine learning model as the one
used by Taylor and Hinton [26] and Alemi et al. [1]. As our initial
experiments showed that it is more challenging to train RNNs on
our small dataset, we have yet to employ RNN-based architectures
such as the seq-to-seq model [2, 25], which is a more relevant
architecture for our task of sequence-to-sequence mapping.

2.2 Dance Movement Generation
Many of the existing machine-learning-based movement genera-
tion techniques have been applied to dance. Hidden Markov Models
and their extensions have been applied to the synthesis of dance
movements [5, 22]. In particular, Wang et al. trained Hierarchical
Hidden Markov Models with non-parameteric output distributions
(NPHHMM) on motion capture data containing ballet walk, ballet

roll, disco, and complex disco [29]. Another approach relies on
dynamical systems modelling to capture the dynamics of dance
movements. Li et al. [19] used Linear Dynamical Systems (LDS) to
learn and generate dance movements. They train their model on
20 minutes of dance movement of a professional dancer, perform-
ing mostly disco. Their model automatically learns motion textons,
representing local movement dynamics. The intuition behind the
textons is that each complex movement sequence consists of simple
repetitive patterns. For example, a dance sequence might consist
of repeated moves such as spin, hop, kick, and tiptoeing. The ap-
proach allows for real-time synthesis and provides a number of
ways to generate movements, such as key-framing and noise-driven
generation.

Recently, artificial neural networks have been successfully ap-
plied to the synthesis of dance movements. Donahue et al. [11] fo-
cused on generating choreographies, represented as step charts that
encode the timing and position of steps, for the Dance Dance Revo-
lution game. They used LSTMs to generate a new step chart, given
a raw audio track. Their method, however, is limited to the genera-
tion of sequences of discrete step indicators rather than continuous
movements. Crnkovic-Friis and Crnkovic-Friis [8] used Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNNs) to learn
and generate choreography. They trained the model on 6 hours of
contemporary dance data captured using Microsoft Kinect. This ap-
proach does not provide any methods for controlling the generation
and does not accompany any music.

Controlling ML-based Movement Generation. There are a number
of different methods to control the qualities of the movements
generated by amachine learningmodel: 1) train a separatemodel for
each realization of a movement quality, 2) use parametric statistical
distributions to capture the variations of movement [15, 31], and 3)
design machine learning models specifically to accommodate the
task of controlling the generation process [26].

For GrooveNet, we employ the generation controlling approach
based on the FCRBM architecture proposed by Taylor and Hinton
[26]. However, our work differs from the aforementioned neural-
network-based dance generation approaches in that we attempt to
generate continuous dance movements controlled by a given audio
track.

2.3 Audio-Driven Movement Generation
Speech-Driven Synthesis. Many approaches to movement gener-

ation for virtual avatars rely on audio signals to guarantee that the
synthesized gestures are consistent with other modalities. In gen-
eral, the input audio is a speech signal that drives the generation of
movements of the lips [30], eyebrows [10], head [16], or hands [18].
In this case, the goal is to ensure that the motor behavior is realistic
and consistent with both the content and the expression of the
input speech utterances.

Most approaches rely on probabilistic models such as Hidden
Markov Models (HMMs) and its extensions [10, 16, 30] or Hidden
Conditional Random Fields [18]. Chiu and Marsella [7] proposed
Hierarchical Factored Conditional Restricted Boltzmann Machines
(HFCRBM) to learn and generate gestures, controlled by the prosody
of speech. Using a set of training data that includes motion capture
recordings of gestures accompanied with the voice recordings of
the actors (represented by pitch, intensity, and correlation), the
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Figure 1: The mapping approaches: (a) one-to-many, (b) syn-
chronized many-to-many, and (c) unsynchronized many-to-
many. Each rectangle represents a single mocap frame and
each ellipse represents a single audio descriptor frame. Con-
nected frames represent consecutive frames.

model learns the relationship between the prosody of speech and
the movement. The model then generates novel gestures given a
new set of voices.

Music-Driven Dance Generation. While music-driven dance gen-
eration also considers cross-modal sequence-to-sequence mapping,
it is important to underline the complexity of music-to-dance map-
ping. While in speech the acoustic and motion signals are often
generated by the same underlying process, the relationships be-
tween music and movement in dance are far more complex and
arbitrary. They depend on the genre and context, the expertise
and personal characteristics of the performer, and they present
a complex hierarchy of temporal structures, spanning from the
short-term synchronization of gestures to the beat to long-term
evolutions of the dance patterns.

Ofli et al. introduced an audio-driven dancing avatar using HMM-
based motion synthesis [21]. For training, their approach requires
movement to be manually annotated into specific patterns (or dance
figures) synchronized with the beats. For the generation, the audio
is segmented using beat detection, and the recognition of the pat-
terns fromMel-Frequency Cepstral Coefficients is used to select the
motion patterns to generate. Their approach was further extended
to include unsupervised analysis of the dance patterns [22]. Ofli
et al. describe three types of models: musical measure models and
exchangeable figures models, which respectively represent many-to-
one and one-to-many associations between musical patterns and
dance figures, as well as figure transition model that capture the
intrinsic dependencies of dance figures. Yet, one of the main limita-
tion of these approaches lies in the synthesis approach, that relies
on the classification of the input musical patterns, and therefore
gives few opportunities for generating novel movement patterns.

GrooveNet differs from the aforementioned music-driven dance
generation approaches in that it does not rely on classification or
segmentation of the audio signal. The rationale behind GrooveNet is
to allow the model to learn a continuous cross-modal mapping from
the audio information tomovement data in an unsupervisedmanner,
as opposed to a supervised classification-based approach in which
one would limit the generalizability of the model by restricting the
mapping to a set of pre-defined patterns.

3 PROPOSED APPROACHES
In this paper, we aim to learn the relationships between low-level
audio features and movement parameters for the continuous syn-
thesis of full-body movements, without any supervision imposed
on the mapping. With GrooveNet, we are investigating several
directions to address this problem. This involves the pipeline of
the system, the choice of a suitable machine learning model, and
different methods for representing the audio data.

Pipeline. Three strategies for mapping audio data to motion
capture (mocap) data are illustrated in Figure 1: (a) one-to-many
mapping, (b) synchronized many-to-many mapping, and (c) unsyn-
chronized many-to-many mapping. While in all approaches the
model takes a sequence of mocap frames as input, they differ in
how the audio descriptors are involved. In a one-to-many mapping
approach, the audio descriptor at time t together with the input
mocap history determines the generated mocap frame at time t .
In a synchronized many-to-many mapping, for each mocap frame,
there exist an audio descriptor. The model takes a sequence of mo-
cap history corresponding to the frames at the time interval of
[t − N , t − 1], and a sequence of audio descriptors, with the same
length as the history, and generates the output mocap frame at
time t . In an unsynchronized many-to-many mapping, the model
takes the mocap history and the audio descriptor sequences that
have different lengths, and it is up to the model to determine their
temporal correlations. In this paper, we present a model following
the one-to-many mapping approach.

Machine Learning Model. The two machine learning models that
we are employing are Factored Conditional Restricted Boltzmann
Machines (FCRBMs) and Long Short-Term Memory Recurrent Neu-
ral Networks (LSTM-RNN). FCRBM has shown to be a suitable
choice for movement generation, in particular to allow for a fine
control over the generated movements [1, 26] and because it can
generalize over the space of variations. The LSTM-RNN is power-
full to model time series with complex temporal structures, and
was shown efficient for controlled character and hand-writing gen-
eration [14], as well as uncontrolled dance movement generation
[8].

Our initial experiments show that compared to the LSTM-RNN,
it is easier to train the FCRBM on real-valued, continuous data. Also,
FCRBM works better on smaller training sets, and it is faster during
generation. While FCRBM works better for the one-to-many map-
ping approach, the LSTM-RNN is more suitable for many-to-many
approaches. As our initial experiments have not been successful
with the LSTM-RNN yet, in this paper, we only report the experi-
ments using FCRBM.

Audio Representation. With respect to representing audio data,
we follow two different approaches: 1) feature extraction and 2) fea-
ture learning. We describe our approach to audio feature extraction
in Section 4. For feature learning, we have recently started training
GrooveNet on audio features based on the temporal embeddings
from a WaveNet-style auto-encoder [12], which is trained on raw
audio frommusical instrument sounds. In this paper, we only report
the results from training GrooveNet with the extracted features.
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Figure 2: Overview of GrooveNet’s data processing pipeline for the audio and movement modalities.

4 DATASET AND FEATURE EXTRACTION
Few motion capture datasets include dance movement data. To our
knowledge, no dataset of synchronized music and motion capture
data is currently available online. We created a dataset contain-
ing four performances of a dancer. The music tracks are made by
Philippe Pasquier and Philippe Bertrand at the Robonom sound
studio in France using the StyleMachine lite from the Metacreative
Technologies company1. We used three of the generated songs that
belong to the genre of electronic dance music, with a regular tempo
varying between 125 and 135 beats per minute.

The dancer’s movements were captured using a 40-cameras Vi-
con optical motion capture system. The motion capture data was
post-processed and synchronized with the audio data. The resulting
dataset contains about 23 minutes of motion capture data recorded
at 60 frames-per-second, giving a total of 82151 frames.We recorded
a total of four sequences, with two sequences dancing to the first
song, and two sequences dancing to the second and the third songs.

4.1 Audio Data Representation and Feature
Extraction

Our goal is to generate movement in real-time from an audio stream.
To that end, the audio signal must be represented by a sequence of
features that describe the acoustic properties of the music continu-
ously, with a similar temporal density as the movement data.

For each audio file, we extracted a set of low-level features at
the same framerate as the motion capture data. We used a stan-
dard set of features described in the music information retrieval
literature [4, 23], including low-level features (RMS level, Bark
bands), spectral features (energy in low/middle/high frequencies,
spectral centroid, spectral spread, spectral skewness, spectral kurto-
sis, spectral rolloff, spectral crest, spectral flux, spectral complexity),
timbral features (Mel-Frequency Cepstral Coefficients, Tristimulus),
melodic features (pitch, pitch salience and confidence computed
with the YIN algorithm [9], inharmonicity, dissonance). The fea-
tures were computed using the Essentia open-source library [4],
with a window size of 66.7 ms and a hop size of 16.7 ms. The fea-
ture sequences were filtered with a finite impulse response (FIR)
low-pass filter with a cutoff frequency of 5 Hz, in order to guar-
antee a smooth evolution of the audio descriptor that matches the
time scale of dance movements. The resulting sequences are syn-
chronized with the motion capture data and contain 84 dimensions
(Figure 2-top).

4.2 Motion Capture Data Representation
The original motion capture data uses a skeleton with 30 joints,
resulting in 93 dimensions including the root position, with their
1https://metacreativetech.com

th

toto<

Context
(factor)

Hidden	Layer

Mocap OutputMocap History

Audio	 Features

Figure 3: The architecture of a Factored CRBM with audio
features fed into its context unit and mocap feature to its
output/visible units.

rotations represented in Euler angles. The data is recorded at 60
frames-per-second. We converted the Euler angle representations
to exponential maps [13] to avoid loss of degrees-of-freedom and
any discontinuities. We removed the empty and fixed dimensions
of the data. We also replaced the root’s global orientation with
its rotation velocity along the axis that is perpendicular to the
floor plane and replaced the root’s global translation with the 2-
dimensional velocity of the root as projected on the floor plane.
The resulting dataset contains 90151 frames, each represented by a
52-dimensional vector (Figure 2-bottom).

5 THE MACHINE LEARNING PROCESSES
5.1 Factored Conditional Restricted Boltzmann

Machines
We use a Factored Conditional Restricted Boltzmann Machine
(FCRBM) [26], shown in Figure 3, as the underlying machine learn-
ing model of this version of GrooveNet. FCRBM is an energy-based
generative model that learns to predict its output given a sequence
of input data, modulated by its context data. Using a set of three
multiplicative gates, the values of the context unit modulate the
weights between the condition units (history data), the hidden units,
and the output visible units. This arrangement allows the context
data to directly, and in a non-linear way, control the network’s
output by manipulating the networks energy landscape.

FCRBM supports a multi-dimensional discrete or continuous
context variable, which allows this model to capture and represent
different qualities and semantics of human movement. Furthermore,
one can interpolate or extrapolate the context values in order to
create new movements that did not exist in the training data. In
GrooveNet, we feed the audio features to this context unit to allow
the model to learn the relationship between the audio features and
the dynamic processes behind the movements in the training data.

https://metacreativetech.com
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Figure 4: Some still frames from the generated movement
patterns.

5.2 Learning
We train the model to predict the next motion capture frame at time
t , given a recent history of the motion capture frames [t −N , t − 1],
where N is the order of the model, representing the number of past
motion capture frames to include in the prediction. The prediction
is modulated by a single frame of audio features at time t , fed to
the context unit.

5.3 Generation
The generation is done using an iterative sampling process. The
model predicts one frame of the movement at a time, given previous
frames of movement and the audio features. It then uses the newly
generated frame of movement as part of the input for predicting
the next frame and continues the generation process.

6 PRELIMINARY RESULTS AND DISCUSSION
In this section, we present the preliminary results of GrooveNet. All
the animated outputs of the results are available on the accompany-
ingwebpage of the paper at: http://omid.al/groovenet-material-ml4c/.

6.1 Learning and Generating Movement
Patterns

We start our investigation by learning the individual dance patterns
that exist in our training data to see if the model can generate the
patterns independently of the audio data. To this end, we manually
segment the dance sequences based on the main parts of the song,
as illustrated in Figure 5. This annotation allows us to assess where
the model can effectively encode consistent dance patterns. We
then use a one-hot encoding scheme to label each pattern. Once
the model is trained, we can then generate each pattern by feeding
the desired label to the context unit of the FCRBM.

The results show that the FCRBM is able to learn the patterns
from a very small training set (only one mocap sequence of about 4
minutes). The model generates the same pattern continuously and
repetitively as long as the same label is given to it while changing
the label will cause the model to transition to another pattern. Still
frames from the generated patterns for the first track are shown in
Figure 4. The videos of the generated patterns are also available in
the supplementary material.

6.2 Dancing with Training Songs
In the previous experiment, we assessed the ability of the model to
encode independent dance patterns from the manual annotation
of the dataset. We now consider a fully unsupervised approach,
where the model is trained with the entire dataset composed of

Figure 5: An example of manual segmentation of the first
song used for preliminary experiments in generating move-
ment patterns.

Figure 6: Visualization of the hips’ position along the verti-
cal axis (bottom) and the audio amplitude (top).

four performances without any additional annotation. Our goal is
to evaluate whether the model can learn the mapping between the
audio features and the movement parameters on longer sequences,
with a larger corpus of music and dance. As the first step in this
direction, we assess the movements generated by the model using
as input data the songs already ‘heard’ during the training.

The results, as presented in the supplementary materials, show
that the FCRBM is able to generate dance patterns consistent with
the training set. Furthermore, the model captured the synchroniza-
tion patterns between the rhythmic structure of the song and the
generated movement (Figure 6). While the generated dance move-
ments are plausible, we can note that the movements are at times
jerky and can present artifacts such as foot sliding. The novelty in
the generated movements remains to be further investigated.

6.3 Dancing with Unheard Songs
We evaluate the generalizability of the model, testing its perfor-
mance on the songs that were not included in the training data.
The results, as shown on the accompanying website, show that
the FCRBM is not generalizing beyond the songs that exist in the
training data.

6.4 Computational Performance
A model with 500 hidden units, 500 factors, and an order of 30 past
frames consists of 1,452,720 number of trainable parameters, and
it takes on average 0.0115 seconds to generate each frame on an

http://omid.al/groovenet-material-ml4c/
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Intel(R) Core(TM) i7-4850HQ CPU at 2.30GHz. This is fast enough
to generate the movements at 60 frames-per-second in real-time.

7 CONCLUSION AND ROAD MAP
We presented the initial results from our GrooveNet project, in
which we address the generation of dance movements in real-time
from musical audio. This problem involves learning a cross-modal
mapping between acoustic features and movement data and gener-
ating dance movements from a new audio sequence.

We are investigating multiple audio-to-movement mapping ap-
proaches, machine learning models (FCRBM and LSTM-RNN), and
description methods of the musical information (features extrac-
tion vs. feature learning). Among these, we presented the results of
training an FCRBM on extracted audio descriptors that are used in
the audio signal processing community.

Our preliminary analysis shows that our model can learn and
generate basic dance movements, independent of the audio data. In
addition, it can learn and generate movements based on the song
that it is trained with. However, the model currently falls short in
generalizing beyond those songs in the training data and highly
overfits. We believe that this is mainly due to our small and sparse
training data set.

To further develop GrooveNet, we plan on following a number of
directions: 1) capturing more synchronized dance and music data;
2) taking a semi-supervised approach and pre-train a network on
more motion capture data of dance moves that do not accompany
any music. Together with a pre-trained network that has learned
audio embeddings, we hope that the model becomes more robust
to ‘unheard’ songs; and 3) experiment more with LSTM-RNNs,
seq-to-seq style architectures, and many-to-many mappings.
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