

MEAP Edition
Manning Early Access Program

Groovy in Action, Second Edition, version 11

Copyright 2011 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning.com/

Table of Contents

Part I: The Groovy language
1 Your way to Groovy
2 Overture: The Groovy basics
3 The simple Groovy datatypes
4 The collective Groovy datatypes
5 Working with closures
6 Groovy control structures
7 Object orientation, Groovy style

 8 Dynamic programming with Groovy
 9 Compile-time meta programming and AST Transformations

Part II: Around the Groovy library
10 Working with builders

 11 Working with the GDK
 12 Database programming with Groovy
 13 Integrating Groovy
 14 Working with XML

Part III: Everyday Groovy
 15 Tips and tricks
 16 Unit testing with Groovy
 17 Concurrent Groovy with GPars
 18 Domain Specific Languages (DSLs)
 19 The Groovy ecosystem
 20 Groovy best practice patterns

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=571
 Licensed to Charles Wise <ctwise@gmail.com>

1Your way to Groovy

A smooth introduction to Groovy

What Groovy is all about

How it makes your programming life easier

How to start

Seek simplicity, and distrust it.
-- Alfred North Whitehead

You've heard of Groovy, maybe even installed the distribution and tried some
snippets from the online tutorials. Perhaps your project has adopted Groovy as a
dynamic extension to Java and you now seek information about what you can do
with it. You may have been acquainted with Groovy from using the Grails web
application platform, the Griffon desktop application framework, the Gradle build
system or the the Spock testing facility and now look for background information
about the language that these tools are built upon. This book delivers to that
purpose but you can expect even more from learning Groovy.

Groovy will give you some quick wins, whether it's by making your Java code
simpler to write, by automating recurring tasks, or by supporting ad-hoc scripting
for your daily work as a programmer. It will give you longer-term wins by making
your code simpler to read. Perhaps most important, it's a pleasure to use.

Learning Groovy is a wise investment. Groovy brings the power of advanced
language features such as closures, dynamic methods, and the meta object protocol

1

Licensed to Charles Wise <ctwise@gmail.com>

 m

to the Java platform. Your Java knowledge will not become obsolete by walking
the Groovy path. Groovy will build on your existing experience and familiarity
with the Java platform, allowing you to pick and choose when you use which
tool--and when to combine the two seamlessly.

Groovy follows a pragmatic “no drama”1 approach: it obeys the Java object
model and always keeps the perspective of a Java programmer. It doesn't force you
into any new programming paradigm but offers you those advanced capabilities
that you legitimately expect from a “top of stack” language.
Footnote 1 thanks to Mac Liaw for this wording

This first chapter provides background information about Groovy and
everything you need to know to get started. It starts with the Groovy story: why
Groovy was created, what considerations drive its design, and how it positions
itself in the landscape of languages and technologies. The next section expands on
Groovy's merits and how they can make life easier for you, whether you're a Java
programmer, a script aficionado, or an agile developer.

We strongly believe that there is only one way to learn a programming
language: by trying it. We present a variety of scripts to demonstrate the compiler,
interpreter, and shells, before listing some plug-ins available for widely used IDEs
and where to find the latest information about Groovy.

By the end of this chapter, you will have a basic understanding of what Groovy
is and how you can experiment with it.

We--the authors, the reviewers, and the editing team--wish you a great time
programming Groovy and using this book for guidance and reference.

1.1 The Groovy story
At GroovyOne 2004--a gathering of Groovy developers in London--James
Strachan gave a keynote address telling the story of how he arrived at the idea of
inventing Groovy.

He and his wife were waiting for a late plane. While she went shopping, he
visited an Internet cafe and spontaneously decided to go to the Python web site and
study the language. In the course of this activity, he became more and more
intrigued. Being a seasoned Java programmer, he recognized that his home
language lacked many of the interesting and useful features Python had invented,
such as native language support for common datatypes in an expressive syntax and,
more important, dynamic behavior. The idea was born to bring such features to
Java.

2

Licensed to Charles Wise <ctwise@gmail.com>

 m

This led to the main principles that guide Groovy's development: to be a feature
rich and Java friendly language, bringing the attractive benefits of dynamic
languages to a robust and well-supported platform.

Figure 1.1 shows how this unique combination defines Groovy's position in the
varied world of languages for the Java platform.2 We don't want to offend anyone
by specifying exactly where we believe any particular other language might fit in
the figure, but we're confident of Groovy's position.
Footnote 2 http://www.robert-tolksdorf.de/vmlanguages.html lists about 240 (!) languages targeting the Java
Virtual Machine.

Figure 1.1 The landscape of JVM-based languages.
Groovy is feature rich and Java friendly--it excels at
both sides instead of sacrificing one for the sake of the
other.

In the early days of Groovy, we were mainly asked how it would compare to
Java, Beanshell, Pnuts, and embedded expression languages. The focus was clearly
on Java-friendliness. Then the focus shifted to dynamic capabilities and the debate
went on putting Groovy, JavaScript (Rhino), Jython, and JRuby side by side. Since
recently, we see more comparison with JavaFX, Clojure, Scala, Fan, Nice,
Newspeak and Jaskell. Most of them introduce the functional programming
paradigm to the Java platform, which makes a comparison on the feature
dimension rather difficult. They are simply different. Some other JVM languages
like Alice and Fortress are even totally unrelated. By the time you read this, some
new kids are likely to have appeared on the block and the pendulum may have
swung in a totally different direction. But with the landscape picture above you are
able to also position upcoming languages.

Some languages may offer more advanced features than Groovy. Not so many

3

Licensed to Charles Wise <ctwise@gmail.com>

http://www.robert-tolksdorf.de/vmlanguages.html

languages may claim to fit equally well to the Java language. None can currently
touch Groovy when you consider both aspects together: Nothing provides a better
combination of Java friendliness and a complete feature set.

With Groovy being in this position, what are its main characteristics, then?

1.1.1 What is Groovy?
Groovy is an optionally typed, dynamic language for the Java platform with many
features that are inspired by languages like Python, Ruby, and Smalltalk, making
them available to Java developers using a Java-like syntax. Unlike other alternative
languages, it is designed as a companion, not a replacement for Java.

Groovy is often referred to as a scripting language--and it works very well for
scripting. It's a mistake to label Groovy purely in those terms, though. It can be
precompiled into Java bytecode, integrated into Java applications, power web
applications, add an extra degree of control within build files, and be the basis of
whole applications on its own--Groovy is too flexible to be pigeon-holed.

What we can say about Groovy is that it is closely tied to the Java platform.
This is true in terms of both implementation (many parts of Groovy are written in
Java, with the rest being written in Groovy itself) and interaction. When you
program in Groovy, in many ways you're writing a special kind of Java. All the
power of the Java platform--including the massive set of available libraries--is
there to be harnessed.

Does this make Groovy just a layer of syntactic sugar? Not at all. Although
everything you do in Groovy could be done in Java, it would be madness to write
the Java code required to work Groovy's magic. Groovy performs a lot of work
behind the scenes to achieve its agility and dynamic nature. As you read this book,
try to think every so often about what would be required to mimic the effects of
Groovy using Java. Many of the Groovy features that seem extraordinary at
first--encapsulating logic in objects in a natural way, building hierarchies with
barely any code other than what is absolutely required to compute the data,
expressing database queries in the normal application language before they are
translated into SQL, manipulating the runtime behavior of individual objects after
they have been created--all of these are tasks that Java wasn't designed for.

Let's take a closer look at what makes Groovy so appealing, starting with how
Groovy and Java work hand-in-hand.

44

Licensed to Charles Wise <ctwise@gmail.com>

1.1.2 Playing nicely with Java: seamless integration
Being Java friendly means two things: seamless integration with the Java Runtime
Environment and having a syntax that is aligned with Java.

SEAMLESS INTEGRATION
Figure 1.2 shows the integration aspect of Groovy: It runs inside the Java Virtual
Machine and makes use of Java's libraries (together called the Java Runtime
Environment or JRE). Groovy is only a new way of creating ordinary Java
classes--from a runtime perspective, Groovy is Java with an additional jar file as a
dependency.

Figure 1.2 Groovy and Java
join together in a
tongue-and-groove fashion.

Consequently, calling Java from Groovy is a nonissue. When developing in
Groovy, you end up doing this all the time without noticing. Every Groovy type is
a subtype of java.lang.Object. Every Groovy object is an instance of a type
in the normal way. A Groovy date is a java.util.Date . You can call all
methods on it that you know are available for a Date and you can pass it as an
argument to any method that expects a Date.

Calling into Java is an easy exercise. It is something that all JVM languages
offer--at least the ones worth speaking of. They all make it possible, some by
staying inside their own non-Java abstractions, some by providing a gateway.
Groovy is one of the few that does it its own way and the Java way at the same
time, since there is no difference.

Integration in the opposite direction is just as easy. Suppose a Groovy class
MyGroovyClass is compiled into MyGroovyClass.class and put on the
classpath. You can use this Groovy class from within a Java class by typing

new MyGroovyClass(); // create from Java

You can then call methods on the instance, pass the reference as an argument to
methods, and so forth. The JVM is blissfully unaware that the code was written in

5

Licensed to Charles Wise <ctwise@gmail.com>

Groovy. This becomes particularly important when integrating with Java
frameworks that call your class where you have no control over how that call is
effected.

The “interoperability” in this direction is a bit more involved for alternative
JVM languages. Yes, they may “compile to bytecode” but that does not mean
much for itself, since one can produce valid bytecode that is totally
incomprehensible for a Java caller. A language may not even be object-oriented
and provide classes and methods. And even if it does, it may assign totally
different semantics to those abstractions. Groovy in contrast fully stays inside the
Java object model. Actually, compiling to class files is only one of many ways to
integrate Groovy into your Java project. The integration chapter describes the full
range of options. The integration ladder in figure 1.3 arranges the integration
criteria by their significance.

Figure 1.3 The integration ladder shows
increasing cross-language support from
simple calls for interoperability up to
seamless tool integration.

One step up on the integration ladder and we meet the issue of references. A
Groovy class may reference a Java class (that goes without saying) and a Java class
may reference a Groovy class, as we have seen above. We can even have circular
references and groovyc compiles them all transparently. Even better, the leading
IDEs provide cross-language compile, navigation, and refactoring such that you

6

Licensed to Charles Wise <ctwise@gmail.com>

hardly ever need to care about the project build setup. You are free to choose Java
or Groovy when implementing any class for that matter. Such a tight build-time
integration is a challenge for every other language.

Overloaded methods is the next rung where candidates slip off. Imagine you set
out to implement the Java interface java.io.Writer in any non-Java language.
It comes with three versions of “write” that take one parameter: write(int c),
write(String str) , and write(char[] buf) . Implementing this in
Groovy is trivial, it's exactly like in Java. The formal parameter types distinguish
which methods you override. That's one of many merits of optional typing.
Languages that are solely dynamically typed have no way of doing this.

But the buck doesn't stop here. The Java/Groovy mix allows annotations and
interfaces being defined in either language and implemented and used in the other.
You can subclass in any combination even with abstract classes and “sandwich”
inheritance like Java - Groovy - Java or Groovy - Java - Groovy in arbitrary depth.
It may look exotic at first sight but we actually needed this feature in customer
projects. We'll come back to that. Of course, this integration presupposes that your
language knows about annotations and interfaces like Groovy does.

True seamless integration means that you can take any Java class from a given
Java codebase and replace it with a Groovy class. Likewise, you can take any
Groovy class and rewrite it in Java both without touching any other class in the
codebase. That's what we call a drop-in replacement , which imposes further
consideration about annotations, static members, and accessibility of the used
libraries from Java.

Finally, generated bytecode can be more or less Java-tool-friendly. There are
more and more tools on the market that directly augment your bytecode, be it for
gathering test coverage information or “weaving aspects” in. These tools do not
only expect bytecode to be valid but also to find well-known patterns in it such as
the Java and Groovy compiler provide. Bytecode generated by other languages is
often not digestable for such tools.

Alternative JVM languages are often attributed as working “seamlessly” with
Java. With the integration ladder above, you can check to what degree this applies:
calls into Java, calls from Java, bidirectional compilation, inheritance intermix,
mutual class substitutability, and tool support. We didn't even consider security,
profiling, debugging and other Java “architectures”. So much for the platform
integration, now onto the syntax.

7

Licensed to Charles Wise <ctwise@gmail.com>

SYNTAX ALIGNMENT
The second dimension of Groovy's friendliness is its syntax alignment. Let's
compare the different mechanisms to obtain today's date in various languages in
order to demonstrate what alignment should mean:

import java.util.*; // Java
Date today = new Date(); // Java

today = new Date() // Groovy

require 'date' # Ruby
today = Date.new # Ruby

import java.util._ // Scala
var today = new Date // Scala

(import '(java.util Date)) ; Clojure
(def today (new Date)) ; Clojure
(def today (Date.)) ; Clojure alternative

The Groovy solution is short, precise, and more compact than regular Java.
Groovy does not need to import the java.util package or specify the Date
type. This is very handy when using Groovy to evaluate user input. In those cases,
one cannot assume that the user is proficient in Java package structures or willing
to write more code than necessary. Additionally, Groovy doesn't require
semicolons when it can understand the code without them. Despite being more
compact, Groovy is fully comprehensible to a Java programmer.

The Ruby solution is listed to illustrate what Groovy avoids: a different
packaging concept (require), a different comment syntax, and a different
object-creation syntax. Scala introduces a new wildcard syntax with underscores
and has its own way of declaring whether a reference is supposed to be (in Java
terms) “final” or not (var vs. val). The user has to provide one or the other.
Clojure doesn't support wildcard imports as of now and shows two alternative
ways of instantiating a Java class, both of which differ syntactically from Java.

Although all the alternative notations make sense in themselves and may even
be more consistent than Java, they do not align as nicely with the Java syntax and
architecture as Groovy does. Throw into the mix that Groovy is the only language
besides Java that fully supports the Java notation of generics and annotations and
you easily retrace why we position the Groovy syntax as being perfectly aligned
with Java.

Now you have an idea what Java friendliness means in terms of integration and

88

Licensed to Charles Wise <ctwise@gmail.com>

syntax alignment. But how about feature richness?

1.1.3 Power in your code: a feature-rich language
Giving a list of Groovy features is a bit like giving a list of moves a dancer can
perform. Although each feature is important in itself, it's how well they work
together that makes Groovy shine. Groovy has three main types of features over
and above those of Java: language features, libraries specific to Groovy, and
additions to the existing Java standard classes (GDK). Figure 1.3 shows some of
these features and how they fit together. The shaded circles indicate the way that
the features use each other. For instance, many of the library features rely heavily
on language features. Idiomatic Groovy code rarely uses one feature in
isolation--instead, it usually uses several of them together, like notes in a chord.

Figure 1.4 Many of the additional libraries and JDK
enhancements in Groovy build on the new language
features. The combination of the three forms a “sweet spot”
for clear and powerful code.

Unfortunately, many of the features can't be understood in just a few words.
Closures, for example, are an invaluable language concept in Groovy, but the word
on its own doesn't tell you anything. We won't go into all the details now, but here
are a few examples to whet your appetite.

LISTING A FILE: CLOSURES AND I/O ADDITIONS
Closures are blocks of code that can be treated as first-class objects: passed around
as references, stored, executed at arbitrary times, and so on. Java's anonymous
inner classes are often used this way, particularly with adapter classes, but the
syntax of inner classes is ugly, and they're limited in terms of the data they can
access and change.

File handling in Groovy is made significantly easier with the addition of

9

Licensed to Charles Wise <ctwise@gmail.com>

various methods to classes in the java.io package. A great example is the
File.eachLine method. How often have you needed to read a file, a line at a
time, and perform the same action on each line, closing the file at the end? This is
such a common task, it shouldn't be difficult--so in Groovy, it isn't.

Let's put the two features together and create a complete program that lists a file
with line numbers:

def number = 0
new File('data.txt').eachLine { line ->

 number++
 println "$number: $line"

}

which prints

1: first line
2: second line

The curly braces enclose the closure. It is passed as an argument to File's new
eachLine method which in turn calls back the closure for each line that it reads,
passing the current line as an argument.

PRINTING A LIST: COLLECTION LITERALS AND SIMPLIFIED PROPERTY
ACCESS
java.util.List and java.util.Map are probably the most widely used
interfaces in Java, but there is little language support for them. Groovy adds the
ability to declare list and map literals just as easily as you would a string or
numeric literal, and it adds many methods to the collection classes.

Similarly, the JavaBean conventions for properties are almost ubiquitous in
Java, but the language makes no use of them. Groovy simplifies property access,
allowing for far more readable code.

Here's an example using these two features to print the package for each of a
list of classes. Note that the word clazz is not class because that would be a Groovy
keyword--exactly like in Java. Although Java would allow a similar first line to
declare an array, we're using a real list here--elements could be added or removed
with no extra work:

def classes = [String, List, File]
for (clazz in classes) {

 println clazz.package.name
}

1010

Licensed to Charles Wise <ctwise@gmail.com>

which prints

java.lang
java.util
java.io

In Groovy, you can even avoid such commonplace for loops by applying
property access to a list--the result is a list of the properties. Using this feature, an
equivalent solution to the previous code is

println([String, List, File]*.package*.name)

to produce the output

[java.lang, java.util, java.io]

Pretty cool, eh? The star character is optional in the above code. We add it to
emphasize that the access to package and name is spread over the list and thus
applied to every item in it.

XML HANDLING THE GROOVY WAY: GPATH WITH DYNAMIC PROPERTIES
Whether you're reading it or writing it, working with XML in Java requires a
considerable amount of work. Alternatives to the W3C DOM make life easier, but
Java itself doesn't help you in language terms--it's unable to adapt to your needs.
Groovy allows classes to act as if they had properties at runtime even if the names
of those properties aren't known when the class is compiled. GPath was built on
this feature, and it allows seamless XPath-like navigation of XML documents.

Suppose you have a file called customers.xml such as this:

<?xml version="1.0" ?>
<customers>
 <corporate>

 <customer name="Bill Gates" company="Microsoft" />
 <customer name="Steve Jobs" company="Apple" />
 <customer name="Jonathan Schwartz" company="Sun" />

 </corporate>
 <consumer>

 <customer name="John Doe" />
 <customer name="Jane Doe" />

 </consumer>
</customers>

You can print out all the corporate customers with their names and companies
using just the following code.

11

Licensed to Charles Wise <ctwise@gmail.com>

 m

13

def customers = new XmlSlurper().parse(new File('customers.xml'))
for (customer in customers.corporate.customer) {

 println "${customer.@name} works for ${customer.@company}"
}

which prints

Bill Gates works for Microsoft
Steve Jobs works for Apple
Jonathan Schwartz works for Sun

Note that Groovy cannot possibly know anything in advance about the elements
and attributes that are available in the XML file. It happily compiles anyway.
That's one capability that distinguishes a dynamic language.

SCRIPTING THE WEB
For closing up we show a little trick that Scott Davis presented at JavaOne 2009:
fetching a rhyme from a REST web service and evaluating the result as if it was
Groovy code. This code will print all rhymes to movie . Expect your favorite
programming language to be included!

def text = "http://azarask.in/services/rhyme/?q=movie".toURL().text
for (rhyme in evaluate(text)) println rhyme

The term scripting refers to the ability to take a string of program code and
evaluate it at runtime. That string may be given as user input, read from a database,
or fetched from the web like above. The text we fetch happens to be so simple3 that
we can treat it is as valid Groovy code that denotes a list of Strings. We don't need
to write a parser. The Groovy parser does all the work.
Footnote 3 It is actually JavaScript Object Notation (JSON) format.

Even trying to demonstrate just a few features of Groovy, you've seen other
features in the preceding examples--string interpolation with GString, simpler
for loops, optional typing, and optional statement terminators and parentheses,
just for starters. The features work so well with each other and become second
nature so quickly, you hardly notice you're using them.

Although being Java friendly and feature rich are the main driving forces for
Groovy, there are more aspects worth considering. So far, we have focused on the
hard technical facts about Groovy, but a language needs more than that to be
successful. It needs to attract people. In the world of computer languages, building
a better mousetrap doesn't guarantee that the world will beat a path to your door. It
has to appeal to both developers and their managers, in different ways.

12

Licensed to Charles Wise <ctwise@gmail.com>

14

1.1.4 Community-driven but corporate-backed
For some people, it's comforting to know that their investment in a language is
protected by its adoption as a standard. This is one of the distinctive promises of
Groovy. Since the passage of JSR-241, Groovy is the second language under
standardization for the Java platform (the first being the Java language).

The size of the user base is a second criterion. The larger the user base, the
greater the chance of obtaining good support and sustainable development.
Groovy's user base has grown beyond all expectations. Recent polls suggest that
Groovy is used in the majority of all organizations that develop professionally with
Java, much higher than any alternative language. Groovy is regularly covered in
Java conferences and publications, and virtually any Java open-source project that
allows scripting extensions supports Groovy. Groovy and Grails mailinglists are
the most busy ones at codehaus. Groovy has become an important item in many
developers CVs and job descriptions.

Many corporations support Groovy in various ways. Sun Microsystems, Inc.
integrates Groovy support in their NetBeans IDE tool suite, presents Groovy at
JavaOne, and pushes forward the idea of multiple language on the JVM like in the
JSRs 241 (Groovy), 223 (Scripting Integration), and 292 (InvokeDynamic). Oracle
Corporation has a long-standing tradition of using Groovy in a number of products
just like other big players including IBM and SAP. While the development of
Groovy has always been driven by its community, it also profited from financial
backing. Sustainability of the Groovy development was first sponsored by Big Sky
Technology, then by G2One and recently taken over by SpringSource. Big thanks
to all that made this development possible!

Commercial support is also available if needed. Many companies offer training,
consulting and engineering for Groovy, including the ones that we authors work
for (alphabetically): ASERT, Canoo, and SpringSource.

Attraction is more than strategic considerations, however. Beyond what you can
measure is a gut feeling that causes you to enjoy programming or not.

The developers of Groovy are aware of this feeling, and it is carefully
considered when deciding upon language features. After all, there is a reason for
the name of the language.

13

Licensed to Charles Wise <ctwise@gmail.com>

15

NOTE Groovy
“A situation or an activity that one enjoys or to which one is
especially well suited (found his groove playing bass in a trio). A
very pleasurable experience; enjoy oneself (just sitting around,
grooving on the music). To be affected with pleasurable excitement.
To react or interact harmoniously.” (http://dict.leo.org)

Someone recently stated that Groovy was, “Java-stylish with a Ruby-esque
feeling”. We cannot think of a better description. Working with Groovy feels like a
partnership between you and the language, rather than a battle to express what is
clear in your mind in a way the computer can understand.

Of course, while it's nice to “feel the groove” you still need to pay your bills. In
the next section, we'll look at some of the practical advantages Groovy will bring
to your professional life.

1.2 What Groovy can do for you
Depending on your background and experience, you are probably interested in
different features of Groovy. It is unlikely that anyone will require every aspect of
Groovy in their day-to-day work, just as no one uses the whole of the mammoth
framework provided by the Java standard libraries.

This section presents interesting Groovy features and areas of applicability for
Java professionals, script programmers, and pragmatic, extreme, and agile
programmers. We recognize that developers rarely have just one role within their
jobs and may well have to take on each of these identities in turn. However, it is
helpful to focus on how Groovy helps in the kinds of situations typically associated
with each role.

1.2.1 Groovy for Java professionals
If you consider yourself a Java professional, you probably have years of experience
in Java programming. You know all the important parts of the Java Runtime API
and most likely the APIs of a lot of additional Java packages.

But--be honest--there are times when you cannot leverage this knowledge, such
as when faced with an everyday task like recursively searching through all files
below the current directory. If you're like us, programming such an ad-hoc task in
Java is just too much effort.

But as you will learn in this book, with Groovy you can quickly open the
console and type

14

Licensed to Charles Wise <ctwise@gmail.com>

http://dict.leo.org

16

groovy -e "new File('.').eachFileRecurse { println it }"

to print all filenames recursively.
Even if Java had an eachFileRecurse method and a matching

FileListener interface, you would still need to explicitly create a class,
declare a main method, save the code as a file, and compile it, and only then could
you run it. For the sake of comparison, let's see what the Java code would look
like, assuming the existence of an appropriate eachFileRecurse method:

import java.io.*; // JAVA !!
public class ListFiles {

 public static void main(String[] args) {
 new File(".").eachFileRecurse(// imagine Java had this

 new FileListener() {
 public void onFile (File file) {

 System.out.println(file.toString());
 }

 }
);

 }
}

Notice how the intent of the code (printing each file) is obscured by the
scaffolding code Java requires you to write in order to end up with a complete
program.

Besides command-line availability and code beauty, Groovy allows you to
bring dynamic behavior to Java applications, such as through expressing business
rules that can be maintained while the application is running, allowing smart
configurations, or even implementing domain specific languages.

You have the options of using static or dynamic types and working with
precompiled code or plain Groovy source code with on-demand compiling. As a
developer, you can decide where and when you want to put your solution “in
stone” and where it needs to be flexible. With Groovy, you have the choice.

This should give you enough safeguards to feel comfortable incorporating
Groovy into your projects so you can benefit from its features.

1.2.2 Groovy for script programmers
As a script programmer, you may have worked in Perl, Ruby, Python, or other
dynamic (non-scripting) languages such as Smalltalk, Lisp, or Dylan.

But the Java platform has an undeniable market share, and it's fairly common
that folks like you work with the Java language to make a living. Corporate clients
often run a Java standard platform (e.g. J2EE), allowing nothing but Java to be

15

Licensed to Charles Wise <ctwise@gmail.com>

17

developed and deployed in production. You have no chance of getting your
ultraslick scripting solution in there, so you bite the bullet, roll up your sleeves, and
dig through endless piles of Java code, thinking all day, “If I only had [your
language here], I could replace this whole method with a single line!” We confess
to having experienced this kind of frustration.

Groovy can give you relief and bring back the fun of programming by
providing advanced language features where you need them: in your daily work.
By allowing you to call methods on anything, pass blocks of code around for
immediate or later execution, augment existing library code with your own
specialized semantics, and use a host of other powerful features, Groovy lets you
express yourself clearly and achieve miracles with little code.

Just sneak the groovy-all-*.jar file into your project's classpath, and you're
there.

Today, software development is seldom a solitary activity, and your teammates
(and your boss) need to know what you are doing with Groovy and what Groovy is
about. This book aims to be a device you can pass along to others so they can
learn, too. (Of course, if you can't bear the thought of parting with it, you can tell
them to buy their own copies. We won't mind.)

1.2.3 Groovy for pragmatic programmers, extremos, and agilists
If you fall into this category, you probably already have an overloaded bookshelf, a
board full of index cards with tasks, and an automated test suite that threatens to
turn red at a moment's notice. The next iteration release is close, and there is
anything but time to think about Groovy. Even uttering the word makes your
pair-programming mate start questioning your state of mind.

One thing that we've learned about being pragmatic, extreme, or agile is that
every now and then you have to step back, relax, and assess whether your tools are
still sharp enough to cut smoothly. Despite the ever-pressing project schedules,
you need to sharpen the saw regularly. In software terms, that means having the
knowledge and resources needed and using the right methodology, tools,
technologies, and languages for the task at hand.

Groovy will be your house elf for all automation tasks that you are likely to
have in your projects. These range from simple build automation, continuous
integration, and reporting, up to automated documentation, shipment, and
installation. The Groovy automation support leverages the power of existing

16

Licensed to Charles Wise <ctwise@gmail.com>

18

solutions such as Ant and Maven, while providing a simple and concise language
means to control them. Groovy even helps with testing, both at the unit and
functional levels, helping us test-driven folks feel right at home.

Hardly any school of programmers applies as much rigor and pays as much
attention as we do when it comes to self-describing, intention-revealing code. We
feel an almost physical need to remove duplication while striving for simpler
solutions. This is where Groovy can help tremendously.

Before Groovy, I (Dierk) used other scripting languages (preferably Ruby) to
sketch some design ideas, do a spike--a programming experiment to assess the
feasibility of a task--and run a functional prototype. The downside was that I was
never sure if what I was writing would also work in Java. Worse, in the end I had
the work of porting it over or redoing it from scratch. With Groovy, I can do all the
exploration work directly on my target platform.

NOTE Example
Recently, Guillaume and I did a spike on prime number

disassembly. 4 We started with a small Groovy solution that did the
job cleanly but not efficiently. Using Groovy's interception
capabilities, we unit-tested the solution and counted the number of
operations. Because the code was clean, it was a breeze to
optimize the solution and decrease the operation count. It would
have been much more difficult to recognize the optimization
potential in Java code. The final result can be used from Java as it
stands, and although we certainly still have the option of porting the
optimized solution to plain Java, which would give us another
performance gain, we can defer the decision until the need arises.

Footnote 4m Every ordinal number N can be uniquely disassembled into
factors that are prime numbers: N = p1*p2*p3. The disassembly problem is
known to be “hard”. Its complexity guards cryptographic algorithms like the
popular Rivest-Shamir-Adleman (RSA) algorithm.

The seamless interplay of Groovy and Java opens two dimensions of optimizing
code: using Java for code that needs to be optimized for runtime performance, and
using Groovy for code that needs to be optimized for flexibility and readability.

Along with all these tangible benefits, there is value in learning Groovy for its
own sake. It will open your mind to new solutions, helping you to perceive new
concepts when developing software, whichever language you use.

No matter what kind of programmer you are, we hope you are now eager to get

17

Licensed to Charles Wise <ctwise@gmail.com>

m

19

some Groovy code under your fingers. If you cannot hold back from looking at
some real Groovy code, look at chapter 2.

1.3 Running Groovy
First, we need to introduce you to the tools you'll be using to run and optionally
compile Groovy code. If you want to try these out as you read, you'll need to have
Groovy installed, of course. Appendix A provides a guide for the installation
process.

TIP The Groovy Web Console
You can execute Groovy code--and most examples in this
book--even without installing anything! Point your browser to
http://groovyconsole.appspot.com/ . This console is hosted on the
Google app engine and is thankfully provided by Guillaume
Laforge. Share and enjoy!

There are three commands to execute Groovy code and scripts, as shown in
table 1.1. Each of the three different mechanisms of running Groovy is
demonstrated in the following sections with examples and screenshots. Groovy can
also be “run” like any ordinary Java program, as you will see in section 1.4.2, and
there also is a special integration with Ant that is explained in section 1.4.3.

Table 1.1 Commands to execute Groovy

Command What it does

groovy Starts the processor that executes Groovy scripts. Single-line Groovy scripts
can be specified as command-line arguments.

groovysh Starts the groovysh command-line shell, which is used to execute Groovy
code interactively. By entering statements or whole scripts, line by line, into
the shell code is executed “on the fly”.

groovyConsole Starts a graphical interface that is used to execute Groovy code interactively;
moreover, groovyConsole loads and runs Groovy script files.

We will explore several options of integrating Groovy in Java programs in
chapter 11.

18

Licensed to Charles Wise <ctwise@gmail.com>

http://groovyconsole.appspot.com/

--

1.3.1 Using groovysh for a welcome message
Let's look at groovysh first because it is a handy tool for running experiments
with Groovy. It is easy to edit and run Groovy iteratively in this shell, and doing so
facilitates seeing how Groovy works without creating and editing script files.

To start the shell, run groovysh (UNIX) or groovysh.bat (Windows)
from the command line. You should then get a command prompt like below where
you can enter some Groovy code to receive a warm welcome:

Groovy Shell (1.7, JVM: 1.5.0_19)
Type 'help' or 'h' for help.

groovy:000> "Welcome, " + System.properties."user.name"
===> Welcome, Dierk
groovy:000>

The shell is a good companion when you work on a remote server with only a
text terminal being available. For the more common case that you work on a
desktop or laptop machine, there are more comfortable options as we will see in a
minute.

The shell can be started with a number of different command-line options that
are well explained in the online documentation (
http://groovy.codehaus.org/Groovy+Shell). It also understands some useful
commands, most notably help, which spares us listing all commands here. One
explanation, though: the shell comes with the notion of an “editing buffer” that
comes into play when a statement or expression spans over more multiple lines.
Class and method definitions are typical cases. The shell then keeps track of the
line numbers and allows various commands on the buffer like editing it in your
system's text editor.

1.3.2 Using groovyConsole
The groovyConsole is a Swing interface that acts as a minimal Groovy
development editor. It lacks support for the command-line options supported by
groovysh; however, it has a File menu to allow Groovy scripts to be loaded,
created, and saved. Interestingly, groovyConsole is written in Groovy. Its
implementation is a good demonstration of Builders, which are discussed in
chapter 7.

The groovyConsole takes no arguments and starts a two-paned Window
like the one shown in figure 1.5. The console accepts keyboard input in the upper

19

Licensed to Charles Wise <ctwise@gmail.com>

http://groovy.codehaus.org/Groovy+Shell

m

pane. To run a script, either key in Ctrl+R, Ctrl+Enter or use the Run command
from the Action menu to run the script. When any part of the script code is
selected, only the selected text is executed. This feature is useful for simple
debugging or single stepping by successively selecting one or multiple lines.

Figure 1.5 The groovyConsole with a
script in the edit pane that finds the
ip addresses of google.com. The
output pane captures the result.

The groovyConsole comes with all the user interface goodness that you can
expect from a Swing application. 5 Walk through the menues or read the
documentation under http://groovy.codehaus.org/Groovy+Console (you got the
pattern by now, right?). The console comes with some pleasant surprises. For good
reasons, we made it very “demo friendly”. Ctrl-Shift-L and Ctrl-Shift-S will make
the code appear larger or smaller such that the audience can better see the code.
You can also drag and drop Groovy files from your filesystem right into the editor.
But that's not all!
Footnote 5 Thanks to Romain Guy, the user interface expert and co-author of Filthy Rich Clients who
supported the Groovy team here.

Figure 1.6 shows the Object Browser inspecting the returned list of ip
addresses. It contains information about the ArrayList class in the header and
tabbed tables showing available variables, methods, and fields.

2020

Licensed to Charles Wise <ctwise@gmail.com>

http://groovy.codehaus.org/Groovy+Console

22

Figure 1.6 The Groovy Object Browser when
opened on an object of type ArrayList,
displaying the table of available methods in
its bytecode and registered Meta methods

For easy browsing, you can sort columns by clicking the headers and reverse
the sort with a second click. You can sort by multiple criteria by clicking column
headers in sequence, and rearrange the columns by dragging the column headers.

By this means, you can easily find out, what methods you can call on the object
you are currently working on (same intent as code completion in IDEs), which type
declared that method and whether it comes from Groovy or Java. Let's try: click on
the “Name” header to sort by method names, then on “Declarer”, then on “Origin”.
Now scroll down the list until you see “Object” as declarer. Now you should see
the same as in Figure 1.6: the list of all methods including parameter types and
return type that Groovy adds to java.lang.Object. We will learn more about
these methods in the GDK chapter 9.

Highlighted is the method dump() that Groovy adds to all objects. Try it! Put
it in the the input field of the console. You'll see that it is like toString() but
including the internal state of the object. Very useful, that.

Unless explicitly stated otherwise, you can put any code example in this book
directly into groovysh or groovyConsole and run it there. The more often
you do that, the earlier you will get a feeling for the language.

21

Licensed to Charles Wise <ctwise@gmail.com>

m

 m

23

1.3.3 Using groovy
The groovy command is used to execute Groovy programs and scripts. For
example, listing 1.1 calculates the golden ratio that intersects a line into a smaller
and bigger part such that the total line length relates to the bigger part like the
bigger part relates to the smaller one. Composing paintings, photos, or user
interfaces with the help of the golden ratio is considered pleasing to the human eye
and has a long tradition in classic art. The pentagramm that underlies the Groovy
logo is composed of golden ratios.6

Footnote 6 http://en.wikipedia.org/wiki/Golden_ratio#Pentagram

We calculate the golden ratio by narrowing down on the ratio of adjacent
Fibonacci 7 numbers. The Fibonacci number sequence is a pattern where the first
two numbers are 1 and 1, and every subsequent number is the sum of the
preceding two. The ratio between fibo(n) and fibo(n-1) comes closer and
closer to the golden ratio for increasing values of n.

Footnote 7 Leonardo Pisano (1170..1250), aka Fibonacci, was a mathematician from Pisa (now a town in
Italy). He introduced this number sequence to describe the growth of an isolated rabbit population. Although this
may be questionable from a biological point of view, his number sequence plays a role in many different areas of
science and art. For more information, you can subscribe to the Fibonacci Quarterly.

We don't go into the details of the implementation right now. Think about it as
arbitrary Groovy code, which for the beginning isn't quite as “Groovy idomatic” as
it could be. One little explanation anyway: [-1] refers to the last element in a list,
[-2] to the last-but-one.

If you'd like to try this, copy the code into a file, and save it as Gold.groovy.
The file extension does not matter much as far as the groovy executable is
concerned, but naming Groovy scripts with a .groovy extension is conventional.
One benefit of using this extension is that you can omit it on the command line
when specifying the name of the script--instead of groovy Gold.groovy, you
can just run groovy Gold.

Listing 1.1 Gold.groovy calculates the golden ratio by comparing adjacent
fibonacci numbers until the golden rule is sufficiently satisfied.

List fibo = [1, 1] // list of fibonacci numbers
List gold = [1, 2] // list of golden ratio candidates

while (! isGolden(gold[-1])) { // last golden candidate
 fibo.add(fibo[-1] + fibo[-2]) // next fibo number
 gold.add(fibo[-1] / fibo[-2]) // next golden candidate

22

Licensed to Charles Wise <ctwise@gmail.com>

http://en.wikipedia.org/wiki/Golden_ratio#Pentagram

m

24

}

println "found golden ratio with fibo(${ fibo.size-1 }) as"
println fibo[-1] + " / " + fibo[-2] + " = " + gold[-1]
println "_" * 10 + "|" + "_" * (10 * gold[-1])

def isGolden(candidate) { // candidate satisfies golden rule
 def small = 1 // smaller section
 def big = small * candidate // bigger section
 return isCloseEnough((small+big)/big, big/small)

}

def isCloseEnough(a,b) { return (a-b).abs() < 1.0e-9 }

Run this file as a Groovy program by passing the file name to the groovy
command. You should see the following output that prints the value, the last step
of the calculation, and a visual indication of where the golden ratio intersects a
given line.

found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

The groovy command has many additional options that are useful for
command-line scripting. For example, expressions can be executed by typing
groovy -e "println Math.PI" , which prints 3.141592653589793 to
the console. Section 12.3 will lead you through the full range of options, with
numerous examples.

In this section, we have dealt with Groovy's support for simple ad-hoc scripting,
but this is not the whole story. The next section expands on how Groovy fits into a
code-compile-run cycle.

1.4 Compiling and running Groovy
So far, we have used Groovy in direct8 mode, where our code is directly executed
without producing any executable files. In this section, you will see a second way
of using Groovy: compiling it to Java bytecode and running it as regular Java
application code within a Java Virtual Machine (JVM). This is called precompiled
mode. Both ways execute Groovy inside a JVM eventually, and both ways compile
the Groovy code to Java bytecode. The major difference is when that compilation
occurs and whether the resulting classes are used in memory or stored on disk.
Footnote 8 We avoid the term “interpreted” to make clear that Groovy code is never interpreted in the sense
of traditional Perl/Python/Ruby/Bash scripts. It is always fully compiled into proper classes--even if that
happens transparently.

23

Licensed to Charles Wise <ctwise@gmail.com>

 m

25

1.4.1 Compiling Groovy with groovyc
Compiling Groovy is straightforward, because Groovy comes with a compiler
called groovyc . The groovyc compiler generates at least one class file for each
Groovy source file compiled. As an example, we can compile Gold.groovy from
the previous section into normal Java bytecode by running groovyc on the script
file like so:

groovyc -d classes Gold.groovy

In our case, the Groovy compiler outputs a Java class files to a directory named
classes, which we told it to do with the -d flag. If the directory specified with -d
does not exist, it is created. When you're running the compiler, the name of each
generated class file is printed to the console.

For each script, groovyc generates a class that extends
groovy.lang.Script , which contains a main method so that java can
execute it. The name of the compiled class matches the name of the script being
compiled. More classes may be generated, depending on the script code.

Now that we've got a compiled program, let's see how to run it.

1.4.2 Running a compiled Groovy script with Java
Running a compiled Groovy program is identical to running a compiled Java
program, with the added requirement of having the embeddable groovy-all-*.jar
file in your JVM's classpath, which will ensure that all of Groovy's third-party
dependencies will be resolved automatically at runtime. Make sure you add the
directory in which your compiled program resides to the classpath, too. You then
run the program in the same way you would run any other Java program, with the
java command. 9

Footnote 9 The command line as shown applies to Windows shells. The equivalent on
Mac/Linux/Solaris/UNIX/Cygwin would be java -cp
$GROOVY_HOME/embeddable/groovy-all-1.7.jar:classes Gold

j a v a - c p

%GROOVY_HOME%/embeddable/groovy-all-1.7.jar;classes

Gold

found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

Note that the .class file extension for the main class should not be specified

24

Licensed to Charles Wise <ctwise@gmail.com>

 m

26

when running with java.
All this may seem like a lot of work if you're used to building and running your

Java code with Ant at the touch of a button. We agree, which is why the developers
of Groovy have made sure you can do all of this easily in an Ant script.

Groovy comes with a groovyc Ant tasks that works pretty much like the
javac t a s k . S e e t h e d e t a i l s u n d e r
http://groovy.codehaus.org/The+groovyc+Ant+Task. But there is more: the
groovy Ant task allows you to hook into the Ant build with whatever Groovy
code you like. We will come back to this with more details in XREF ant.

When it comes to integrating Groovy into a larger project setup, there are even
more options. One is using the Groovy Maven integration. Check out the details
under http://groovy.codehaus.org/GMaven . A second option is to rely one the
Groovy-based Gradle build system that we introduce in XREF gradle. A very
lightweight option for dependency resolution is using Groovy's @Grab annotation
as covered in XREF grape. Finally, Groovy projects of any size are developed with
IDE help anyway and they all support transparent cross-compile of Groovy and
Java sources as we will see next.

1.5 Groovy IDE and editor support
Depending on how you use Groovy--from command-line scripts through medium
sized all-Groovy applications up to multi-language enterprise projects--you face
very different needs for development support. On the small scale, a decent text
editor is fine, on the large scale, you need the full story including integrated
cross-language unit testing, refactoring, debugging and profiling support like all
leading IDEs provide. This applies to literally all languages but for Groovy, there
is an additional consideration.

The Groovy compiler is very lenient when it comes to compile-time checking
of code. It must be, because in a dynamic language, new methods10 may become
available at runtime that the compiler cannot foresee. Therefore, it cannot shield
you from mistyped method names. But the IDE can warn you. It can highlight
unknown method names and even apply so-called type inference to give even
better warnings and type-inferred code completion.
Footnote 10 This applies to more than just method names but we keep it short for the beginning.

That's why IDE support is even more valuable for Groovy as it is for other
programming languages. Some commonly used IDEs and text editors for Groovy
are listed in the following sections. However, this information is likely to be out of

25

Licensed to Charles Wise <ctwise@gmail.com>

http://groovy.codehaus.org/The+groovyc+Ant+Task
http://groovy.codehaus.org/GMaven

27

date as soon as it is printed. Stay tuned for updates for your favorite IDE.

1.5.1 IntelliJ IDEA plug-in
JetBrains, the company behind IntelliJ IDEA, was the first to provide a compelling
Groovy plugin for their commercial IDE under the name JetGroovy that today is
bundled by default with their distribution (since version 8). Interestingly, this
plugin is open-source and you can join the effort. The development of this plugin
led to the first cross-language compiler for Groovy that made bidirectional
Java-Groovy compilation possible. JetBrains thankfully donated this compiler to
the Groovy project and it has heavily influenced the Groovy compiler that we have
today.

Listing all the features of JetGroovy would be a silly attempt. I wouldn't even
know where to start. It may be enough to say that any Groovy code is so tightly
integrated that the lines with Java begin to blur. The screenshot in figure 1.7 shows
a Groovy script that produces this book from docbook format to PDF. Note that the
method getRepl() has no return type and is thus dynamically typed. It returns a
map where both keys and values are strings. Now see how in the structure pane
(left bottom) the return type is listed as Map<String,String>.

Figure 1.7 The special Groovy support in Intellij IDEA uses
type inference to provide type safety where the compiler
can't.

This is type inference in action and it controls how code completion works in
the trailing code and even how method calls on keys and values of that Map are
known to be of type String. As an example, in line.contains(key) the key
must be a String and since Intellij infers that it is, there is no warning marker.

Note that in contrast the first line shows args.size() with size
underlined. Since the type of args is not known, the IDE cannot guarantee that

26

Licensed to Charles Wise <ctwise@gmail.com>

m

 m

28

the size method will be available at runtime. It is left to the developer's
responsibility.

Beyond the native language support, Intellij offers additional goodies for
various Groovy-based frameworks like Grails, Griffon, Gant, and by the time you
are reading this, probably even more.

1.5.2 NetBeans IDE plug-in
NetBeans IDE, the open-source IDE developed by Sun Microsystems, has recently
enjoyed a major uplift in the market. Lots of resources have been granted to the
project and Groovy support has become a main focus since version 6.5. Since then,
Groovy is part of the standard “Java” distribution of NetBeans IDE.

One of the compelling features of NetBeans IDE is the cross-language support
for multiple languages such that one can easily combine Java, Groovy, JavaFx, and
others in the same project. Furthermore, NetBeans IDE is always at the forefront of
providing value-added services for the Groovy frameworks Grails and Griffon. The
online documentation gives a good overview of the features. Also check out

11 12Geertjan Wielanga's blog and the quick-start guide .
Footnote 11 http://blogs.sun.com/geertjan

Footnote 12 http://www.netbeans.org/kb/docs/java/groovy-quickstart.html

1.5.3 Eclipse plug-in
The Groovy plug-in for Eclipse has a long tradition in which it has gone through a
number of changes. Since recently, the effort is led by SpringSource following the
approach of coercing the Groovy compiler into contributing to the Java model used
by Java Development Toolkit (JDT) to populate the workbench. This is going to
result in a fully integrated developer experience for the eclipse user.

More features like advanced Grails support and integration into the
SpringSource tool suite (STS) are on the roadmap and likely to be available by the
time you read this.

The Groovy Eclipse plug-in is available for download at
http://groovy.codehaus.org/Eclipse+Plugin.

1.5.4 Groovy support in other editors
Although they don't claim to be full-featured development environments, a lot of
all-purpose editors provide support for programming languages in general and
Groovy in particular.

The cross-platform JEdit editor comes with a plug-in for Groovy that supports

27

Licensed to Charles Wise <ctwise@gmail.com>

http://blogs.sun.com/geertjan
http://www.netbeans.org/kb/docs/java/groovy-quickstart.html
http://groovy.codehaus.org/Eclipse+Plugin

29

executing Groovy scripts and code snippets. A syntax-highlighting configuration is
available separately. More details are available here:
http://groovy.codehaus.org/JEdit+Plugin.

For Mac users, there is the popular TextMate editor with its Windows
equivalent simply called E. It comes with a Groovy and Grails bundle that you can
install from MacroMate's bundle repository.

UltraEdit (Windows only) can easily be customized to provide syntax
highlighting for Groovy and to start or compile scripts from within the editor. Any
output goes to an integrated output window. A small sidebar lets you jump to class
and method declarations in the file. It supports smart indentation and brace
matching for Groovy. Besides the Groovy support, it is a feature-rich,
quick-starting, all-purpose editor. Find more details at
http://groovy.codehaus.org/UltraEdit+Plugin.

Syntax highlighting configuration files for TextPad, Emacs, Vim, and several
other text editors can be found on the Groovy web site at
http://groovy.codehaus.org/Other+Plugins.

1.6 Summary
We hope that by now we've convinced you that you really want Groovy in your
life. As a modern language built on the solid foundation of Java and with
community support and corporate backing, Groovy has something to offer for
everyone, in whatever way they interact with the Java platform.

With a clear idea of why Groovy was developed and what drives its design, you
should be able to see where features fit into the bigger picture as each is introduced
in the coming chapters. Keep in mind the principles of Java integration and feature
richness, making common tasks simpler and your code more expressive.

Once you have Groovy installed, you can run it both directly as a script and
after compilation into classes. If you have been feeling energetic, you may even
have installed a Groovy plug-in for your favorite IDE. With this preparatory work
complete, you are ready to see (and try!) more of the language itself. In the next
chapter, we will take you on a whistle-stop tour of Groovy's features to give you a
better feeling for the shape of the language, before we examine each element in
detail for the remainder of part 1.

28

Licensed to Charles Wise <ctwise@gmail.com>

http://groovy.codehaus.org/JEdit+Plugin
http://groovy.codehaus.org/UltraEdit+Plugin
http://groovy.codehaus.org/Other+Plugins

30

Part 1
The Groovy language

Learning a new programming language is comparable to learning to speak a
foreign language. You have to deal with new vocabulary, grammar, and language
idioms. This initial effort pays off multiple times, however. With the new
language, you find unique ways to express yourself, you are exposed to new
concepts and styles that add to your personal abilities, and you may even explore
new perspectives on your world. This is what Groovy did for us, and we hope
Groovy will do it for you, too.

The first part of this book introduces you to the language basics: the Groovy
syntax, grammar, and typical idioms. We present the language by example as
opposed to using an academic style.

You may want to skim this part initially and revisit it later when you're getting
read to for serious development with Groovy. If you decide to skim, please make
sure you visit chapter 2 and its examples. They are cross-linked to the in-depth
chapters so you can easily look up details about any topic that interests you.

One of the difficulties of explaining a programming language by example is
that you have to start somewhere. No matter where you start, you end up needing
to use some concept or feature that you haven't explained yet for your examples.
Section 2.3 serves to resolve this perceived deadlock by providing a collection of
self-explanatory warm-up examples.

We explain the main portion of the language using its built-in datatypes and
introduce expressions, operators, and keywords as we go along. By starting with
some of the most familiar aspects of the language and building up your knowledge
in stages, we hope you'll always feel confident when exploring new territory.

Chapter 3 introduces Groovy's typing policy and walks through the text and
numeric datatypes that Groovy supports at the language level.

29

Licensed to Charles Wise <ctwise@gmail.com>

31

Chapter 4 continues looking at Groovy's rich set of built-in types, examining
those with a collection-like nature: ranges, lists, and maps.

Chapter 5 builds on the preceding sections and provides an in-depth description
of the closure concept.

Chapter 6 touches on logical branching, looping, and shortcutting program
execution flow.

Finally, chapter 7 sheds light on the way Groovy builds on Java's
object-oriented features and takes them to a new level of dynamic execution.

At the end of part 1, you'll have a "big picture" view of the Groovy language.
This is the basis for getting the most out of part 2, which explores the Groovy
library: the classes and methods that Groovy adds to the Java platform. Part 3,
“Everyday Groovy,” will apply the knowledge obtained in parts 1 and 2 to the
daily tasks of your programming business.

30

Licensed to Charles Wise <ctwise@gmail.com>

32

2Overture: The Groovy basics

A whistle-stop tour through Groovy

What Groovy code looks like

Quickstart examples

Groovy's dynamic nature

Do what you think is interesting, do something that you think is fun and
worthwhile, because otherwise you won't do it well anyway.

-- Brian Kernighan

This chapter follows the model of an overture in classical music, in which the
initial movement introduces the audience to a musical topic. Classical composers
wove euphonious patterns that were revisited, extended, varied, and combined later
in the performance. In a way, overtures are the whole symphony en miniature.

In this chapter, we introduce you to many of the basic constructs of the Groovy
language. First though, we cover two things you need to know about Groovy to get
started: code appearance and assertions. Throughout the chapter, we provide
examples to jump-start you with the language, but only a few aspects of each
example will be explained in detail--just enough to get you started. If you struggle
with any of the examples, revisit them after having read the whole chapter.

An overture allows you to make yourself comfortable with the instruments, the
sound, the volume, and the seating. So lean back, relax, and enjoy the Groovy
symphony.

31

Licensed to Charles Wise <ctwise@gmail.com>

33

2.1 General code appearance
Computer languages tend to have an obvious lineage in terms of their look and
feel. For example, a C programmer looking at Java code might not understand a lot
of the keywords but would recognize the general layout in terms of braces,
operators, parentheses, comments, statement terminators, and the like. Groovy
allows you to start out in a way that is almost indistinguishable from Java and
transition smoothly into a more lightweight, suggestive, idiomatic style as your
knowledge of the language grows. We will look at a few of the basics--how to
comment-out code, places where Java and Groovy differ, places where they're
similar, and how Groovy code can be briefer because it lets you leave out certain
elements of syntax.

First, Groovy is indentation unaware, but it is good engineering practice to
follow the usual indentation schemes for blocks of code. Groovy is mostly unaware
of excessive whitespace, with the exception of line breaks that end the current
statement and single-line comments. Let's look at a few aspects of the appearance
of Groovy code.

2.1.1 Commenting Groovy code
Single-line comments and multiline comments are exactly like those in Java, with
an additional option for the first line of a script:

#!/usr/bin/env groovy
// some line comment
/* some multi-

line comment */

Here are some guidelines for writing comments in Groovy:

The #! shebang comment is allowed only in the first line. The shebang allows Unix
shells to locate the Groovy bootstrap script and run code with it.
// denotes single-line comments that end with the current line.
Multiline comments are enclosed in /* ... */ markers.
Javadoc-like comments in /** ... */ markers are treated the same as other multiline
comments, but are processed by the groovydoc Ant task.

Other parts of Groovy syntax are similarly Java-friendly.

32

Licensed to Charles Wise <ctwise@gmail.com>

34

2.1.2 Comparing Groovy and Java syntax
Most Groovy code--but not all--appears exactly as it would in Java. This often
leads to the false conclusion that Groovy's syntax is a superset of Java's syntax.
Despite the similarities, neither language is a superset of the other. For example,
Groovy currently doesn't support multiple initialization and iteration statements in
the classsic for(init1,init2;test;inc1,inc2) loop. As you will see in listing 2.1, the
language semantics can be slightly different even when the syntax is valid in both
languages. For example, the == operator can give different results depending on
which language is being used.

Beside those subtle differences, the overwhelming majority of Java's syntax is
part of the Groovy syntax. This applies to

The general packaging mechanism
Statements (including package and import statements)
Class, interface, enum, field and method definitions including nested classes; except for
special cases with nested class definitions inside methods or other deeply nested blocks
Control structures
Operators, expressions, and assignments
Exception handling
Declaration of literals; with the exception of literal array initialization where the Java
syntax would clash with Groovy's use of curly braces. Groovy uses a shorter bracket
notation for declaring lists instead.
Object instantiation, referencing and dereferencing objects, and calling methods
Declaration and use of generics and annotations.

The added value of Groovy's syntax is to

Ease access to Java objects through new expressions and operators
Allow more ways of creating objects using literals
Provide new control structures to allow advanced flow control
Introduce new datatypes together with their operators and expressions
A \ backslash at the end of a line escapes the line feed such that the statement can
proceed on the following line.
Additional parentheses force Groovy to treat the enclosed content as an expression. We
will need this feature in XREF maps.

Overall, Groovy looks like Java with these additions. These additional syntax
elements make the code more compact and easier to read. One interesting aspect
that Groovy adds is the ability to leave things out.

33

Licensed to Charles Wise <ctwise@gmail.com>

35

2.1.3 Beauty through brevity
Groovy allows you to leave out some elements of syntax that are always required
in Java. Omitting these elements often results in code that is shorter and more
expressive. For example, compare the Java and Groovy code for encoding a string
for use in a URL:

Java:

java.net.URLEncoder.encode("a b");

Groovy:

URLEncoder.encode 'a b'

By leaving out the package prefix, parentheses, and semicolon, the code boils
down to the bare minimum.

The support for optional parentheses is based on the disambiguation and
precedence rules as summarized in the Groovy Language Specification (GLS).
Although these rules are unambiguous, they are not always intuitive. Omitting
parentheses can lead to misunderstandings, even though the compiler is happy with
the code. We prefer to include the parentheses for all but the most trivial situations.
The compiler does not try to judge your code for readability--you must do this
yourself.

Groovy automatically imports the packages groovy.lang.*,
groovy.util.* , java.lang.* , java.util.* , java.net.* , and
java.io.* as well as the classes java.math.BigInteger and
BigDecimal. As a result, you can refer to the classes in these packages without
specifying the package names. We will use this feature throughout the book, and
we'll use fully qualified class names only for disambiguation or for pointing out
their origin. Note that Java automatically imports java.lang.* but nothing else.

There are other elements of syntax which are optional in Groovy too:

In chapter 7, we will talk about optional return statements.

Where Java demands type declarations, they either become optional in
Groovy or can be replaced by def to indicate that you don't care about the
type.

Groovy makes type casts optional.

You don't need to add the throws clause to your method signature when

34

Licensed to Charles Wise <ctwise@gmail.com>

36

your method potentially throws a checked exception.

This section has given you enough background to make it easier to concentrate
on each individual feature in turn. We're still going through them quickly rather
than in great detail, but you should be able to recognize the general look and feel of
the code. With that under our belt, we can look at the principal tool we're going to
use to test each new piece of the language: assertions.

2.2 Probing the language with assertions
If you have worked with Java 1.4 or later, you are probably familiar with
assertions . They test whether everything is right with the world as far as your
program is concerned. Usually they live in your code to make sure you don't have
any inconsistencies in your logic, performing tasks such as checking invariants at
the beginning and end of a method or ensuring that method arguments are valid. In
this book we'll use them to demonstrate the features of Groovy. Just as in
test-driven development, where the tests are regarded as the ultimate demonstration
of what a unit of code should do, the assertions in this book demonstrate the results
of executing particular pieces of Groovy code. We use assertions to show not only
what code can be run, but the result of running the code. This section will prepare
you for reading the code examples in the rest of the book, explaining how
assertions work in Groovy and how you will use them.

Although assertions may seem like an odd place to start learning a language,
they're our first port of call because you won't understand any of the examples until
you understand assertions. Groovy provides assertions with the assert keyword.
Listing 2.1 shows what they look like.

Listing 2.1 Using assertions

assert(true)
assert 1 == 1
def x = 1
assert x == 1
def y = 1 ; assert y == 1

Let's go through the lines one by one.

assert(true)

This introduces the assert keyword and shows that you need to provide an
expression that you're asserting will be true.13

35

Licensed to Charles Wise <ctwise@gmail.com>

 m

m

37

Footnote 13 Groovy's meaning of truth encompasses more than a simple boolean value, as you will see in
section XREF groovy_truth.

assert 1 == 1

This demonstrates that assert can take full expressions, not just literals or
simple variables. Unsurprisingly, 1 equals 1. Exactly like Ruby or Scala but unlike
Java, the == operator denotes equality , not identity . We left out the parentheses as
well, because they are optional for top-level statements.

def x = 1
assert x == 1

This defines the variable x, assigns it the numeric value 1, and uses it inside the
asserted expression. Note that we did not reveal anything about the type of x. The
def keyword means “dynamically typed”.

def y = 1 ; assert y == 1

This is the typical style we use when asserting the program status for the
current line. It uses two statements on the same line, separated by a semicolon. The
semicolon is Groovy's statement terminator. As you have seen before, it is optional
when the statement ends with the current line.

What happens if an assertion fails? Let's try!14

Footnote 14 This code is one the few listings that are not executed as part of the book production.

def a = 5
def b = 9
assert b == a + a // #1 expected to fail

which prints to the console (yes, really!):

Caught: Assertion failed:

assert b == a + a #1 expression is retained
 | | | | |
 9 | 5 | 5 #2 referenced values

 | 10 #3 sub-expression
 false #3 values

 at failingAssert.run(failingAssert.groovy:3)

Pause for a minute and think about the language features required to provide
such a sophisticated error message. We will learn more about this stunning “power

36

Licensed to Charles Wise <ctwise@gmail.com>

38

assert” feature in section XREF power_assert
Assertions serve multiple purposes:

They can be used to reveal the current program state, as we are using them in the
examples of this book. The one-line assertion above reveals that the variable y now has
the value 1.
They often make good replacements for line comments, because they reveal assumptions
and verify them at the same time. The assertion reveals that for the remainder of the code,
it is assumed that y has the value 1. Comments may go out of date without anyone
noticing--assertions are always checked for correctness. They're like tiny unit tests sitting
inside the real code.

NOTE Real Life
One real-life example of the value of assertions is in your hands
right now (or on your screen). This book is constructed in a way
that allows us to run the example code and the assertions it
contains. This works as follows: There is a docbook XML version of
this book that contains no code, but only placeholders that refer to
files containing the code. With the help of a little Groovy script, all
the listings are evaluated before the normal production process
even begins. For instance, the assertions in listing 2.1 were
evaluated and found to be correct during the substitution process. If
an assertion fails, the process stops with an error message.

The fact that you are reading a production copy of this book,
means the production process was not stopped and all assertions
succeeded. This should give you confidence in the correctness of
the Groovy examples we provide. For the first edition, we did the
same with MS-Word using Scriptom (chapter 15) to control
MS-Word and AntBuilder (chapter 8) to help with the building
side--as we said before, the features of Groovy work best when
they're used together.

Most of our examples use assertions--one part of the expression will use the
feature being described, and another part will be simple enough to understand on
its own. If you have difficulty understanding an example, try breaking it up,
thinking about the language feature being discussed and what you would expect the
result to be given our description, and then looking at what we've said the result
will be, as checked at runtime by the assertion. Figure 2.1 breaks up a more
complicated assertion into the different parts.

37

Licensed to Charles Wise <ctwise@gmail.com>

39

Figure 2.1 A complex

assertion, broken up into its

constituent parts

This is an extreme example--we often perform the steps in separate statements
and then make the assertion itself short. The principle is the same, however:
There's code that has functionality we're trying to demonstrate and there's code that
is trivial and can be easily understood without knowing the details of the topic at
hand.

In case assertions do not convince you or you mistrust an asserted expression in
this book, you can usually replace it with output to the console. For example, an
assertion such as

assert x == 'hey, this is really the content of x'

can be replaced by

println x

which prints the value of x to the console. Throughout the book, we often
replace console output with assertions for the sake of having self-checking code.
This is not a common way of presenting code in books, but we feel it keeps the
code and the results closer--and it appeals to our test-driven nature.

Assertions have a few more interesting features that can influence your
programming style, and we'll return to them in section 6.2.4 where we'll cover
them in more depth. Now that we have explained the tool we'll be using to put
Groovy under the microscope, you can start seeing some of the real features.

2.3 Groovy at a glance
Like many languages, Groovy has a language specification that breaks down code
into statements, expressions, and so on. Learning a language from such a
specification tends to be a dry experience and doesn't take you far towards the goal
of writing useful Groovy code in the shortest possible amount of time. Instead, we
will present simple examples of typical Groovy constructs that make up most
Groovy code: classes, scripts, beans, strings, regular expressions, numbers, lists,
maps, ranges, closures, loops, and conditionals.

38

Licensed to Charles Wise <ctwise@gmail.com>

40

Take this section as a broad but shallow overview. It won't answer all your
questions, but it will allow you to start experimenting with Groovy on your own.
We encourage you to play with the language--if you wonder what would happen if
you were to tweak the code in a certain way, try it! You learn best by experience.
We promise to give detailed explanations in later in-depth chapters.

2.3.1 Declaring classes
Classes are the cornerstone of object-oriented programming, because they define
the blueprints from which objects are created.

Listing 2.2 contains a simple Groovy class named Book, which has an instance
variable title, a constructor that sets the title, and a getter method for the title.
Note that everything looks much like Java, except there's no accessibility modifier:
Methods are public by default.

Listing 2.2 A simple classBook

class Book {
 private String title
 Book (String theTitle) {

 title = theTitle
 }
 String getTitle(){

 return title
 }

}

Please save this code in a file named Book.groovy, because we will refer to it in
the next section.

The code is not surprising. Class declarations look much the same in most
object-oriented languages. The details and nuts and bolts of class declarations will
be explained in chapter 7.

2.3.2 Using scripts
Scripts are text files, typically with an extension of .groovy, that can be executed
from the command shell via

> groovy myfile.groovy
Note that this is very different from Java. In Groovy, we are executing the

source code! An ordinary Java class is generated for us and executed behind the
scenes. But from a user's perspective, it looks like we are executing plain Groovy
source code.15

39

Licensed to Charles Wise <ctwise@gmail.com>

 m

41

Footnote 15 Any Groovy code can be executed this way as long as it can be run; that is, it is either a script, a
class with a main method, a Runnable, or a GroovyTestCase.

Scripts contain Groovy statements without an enclosing class declaration.
Scripts can even contain method definitions outside of class definitions to better
structure the code. You will learn more about scripts in chapter 7. Until then, take
them for granted.

Listing 2.3 shows how easy it is to use the Book class in a script. We create a
new instance and call the getter method on the object by using Java's dot -syntax.
Then we define a method to read the title backward.

Listing 2.3 Using the class from a scriptBook

Book gina = new Book('Groovy in Action')

assert gina.getTitle() == 'Groovy in Action'
assert getTitleBackwards(gina) == 'noitcA ni yvoorG'

String getTitleBackwards(book) {
 String title = book.getTitle()
 return title.reverse()

}

Note how we are able to invoke the method getTitleBackwards before it
is declared. Behind this observation is a fundamental difference between Groovy
and scripting languages such as Ruby. A Groovy script is fully constructed--that is,
parsed, compiled, and generated--before execution. Section 7.2 has more details
about this.

Another important observation is that we can use Book objects without
explicitly compiling the Book class! The only prerequisite for using the Book
class is that Book.groovy must reside on the classpath. The Groovy runtime system
will find the file, compile it transparently into a class, and yield a new Book
object. Groovy combines the ease of scripting with the merits of object orientation.

This inevitably leads to the question of how to organize larger script-based
applications. In Groovy, the preferred way is not to mesh numerous script files
together, but instead to group reusable components into classes such as Book.
Remember that such a class remains fully scriptable; you can modify Groovy code,
and the changes are instantly available without further action.

It was pretty simple to write the Book class and the script that used it. Indeed,
it's hard to believe that it can be any simpler--but it can, as we'll see next.

40

Licensed to Charles Wise <ctwise@gmail.com>

42

2.3.3 GroovyBeans
JavaBeans are ordinary Java classes that expose properties. What is a property?
That's not easy to explain, because it is not a single standalone concept. It's made
up from a naming convention. If a class exposes methods with the naming scheme
getName() and setName(name) , then the concept describes name as a
property of that class. The get - and set - methods are called accessor methods.
(Some people make a distinction between accessor and mutator methods, but we
don't.) Boolean properties can use an is- prefix instead of get-, leading to
method names such as isAdult.

A GroovyBean is a JavaBean defined in Groovy. In Groovy, working with
beans is much easier than in Java. Groovy facilitates working with beans in three
ways:

Generating the accessor methods
Allowing simplified access to all JavaBeans (including GroovyBeans)
Simplified registration of event handlers together with annotations that declare a property
as bindable

Listing 2.4 shows how our Book class boils down to a one-liner defining the
title property. This results in the accessor methods getTitle() and
setTitle(title) being generated.

Listing 2.4 Defining the class as a GroovyBeanBookBean

class BookBean {
 String title // #1 Property declaration

}

def groovyBook = new BookBean()

groovyBook.setTitle('Groovy conquers the world') // #2 Property use with explicit method calls
assert groovyBook.getTitle() == 'Groovy conquers the world' // #2

groovyBook.title = 'Groovy in Action' // #3 Property use with Groovy shortcuts
assert groovyBook.title == 'Groovy in Action' // #3

We also demonstrate how to access the bean the standard way with accessor
methods, as well as the simplified way, where property access reads like direct
field access.

Note that listing 2.4 is a fully valid script and can be executed as is, even
though it contains a class declaration and additional code. You will learn more

41

Licensed to Charles Wise <ctwise@gmail.com>

43

about this construction in chapter 7.
Also note that groovyBook.title is not a field access. Instead it is a

shortcut for the corresponding accessor method. It would work even if we'd
explicitly declared the property "longhand" with a getTitle method.

More information about methods and beans will be given in chapter 7.

2.3.4 Annotations for AST Transformations
In Groovy, you can define and use annotations just like in Java, which is a
distinctive feature among JVM languages . Beyond that, Groovy also uses
annotations to mark code structures for special compiler handling. Let's have a
look at one of those annotations that comes with the Groovy distribution:
@Immutable.

A Groovy bean can be marked as immutable, which means that the class
becomes final , all its fields become final , and you cannot change its state
after construction. 2.6 declares an immutable FixedBean class, calls the
constructor in two different ways, and asserts that we have a standard
implementation of equals() that supports comparison by content. With the help
of a little try-catch, we assert that changing the state is not allowed.

Listing 2.5 Defining the immutable and exercising itFixedBean

@Immutable class FixedBook { // #1 AST annotation
 String title

}

def gina = new FixedBook('Groovy in Action') // #2 positional ctor
def regina = new FixedBook(title:'Groovy in Action') // #3 named arg ctor

assert gina.title == 'Groovy in Action'
assert gina == regina // #4 standard equals()

try {
 gina.title = "Oops!" // #5 not allowed!
 assert false, "should not reach here"

} catch (ReadOnlyPropertyException e) {}

It must be said that proper immutablity is not easily achieved without such help
and the AST transformation does actually much more than what we see above: it
adds a correct hashCode() implementation and enforces defensive copying for
access to all properties that aren't immutable by themselves.

Immutable types are always helpful for a clean design but they are
indispensable for concurrent programming: an increasingly important topic that we

42

Licensed to Charles Wise <ctwise@gmail.com>

44

will cover in XREF concurrent.
The @Immutable AST transformation is only one of many that can enhance

your code with additional characteristics. In XREF ast we will cover the full range
that comes with the GDK, including @Bindable @Category @Mixin, , ,

, , , and @Grab.@Delegate @Lazy @Singleton

The acronym AST stands for “abstract syntax tree”, which is a representation of
the code that the Groovy parser creates and the Groovy compiler works upon to
generate the bytecode. In between, AST transformations can modify that AST to
sneak in new method implementations or add, delete, or modify any other code
structure. This approach is also called compile-time meta-programming and is not
limited to the transformations that come with the GDK. You can also provide your
own transformations!

2.3.5 Handling text
Just like in Java, character data is mostly handled using the
java.lang.String class. However, Groovy provides some tweaks to make
that easier, with more options for string literals and some helpful operators.

GSTRINGS
In Groovy, string literals can appear in single or double quotes. The double-quoted
version allows the use of placeholders, which are automatically resolved as
required. This is a GString, and that's also the name of the class involved. The
following code demonstrates a simple variable expansion, although that's not all
GStrings can do:

def nick = 'ReGina'
def book = 'Groovy in Action, 2nd ed.'
assert "$nick is $book" == 'ReGina is Groovy in Action, 2nd ed.'

Chapter 3 provides more information about strings, including more options for
GStrings, how to escape special characters, how to span string declarations over
multiple lines, and the methods and operators available on strings. As you'd expect,
GStrings are pretty neat.

REGULAR EXPRESSIONS
If you are familiar with the concept of regular expressions, you will be glad to hear
that Groovy supports them at the language level. If this concept is new to you, you
can safely skip this section for the moment. You will find a full introduction to the
topic in chapter 3.

43

Licensed to Charles Wise <ctwise@gmail.com>

45

Groovy makes it easy to declare regular expression patterns, and provides
operators for applying them. Figure 2.2 declares a pattern with the slashy //
syntax and uses the =~ find operator to match the pattern against a given string.
The first line ensures that the string contains a series of digits; the second line
replaces every digit with an x.

Figure 2.2 Regular expression support

in Groovy through operators and

slashy strings

Note that replaceAll is defined on java.lang.String and takes two
string arguments. It becomes apparent that '12345' is a java.lang.String ,
as is the expression /\d/.

Chapter 3 explains how to declare and use regular expressions and goes through
the ways to apply them.

2.3.6 Numbers are objects
Hardly any program can do without numbers, whether for calculations or (more
frequently) for counting and indexing. Groovy numbers have a familiar
appearance, but unlike in Java, they are first-class objects rather than primitive
types.

In Java, you cannot invoke methods on primitive types. If x is of primitive type
int , you cannot write x.toString() . On the other hand, if y is an object, you
cannot use 2*y.

In Groovy, both are possible. You can use numbers with numeric operators, and
you can also call methods on number instances.

def x = 1
def y = 2
assert x + y == 3

44

Licensed to Charles Wise <ctwise@gmail.com>

46

assert x.plus(y) == 3
assert x instanceof Integer

The variables x and y are objects of type java.lang.Integer . Thus, we
can use the plus method. But we can just as easily use the + operator.

This is surprising and a major lift to object orientation on the Java platform.
Whereas Java has a small but ubiquitous part of the language that isn't
object-oriented at all, Groovy makes a point of using objects for everything. You
will learn more about how Groovy handles numbers in chapter 3.

2.3.7 Using lists, maps, and ranges
Many languages, including Java, only have direct support for a single collection
type--an array--at the syntax level and have language features that only apply to
that type. In practice, other collections are widely used, and there is no reason why
the language should make it harder to use those collections than arrays. Groovy
makes collection handling simple, with added support for operators, literals, and
extra methods beyond those provided by the Java standard libraries.

LISTS
Java supports indexing arrays with a square bracket syntax, which we will call the
subscript operator . Groovy allows the same syntax to be used with lists --instances
of java.util.List--which allows adding and removing elements, changing
the size of the list at runtime, and storing items that are not necessarily of a
uniform type. In addition, Groovy allows lists to be indexed outside their current
bounds, which again can change the size of the list. Furthermore, lists can be
specified as literals directly in your code.

The following example declares a list of Roman numerals and initializes it with
the first seven numbers, as shown in figure 2.3.

45

Licensed to Charles Wise <ctwise@gmail.com>

47

Figure 2.3 An
example list
where the
content for
each index is
the Roman
numeral for
that index

The list is constructed such that each index matches its representation as a
Roman numeral. Working with the list looks like we're working with an array, but
in Groovy, the manipulation is more expressive, and the restrictions that apply to
arrays are gone:

def roman = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII'] // #1 List of Roman numerals
assert roman[4] == 'IV' // #2 List access

roman[8] = 'VIII' // #3 List expansion
assert roman.size() == 9

Note that there was no list item with index 8 when we assigned a value to it.
We indexed the list outside the current bounds. We'll look at the list datatype in
more detail in section 4.2.

SIMPLE MAPS
A map is a storage type that associates a key with a value. Maps store and retrieve
values by key, whereas lists retrieve them by numeric index.

Unlike Java, Groovy supports maps at the language level, allowing them to be
specified with literals and providing suitable operators to work with them. It does
so with a clear and easy syntax. The syntax for maps looks like an array of
key-value pairs, where a colon separates keys and values. That's all it takes.

46

Licensed to Charles Wise <ctwise@gmail.com>

 m

48

The following example stores descriptions of HTTP 16 return codes in a map, as
depicted in figure 2.4.
Footnote 16 Hypertext Transfer Protocol, the protocol used for the World Wide Web. The server returns
these codes with every response. Your browser typically shows the mapped descriptions for codes above 400.

Figure 2.4 An example map where
HTTP return codes map to their
respective messages

You can see the map declaration and initialization, the retrieval of values, and
the addition of a new entry. All of this is done with a single method call explicitly
appearing in the source code--and even that is only checking the new size of the
map:

def http = [
 100 : 'CONTINUE',
 200 : 'OK',
 400 : 'BAD REQUEST'

]
assert http[200] == 'OK'
http[500] = 'INTERNAL SERVER ERROR'
assert http.size() == 4

Note how the syntax is consistent with that used to declare, access, and modify
lists. The differences between using maps and lists are minimal, so it's easy to
remember both. This is a good example of the Groovy language designers taking
commonly required operations and making programmers' lives easier by providing
a simple and consistent syntax. Section 4.3 gives more information about maps and
their rich feature set.

RANGES
Although ranges don't appear in the standard Java libraries, most programmers
have an intuitive idea of what a range is--effectively a start point and an end point,
with an operation to move between the two in discrete steps. Again, Groovy
provides literals to support this useful concept, along with other language features
such as the for statement, which understands ranges.

47

Licensed to Charles Wise <ctwise@gmail.com>

49

The following code demonstrates the range literal format, along with how to
find the size of a range, determine whether it contains a particular value, find its
start and end points, and reverse it:

def x = 1..10
assert x.contains(5)
assert x.contains(15) == false
assert x.size() == 10
assert x.from == 1
assert x.to == 10
assert x.reverse() == 10..1

These examples are limited because we are only trying to show what ranges do
on their own. Ranges are usually used in conjunction with other Groovy features.
Over the course of this book, you'll see a lot of range usages.

So much for the usual datatypes. We will now come to closures, a concept that
doesn't exist in Java, but which Groovy uses extensively.

2.3.8 Code as objects: closures
The concept of closures is not a new one, but it has usually been associated

with functional languages, allowing one piece of code to execute an arbitrary piece
of code that has been specified elsewhere.

In object-oriented languages, the Method-Object pattern has often been used to
simulate the same kind of behavior by defining types whose sole purpose is to
implement an appropriate single-method interface so that instances of those types
can be passed as arguments to methods, which then invoke the method on the
interface.

A good example is the java.io.File.list(FilenameFilter)
method. The FilenameFilter interface specifies a single method, and its only
purpose is to allow the list of files returned from the list method to be filtered
while it's being generated.

Unfortunately, this approach leads to an unnecessary proliferation of types, and
the code involved is often widely separated from the logical point of use. Java uses
anonymous inner classes to address these issues, but the syntax is clunky, and there
are significant limitations in terms of access to local variables from the calling
method. Groovy allows closures to be specified inline in a concise, clean, and
powerful way, effectively promoting the Method-Object pattern to a first-class
position in the language.

Because closures are a new concept to most Java programmers, it may take a

48

Licensed to Charles Wise <ctwise@gmail.com>

 m

50

little time to adjust. The good news is that the initial steps of using closures are so
easy that you hardly notice what is so new about them. The aha-wow-cool effect
comes later, when you discover their real power.

Informally, a closure can be recognized as a list of statements within curly
braces, like any other code block. It optionally has a list of identifiers in order to
name the parameters passed to it, with an -> arrow marking the end of the list.

It's easiest to understand closures through examples. Figure 2.5 shows a simple
closure that is passed to the List.each method, called on a list [1, 2, 3].

Figure 2.5 A simple example of a
closure that prints the numbers 1, 2
and 3

The List.each method takes a single parameter--a closure. It then executes
that closure for each of the elements in the list, passing in that element as the
argument to the closure. In this example, the main body of the closure is a
statement to print out whatever is passed to the closure, namely the parameter
we've called entry.

Let's consider a slightly more complicated question: If n people are at a party
and everyone clinks glasses with everybody else, how many clinks do you hear?17

Figure 2.6 sketches this question for five people, where each line represents one
clink.
Footnote 17 Or, in computer terms: What is the maximum number of distinct connections in a dense
network of n components?

Figure 2.6 Five
elements and their
distinct
connections,

49

Licensed to Charles Wise <ctwise@gmail.com>

 m

51

modeling five people
(the circles) at a
party clinking
glasses with each
other (the lines).
Here there are 10
“clinks”.

To answer this question, we can use Integer 's upto method, which does
something for every Integer starting at the current value and going up to a given
end value. We apply this method to the problem by imagining people arriving at
the party one by one. As people arrive, they clink glasses with everyone who is
already present. This way, everyone clinks glasses with everyone else exactly once.

Listing 2.5 shows the code required to calculate the number of clinks. We keep
a running total of the number of clinks, and when each guest arrives, we add the
number of people already present (the guest number – 1). Finally, we test the result
using Gauss's formula 18 for this problem--with 100 people, there should be 4,950
clinks.
Footnote 18 Johann Carl Friedrich Gauss (1777..1855) was a German mathematician. At the age of seven,
when he was a school boy, his teacher wanted to keep the kids busy by making them sum up the numbers from 1 to
100. Gauss discovered this formula and finished the task correctly and surprisingly quickly. There are different
reports on how the teacher reacted.

Listing 2.6 Counting all the clinks at a party using a closure

def totalClinks = 0
def partyPeople = 100
1.upto(partyPeople) { guestNumber ->

 clinksWithGuest = guestNumber-1
 totalClinks += clinksWithGuest // #1 modifies outer scope

}
assert totalClinks == (partyPeople * (partyPeople-1)) / 2

How does this code relate to Java? In Java, we would have used a loop like the
following snippet. The class declaration and main method are omitted for the sake
of brevity:

// Java snippet
int totalClinks = 0;
int partyPeople = 100;
for(int guestNumber = 1;

 guestNumber <= partyPeople;
 guestNumber++) {

 int clinksWithGuest = guestNumber-1;
 totalClinks += clinksWithGuest;

}

50

Licensed to Charles Wise <ctwise@gmail.com>

m

52

Note that guestNumber appears four times in the Java code but only twice in
the Groovy version. Don't dismiss this as a minor thing. The code should explain
the programmer's intention with the simplest possible means, and expressing
behavior with two words rather than four is an important simplification.

Also note that the upto method encapsulates and hides the logic of how to
walk over a sequence of integers. That is, this logic appears only one time in the
code (in the implementation of upto). Count the equivalent for loops in any Java
project, and you'll see the amount of structural duplication inherent in Java.

The example has another subtle twist. The closure updates the totalClinks
variable, which is defined in the outer scope. It can do so because it has access to
the enclosing scope. That it pretty tricky to do in Java.19

Footnote 19 Java pours “syntax vinegar” over such a construct to discourage programmers from using it.

There is much more to say about the great concept of closures, and we will do
so in chapter 5.

2.3.9 Groovy control structures
Control structures allow a programming language to control the flow of execution
through code. There are simple versions of everyday control structures like

, , , and try-catch-finally in Groovy, just like in if-else while switch

Java.
In conditionals, null is treated like false , and so are empty strings, collections,

and maps. The for loop has a
for(i in x) { body }

notation, where x can be anything that Groovy knows how to iterate through,
such as an iterator, an enumeration, a collection, a range, a map--or literally any
object, as explained in chapter 6. In Groovy, the for loop is often replaced by
iteration methods that take a closure argument. Listing 2.6 gives an overview.

Listing 2.7 Control structures

if (false) assert false // #1 'if' as one-liner

if (null) // #2 Null is false
{ // #3 Blocks may start on new line

 assert false
}
else
{

 assert true
}

51

Licensed to Charles Wise <ctwise@gmail.com>

53

def i = 0 // #4 Classic 'while'
while (i < 10) { // #4

 i++ // #4
} // #4
assert i == 10 // #4

def clinks = 0 // #5 'for' in 'range'
for (remainingGuests in 0..9) { // #5

 clinks += remainingGuests // #5
} // #5
assert clinks == (10*9)/2 // #5

def list = [0, 1, 2, 3] // #6 'for' in 'list'
for (j in list) { // #6

 assert j == list[j] // #6
} // #6

list.each() { item -> // #7 'each' method with a closure
 assert item == list[item] // #7

} // #7

switch(3) { // #8 Classic 'switch'
 case 1 : assert false; break // #8
 case 3 : assert true; break // #8
 default: assert false // #8

} // #8

The code in listing 2.6 should be self-explanatory. Groovy control structures are
reasonably close to Java's syntax, but we'll go into more detail in chapter 6.

That's it for the initial syntax presentation. You've got your feet wet with
Groovy and you should have the impression that it is a nice mix of Java-friendly
syntax elements with some new interesting twists.

Now that you know how to write your first Groovy code, it's time to explore
how it gets executed on the Java platform.

2.4 Groovy's place in the Java environment
Behind the fun of Groovy looms the world of Java. We will examine how Groovy
classes enter the Java environment to start with, how Groovy augments the existing
Java class library, and finally how Groovy gets its groove: a brief explanation of
the dynamic nature of Groovy classes.

2.4.1 My class is your class
“Mi casa es su casa.” My home is your home. That's the Spanish way of expressing
hospitality. Groovy and Java are just as generous with each other's classes.

So far, when talking about Groovy and Java, we have compared the appearance
of the source code. But the connection to Java is much stronger. Behind the scenes,

52

Licensed to Charles Wise <ctwise@gmail.com>

 m

54

all Groovy code runs inside the Java Virtual Machine (JVM) and is therefore bound
to Java's object model. Regardless of whether you write Groovy classes or scripts,
they run as Java classes inside the JVM.

You can run Groovy classes inside the JVM in two ways:

You can use groovyc to compile *.groovy files to Java *.class files, put them on Java's
classpath, and retrieve objects from those classes via the Java classloader.
You can work with *.groovy files directly and retrieve objects from those classes via the
Groovy classloader. In this case, no *.class files are generated, but rather class objects
--that is, instances of java.lang.Class. In other words, when your Groovy code
contains the expression new MyClass(), and there is a MyClass.groovy file, it will be
parsed, a class of type MyClass will be generated and added to the classloader, and your
code will get a new MyClass object as if it had been loaded from a *.class file.20
Footnote 20 We hope the Groovy programmers will forgive this oversimplification.

These two methods of converting *.groovy files into Java classes are illustrated
in figure 2.7. Either way, the resulting classes have the same format as classic Java
classes. Groovy enhances Java at the source code level but stays compatible at the
bytecode level.

Figure 2.7 Groovy code can be compiled

using groovyc and then loaded with the

normal Java classloader, or loaded directly

with the Groovy classloader

2.4.2 GDK: the Groovy library
Groovy's strong connection to Java makes using Java classes from Groovy and
vice versa exceptionally easy. Because they are both the same thing, there is no gap
to bridge. In our code examples, every Groovy object is instantly a Java object.
Even the term Groovy object is questionable. Both are identical objects, living in
the Java runtime.

53

Licensed to Charles Wise <ctwise@gmail.com>

 m

55

This has an enormous benefit for Java programmers, who can fully leverage
their knowledge of the Java libraries. Consider a sample string in Groovy:

'Hello World!'

Because this is a java.lang.String , Java programmers knows that they
can use JDK's String.startsWith method on it:

if ('Hello World!'.startsWith('Hello')) {
 // Code to execute if the string starts with 'Hello'

}

The library that comes with Groovy is an extension of the JDK library. It
provides some new classes (for example, for easy database access and XML
processing), but it also adds functionality to existing JDK classes. This additional
functionality is referred to as the GDK21, and it provides significant benefits in
consistency, power, and expressiveness.
Footnote 21 This is a bit of a misnomer because DK stands for development kit, which is more than just the
library; it should also include supportive tools. We will use this acronym anyway, because it is conventional in the
Groovy community.

NOTE Still have to write Java code? Don't get too comfortable...
Going back to plain Java and the JDK after writing Groovy with the
GDK can often be an unpleasant experience! It's all too easy to
become accustomed not only to the features of Groovy as a
language, but also to the benefits it provides in making common
tasks simpler within the standard library.

One example is the size method as used in the GDK. It is available on
everything that is of some size: strings, arrays, lists, maps, and other collections.
Behind the scenes, they are all JDK classes. This is an improvement over the JDK,
where you determine an object's size in a number of different ways, as listed in
table 2.1.

54

Licensed to Charles Wise <ctwise@gmail.com>

m

56

Table 1.1 Various ways of determining sizes in the JDK

Type Determine the size in JDK via... Groovy

Array length field size() method

Array java.lang.reflect.Array.getLength(array) size() method

String length() method size() method

StringBuffer length() method size() method

Collection size() method size() method

Map size() method size() method

File length() method size() method

Matcher groupCount() method size() method

We think you would agree that the GDK solution is more consistent and easier
to remember.

Groovy can play this trick by funneling all method calls through a device called
MetaClass. This allows a dynamic approach to object orientation, only part of
which involves adding methods to existing classes. You'll learn more about
MetaClass in the next section.

When describing the built-in datatypes later in the book, we also mention their
most prominent GDK properties. Appendix C contains the complete list.

In order to help you understand how Groovy objects can leverage the power of
the GDK, we will next sketch how Groovy objects come into being.

55

Licensed to Charles Wise <ctwise@gmail.com>

3.

57

2.4.3 The Groovy lifecycle
Although the Java runtime understands compiled Groovy classes without any
problem, it doesn't understand .groovy source files. More work has to happen
behind the scenes if you want to load .groovy files dynamically at runtime. Let's
dive under the hood to see what's happening.

Some relatively advanced Java knowledge is required to fully appreciate this
section. If you don't already know a bit about classloaders, you may want to skip to
the chapter summary and assume that magic pixies transform Groovy source code
into Java bytecode at the right time. You won't have as full an understanding of
what's going on, but you can keep learning Groovy without losing sleep.
Alternatively, you can keep reading and not worry when things get tricky.

Groovy syntax is line oriented, but the execution of Groovy code is not. Unlike
other scripting languages, Groovy code is not processed line-by-line in the sense
that each line is interpreted separately.

Instead, Groovy code is fully parsed, and a class is generated from the
information that the parser has built. The generated class is the binding device
between Groovy and Java, and Groovy classes are generated such that their format
is identical to Java bytecode.

Inside the Java runtime, classes are managed by a classloader. When a Java
classloader is asked for a certain class, it usually loads the class from a *.class file,
stores it in a cache, and returns it. Because a Groovy-generated class is identical to
a Java class, it can also be managed by a classloader with the same behavior. The
difference is that the Groovy classloader can also load classes from *.groovy files
(and do parsing and class generation before putting it in the cache).

Groovy read *.groovy files can at runtime as if they were *.class files. The
class generation can also be done before runtime with the groovyc compiler. The
compiler simply takes *.groovy files and transforms them into *.class files using
the same parsing and class-generation mechanics.

GROOVY CLASS GENERATION AT WORK
Suppose we have a Groovy script stored in a file named MyScript.groovy, and we
run it via groovy MyScript.groovy. The following are the class-generation
steps, as shown previously in figure 2.7:

1. 	The file MyScript.groovy is fed into the Groovy parser.
2. 	The parser generates an Abstract Syntax Tree (AST) that fully represents all the code in

the file.

56

Licensed to Charles Wise <ctwise@gmail.com>

 m

58

3. 	The Groovy class generator takes the AST and generates Java bytecode from it.
Depending on the file content, this can result in multiple classes. Classes are now
available through the Groovy classloader.

4. 	The Java runtime is invoked in a manner equivalent to running java MyScript.

Figure 2.8 shows a second variant, when groovyc is used instead of groovy.
This time, the classes are written into *.class files. Both variants use the same
class-generation mechanism.

Figure 2.8 Flow chart of the Groovy
bytecode generation process when executed
in the runtime environment or compiled into
class files. Different options for executing
Groovy code involve different targets for the
bytecode produced, but the parser and class
generator are the same in each case.

All this is handled behind the scenes and makes working with Groovy feel like
it's an interpreted language, which it isn't. Classes are always fully constructed
before runtime and do not change while running. 22

Footnote 22 This doesn't preclude replacing a class at runtime, when the .groovy file changes.

Given this description, you might legitimately ask how Groovy can be called a
dynamic language if all Groovy code lives in the static Java class format. Groovy
performs class construction and method invocation in a particularly clever way, as
you shall see.

57

Licensed to Charles Wise <ctwise@gmail.com>

 m

59

GROOVY IS DYNAMIC
What makes dynamic languages so powerful is their dynamic method dispatch.

Allow yourself some time to let this sink in. It is not the dynamic typing that
makes a dynamic language dynamic. It is the dynamic method dispatch.

In Grails for example, you see statements like
Album.findByArtist('Oscar Peterson') but the Album class has no

such method! Neither has any superclass. No class has such a method! The trick is
that method calls are funneled through an object called a MetaClass, which in
our case recognizes that there is no corresponding method in the bytecode of
Album and therefore relays the call to it's missingMethod handler. This knows
about the naming convention of Grails' dynamic finder methods and fetches your
favourite albums from the database.

But since Groovy is compiled to regular Java bytecode, how is the
MetaClass called? Well, the bytecode that the Groovy class generator produces
is necessarily different from what the Java compiler would generate--not in format
but in content . Suppose a Groovy file contains a statement like foo() . Groovy
doesn't generate bytecode that reflects this method call directly, but does
something like23

Footnote 23 The actual implementation involves a few more redirections.

getMetaClass().invokeMethod(this, "foo", EMPTY_PARAMS_ARRAY)

That way, method calls are redirected through the object's MetaClass. This
MetaClass can now do tricks with method invocations such as intercepting,
redirecting, adding/removing methods at runtime, and so on. This principle applies
to all calls from Groovy code, regardless of whether the methods are in other
Groovy objects or are in Java objects. Remember: There is no difference.

NOTE Tip
The technically inclined may have fun running groovyc on some
Groovy code and feeding the resulting class files into a decompiler
such as Jad. Doing so gives you the Java code equivalent of the
bytecode that Groovy generated.

Calling the MetaClass for every method call seems to imply a considerable
performance hit, and, yes, this flexibility comes at the expense of runtime
performance. However, this hit is not quite as bad as you might expect, since the

58

Licensed to Charles Wise <ctwise@gmail.com>

 m

60

MetaClass implementation comes with some clever caching and shortcut strategies
that allow the Java just-in-time compiler and the hot-spot technology to step in.

A less obvious but perhaps more important consideration is the effect that
Groovy's dynamic nature has on the compiler. Notice that for example
Album.findByArtist('Oscar Peterson') is not known at compile
time but the compiler has to compile it anyway. Now if you have mistyped the
method name by accident, the compiler cannot warn you! In fact, the compiler has
to accept almost any method call that you throw at him and the code will fail later
at runtime.24 But do not despair! What the compiler cannot do, other tools can.
Your IDE can do more than the compiler because it has contextual knowledge of
what you are doing. It will warn you on method calls that it cannot resolve and in
the case above, it even gives you code completion and refactoring support for
Grails' dynamic finder methods.
Footnote 24 That is, the code fails at unit-test time, right?

A way of using dynamic code is to put the source in a string and ask Groovy to
evaluate it. You will see how this works in chapter 11. Such a string can be
constructed literally or through any kind of logic. Be warned though: You can
easily get overwhelmed by the complexity of dynamic code generation.

Here is an example of concatenating two strings and evaluating the result:

def code = '1 + '
code += System.getProperty('java.class.version')
assert code == '1 + 49.0'
assert 50.0 == evaluate(code)

Note that code is an ordinary string! It happens to contain '1 + 49.0' ,
which is a valid Groovy expression (a script , actually). Instead of having a
programmer write this expression (say, println 1 + 49.0), the program puts
it together at runtime! The evaluate method finally executes it.

Wait--didn't we claim that line-by-line execution isn't possible, and code has to
be fully constructed as a class? How can code be executed like this? The answer
is simple. Remember the left-hand path in figure 2.7? Class generation can
transparently happen at runtime. The only new feature here is that the
class-generation input can also be a string like code rather than the content of a
*.groovy file.

The ability to evaluate an arbitrary string of code is the distinctive feature of
scripting languages. That means Groovy can operate as a scripting language

59

Licensed to Charles Wise <ctwise@gmail.com>

61

although it is a general-purpose programming language in itself.

2.5 Summary
That's it for our initial overview. Don't worry if you don't feel you've mastered
everything we've covered--we'll go over it all in detail in the upcoming chapters.

We started by looking at how this book demonstrates Groovy code using
assertions. This allows us to keep the features we're trying to demonstrate and the
results of using those features close together within the code. It also lets us
automatically verify that our listings are correct.

You got a first impression of Groovy's code notation and found it both similar
to and distinct from Java at the same time. Groovy is similar with respect to
defining classes, objects, and methods. It uses keywords, braces, brackets, and
parentheses in a very similar fashion; however, Groovy's notation is more
lightweight. It needs less scaffolding code, fewer declarations, and fewer lines of
code to make the compiler happy. This may mean that you need to change the pace
at which you read code: Groovy code says more in fewer lines, so you typically
have to read more slowly, at least to start with.

Groovy is bytecode compatible with Java and obeys Java's protocol of full class
construction before execution. But Groovy is still fully dynamic, generating classes
transparently at runtime when needed. Despite the fixed set of methods in the
bytecode of a class, Groovy can modify the set of available methods as visible
from a Groovy caller's perspective by routing method calls through the
MetaClass , which we will cover in depth in chapter 7. Groovy uses this
mechanism to enhance existing JDK classes with new capabilities, together named
GDK.

You now have the means to write your first Groovy scripts. Do it! Grab the
Groovy shell (groovysh) or the console (groovyConsole), and write your
own code. As a side effect, you have also acquired the knowledge to get the most
out of the examples that follow in the upcoming in-depth chapters.

For the remainder of part 1, we will leave the surface and dive into the deep sea
of Groovy. This may be unfamiliar, but don't worry. We'll return to the sea level
often enough to take some deep breaths of Groovy code in action.

60

Licensed to Charles Wise <ctwise@gmail.com>

62

3The simple Groovy datatypes

Understanding the Groovy type system of “optional typing” and the simple
Groovy datatypes.

Groovy's approach to typing

Operators as method implementations

Strings, regular expressions, and numbers

Do not worry about your difficulties in Mathematics. I can assure you mine are
still greater.

-- Albert Einstein

Groovy supports a limited set of datatypes at the language level; that is, it
offers constructs for literal declarations and specialized operators. This set contains
the simple datatypes for strings, regular expressions, and numbers, as well as the
collective datatypes for ranges, lists, and maps. This chapter covers the simple
datatypes; the next chapter introduces the collective datatypes.

Before we go into details, we'll talk about about Groovy's general approach to
typing. With this in mind, you can appreciate Groovy's approach of treating
everything as an object and all operators as method calls. You will see how this
improves the level of object orientation in the language compared to Java's division
between primitive types and reference types.

We then describe the natively supported datatypes individually. By the end of
this chapter, you will be able to confidently work with Groovy's simple datatypes

61

Licensed to Charles Wise <ctwise@gmail.com>

m

63

and have a whole new understanding of what happens when you write 1+1.

3.1 Objects, objects everywhere
In Groovy, everything is an object. It is, after all, an object-oriented language.
Groovy doesn't have the slight “fudge factor” of Java, which is object-oriented
apart from some built-in types. In order to explain the choices made by Groovy's
designers, we'll first go over some basics of Java's type system. We will then
explain how Groovy addresses the difficulties presented, and finally examine how
Groovy and Java can still interoperate with ease due to automatic boxing and
unboxing where necessary.

3.1.1 Java's type system--primitives and references
Java distinguishes between primitive types (such as , ,boolean short int ,

, , , and byte) and reference types (such as Object and float double char

String). There is a fixed set of primitive types, and these are the only types that
have value semantics--where the value of a variable of that type is the actual
number (or character, or true/false value). You cannot create your own value types
in Java.

Reference types (everything apart from primitives) have reference semantics
--the value of a variable of that type is only a reference to an object. Readers with a
C/C++ background may wish to think of a reference as a pointer--it's a similar
concept. If you change the value of a reference type variable, that has no effect on
the object it was previously referring to--you're just making the variable refer to a
different object, or to no object at all. The reverse is true too: changing the contents
of an object doesn't affect the value of a variable referring to that object.

You cannot call methods on values of primitive types, and you cannot use them
where Java expects objects of type java.lang.Object . For each primitive
type, Java has a wrapper type--a reference type that stores a value of the primitive
type in an object. For example, the wrapper for int is java.lang.Integer.

On the other hand, operators such as * in 3*2 or a*b are not supported for
arbitrary25 reference types, but only for primitive types (with the notable exception
of +, which is also supported for strings).

Footnote 25 From Java 5 onwards, the autoboxing feature may kick in to unbox the wrapper object to its
primitive payload and apply the operator.

The Groovy code in 3.9 calls methods on seemingly primitive types (first with a
literal declaration and then on a variable), which is not allowed in Java where you

62

Licensed to Charles Wise <ctwise@gmail.com>

64

need to explicitly create the integer wrapper to convince the compiler. While
calling + on strings is allowed in Java, calling the - (minus) operator is not.
Groovy allows both.

Listing 3.1 Groovy allows methods to be called on types that are declared like
primitive types in Java even when declared literally. Unlike Java, it also supports
operators on reference types.

(60 * 60 * 24 * 365).toString(); // invalid Java

int secondsPerYear = 60 * 60 * 24 * 365;
secondsPerYear.toString(); // invalid Java

new Integer(secondsPerYear).toString();

assert "abc" - "a" == "bc" // invalid Java

The Groovy way looks more consistent and involves some language
sophistication that we are going to explore next.

3.1.2 Groovy's answer--everything's an object
In order to make Groovy fully object-oriented, and because at the JVM level Java
does not support object-oriented operations such as method calls on primitive
types, the Groovy designers decided to do away with primitive types. When
Groovy needs to store values that would have used Java's primitive types, Groovy
uses the wrapper classes already provided by the Java platform. Table 3.1 provides
a complete list of these wrappers.

63

Licensed to Charles Wise <ctwise@gmail.com>

m

65

Table 1.1 Java's primitive datatypes and their wrappers

Primitive type Wrapper type Description

byte java.lang.Byte 8-bit signed integer

short java.lang.Short 16-bit signed integer

int java.lang.Integer 32-bit signed integer

long java.lang.Long 64-bit signed integer

float java.lang.Float Single-precision (32-bit) floating-point value

double java.lang.Double Double-precision (64-bit) floating-point value

char java.lang.Character 16-bit Unicode character

boolean java.lang.Boolean Boolean value (true or false)

Any time you see what looks like a primitive literal value (for example, the
number 5, or the Boolean value true) in Groovy source code, that is a reference
to an instance of the appropriate wrapper class. For the sake of brevity and
familiarity, Groovy allows you to declare variables as if they were primitive type
variables. Don't be fooled--the type used is really the wrapper type. Strings and
arrays are not listed in table 3.1 because they are already reference types, not
primitive types--no wrapper is needed.

While we have the Java primitives under the microscope, so to speak, it's worth
examining the numeric literal formats that Java and Groovy each use. They are
slightly different because Groovy allows instances of

64

Licensed to Charles Wise <ctwise@gmail.com>

m

66

java.math.BigDecimal and java.math.BigInteger to be specified
using literals in addition to the usual binary floating-point types. Table 3.2 gives
examples of each of the literal formats available for numeric types in Groovy.

Table 1.2 Numeric literals in Groovy

Type Example literals

java.lang.Integer 15, 0x1234ffff

java.lang.Long 100L, 200l 26

java.lang.Float 1.23f, 4.56F

java.lang.Double 1.23d, 4.56D

java.math.BigInteger 123g, 456G

java.math.BigDecimal 1.23, 4.56, 1.4E4, 2.8e4, 1.23g, 1.23G

Notice how Groovy decides whether to use a BigInteger or a
BigDecimal to hold a literal with a “G” suffix depending on the presence or
absence of a decimal point. Furthermore, notice how BigDecimal is the default
type of non-integer literals-- BigDecimal will be used unless you specify a
suffix to force the literal to be a Float or a Double.

3.1.3 Interoperating with Java--automatic boxing and unboxing
Converting a primitive value into an instance of a wrapper type is called boxing in
Java and other languages that support the same notion. The reverse action--taking
an instance of a wrapper and retrieving the primitive value--is called unboxing.
Groovy performs these operations automatically for you where necessary. This is
primarily the case when you call a Java method from Groovy. This automatic
boxing and unboxing is known as autoboxing.

You've already seen that Groovy is designed to work well with Java, so what

65

Licensed to Charles Wise <ctwise@gmail.com>

67

happens when a Java method takes primitive parameters or returns a primitive
return type? How can you call that method from Groovy? Consider the existing
method in the java.lang.String class: int indexOf (int ch).

You can call this method from Groovy like this:

assert 'ABCDE'.indexOf(67) == 2

From Groovy's point of view, we're passing an Integer containing the value
67 (the Unicode value for the letter C), even though the method expects a
parameter of primitive type int. Groovy takes care of the unboxing. The method
returns a primitive type int that is boxed into an Integer as soon as it enters
the world of Groovy. That way, we can compare it to the Integer with value 2
back in the Groovy script.

Figure 3.1 shows the process of going from the Groovy world to the Java world
and back.

Figure 3.1 Autoboxing in

action: An Integer parameter

is unboxed to an int for the

Java method call, and an int

return value is boxed into an

Integer for use in Groovy.

All of this is transparent--you don't need to do anything in the Groovy code to
enable it. Now that you understand autoboxing, the question of how to apply
operators to objects becomes interesting. We'll explore this question next.

3.1.4 No intermediate unboxing
If in 1+1 both numbers are objects of type Integer , you may be wondering
whether those Integers unboxed to execute the plus operation on primitive
types.

THe answer is no: Groovy is more object-oriented than Java. It executes this
expression as 1.plus(1) , calling the plus() method of the first Integer
object, and passing 27 the second Integer object as an argument. The method call
returns an Integer object of value 2.

66

Licensed to Charles Wise <ctwise@gmail.com>

 m

68

Footnote 27 The phrase “passing an object” is short for “passing a reference to an object”. In Groovy and
Java alike, only references are passed as arguments: objects themselves are never passed.

This is a powerful model. Calling methods on objects is what object-oriented
languages should do. It opens the door for applying the full range of
object-oriented capabilities to those operators.

Let's summarize. No matter how literals (numbers, strings, and so forth) appear
in Groovy code, they are always objects. Only at the border to Java are they boxed
and unboxed. Operators are a shorthand for method calls. Now that you have seen
how Groovy handles types when you tell it what to expect, let's examine what it
does when you don't give it any type information.

3.2 The concept of optional typing
So far, we haven't used any type declarations in our sample Groovy scripts--or
have we? Well, we haven't used them in the way that you're familiar with in Java.
We assigned strings and numbers to variables and didn't care about the type.
Behind the scenes, Groovy implicitly assumes these variables to be of static type
java.lang.Object . This section discusses what happens when a type is

specified, and the pros and cons of doing it either way.

3.2.1 Assigning types
Groovy offers the choice of explicitly specifying variable types just as you do in
Java. Table 3.3 gives examples of optional type declarations It's tricky - anything
talking about a "type declaration" makes me think it's a type being declared, not a
variable. I guess what we're really talking about is "variable declarations using
optional typing" but that's a mouthful. I'm normally an absolute stickler for getting
terminology right, but if you'd like to fudge this slightly for the sake of more
readable text, that's fine. and the type used at runtime. The def keyword is used to
indicate that no particular type is specified.

67

Licensed to Charles Wise <ctwise@gmail.com>

m

69

Table 1.3 Example Groovy statements and the resulting runtime type

Statement Type of value Comment

def a = 1 java.lang.Integer Implicit typing

def b = 1.0f java.lang.Float

int c = 1 java.lang.Integer Explicit typing using the Java primitive type names

float d = 1 java.lang.Float

Integer e = 1 java.lang.Integer Explicit typing using reference type names

String f = '1' java.lang.String

As we stated earlier, it doesn't matter whether you declare a variable to be of
type int or Integer. Groovy uses the reference type (Integer) either way.

It is important to understand that regardless of whether a variable's type is
explicitly declared, the system is type safe . Unlike untyped languages, Groovy
doesn't allow you to treat an object of one type as an instance of a different type
without a well-defined conversion being available. For instance, you could never
assign a java.util.Date to a reference of type java.lang.Number , in the
hope that you'd end up with an object that you could use for calculation. That sort
of behavior would be dangerous--which is why Groovy doesn't allow it any more
than Java does.

3.2.2 Groovy is type-safe at runtime
The Web is full of heated discussions of whether static or dynamic typing is
“better” while it often remains unclear what either should actually mean. The word
“static” is usually associated with the appearance of type markers in the code, that
is while

String greeting = readFromConsole()

68

Licensed to Charles Wise <ctwise@gmail.com>

m

 m

70

is considered static because of the String type marker, unmarked code like

def greeting = readFromConsole()

is often considered dynamic . In the latter, the type of greeting is whatever
the method call returns at runtime. Surely the type of "greeting" is really just
"Object" or possibly *no* type (depending on whether this is meant to be a Groovy
example or not). It's worth differentiating between the type of the variable and the
type of the value it happens to be initially assigned with. Unfortunately, while I can
critique this, it's harder to really suggest a fix... it would probably require rewriting
the whole paragraph to avoid ending up as a clunky mixture of our voices.
Thoughts? And since in a dynamic language like Groovy, it is not foreseeable at
compile time what type the readFromConsole() method will eventually
return 28 , there is no point in doing any compile time checks. What we know,
though, is that the return type will be assignable to java.lang.Object, which
becomes our compile-time type in this scenario.
Footnote 28 It may for example be intercepted, relayed or replaced by a different method.

Since type markers (and also type casts) are optional in Groovy, that concept is
called optional typing.

The above may sound as if type markers were superfluous, but they play an
important role at runtime--for the method dispatch as we will see in XREF
method_dispatch but also for our current concern: type-safe assignments.

Groovy uses type markers to enforce the Java type system at runtime. Yes, you
have read this correctly: Groovy enforces the Java type system! But it only does so
at runtime, where Java does so with a mixture of compile time and runtime checks.
Java enforces the type system to a large extend at compile time based on static
information, which gives “static typing” its second meaning. The fact that Java
does part of the work at runtime can easily be inferred from the fact that Java
programs can still raise ClassCastException s and other runtime typing
errors.

All this explains why the Groovy compiler29 takes no issue with
Footnote 29 Your IDE will present you a big warning, though. It can apply additional logic like dataflow
analysis and type inference to even discover more hidden assignment errors. It is your responsibility as a
developer how to deal with these warnings.

Integer myInt = new Object()
println myInt

69

Licensed to Charles Wise <ctwise@gmail.com>

m

 m

71

But when running the code, the cast from Object to Integer is enforced
and you will see

org.codehaus.groovy.runtime.typehandling.GroovyCastException:
 Cannot cast object 'java.lang.Object@5b0bc6'
 with class 'java.lang.Object' to class 'java.lang.Integer'

In fact, this is the exact same effect you see if you write a typecast on the
right-hand-side of the assignment in Java. Consider this Java code:

Integer myInt = (Integer) returnsObject(); // Java!

The Java compiler will check whether returnsObject() returns an object
of a type that can sensibly be cast to Integer. Let's assume that the declared
return type is Object . That makes Object the compile-time type30 of the
returnsObject() reference. We hope that at runtime it will yield an
Integer, which becomes its runtime type31. The Groovy code

Footnote 30 This is usually also called the “static” type but we avoid this term here to avoid further
confusion.

Footnote 31 Often called the “dynamic” type - a term we avoid for the same reason.

Integer myInt = returnsObject()

is the exact equivalent of the Java code above as far as the type handling is
concerned. The Groovy compiler inserts type casting logic for you that makes sure
that the right-hand side of an assignment is cast to the type of the left-hand side.
Consequently, when using the dynamic programming style as in

def myInt = returnsObject()

we would cast to Object since that is assumed when def is used. But this can
never have any effect because every object is at least of type Object and Groovy
optimizes the cast away.

Declared types give you a number of benefits. They are means of
documentation and communication but most of all, they enable you to reason
about your code. For example, consider this code snippet:

Integer myInt = returnsObject()
println(++myInt)

The second line is guarded by the first line; there is no way, that it would ever

70

Licensed to Charles Wise <ctwise@gmail.com>

72

be called if myInt was not of type Integer . Therefore we can reason that the
++ operator will be found and work as expected. As a second example, consider a
method definition with a parameter that bears a type marker:

def printNext(Integer myInt) {
 println(++myInt)

}

There is no possible way , that this method could ever be called with an
argument that is not of type Integer! Even though the compiler accepts code
like printNext(new Object()) this will never result in calling our method
above. And now to a common misconception:

NOTE Groovy types are NOT DYNAMIC, they NEVER CHANGE
If I could make the ink blink, I would! The word “dynamic” does not
mean that the type of a reference, once declared, can ever change.
Once we've declared Integer myInt we cannot execute myInt
= new Object() . This will throw a GroovyCastException . We
can only assign a value which Groovy can cast to an Integer.

As you see, the phrase “dynamic typing” can be misleading and
is best avoided.

Type declarations and type casts also play an important role in the Groovy
method dispatch that we will examine in XREF method_dispatch. Casts come with
some additional logic to make development easier.

3.2.3 Let the casting work for you
To complete the picture, Groovy actually applies some convenience logic when
casting, which is mainly concerned with casting primitive types to their wrapper
classes and vice versa, arrays to lists, characters to integers, Java's type widening
for numeric types, applying the “Groovy truth” (see XREF groovy_truth) for casts
to boolean, calling toString() for casts to string, and so on. The exhaustive list
can be looked up in DefaultTypeTransformation.castToType.

Two notable features are baked into the Groovy type casting logic that may be
surprising at first, but make for really elegant code: casting lists and maps to
arbitrary classes. 3.10 introduces these features by creating ,Point Rectangle,
and Dimension objects.

Listing 3.2 Casting lists and maps to arbitrary classes

71

Licensed to Charles Wise <ctwise@gmail.com>

73

import java.awt.*

Point topLeft = new Point(0, 0) // classic
Point botRight = [100, 100] // List cast
Point center = [x:50, y:50] // Map cast

assert botRight instanceof Point
assert center instanceof Point

def rect = new Rectangle()
rect.location = [0, 0] // Point
rect.size = [width:100, height:100] // Dimension

As you see, implicit runtime casting can lead to very readable code, especially
in cases like property assignments where Groovy knows that rect.size is of
type java.awt.Dimension and can cast your list or map of constructor
arguments onto that. You don't have to worry about it: Groovy infers the type for
you.

We have seen the value of type markers and pervasive casting. But since
Groovy offers optional typing, what is the use case for omitting type markers?

3.2.4 The case for optional typing
Omitting type markers is not only convenient for the lazy programmer who does
some ad-hoc scripting, but is also useful for relaying and duck typing. Suppose you
get an object as the result of a method call, and you have to relay it as an argument
to some other method call without doing anything with that object yourself:

def node = document.findMyNode()
log.info node
db.store node

In this case, you're not interested in finding out what the heck the actual type
and package name of that node are. You are spared the work of looking them up,
declaring the type, and importing the package. You also communicate: “That's just
something”.

The second usage of unmarked typing is calling methods on objects that have
no guaranteed type. This is often called duck typing, and we will explain it in more
detail in section 7.3.2. This allows the implementation of generic functionality with
high reusability.

For programmers with a strong Java background, it is not uncommon to start
programming Groovy almost entirely using type declarations, and gradually shift
into a more dynamic mode over time. This is legitimate because it allows
everybody to use what they are confident with.

72

Licensed to Charles Wise <ctwise@gmail.com>

74

NOTE Rule of thumb
Experienced Groovy programmers tend to follow this rule of thumb:
As soon as you think about the type of a reference, declare it; if
you're thinking of it as “just an object,” leave the type out.

Whether you declare your types or not, you'll find that Groovy lets you do a lot
more than you may expect. Let's start by looking at the ability to override
operators.

3.3 Overriding operators
Overriding refers to the object-oriented concept of having types that specify
behavior and subtypes that override this behavior to make it more specific. When a
language bases its operators on method calls and allows these methods to be
overridden, the approach is called operator overriding.

It's more conventional to use the term operator overloading, which means
almost the same thing. The difference is that overloading suggests that you have
multiple implementations of a method (and thus the associated operator) that differ
only in their parameter types.

We will show you which operators can be overridden, show a full example of
how overriding works in practice, and give some guidance on the decisions you
need to make when operators work with multiple types.

3.3.1 Overview of overridable operators
As you saw in section 3.1.2, 1+1 is just a convenient way of writing 1.plus(1).
This is achieved by class Integer having an implementation of the plus
method.

This convenient feature is also available for other operators. Table 3.4 shows an
overview.

73

Licensed to Charles Wise <ctwise@gmail.com>

m

75

Table 1.4 Method-based operators

Operator Name Method Works with

a + b Plus a.plus(b) Number, String, StringBuffer,
Collection, Map, Date, Duration

a – b Minus a.minus(b) Number, String, List, Set, Date,
Duration

a * b Star a.multiply(b) Number, String, Collection

a / b Divide a.div(b) Number

a % b Modulo a.mod(b) Integral number

a++

++a

Post
increment

Pre
increment

a.next() Iterator, Number, String, Date,
(Range)

a

a

Post
decrement

Pre
decrement

a.previous() Iterator, Number, String, Date,
(Range)

-a Unary minus a.negative() Number, ArrayList

+a Unary plus a.positive() Number, ArrayList

a ** b Power a.power(b) Number

74

Licensed to Charles Wise <ctwise@gmail.com>

76

a | b Numerical or a.or(b) Number, Boolean, BitSet, Process

a & b Numerical
and

a.and(b) Number, Boolean, BitSet

a ^ b Numerical
xor

a.xor(b) Number, Boolean, BitSet

~a Bitwise
complement

a.bitwiseNegate() Number, String (the latter returning a
regular expression pattern)

a[b] Subscript a.getAt(b) Object, List, Map, CharSequence,
Matcher, many more

a[b] = c Subscript
assignment

a.putAt(b, c) Object, List, Map, StringBuffer, many
more

a << b Left shift a.leftShift(b) Integral number, also used like
“append” to StringBuffers, Writers,
Files, Sockets, Lists

a >> b Right shift a.rightShift(b) Number

a >>> b Right shift
unsigned

a.rightShiftUnsigned(b) Number

switch(a){

case b: }

Classification b.isCase(a) Object, Class, Range, Collection,
Pattern, Closure; also used with
Collection c in c.grep(b), which
returns all items of c where
b.isCase(item)

a in b Classification b.isCase(a) see above

75

Licensed to Charles Wise <ctwise@gmail.com>

77

a == b Equals If implementsa

Comparable then
a.compareTo(b)==0 else
a.equals(b)

Object; consider hashCode()32

a != b Not equal ! a == b Object

a <=> b Spaceship a.compareTo(b) java.lang.Comparable

a > b Greater than a.compareTo(b) > 0

a >= b Greater than
or equal to

a.compareTo(b) >= 0

a < b Less than a.compareTo(b) < 0

a <= b Less than or
equal to

a.compareTo(b) <= 0

a as type Enforced
coercion

a.asType (typeClass) Any type

76

Licensed to Charles Wise <ctwise@gmail.com>

 m

78

NOTE The case of equals
Nothing is easier than determine whether a==b is true, right? Well,
only at first sight if you want this to be a useful equality check. First,
if both are null, they should count as equal. Second, if they
reference the same object they are equal without the need for
checking. In other words a==a for all values of a.

But there is more. If a>=b and a<=b then we can deduce that
a==b , right? But this may impose a conflict if we have a
Comparable object that doesn't implement equals consistently.
This is why Groovy only looks at the compareTo method for
Comparable objects when doing the equality check and ignores
the equals method in this case. You find the full logic implemented
i n t h e G r o o v y r u n t i m e u n d e r
DefaultTypeTransformation.compareEqual(a,b)

You can easily use any of these operators with your own classes. Just
implement the respective method. Unlike in Java, there is no need to implement a
specific interface.

Strictly speaking, Groovy has even more operators in addition to those in table
3.4, such as the dot operator for referencing fields and methods. Their behavior can
also be overridden. They come into play in chapter 7.

This is all good in theory, but let's see it all works in practice.

3.3.2 Overridden operators in action
Listing 3.1 demonstrates an implementation of the equals == and plus + operators
for a Money class. It is an implementation of the Value Object33 pattern. We allow
values of the same currency to be summed, but do not support multicurrency
addition.
Footnote 33 See http://c2.com/cgi/wiki?ValueObject.

We implement equals indirectly by using the @Immutable annotation as
introduced in 2.6. Remember that == (or equals) denotes object equality (equal
values), not identity (same object instances).

Listing 3.3 Overriding the addition and equality operators

@Immutable class Money { // #1 overrides == operator
 int amount
 String currency

77

Licensed to Charles Wise <ctwise@gmail.com>

http://c2.com/cgi/wiki?ValueObject

79

 Money plus (Money other) { // #2 implements + operator
 if (null == other) return this
 if (other.currency != currency) {

 throw new IllegalArgumentException(
 "cannot add $other.currency to $currency")

 }
 return new Money(amount + other.amount, currency)

 }
}

Money buck = new Money(1, 'USD')
assert buck
assert buck == new Money(1, 'USD') // #3 use overridden ==
assert buck + buck == new Money(2, 'USD') // #4 use implemented +

Since every immutable object automatically gets a value-based implementation
of equals , we get away with only a minimal declaration at . The use of this
operator is shown at , where one dollar becomes equal to any other dollar.

At , the plus operator is not overridden in the strict sense of the word,
because there is no such operator in Money 's superclass (Object). In this case,
operator implementing is the best wording. This is used at , where we add two
Money objects.

To explain the difference between overriding and overloading , here is a
possible overload for 's operator. In listing 3.1, Money can only be Money plus

added to other Money objects. However, we might also want to be able to add
Money with code like this:

assert buck + 1 == new Money(2, 'USD')

We can provide the additional method

Money plus (Integer more) {
 return new Money(amount + more, currency)

}

that overloads the plus method with a second implementation that takes an
Integer parameter. The Groovy method dispatch finds the right implementation
at runtime.

78

Licensed to Charles Wise <ctwise@gmail.com>

80

NOTE	 Our plus operation on the Money class returns Money objects in
both cases. We describe this by saying that Money's plus
operation is closed under its type. Whatever operation you perform
on an instance of Money, you end up with another instance of
Money.

This example leads to the general issue of how to deal with different parameter
types when implementing an operator method. We will go through some aspects of
this issue in the next section.

3.3.3 Making coercion work for you
Implementing operators is straightforward when both operands are of the same
type. Things get more complex with a mixture of types, say

1 + 1.0

This adds an Integer and a BigDecimal . What is the return type? Section
3.6 answers this question for the special case of numbers, but the issue is more
general. One of the two arguments needs to be promoted to the more general type.
This is called coercion.

When implementing operators, there are three main issues to consider as part of
coercion.

SUPPORTED ARGUMENT TYPES
You need to decide which argument types and values will be allowed. If an
operator must take a potentially inappropriate type, throw an
IllegalArgumentException where necessary. For instance, in our Money
example, even though it makes sense to use Money as the parameter for the plus
operator, we don't allow different currencies to be added together.

PROMOTING MORE SPECIFIC ARGUMENTS
If the argument type is a more specific one than your own type, promote it to your
type and return an object of your type. To see what this means, consider how you
might implement the plus operator if you were designing the BigDecimal
class, and what you'd do for an Integer argument.

Integer is more specific than BigDecimal : Every Integer value can be
expressed as a BigDecimal , but the reverse isn't true. So for the
BigDecimal.plus(Integer) operator, we would consider promoting the

79

Licensed to Charles Wise <ctwise@gmail.com>

 m

 m

81

Integer to BigDecimal , performing the addition, and then returning another
BigDecimal--even if the result could accurately be expressed as an Integer.

HANDLING MORE GENERAL ARGUMENTS WITH DOUBLE DISPATCH
If the argument type is more general, call its operator method with yourself (“this,”
the current object) as an argument. Let it promote you . This is also called double

dispatch34 , and it helps to avoid duplicated, asymmetric, possibly inconsistent
code. Let's reverse our previous example and consider Integer.plus
(BigDecimal operand).

Footnote 34 Double dispatch is usually used with overloaded methods: a.method(b) calls
b.method(a) where method is overloaded with method(TypeA) and method(TypeB) .

We would consider returning the result of the expression
operand.plus(this) , delegating the work to BigDecimal 's
plus(Integer) method. The result would be a BigDecimal , which is
reasonable--it would be odd for 1+1.5 to return an Integer but 1.5+1 to
return a BigDecimal.

Of course, this is only applicable for commutative35 operators. Test rigorously,
and beware of endless cycles.
Footnote 35 An operator is commutative if the operands can be exchanged without changing the result of the
operation. For example, plus is usually required to be commutative (a+b==b+a) but minus is not (
a-b!=b-a).

GROOVY'S CONVENTIONAL BEHAVIOR
Groovy's general strategy of coercion is to return the most general type. Other
languages such as Ruby try to be smarter and return the least general type that can
be used without losing information from range or precision. The Ruby way saves
memory at the expense of processing time. It also requires that the language
promote a type to a more general one when the operation would generate an
overflow of that type's range. Otherwise, intermediary results in a complex
calculation could truncate the result.

Now that you know how Groovy handles types in general, we can delve deeper
into what it provides for each of the datatypes it supports at the language level. We
begin with the type that is probably used more than any other non-numeric type:
the humble string.

80

Licensed to Charles Wise <ctwise@gmail.com>

82

3.4 Working with strings
Considering how widely strings are used, many languages--including
Java--provide few language features to make them easier to handle. Scripting
languages tend to fare better in this regard than mainstream application languages,
so Groovy takes on board some of those extra features. This section examines
what's available in Groovy and how to make the most of the extra abilities.

Groovy strings come in two flavors: plain strings and GStrings. Plain strings are
instances of java.lang.String , and GStrings are instances of
groovy.lang.GString . GStrings allow placeholder expressions to be
resolved and evaluated at runtime. Many scripting languages have a similar
feature, usually called string interpolation, but it's more primitive than the GString
feature of Groovy. Let's start by looking at each flavor of string and how they
appear in code.

3.4.1 Varieties of string literals
Java allows only one way of specifying string literals: placing text in quotes “like
this”. If you want to embed dynamic values within the string, you have to either
call a formatting method (made easier but still far from simple in Java 1.5) or
concatenate each constituent part. If you specify a string with a lot of backslashes
in it (such as a Windows file name or a regular expression), your code becomes
hard to read, because you have to double the backslashes. If you want a lot of text
spanning several lines in the source code, you have to make each line contain a
complete string (or several complete strings).

Groovy recognizes that not every use of string literals is the same, so it offers a
variety of options. These are summarized in table 3.5.

81

Licensed to Charles Wise <ctwise@gmail.com>

m

83

Table 1.5 Summary of the string literal styles available in Groovy

Start/end characters Example Placeholder resolved? Backslash escapes?

Single quote 'hello Dierk' No Yes

Double quote "hello $name" Yes Yes

Triple single quote (''') '''==========

Total: $0.02

=========='''

No Yes

Triple double quote (""") """first $line

second $line

third $line"""

Yes Yes

Forward slash /x(\d*)y/ Yes Occasionally36

The aim of each form is to specify the text data you want with the minimum of
fuss. Each of the forms has a single feature that distinguishes it from the others:

The single-quoted form never pays any attention to placeholders. This is
closely equivalent to Java string literals.

The double-quoted form is the equivalent of the single-quoted form,
except that if the text contains unescaped dollar signs, it is treated as a
GString instead of a plain string. GStrings are covered in more detail in the
next section.

The triple-quoted form (or multiline string literal) allows the literal to
span several lines. New lines are always treated as \n regardless of the
platform, but all other whitespace is preserved as it appears in the text file.
Multiline string literals may also be GStrings, depending on whether single

82

Licensed to Charles Wise <ctwise@gmail.com>

 m

84

quotes or double quotes are used. Multiline string literals act similar to
HERE-documents in Ruby or Perl.

The slashy form of string literal allows strings with backslashes to be
specified simply without having to escape all the backslashes. This is
particularly useful with regular expressions, as you'll see later. Only when a
backslash is followed by a u does it need to be escaped 37--at which point life
is slightly harder, because specifying \u involves using a GString or
specifying the Unicode escape sequence for a backslash.

Footnote 37 This is slightly tricky in a slashy string and involves either using

a GString such as /${'\\'}/ or using the Unicode escape sequence. A similar

issue occurs if you want to use a dollar sign. This is a small (and rare) price to pay for the

benefits available, however.

As we hinted earlier, Groovy uses a similar mechanism for specifying special
characters, such as linefeeds and tabs. In addition to the Java escapes, dollar signs
can be escaped in Groovy to allow them to be easily specified without the compiler
treating the literal as a GString. The full set of escaped characters is specified in
table 3.6.

83

Licensed to Charles Wise <ctwise@gmail.com>

m

85

Table 1.6 Escaped characters as known to Groovy

Escaped special
character

Meaning

\b Backspace

\t Tab

\r Carriage return

\n Line feed

\f Form feed

\\ Backslash

\$ Dollar sign

\uabcd Unicode character U+ (where and are hex digits)abcd a, b, c d

\abc 38 Unicode character U+ (where , and are octal digits, andabc a, b c b
and c are optional)

\' Single quote

\" Double quote

Note that in a double-quoted string, single quotes don't need to be escaped, and
vice versa. In other words, 'I said, "Hi."' and "don't" both do what you

84

Licensed to Charles Wise <ctwise@gmail.com>

 m

86

hope they will. For the sake of consistency, both still can be escaped in each case.
Likewise, dollar signs can be escaped in single-quoted strings, even though they
don't need to be. This makes it easier to switch between the forms.

Note that Java uses single quotes for character literals, but as you have seen,
Groovy cannot do so because single quotes are already used to specify strings.
However, you can achieve the same as in Java when providing the type explicitly:

char a = 'x'

or

Character b = 'x'

The java.lang.String 'x' is cast into a java.lang.Character . If
you want to coerce a string into a character at other times, you can do so in either
of the following ways:

'x' as char

or

'x'.toCharacter()

As a GDK goody, there are more to* methods to convert a string, such as
, , , and toDouble.toInteger toLong toFloat

Whichever literal form is used, unless the compiler decides it is a GString, it
ends up as an instance of java.lang.String, just like Java string literals. So
far, we have only teased you with allusions to what GStrings are capable of. Now
it's time to spill the beans.

3.4.2 Working with GStrings
GStrings are like strings with additional capabilities.39 They are literally declared
in double quotes. What makes a double-quoted string literal a GString is the
appearance of placeholders. Placeholders may appear in a full ${expression}
syntax or an abbreviated $reference syntax. See the examples in 3.12.

Footnote 39 groovy.lang.GString isn't actually a subclass of java.lang.String, and couldn't
be, because String is final. However, GStrings can usually be used as if they were strings--Groovy coerces
them into strings when it needs to.

Listing 3.4 Working with GStrings

85

Licensed to Charles Wise <ctwise@gmail.com>

87

def me = 'Tarzan' //|#1 Abbreviated
def you = 'Jane' //|#1 dollar syntax
def line = "me $me - you $you" //|#1
assert line == 'me Tarzan - you Jane' //|#1

def date = new Date(0) //|#2 Extended
def out = "Year $date.year Month $date.month Day $date.date" //|#2 abbreviation
assert out == 'Year 70 Month 0 Day 1' //|#2

out = "Date is ${date.toGMTString()} !" //|#3 Full syntax with
assert out == 'Date is 1 Jan 1970 00:00:00 GMT !' //|#3 curly braces

 //#4 Multiline GStrings start
def sql = """
SELECT FROM MyTable
 WHERE Year = $date.year

"""
assert sql == """
SELECT FROM MyTable
 WHERE Year = 70

""" //#4 Multiline GStrings end

out = "my 0.02$" //|#5 Literal dollar sign
assert out == 'my 0.02$' //|#5

Within a GString, simple references to variables can be dereferenced with the
dollar sign. This simplest form is shown at , whereas shows this being
extended to use property accessors with the dot syntax. You will learn more about
accessing properties in chapter 7.

The full syntax uses dollar signs and curly braces, as shown at . It allows
arbitrary Groovy expressions within the curly braces. The curly braces denote a
closure.

In real life, GStrings are handy in templating scenarios. A GString is used in
to create the string for an SQL query. Groovy provides even more sophisticated
templating support, as shown in chapter 8. If you need a dollar character within a
template (or any other GString usage), you must escape it with a backslash as
shown in .

Although GStrings behave like java.lang.String objects for all
operations that a programmer is usually concerned with, they are implemented
differently to capture the fixed and the dynamic parts (the so-called values)
separately. This is revealed by the following code:

def me = 'Tarzan'
def you = 'Jane'
def line = "me $me - you $you"
assert line == 'me Tarzan - you Jane'
assert line instanceof GString

86

Licensed to Charles Wise <ctwise@gmail.com>

88

assert line.strings[0] == 'me '
assert line.strings[1] == ' - you '
assert line.values[0] == 'Tarzan'
assert line.values[1] == 'Jane'

NOTE Placeholder evaluation time
Each placeholder inside a GString is evaluated at declaration time
and the resulting is stored in the GString object. By the time value
the GString is converted into a (by calling its java.lang.String

method or casting it to a string), each value gets written toString

to the string. Because the logic of how to write a value can be 40

elaborate for certain types (most notably), this behavior closures
can be used in advanced ways that make the evaluation of such
placeholders appear to be lazy. See chapter 13 for examples of
this.

Footnote 40m See in section 8.2.4.Writer.write(Object)

You have seen the Groovy language support for declaring strings. What follows
is an introduction to the use of strings in the Groovy library. This will also give
you a first impression of the seamless interplay of Java and Groovy. We start in
typical Java style and gradually slip into Groovy mode, carefully watching each
step.

3.4.3 From Java to Groovy
Now that you have your strings easily declared, you can have some fun with them.
Because they are objects of type java.lang.String , you can call String 's
methods on them or pass them as parameters wherever a string is expected, such as
for easy console output:

System.out.print("Hello Groovy!");

This line is equally valid Java and Groovy. You can also pass a literal Groovy
string in single quotes:

System.out.print('Hello Groovy!');

Because this is such a common task, the GDK provides a shortened syntax:

print('Hello Groovy!');

You can drop parentheses and semicolons, because they are optional and do not

87

Licensed to Charles Wise <ctwise@gmail.com>

89

help readability in this case. The resulting Groovy style boils down to

print 'Hello Groovy!'

Looking at this last line only, you cannot tell whether this is Groovy, Ruby,
Perl, or one of several other line-oriented scripting languages. It may not look
sophisticated, but it boils the code down to the essence by cutting down on
ceremony (Stuart Halloway).

Listing 3.3 presents more of the mix-and-match between core Java and
additional GDK capabilities. How would you judge the signal-to-noise ratio of
each line?
In this listing, we're using getAt(x). Should we also show charAt(x) to demonstrate the Java equivalent?

Listing 3.5 A miscellany of string operations

String greeting = 'Hello Groovy!'

assert greeting.startsWith('Hello')

assert greeting.getAt(0) == 'H'
assert greeting[0] == 'H'

assert greeting.indexOf('Groovy') >= 0
assert greeting.contains('Groovy')

assert greeting[6..11] == 'Groovy'

assert 'Hi' + greeting - 'Hello' == 'Hi Groovy!'

assert greeting.count('o') == 3

assert 'x'.padLeft(3) == ' x'
assert 'x'.padRight(3,'_') == 'x__'
assert 'x'.center(3) == ' x '
assert 'x' * 3 == 'xxx'

These self-explanatory examples give an impression of what is possible with
strings in Groovy. If you have ever worked with other scripting languages, you
may notice that a useful piece of functionality is missing from listing 3.3: changing
a string in place. Groovy cannot do so because it works on instances of
java.lang.String and obeys Java's invariant of strings being immutable.

Before you say “What a lame excuse!” here is Groovy's answer to changing
strings: Although you cannot work on String , you can still work on
StringBuffer !41 On a StringBuffer , you can work with the << left shift

operator for appending and the subscript operator for in-place assignments. Using

88

Licensed to Charles Wise <ctwise@gmail.com>

 m

90

the left shift operator on String returns a StringBuffer . Here is the
StringBuffer equivalent to listing 3.3:

Footnote 41 Future versions may use a StringBuilder instead. StringBuilder was introduced in
Java 1.5 to reduce the synchronization overhead of StringBuffers. Typically, StringBuffers are
used only in a single thread and then discarded--but StringBuffer itself is thread-safe, at the expense of
synchronizing each method call.

def greeting = 'Hello'

greeting <<= ' Groovy' // #1 Leftshift and assign

assert greeting instanceof java.lang.StringBuffer

greeting << '!' //#2 Leftshift on StringBuffer

assert greeting.toString() == 'Hello Groovy!'

greeting[1..4] = 'i' //#3 Substring 'ello' becomes 'i'

assert greeting.toString() == 'Hi Groovy!'

NOTE Note
Although the expression stringRef << string returns a
StringBuffer, that StringBuffer is not automatically assigned

to the stringRef (see). When used on a String , it needs
explicit assignment; on StringBuffer it doesn't. With a

StringBuffer, the data in the existing object is changed (see
)--with a String we can't change the existing data, so we have to
return a new object instead.

Throughout the next sections, you will gradually add to what you have learned
about strings as you discover more language features. String has gained several
new methods in the GDK. You've already seen a few of these, but you'll see more
as we talk about working with regular expressions and lists. The complete list of
GDK methods on strings is listed in appendix C.

Working with strings is one of the most common tasks in programming, and for
script programming in particular: reading text, writing text, cutting words,
replacing phrases, analyzing content, search and replace--the list is amazingly long.
Think about your own programming work. How much of it deals with strings?

Groovy supports you in these tasks with comprehensive string support, but
that's not the whole story. The next section introduces regular expressions, which
cut through text like a chainsaw: difficult to operate but extremely powerful.

89

Licensed to Charles Wise <ctwise@gmail.com>

91

3.5 Working with regular expressions

Once a programmer had a problem. He thought he could solve it with a regular
expression. Now he had two problems.

-- from a fortune cookie

Suppose you had to prepare a table of contents for this book. You would need
to collect all the headings like “3.5 Working with regular expressions”--paragraphs
that start with a number or with a number, a dot, and another number. The rest of
the paragraph would be the heading. This would be cumbersome to code naïvely:
iterate over each character; check whether it is a line start; if so, check whether it is
a digit; if so, check whether a dot and a digit follow. Puh--lots of rope, and we
haven't even covered numbers that have more than one digit.

Regular expressions come to the rescue. They allow you to declare such a
pattern rather than programming it. Once you have the pattern, Groovy lets you
work with it in numerous ways.

Regular expressions are prominent in scripting languages and have also been
available in the Java library since JDK 1.4. Groovy relies on Java's regex (reg ular
expression) support and adds three operators for convenience:

The regex find operator =~
The regex match operator ==~
The regex pattern operator ~String

An in-depth discussion about regular expressions is beyond the scope of this
book. Our focus is on Groovy, not on regexes. We give the shortest possible
introduction to make the examples comprehensible and provide you with a
jump-start.

Regular expressions are defined by patterns. A pattern can be anything from a
simple character, a fixed string, or something like a date format made up of digits
and delimiters, up to descriptions of balanced parentheses in programming
languages. Patterns are declared by a sequence of symbols. In fact, the pattern
description is a language of its own. Some examples are shown in table 3.7. Note
that these are the raw patterns, not how they would appear in string literals. In
other words, if you stored the pattern in a variable and printed it out, this is what
you'd want to see. It's important to make the distinction between the pattern itself
and how it's represented in code as a literal.

90

Licensed to Charles Wise <ctwise@gmail.com>

m

92

Table 1.7 Simple regular expression pattern examples

Pattern Meaning

some text Exactly “some text”.

some\s+text The word “some” followed by one or more whitespace characters
followed by the word “text”.

^\d+(\.\d+)? (.*) Our introductory example: headings of level one or two. denotes a line^

start, a digit, one or more digits. Parentheses are used for\d \d+

grouping. The question mark makes the first group optional. The
second group contains the title, made of a dot for any character and a
star for any number of such characters.

\d\d/\d\d/\d\d\d\d A date formatted as exactly two digits followed by slash, two more digits
followed by a slash, followed by exactly four digits.

A pattern like one of the examples in table 3.7 allows you to declare what you
are looking for, rather than having to program how to find something. Next we'll
see how patterns appear as literals in code and what can be done with them. We
will then revisit our initial example with a full solution, before examining some
performance aspects of regular expressions and finally showing how they can be
used for classification in switch statements and for collection filtering with the
grep method.

3.5.1 Specifying patterns in string literals
How do you put the sequence of symbols that declares a pattern inside a string?

In Java, this causes confusion. Patterns use lots of backslashes, and to get a
backslash in a Java string literal, you need to double it. This leads to Java strings
which are very hard to read in terms of the raw pattern involved.. It gets even
worse if you need to match an actual backslash in your pattern--the pattern
language escapes that with a backslash too, so the Java regex string literal needed
to match a\b is "a\\\\b".

Groovy does much better. As you saw earlier, there is the slashy form of string
literal, which doesn't require you to escape the backslash character and still works

91

Licensed to Charles Wise <ctwise@gmail.com>

93

like a normal GString. Listing 3.4 shows how to declare patterns conveniently.

Listing 3.6 Regular expression GStrings

assert "abc" == /abc/
assert "\d" == /d/

def reference = "hello"
assert reference == /$reference/

assert "$" == /$/

The slashy syntax doesn't require the dollar sign to be escaped. Note that you
have the choice to declare patterns in either kind of string.

NOTE Tip
Sometimes the slashy syntax interferes with other valid Groovy
expressions such as line comments or numerical expressions with
multiple slashes for division. When in doubt, put parentheses
around your pattern like (/pattern/) . Parentheses force the
parser to interpret the content as an expression.

SYMBOLS
The key to using regular expressions is knowing the pattern symbols. For
convenience, table 3.8 provides a short list of the most common ones. Put an
earmark on this page so you can easily look up the table. You will use it a lot.

92

Licensed to Charles Wise <ctwise@gmail.com>

m

94

Table 1.8 Regular expression symbols (excerpt)

Symbol Meaning

. Any character

^ Start of line (or start of document, when in single-line mode)

$ End of line (or end of document, when in single-line mode)

\d Digit character

\D Any character except digits

\s Whitespace character

\S Any character except whitespace

\w Word character

\W Any character except word characters

\b Word boundary

() Grouping

(x | y) or , as inx y (Groovy|Java|Ruby)

\1 Backmatch to group one: for example, find doubled characters with (.)\1

93

Licensed to Charles Wise <ctwise@gmail.com>

 m

95

x * Zero or more occurrences of x

x + One or more occurrences of x

x ? Zero or one occurrence of x

x { m , n

}

At least and at most occurrences ofm n x

x { m } Exactly m occurrences of x

[a-f] Character class containing the characters a, b, c, d, e, f

[^a] Character class containing any character except a

(?is:x) Switches mode when evaluating ; i turns on , means single-linex ignoreCase s

mode

NOTE Tip
Symbols tend to have the same first letter as what they represent:
for example, digit, space, word, and boundary. Uppercase symbols
define the complement; think of them as a warning sign for no.

More to consider:

Use grouping properly. The expanding operators such as star and plus bind closely; ab+
matches abbbb. Use (ab)+ to match ababab.
In normal mode, the expanding operators are greedy, meaning they try to match the
longest substring that matches the pattern. Add an additional question mark after the
operator to put them into restrictive mode. You may be tempted to extract the href from
an HTML anchor element with this regex: href="(.*)". But href= "(.*?)" is probably
better. The first version matches until the last double quote in your text; the latter
matches until the next double quote.42
Footnote 42 This is only to explain the greedy behavior of regular expression, not to explain how
HTML is parsed correctly, which would involve a lot of other topics such as ordering of attributes, spelling
variants, and so forth.

94

Licensed to Charles Wise <ctwise@gmail.com>

96

This is only a brief description of the regex pattern format, but a complete
specification comes with your JDK, as part of the Javadoc for
java.util.regex.Pattern . It may change marginally between JDK
versions; for JDK 1.5, it can be found online at
http://java.sun.com/j2se/1.5/docs/api/java/util/regex/Pattern.html.

Use the 1.6 link instead? See the Javadoc to learn more about different
evaluation modes, positive and negative lookahead, back references, and posix
characters.

It always helps to test your expressions before putting them into code. There are
online applications that allow interactive testing of regular expressions: for
example, http://www.nvcc.edu/home/drodgers/ceu/resources/test_regexp.asp . You
should be aware that not all regular expression pattern languages are exactly the
same. You may get unexpected results if you take a regular expression designed for
use in .NET and apply it in a Java or Groovy program. Although there aren't many
differences, the differences that do exist can be hard to spot. Even if you take a
regular expression from a book or a web site, you should still test that it works in
your code.

Once you have declared the pattern you want, you need to tell Groovy how to
apply it. We will explore a whole variety of usages.

3.5.2 Applying patterns
For a given string and pattern, Groovy supports the following tasks for regular
expressions:

Tell whether the pattern fully matches the whole string.
Tell whether there is an occurrence of the pattern in the string.
Count the occurrences.
Do something with each occurrence.
Replace all occurrences with some text.
Split the string into multiple strings by cutting at each occurrence.

Listing 3.5 shows how Groovy sets patterns into action. Unlike most other
examples, this listing contains some comments. This reflects real life and is not for
illustrative purposes. The use of regexes is best accompanied by this kind of
comment for all but the simplest patterns.

Listing 3.7 Regular expressions

def twister = 'she sells sea shells at the sea shore of seychelles'

95

Licensed to Charles Wise <ctwise@gmail.com>

http://java.sun.com/j2se/1.5/docs/api/java/util/regex/Pattern.html
http://www.nvcc.edu/home/drodgers/ceu/resources/test_regexp.asp

97

// twister must contain a substring of size 3
// that starts with s and ends with a
assert twister =~ /s.a/ // #1 Regex find operator as usable in if

def finder = (twister =~ /s.a/) // #2 Find expression evaluates to a
assert finder instanceof java.util.regex.Matcher // #2 matcher object

// twister must contain only words delimited by single spaces
assert twister ==~ /(w+ w+)*/ // #3 Regex match operator

def WORD = /w+/
matches = (twister ==~ /($WORD $WORD)*/) // #4 Match expression evaluates
assert matches instanceof java.lang.Boolean // #4 to a boolean

assert (twister ==~ /s.e/) == false // #5 Match is full unlike find

def wordsByX = twister.replaceAll(WORD, 'x')
assert wordsByX == 'x x x x x x x x x x'

def words = twister.split(/ /) // #6 Split returns a list of words
assert words.size() == 10
assert words[0] == 'she'

and have an interesting twist. Although the regex find operator evaluates
to a Matcher object, it can also be used as a Boolean conditional. We will
explore how this is possible when examining the “Groovy Truth” in chapter 6.

NOTE Tip
To remember the difference between the =~ find operator and the
==~ match operator, recall that match is more restrictive, because
the pattern needs to cover the whole string. The demanded
coverage is “longer” just like the operator itself.

See your Javadoc for more information about the
java.util.regex.Matcher object, such as how to walk through all the
matches and how to work with groupings within each match.

COMMON REGEX PITFALLS
You do not need to fall into the regex traps yourself. We have already done this for
you. We have learned the following:

When things get complex (note, this is when, not if), comment verbosely.
Use the slashy syntax instead of the regular string syntax, or you will get lost in a forest
of backslashes.
Don't let your pattern look like a toothpick puzzle. Build your pattern from
subexpressions like WORD in listing 3.5.
Put your assumptions to the test. Write some assertions or unit tests to test your regex

96

Licensed to Charles Wise <ctwise@gmail.com>

98

against static strings. Please don't send us any more flowers for this advice; an email with
the subject “Assertions saved my life today” will suffice.

3.5.3 Patterns in action
You're now ready to do everything you wanted to do with regular expressions,
except we haven't covered “do something with each occurrence”. Something and
each sounds like a cue for a closure to appear, and that's the case here. String
has a method called eachMatch that takes a regex as a parameter along with a
closure that defines what to do on each match.

NOTE What is a match?
A match is the occurrence of a regular expression pattern in a

string. It is therefore a string: a substring of the original string.
When the pattern contains groupings like in /begin(.*?)end/,
we need to know more information: not just the string matching the
whole pattern, but also what part of that string matched each group.
Therefore, the match becomes a list of strings, containing the whole
match at position 0 with group matches being available as match[
n] where n is group number n. Groups are numbered by the
sequence of their opening parentheses.

The match gets passed into the closure for further analysis. In our musical
example in listing 3.6, we append each match to a result string.

Listing 3.8 Working on each match of a pattern

def myFairStringy = 'The rain in Spain stays mainly in the plain!'

// words that end with 'ain': bw*ainb
def wordEnding = /w*ain/
def rhyme = /b$wordEndingb/
def found = ''
myFairStringy.eachMatch(rhyme) { match -> // #1 String.eachMatch(regex){}

 found += match + ' '
}
assert found == 'rain Spain plain '

found = ''
(myFairStringy =~ rhyme).each { match -> // #2 Matcher.each {}

 found += match + ' '
}
assert found == 'rain Spain plain '

def cloze = myFairStringy.replaceAll(rhyme){ it-'ain'+'___' } //#3 String.replaceAll(regex){}
assert cloze == 'The r___ in Sp___ stays mainly in the pl___!'

97

Licensed to Charles Wise <ctwise@gmail.com>

99

There are two different ways to iterate through matches with identical behavior:
use String.eachMatch(Pattern) , or use Matcher.each() ,
where the Matcher is the result of applying the regex find operator to a string and
a pattern. shows a special case for replacing each match with some dynamically
derived content from the given closure. The variable it refers to the matching
substring. The result is to replace “ain” with underscores, but only where it forms
part of a rhyme.

In order to fully understand how the Groovy regular expression support works,
we need to look at the java.util.regex.Matcher class. It is a JDK class
that encapsulates knowledge about

How often and at what position a pattern matches
The groupings for each match

The GDK enhances the Matcher class with simplified array-like access to this
information. In Groovy, you can think about a matcher as if it was a list of all its
matches . This is what happens in the following example that matches all
non-whitespace characters:

def matcher = 'a b c' =~ /S/

assert matcher[0] == 'a'
assert matcher[1..2] == ['b','c']
assert matcher.size() == 3

The interesting part comes with groupings in the match. If the pattern contains
parentheses to define groups, then the result of asking for a particular match is an
array of strings are than a single one: the same behavior as we mentioned for
eachMatch. Again, the first result (at index 0) is the match for the whole pattern.
Consider this example, where each match finds pairs of strings that are separated
by a colon. For later processing, the match is split into two groups, for the left and
the right string:

def matcher = 'a:1 b:2 c:3' =~ /(S+):(S+)/

assert matcher.hasGroup()
assert matcher[0] == ['a:1', 'a', '1'] // 1st match
assert matcher[1][2] == '2' // 2nd match, 2nd group

In other words, what matcher[0] returns depends on whether the pattern
contains groupings.

98

Licensed to Charles Wise <ctwise@gmail.com>

100

This also applies to the matcher's each method, which comes with a
convenient notation for groupings. When the processing closure defines multiple
parameters, the list of groups is distributed over them:

def matcher = 'a:1 b:2 c:3' =~ /(S+):(S+)/
matcher.each { full, key, value ->

 assert full.size() == 3
 assert key.size() == 1 // a,b,c
 assert value.size() == 1 // 1,2,3

}

This matcher matches three times passing the full match and the two groups
into the closure on each match. The above enables us to assign meaningful names
to the group matches. We decided to call them key and value , which much
better reveals their intent than match[1] and match[2] would.

We advise to use group names whenever the group count is fix. Groovy
supports the spreading of match groups over closure parameters for all methods
that pass a match into a closure. For example you can use it with the
String.eachMatch(regex){match->} method.

NOTE Implementation detail
Groovy internally stores the most recently used matcher (per
thread). It can be retrieved with the static property
Matcher.lastMatcher. You can also set the index property of a
matcher to make it look at the respective match with
matcher.index = x. Both can be useful in some exotic corner
cases. See Matcher's API documentation for details.

We will revisit the Matcher class later in various places. It is particularly
interesting because it plays so well with Groovy's approach of letting classes
decide how to iterate over themselves and reusing that behavior pervasively.
Matcher and Pattern work in combination and are the key abstractions for
regexes in Java and Groovy. You have seen Matcher, and we'll have a closer
look at the Pattern abstraction next.

3.5.4 Patterns and performance
Finally, let's look at performance and the pattern operator ~String.

The pattern operator transforms a string into an object of type
java.util.regex.Pattern. For a given string, this pattern object can be
asked for a matcher object.

99

Licensed to Charles Wise <ctwise@gmail.com>

101

The rationale behind this construction is that patterns are internally backed by a
finite state machine that does all the high-performance magic. This machine is
compiled when the pattern object is created. The more complicated the pattern, the
longer the creation takes. In contrast, the matching process as performed by the
machine is extremely fast.

The pattern operator allows you to split pattern-creation time from
pattern-matching time, increasing performance by reusing the finite state machine.
Listing 3.7 shows a poor-man's performance comparison of the two approaches.
The precompiled pattern version is at least twice as fast (although these kinds of
measurements can differ wildly).

Listing 3.9 Increase performance with pattern reuse.

def twister = 'she sells sea shells at the sea shore of seychelles'
// some more complicated regex:
// word that starts and ends with same letter
def regex = /b(w)w*1b/
def many = 100 * 1000

start = System.nanoTime()
many.times{

 twister =~ regex // #1 Find operator with implicit pattern construction
}
timeImplicit = System.nanoTime() - start

start = System.nanoTime()
pattern = ~regex // #2 Explicit pattern construction
many.times{

 pattern.matcher(twister) // #3 Apply pattern on a string
}
timePredef = System.nanoTime() - start

assert timeImplicit > timePredef * 2 // #4 up to factor 5

To find words that start and end with the same character, we used the \1
backmatch to refer to that character. We prepared its usage by putting the word's
first character into a group, which happens to be group 1.

Note the difference in spelling in . This is not a =~ b but a = ~b .
Tricky.

100

Licensed to Charles Wise <ctwise@gmail.com>

102

NOTE Use whitespace wisely
The observant reader may spot a language issue: What happens if
you write a=~b without any whitespace? Is that the =~ find
operator, or is it an assignment of the ~b pattern to a? For the
human reader, it is ambiguous. Not so for the Groovy parser. It is
greedy and will parse this as the find operator.

It goes without saying that being explicit with whitespace is
good programming style, even when the meaning is unambiguous
for the parser. Do it for the next human reader, which will probably
be you.

Don't forget that performance should usually come second to readability--at
least to start with. If reusing a pattern means bending your code out of shape, you
should ask yourself how critical the performance of that particular area is before
making the change. Measure the performance in different situations with each
version of the code, and balance ease of maintenance with speed and memory
requirements.

3.5.5 Patterns for classification
Listing 3.8 completes our journey through the domain of patterns. The Pattern
object, as returned from the pattern operator, implements an isCase(String)
method that is equivalent to a full match of that pattern with the string. This
classification method is a prerequisite for using patterns conveniently with the in
operator, the grep method and in switch cases.

The example classifies words that consist of exactly four characters. The pattern
therefore consists of the word character class \w followed by the {4}
quantification.

Listing 3.10 Patterns for classification

def fourLetters = ~/w{4}/

assert fourLetters.isCase('work')

assert 'love' in fourLetters

switch('beer'){
 case ~/w{4}/ : assert true; break
 default : assert false

}

beasts = ['bear','wolf','tiger','regex']

101

Licensed to Charles Wise <ctwise@gmail.com>

103

assert beasts.grep(fourLetters) == ['bear','wolf']

NOTE Tip
Classifications read nicely with , and grep . It's rare to in switch

call classifier.isCase(candidate) directly, but when you
see such a call it's easiest to read it from right to left: “candidate is a
case of classifier”.

Patterns are also prevalent in the Groovy library (see XREF GDK). Most of
those methods give you the choice between using either a string that describes the
regular expression (conventionally this parameter is called “regex”) or supplying a
pattern object instead (conventionally called “pattern”). This applies to the
following methods on String:

String find (Pattern pattern)
String find (Pattern pattern) { match -> ... }
List findAll (Pattern pattern)
List findAll (Pattern pattern) { match -> ... }
String eachMatch(Pattern pattern) { match -> ... }

Some notable examples of this rule are

replaceFirst(Pattern pattern, String replacement)
replaceAll (String regex) { match -> ... }
replaceAll (Pattern pattern, String replacement)
matches (Pattern pattern)

and the various forms of splitEachLine. Another special case is minus
because you can use it to either remove a fixed substring from a string or remove a
pattern match. But the latter only works if the operand is already a Pattern
object rather than a regex string, obviously--otherwise the meaning of 'a' -
'b' would be ambiguous.

At times, regular expressions can be difficult beasts to tame, but mastering
them adds a new quality to all text-manipulation tasks. Once you have a grip on
them, you'll hardly be able to imagine having programmed (some would say lived)
without them. Writing this book without their help would have been very hard
indeed. Groovy makes regular expressions easily accessible and straightforward to
use.

This concludes our coverage of text-based types, but of course computers have
always dealt with numbers as well as text. Working with numbers is easy in most

102

Licensed to Charles Wise <ctwise@gmail.com>

104

programming languages, but that doesn't mean there's no room for improvement.
Let's see how Groovy goes the extra mile when it comes to numeric types.

3.6 Working with numbers
The available numeric types and their declarations in Groovy were introduced in
section 3.1.

We've already seen that for decimal numbers, the default type is
java.math.BigDecimal. This is a feature to get around the most common
misconceptions about floating-point arithmetic. We're going to look at which type
is used where and what extra abilities have been provided for numbers in the GDK.

3.6.1 Coercion with numeric operators
It is always important to understand what happens when you use one of the
numeric operators.

Most of the rules for the addition, multiplication, and subtraction operators are
the same as in Java, but there are some changes regarding floating-point behavior,
and BigInteger and BigDecimal also need to be included. The rules are
straightforward. The first rule to match the situation is used.

For the operations +, -, and *:

If either operand is a Float or a Double, the result is a Double. (In Java, when only Float
operands are involved, the result is a Float too.)
Otherwise, if either operand is a BigDecimal, the result is a BigDecimal.
Otherwise, if either operand is a BigInteger, the result is a BigInteger.
Otherwise, if either operand is a Long, the result is a Long.
Otherwise, the result is an Integer.

Table 3.9 depicts the scheme for quick lookup. Types are abbreviated by
uppercase letters.

103

Licensed to Charles Wise <ctwise@gmail.com>

m

105

Table 1.9 Numerical coercion

+ - * B S I C L BI BD F D

Byte I I I I L BI BD D D

Short I I I I L BI BD D D

Integer I I I I L BI BD D D

Character I I I I L BI BD D D

Long L L L L L BI BD D D

BigInteger BI BI BI BI BI BI BD D D

BigDecimal BD BD BD BD BD BD BD D D

Float D D D D D D D D D

Double D D D D D D D D D

Other aspects of coercion behavior:

Like Java but unlike Ruby, no coercion takes place when the result of an operation
exceeds the current range, except for the power operator.
For division, if any of the arguments is of type Float or Double, the result is of type
Double; otherwise the result is of type BigDecimal with the maximum precision of both
arguments, rounded half up. The result is normalized--that is, without trailing zeros.
Integer division (keeping the result as an integer) is achievable through explicit casting or
by using the intdiv() method.
The shifting operators are only defined for types Integer and Long. They do not coerce
to other types.
The power operator coerces to the next best type that can take the result in terms of range
and precision, in the sequence Integer Long Double, , .

104

Licensed to Charles Wise <ctwise@gmail.com>

106

The equals operator coerces to the more general type before comparing.

Rules can be daunting without examples, so this behavior is demonstrated in
table 3.10.

105

Licensed to Charles Wise <ctwise@gmail.com>

m

107

Table 1.10 Numerical expression examples

Expression Result
type

Comments

1f*2f Double In Java, this would be Float.

(Byte)1+(Byte)2 Integer As in Java, integer arithmetic is always performed in at
least 32 bits.

1*2L Long

1/2 BigDecimal

(0.5)

In Java, the result would be the integer 0.

(int)(1/2) Integer

(0)

This is normal coercion of to .BigDecimal Integer

1.intdiv(2) Integer

(0)

This is the equivalent of the Java 1/2.

Integer.MAX_VALUE+1 Integer Non- power operators wrap without promoting the result
type.

2**31 Integer

2**33 Long The power operator promotes where necessary.

2**3.5 Double

2G+1G BigInteger

106

Licensed to Charles Wise <ctwise@gmail.com>

108

2.5G+1G BigDecimal

1.5G==1.5F Boolean

(true)

The is promoted to a beforeFloat BigDecimal

comparison.

1.1G==1.1F Boolean

(false)

1.1 can't be exactly represented as a Float (or indeed a
), so when it is promoted to , it isn'tDouble BigDecimal

equal to the exact BigDecimal 1.1G but rather
1.100000023841858G.

The only surprise is that there is no surprise. In Java, results like in the fourth
row are often surprising--for example, (1/2) is always zero because when both
operands of division are integers, only integer division is performed. To get 0.5 in
Java, you need to write (1f/2).

This behavior is especially important when using Groovy to enhance your
application with user-defined input. Suppose you allow super-users of your
application to specify a formula that calculates an employee's bonus, and a
business analyst specifies it as businessDone * (1/3). With Java semantics,
this will be a bad year for the poor employees.

3.6.2 GDK methods for numbers
The GDK defines all applicable methods from table 3.4 to implement overridable
operators for numbers such as plus minus power, , , and so forth. They all work
without surprises. In addition, the methods below fulfil their self-describing duty:

assert 1 == (-1).abs()
assert 2 == 2.5.toInteger() // conversion
assert 2 == 2.5 as Integer // enforced coercion
assert 2 == (int) 2.5 // cast
assert 3 == 2.5f.round()
assert 3.142 == Math.PI.round(3)
assert 4 == 4.5f.trunc()
assert 2.718 == Math.E.trunc(3)

assert '2.718'.isNumber() // String methods
assert 5 == '5'.toInteger()
assert 5 == '5' as Integer
assert 53 == (int) '5' // gotcha!
assert '6 times' == 6 + ' times' // Number + String

As you can see, there are various conversion possibilities: the toInteger()

107

Licensed to Charles Wise <ctwise@gmail.com>

109

method (also available for ,Double Float and so on), enforced coercion with the
as operator that calls the asType(class) method and the humble cast.

WARNING Don't cast strings to numbers!

In Groovy, you can cast a string of length one directly to a char. But

char and int are essentially the same thing on the Java platform.

This leads to the gotcha where '5' is cast to its unicode value 53 .

Instead, use the the type conversion methods.

More interestingly, the GDK also defines the methods times upto downto , ,
, and step. They all take a closure argument. Listing 3.9 shows these methods in
action: times is just for repetition, upto is for walking a sequence of increasing
numbers, downto is for decreasing numbers, and step is the general version that
walks until the end value by successively adding a step width.

Listing 3.11 GDK methods on numbers

def store = ''
10.times{ // #1 Repetition

 store += 'x'
}
assert store == 'xxxxxxxxxx'

store = ''
1.upto(5) { number -> // #2 Walking up with loop variable

 store += number
}
assert store == '12345'

store = ''
2.downto(-2) { number -> // #3 Walking down

 store += number + ' '
}
assert store == '2 1 0 -1 -2 '

store = ''
0.step(0.5, 0.1){ number -> // #4 Walking with step width

 store += number + ' '
}
assert store == '0 0.1 0.2 0.3 0.4 '

Calling methods on numbers can feel unfamiliar at first when you come from
Java. Just remember that numbers are objects and you can treat them as such.

As we've seen, numbers in Groovy work in a natural way and protect you
against the most common errors with floating-point arithmetic. In most cases, there
is no need to remember all details of coercion. When the need arises, this section

108

Licensed to Charles Wise <ctwise@gmail.com>

110

may serve as a reference.
The strategy of making objects available in unexpected places starts to become

an ongoing theme. You have seen it with numbers, and section 4.1 will show the
same principle applied to ranges.

3.7 Summary
Contrary to popular belief, Groovy gives you the same type safety as Java, albeit at
runtime instead of Java's mix of compile-time and runtime. This approach is a
prerequisite to enable the awesome power of dynamic language features such as
pretended methods, flexible bindings for scripts, templates and closures, and all the
other metaprogramming goodness that we will explore in the course of this book.

Making common activities more convenient is one of Groovy's main promises.
Consequently, Groovy promotes even the simple datatypes to first-class objects
and implements operators as method calls to make the benefits of object orientation
ubiquitously available.

Developer convenience is further enhanced by allowing a variety of means for
string literal declarations, whether through flexible GString declarations or with the
slashy syntax for situations where extra escaping is undesirable, such as regular
expression patterns. GStrings contribute to another of Groovy's central pillars:
concise and expressive code. This allows the reader a clearer insight into the
runtime string value, without having to wade through reams of string concatenation
or switch between format strings and the values replaced in them.

Regular expressions are well represented in Groovy, again confirming its
comfortable place among other top of stack languages. Utilizing regular
expressions is an everyday exercise, and a language that treated them as
second-class citizens would be severely hampered. Groovy effortlessly combines
Java's libraries with language support, retaining the regular expression dialect
familiar to Java programmers with the ease of use found in scripting.

The Groovy way of treating numbers with respect to type conversion and
precision handling leads to intuitive usage, even for non-programmers. This
becomes particularly important when Groovy scripts are used for smart
configurations of larger systems where business users may provide formulas--for
example, to define share-valuation details.

Strings, regular expressions, and numbers alike profit from numerous methods
that the GDK introduces on top of the JDK. A clear pattern has emerged

109

Licensed to Charles Wise <ctwise@gmail.com>

111

already--Groovy is a language designed for the ease of those developing in it,
concentrating on making repetitive tasks as simple as they can be without
sacrificing the power of the Java platform.

You'll soon see that this focus on ease of use extends far beyond the simple
types that Java developers are used to having built-in language support for. The
Groovy designers are well aware of other concepts that are rarely far from a
programmer's mind. The next chapter shows how intuitive operators, enhanced
literals, and extra GDK methods are also available with Groovy's collective data
types: ranges, lists, and maps.

110

Licensed to Charles Wise <ctwise@gmail.com>

112

4The collective Groovy datatypes

Working with ranges

Workings with arrays and lists

Working with maps

The intuitive mind is a sacred gift and the rational mind is a faithful servant. We
have created a society that honors the servant and has forgotten the gift.

-- Albert Einstein

The nice thing about computers is that they never get tired of repeatedly doing
the same task. This is probably the single most important quality that justifies
letting them take part in our life. Searching through countless files or web pages,
downloading emails every 10 minutes, looking up all values of a stock symbol for
the last quarter to paint a nice graph--these are only a few examples where the
computer needs to repeatedly process an item of a data collection. It is no wonder
that a great deal of programming work is about collections.

Because collections are so prominent in programming, Groovy alleviates the
tedium of using them by directly supporting datatypes of a collective nature:
ranges, lists, and maps. In accordance with what you have seen of the simple
datatypes, Groovy's support for collective datatypes encompasses new lightweight
means for literal declaration, specialized operators, and numerous GDK
enhancements.

The notation that Groovy uses to set its collective datatypes into action will be

111

Licensed to Charles Wise <ctwise@gmail.com>

113

new to Java programmers, but as you will see, it is easy to understand and
remember. You will pick it up so quickly that you will hardly be able to imagine
there was a time when you were new to the concept.

Despite the new notation possibilities, lists and maps have the exact same
semantics as in Java. This situation is slightly different for ranges, because they
don't have a direct equivalent in Java. So let's start our tour with that topic.

4.1 Working with ranges
Think about how often you've written a loop like this:

for (int i=0; i< upperBound; i++){
 // do something with i

}

Most of us have done this thousands of times. It is so common that we hardly
ever think about it. Take the opportunity to do it now. Does the code tell you what
it does or how it does it?

After careful inspection of the variable, the conditional, and the incrementation,
we see that it's an iteration starting at zero and not reaching the upper bound,
assuming there are no side effects on i in the loop body. We have to go through
the description of how the code works to find out what it does.

Next, consider how often you've written a conditional such as this:

if (x >= 0 && x <= upperBound) {
 // do something with x

}

The same thing applies here: We have to inspect how the code works in order to
understand what it does. Variable x must be between zero and an upper bound for
further processing. It's easy to overlook that the upper bound is now inclusive.

Now, we're not saying that we make mistakes using this syntax on a regular
basis. We're not saying that we can't get used to (or indeed haven't gotten used to)
the C-style for loop, as countless programmers have over the years. What we're
saying is that it's harder than it needs to be; and, more important, it's less
expressive than it could be. Can you understand it? Absolutely. Then again, you
could understand this chapter if it were written entirely in capital letters--that
doesn't make it a good idea, though.

Groovy allows you to reveal the meaning of such code pieces by providing the
concept of a range. A range has a left bound and a right bound. You can do
something for each element of a range, effectively iterating through it. You can

112

Licensed to Charles Wise <ctwise@gmail.com>

114

determine whether a candidate element falls inside a range. In other words, a range
is an interval plus a strategy for how to move through it.

By introducing the concept of ranges, Groovy extends your means of
expressing your intentions in the code.

We will show how to specify ranges, how the fact that they are objects makes
them ubiquitously applicable, how to use custom objects as bounds, and how
they're typically used in the GDK.

4.1.1 Specifying ranges
Ranges are specified using the double dot .. range operator between the left and
the right bound. This operator has a low precedence, so you often need to enclose
the declaration in parentheses. Ranges can also be declared using their respective
constructors.

The ..< range operator specifies a half-exclusive range--that is, the value on
the right is not part of the range:

left..right
left..<right

Ranges usually have a lower left bound and a higher right bound. When this is
switched, we call it a reverse range. Ranges can also be any combination of the
types we've described. Listing 4.1 shows these combinations and how ranges can
have bounds other than integers, such as dates and strings. Groovy supports ranges
at the language level with the special for-in-range loop.

Listing 4.1 Range declarations

assert (0..10).contains(0) //|#1 Inclusive range
assert (0..10).contains(5) //|#1
assert (0..10).contains(10) //|#1

 //|#1
assert (0..10).contains(-1) == false //|#1
assert (0..10).contains(11) == false //|#1

assert (0..<10).contains(9) //|#2 Half-exclusive range
assert (0..<10).contains(10) == false //|#2

def a = 0..10 //|#3 Reference to range
assert a instanceof Range //|#3
assert a.contains(5) //|#3

a = new IntRange(0,10) //|#4 Explicit construction
assert a.contains(5) //|#4

113

Licensed to Charles Wise <ctwise@gmail.com>

115

assert (0.0..1.0).contains(0.5) == false // #5 Containment
assert (0.0..1.0).containsWithinBounds(0.5) // #6 Bounds

def today = new Date()
def yesterday = today-1
assert (yesterday..today).size() == 2 // #7 Date range

assert ('a'..'c').contains('b') // #8 String range

def store = ''
for (element in 5..9) { // #9 for in range loop

 store += element
}
assert store == '56789'

store = ''
for (element in 9..5) { // #10 Reverse loop

 store += element
}
assert store == '98765'

store = ''
(9..<5).each { element -> // #11 Reverse range, each

 store += element
}
assert store == '9876'

Note that we assign a range to a variable in . In other words, the variable
holds a reference to an object of type groovy.lang.Range.

Date objects can be used in ranges, as in , because the GDK adds the
previous and next methods to Date , which increase or decrease the date by
one day.

NOTE By the Way
The GDK also adds minus and plus operators to
java.util.Date, which increase or decrease the date by the
given number of days.

The String methods previous and next are added by the GDK to make
strings usable for ranges, as in . The last character in the string is
incremented/decremented, and over-/underflow is handled by appending a new
character or deleting the last character.

We can walk through a range with the each method, which presents the
current value to the given closure with each step, as shown in . If the range is
reversed, we will walk through the range backward. If the range is half-exclusive,
the sequence stops immediately before reaching the right bound.

114

Licensed to Charles Wise <ctwise@gmail.com>

116

4.1.2 Ranges are objects
Because every range is an object, you can pass a range around and call its methods.
The most prominent methods are each, which executes a specified closure for
each element in the range, and contains, which specifies whether a value is part
of the range such that it will be hit when walking over the range. The
containsWithinBounds method tells whether the argument lies in the
interval between the bounds. Note that a value that lies in the range interval is still
not considered as being contained in the range if the iteration logic of never
reaches it.

Being first-class objects, ranges can also participate in the game of operator
overriding (see section 3.3) by providing an implementation of the isCase
method, with the same meaning as contains. That way, you can use ranges with
the in operator, as grep filters and as switch cases. This is shown in listing 4.2.

Listing 4.2 Ranges are objects

def result = '' //|#1 Range for iteration
(5..9).each { element -> //|#1

 result += element //|#1
} //|#1
assert result == '56789' //|#1

assert 5 in 0..10 //|#2 Range for classification
assert (0..10).isCase(5) //|#2

 //|#2
def age = 36 //|#2
switch(age){ //|#2

 case 16..20 : insuranceRate = 0.05 ; break //|#2
 case 21..50 : insuranceRate = 0.06 ; break //|#2
 case 51..65 : insuranceRate = 0.07 ; break //|#2
 default: throw new IllegalArgumentException() //|#2

} //|#2
assert insuranceRate == 0.06 //|#2

def ages = [20, 36, 42, 56] //|#3 Range as filter
def midage = 21..50 //|#3
assert ages.grep(midage) == [36, 42] //|#3

Using a range in conjunction with the grep method is a good example of
how useful it is to be able to pass around range objects: The midage range gets
passed as an argument to the grep method.

Classification through ranges as shown at is common in the business world:
interest rates for different ranges of allocated assets, transaction fees based on

115

Licensed to Charles Wise <ctwise@gmail.com>

117

volume ranges, and salary bonuses based on ranges of business done. Although
technical people prefer using functions, business people tend to use ranges. When
you're modeling the business world in software, classification by ranges can be
very handy.

4.1.3 Ranges in action
Listing 4.1 made use of date and string ranges. In fact, any datatype can be used
with ranges, provided that both of the following are true:

The type implements next and previous; that is, it overrides the ++ and operators.
The type implements java.lang.Comparable; that is, it implements compareTo,
effectively overriding the <=> spaceship operator.

As an example, listing 4.3 implements a Weekday class that represents a day
of the week. Each Weekday is constructed with an index that represents the
'Sun' through 'Sat' day of the week but we do not normalize the index to fall
in between 0 and 6; this allows weekday ranges to span multiple weeks. A little
list maps indexes to weekday name abbreviations.

We implement next and previous to return the respective new Weekday
object. compareTo simply compares the indexes.

With this preparation, we can construct a range of working days and iterate
through it, reporting the work done until we finally reach the well-deserved
weekend. Oh, and our boss wants to assess the weekly work report. An assertion
does this on his behalf.

Listing 4.3 Custom ranges: weekdays

class Weekday implements Comparable {
 static final DAYS = [

 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'
]
 private int idx = 0

 Weekday(index) { idx = index } // #1 Allow all values

 Weekday next() { new Weekday(idx+1) } // #2 Range bound methods
 Weekday previous() { new Weekday(idx-1) } // #2
 int compareTo(Object other) { this.idx <=> other.idx } // #2

 String toString() {
 def index = idx % DAYS.size()
 while (index < 0) index += DAYS.size()
 DAYS[index]

 }

116

Licensed to Charles Wise <ctwise@gmail.com>

118

}

def mon = new Weekday(1)
def fri = new Weekday(5)

def report = ''
for (day in mon..fri) { // #3 Working through the week

 report += day.toString() + ' '
}
assert report == 'Mon Tue Wed Thu Fri '

7.times { mon++ }
def diary = 'no work on '
for (day in ++fri ..< mon) { // #4 Enjoying the weekend

 diary += day.toString() + ' '
}
assert diary == 'no work on Sat Sun '

This code can be placed inside one script file, even though it contains both a
class declaration and script code. The Weekday class is like an inner class to the
script.

Using 7.times{mon++} to let mon point to next week's Monday may come
as a little surprise. But we need to do this or would work backwards through the
week again, which we rather want to avoid.

Custom ranges are helpful in cases where you can't enumerate all cases, or need
special behavior like Weekday ranges spanning over multiple weeks. For simpler
cases Groovy allows you to use enums as range boundaries. 4.23 uses this feature
to warn us like a mother.

Listing 4.4 Enum as range boundary

enum Month {
 Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec

}
def noClams = Month.May .. Month.Aug
def thisMonth = Month.Aug

boolean iWarnedYou = false
if (thisMonth in noClams) { // #1 'in' operator

 println "Don't eat clams this month,"
 println "it has no 'r' in its name!"
 iWarnedYou = true

}
assert iWarnedYou

Compared to the Java alternatives, ranges have proven to be a flexible solution.
For loops and conditionals are not objects, cannot be reused, and cannot be passed

117

Licensed to Charles Wise <ctwise@gmail.com>

119

around, but ranges can. Ranges let you focus on what the code does, rather than
how it does it. This is a pure declaration of your intent, as opposed to fiddling with
indexes and boundary conditions.

Using custom ranges is the next step forward. Actively look through your code
for possible applications. Ranges slumber everywhere, and bringing them to life
can significantly improve the expressiveness of your code. With a bit of practice,
you may find ranges in very unexpected places. This is a sure sign that new
language concepts can change your perception of the world.

We'll see ranges come up again while we look at the subscript operator on lists,
the built-in datatype that we are going to cover next.

4.2 Working with lists
In a recent Java project, we had to write a method that takes a Java array and adds
an element to it. This seemed like a trivial task, but we forgot how awkward Java
programming could be. (We're spoiled from too much Groovy programming.) Java
arrays cannot be changed in length, so you cannot add elements easily. One way is
to convert the array to a java.util.List, add the element, and convert back.
A second way is to construct a new array of size+1, copy the old values over,
and set the new element to the last index position. Either takes some lines of code.

But Java arrays also have their benefits in terms of language support. They
work with the subscript operator to easily retrieve elements of an array by index
like value = myarray[index] , or to store elements at an index position
with myarray[index] = newElement.

We'll see how Groovy lists give you the best of both approaches, extending the
features for smart operator implementations, method overloading, and using lists as
Booleans. In Groovy you don't have to care whether a method returns an array (like
Class.getMethods()) or a list (like ProcessBuilder.command()) as
you can work with both of them in the same way. With Groovy lists, you will also
discover new ways of leveraging the Java Collections API.

4.2.1 Specifying lists
Listing 4.4 shows various ways of specifying lists. The primary way is with square
brackets around a sequence of items, delimited with commas:

[item, item, item]

The sequence can be empty to declare an empty list. Lists are by default of type
java.util.ArrayList and can also be declared explicitly by calling the

118

Licensed to Charles Wise <ctwise@gmail.com>

120

respective constructor. The resulting list can still be used with the subscript
operator. In fact, this works with any type of list, as we show here with type
java.util.LinkedList.

Lists can be created and initialized at the same time by calling toList on
ranges.

Listing 4.5 Specifying lists

List myList = [1, 2, 3]

assert myList.size() == 3
assert myList[0] == 1
assert myList instanceof ArrayList

List emptyList = []
assert emptyList.size() == 0

List longList = (0..1000).toList()
assert longList[555] == 555

List explicitList = new ArrayList()
explicitList.addAll(myList) // #1 Fill from myList
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

explicitList = new LinkedList(myList) // #1
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

assert args instanceof String[] // #2 Command-line args
assert args.size() == 0 // #3 Array as list

List flat = [0, *myList, 4] // #4 Spread
assert flat == [0, 1, 2, 3, 4]

We use the addAll(Collection) method from java.util.List at
to easily fill the lists. As an alternative, the collection to fill from can be passed
right into the constructor, as we have done with LinkedList.

We also see how even arrays can be treated like lists in , where we call list's
size() method on the string array of command line arguments. The GDK
extends all arrays, collection objects, and strings with a toList method that
returns a newly generated list of the contained elements. Strings are treated as lists
of characters.

Finally, literal declarations of lists can also include the content of other lists by

119

Licensed to Charles Wise <ctwise@gmail.com>

121

adding those prefixed with the * spread operator. This operator spreads its
content into the list such that the result contains each of the elements of the original
list, rather than the list object itself.

4.2.2 Using list operators
Lists implement some of the overridable operators that you saw in section 3.3.
Listing 4.4 contained two of them: the getAt and putAt methods to implement
the subscript operator. But this was a simple use that works with a mere index
argument. There's much more to the list operators than that.

THE SUBSCRIPT OPERATOR
The GDK overloads the getAt method with range and collection arguments to
access a range or a collection of indexes. This is demonstrated in Listing 4.5.

The same strategy is applied to putAt, which is overloaded with a Range

argument, assigning a list of values to a whole sublist.

Listing 4.6 Accessing parts of a list with the overloaded subscript operator

def myList = ['a','b','c','d','e','f']

assert myList[0..2] == ['a','b','c'] //#1 getAt(Range)
assert myList[0,2,4] == ['a','c','e'] //#2 getAt(collection of indexes)

myList[0..2] = ['x','y','z'] //#3 putAt(Range)
assert myList == ['x','y','z','d','e','f']

myList[3..5] = [] //#4 Removing a sublist
assert myList == ['x','y','z']

myList[1..1] = [0, 1, 2] //#5 Inserting a sublist
assert myList == ['x', 0, 1, 2, 'z']

Subscript assignments with ranges do not need to be of identical size. When the
assigned list of values is smaller than the range or even empty, the list shrinks, as
shown at . When the assigned list of values is bigger, the list grows, as in .

Using a range within a subscript assignment is a convenience feature to access
Java's excellent sublist support for lists. See the Javadoc for
java.util.List#sublist for more information.

In addition to positive index values, lists can also be subscripted with negative
indexes that count from the end of the list backward. Figure 4.1 show how positive
and negative indexes map to an example list [0,1,2,3,4].

120

Licensed to Charles Wise <ctwise@gmail.com>

122

Figure 4.1 Positive and negative indexes of a list of length
five, with “in bounds” and “out of bounds” classification
for indexes

Consequently, you get the last entry of a non-empty list with list[-1] and
the next-to-last with list[-2]. Negative indexes can also be used in ranges, so
list[-3..-1] gives you the last three entries. When using a reversed range,
the resulting list is reversed as well, so list[4..0] is [4,3,2,1,0] . In this
case, the result is a new list object rather than a sublist in the sense of the JDK.
Even mixtures of positive and negative indexes are possible, such as
list[1..-2] to cut away the first entry and the last entry.

NOTE	 Ranges in 's subscript operator are IntRange s. Half-exclusive

IntRanges are mapped to inclusive ones at range construction

time, before the subscript operator even comes into play. This can

lead to surprises when mixing positive left and negative right

bounds with exclusiveness; for example, IntRange (0..<-2)
gets mapped to (0..-1) , such that list[0..<-2] is effectively

list[0..-1].

Although this is stable and works predictably, it may be
confusing for the readers of your code, who may expect it to work
like list[0..-3]. We suggest that you avoid situations like this
for the sake of clarity.

121

Licensed to Charles Wise <ctwise@gmail.com>

123

ADDING AND REMOVING ITEMS
Although the subscript operator can be used to change any individual element of a
list, there are also operators available to change the contents of the list in a more
dras t ic way . They a re plus(Object),

plus(Collection),leftShift(Object), minus(Collection) ,
and multiply . Listing 4.6 shows them in action. The plus method is
overloaded to distinguish between adding an element and adding all elements of a
collection. The minus method only works with collection parameters.

Listing 4.7 List operators involved in adding and removing items

List myList = []

myList += 'a' //#1 plus(Object)
assert myList == ['a']

myList += ['b','c'] //#2 plus(Collection)
assert myList == ['a','b','c']

myList = []
myList << 'a' << 'b' //#3 leftShift is like append
assert myList == ['a','b']

assert myList - ['b'] == ['a'] //#4

assert myList * 2 == ['a','b','a','b'] //#5

While we're talking about operators, it's worth noting that we have used the ==
operator on lists, happily assuming that it does what we expect. Now we see how it
works: The equals method on lists tests that two collections have equal
elements. See the Javadoc of java.util.List#equals for details.

CONTROL STRUCTURES
Groovy lists are more than flexible storage places. They also play a major role in
organizing the execution flow of Groovy programs. Listing 4.7 shows the use of
lists with Groovy's if in switch grep , , and for.

Listing 4.8 Lists taking part in control structures

List myList = ['a', 'b', 'c']

assert myList.isCase('a')
assert 'b' in myList

def candidate = 'c'
switch(candidate){

122

Licensed to Charles Wise <ctwise@gmail.com>

124

 case myList : assert true; break //#1 Classify by containment
 default : assert false

}

assert ['x','a','z'].grep(myList) == ['a'] //#2 Intersection filter

myList = []
if (myList) assert false //#3 Empty lists are false

// Lists can be iterated with a 'for' loop
def expr = ''
for (i in [1,'*',5]){ //#4 for in Collection

 expr += i
}
assert expr == '1*5'

In and , you see the trick that you already know from patterns and
ranges: implementing isCase and getting a grep filter, in tests and a switch
classification for free.

 is a little surprising. Inside a Boolean test, empty lists evaluate to false.
shows looping over lists or other collections and also demonstrates that lists

can contain mixtures of types.

4.2.3 Using list methods
There are so many useful methods on the List type that we cannot provide an
example for all of them in the language description. The large number of methods
comes from the fact that the Java interface java.util.List is already fairly
wide (25 methods in JDK 1.5).

Furthermore, the GDK adds methods to the List interface, to the
Collection interface, and to Object . Therefore, many methods are available
on the List type, including all methods of Collection and Object.

Appendix C has the complete overview of all methods added to List by the
GDK. The Javadoc of java.util.List has the complete list of its JDK
methods.

While working with lists in Groovy, there is no need to be aware of whether a
method stems from the JDK or the GDK, or whether it is defined in the List or
Collection interface. However, for the purpose of describing the Groovy List
datatype, we're going to cover all the GDK methods on lists and collections, but
not all the combinations of overloaded methods, and not methods we've already
covered in earlier examples. We'll only provide examples of the JDK methods that
we consider particularly important.

123

Licensed to Charles Wise <ctwise@gmail.com>

125

MANIPULATING LIST CONTENT
A first set of methods is presented in Listing 4.8. It deals with changing the content
of the list by adding and removing elements; combining lists in various ways;
sorting, reversing, and flattening nested lists; and creating new lists from existing
ones.

Listing 4.9 Methods to manipulate list content

assert [1, [2, 3]].flatten() == [1, 2, 3]
assert [1, 2, 3].intersect([4, 3, 1]) == [3, 1]
assert [1, 2, 3].disjoint([4, 5, 6])

List list = [1, 2]
list.push 3
assert list == [1, 2, 3]
popped = list.pop() //#1 List as Stack
assert popped == 3
assert list == [1, 2]

assert [1, 2].reverse() == [2, 1]

assert [3, 1, 2].sort() == [1, 2, 3]

def kings = ['Dierk', 'Paul']
kings = kings.sort {item -> item.size() } //#2 Sort by size
assert kings == ['Paul', 'Dierk']

kings.sort {a, b -> b[0] <=> a[0] } //#3 Reverse sort by first char
assert kings == ['Paul', 'Dierk']

list = ['a', 'b', 'c']
list.remove(2) //#4 Remove by index
assert list == ['a', 'b']
list.remove('b') //#5 Remove by value
assert list == ['a', 'b'] - 'b'

list = ['a', 'b', 'b', 'c']
list.removeAll(['b', 'c']) //#6 Remove all
assert list == ['a', 'b', 'b', 'c'] - ['b', 'c']

def doubled = [1, 2, 3].collect {item -> //#7 Converting
 item * 2

}
assert doubled == [2, 4, 6]

def squares = [0, 1, 4]
[3, 4, 5].collect(squares) {item -> item * item }
assert squares == [0, 1, 4, 9, 16, 25]

def odd = [1, 2, 3].findAll {item -> //#8 Filtering
 item % 2 == 1

}

124

Licensed to Charles Wise <ctwise@gmail.com>

126

 .

assert odd == [1, 3]

assert 1 == [1, 2, 1].find { it % 2 == 1 }

List elements can be of any type, including other nested lists. This can be used
to implement lists of lists, the Groovy equivalent of multidimensional arrays in
Java. For nested lists, the flatten method provides a flat view of all elements.

An intersection of lists contains all elements that appear in both lists.
Collections can also be checked for being disjoint --that is, whether their
intersection is empty.

Lists can be used like stacks, with the usual stack behavior on push (or <<) and
pop, as in

When list elements are Comparable, there is a natural sort order which is
used by a simple call to sort(). Alternatively, the comparison logic of the sort
can be specified as a closure, as in and . In the first example, we pass one
argument in the comparing closure. This allows us to specify which item feature
should be used for comparison. In our case that is the size() of each string. The
second example uses a more general comparator that takes both items and decides
to compare the first character of the second argument with the first character of the
first argument, effectively doing a reverse sort that way. Note that although the sort
method returns the modified list, we can also omit the assignment, since the list
itself is also modified in place. In this case Groovy is aligned with an oddity of the
JDK.

Elements can be removed by index, as in , or by value, as in . We can
also remove all the elements that appear as values in the second list. These removal
methods are the only ones in the listing that are available in the JDK. Note that
while the JDK remove methods modify the list in place, Groovy's minus operator
returns a modified copy.

The collect method, seen in , returns a new list containing the result of
applying the specified closure to each element in the original list. In the example,
we use it to retrieve a new list where each entry of the original list is multiplied by
two. A second variant of collect adds the collected calculations to an existing
collection, a list of squares in this case.

With findAll , used in , we retrieve a list of all items for which the closure
evaluates to true. In the example, we use the modulo operator to find all odd
numbers. The method has a find companion that returns the first element in the

125

Licensed to Charles Wise <ctwise@gmail.com>

127

collection that satisfies the given closure.
Two issues related to changing an existing list are removing duplicates and

removing null values. One way to remove duplicate entries is to convert the list
to a datatype that is free of duplicates: a Set. This can be achieved by calling a
Set's constructor with that list as an argument.

def x = [1, 1, 1]
assert [1] == new HashSet(x).toList()
assert [1] == x.unique()
assert [1] == [1, '1'].unique { item -> item.toInteger() }

If you don't want to create a new collection but do want to keep working on
your cleaned list, you can use the unique method, which ensures that the
sequence of entries is not changed by this operation. The method takes a closure as
an optional parameter that allows to specify what “uniqueness” should mean in this
context.

Removing null from a list can be done by keeping all non- null s--for
example, with the findAll methods that you have seen previously:

List x = [1, null, null, 2]

assert [1, 2] == x.findAll { it != null }
assert [1, 2] == x.grep { it }

assert [1, 2] == x - [null]

x.removeAll([null])
assert [1, 2] == x

You can see there's an even shorter version with grep , but in order to
understand its mechanics, you need more knowledge about closures (chapter 5) and
“ The Groovy truth” (chapter 6). Just take it for granted until then. Of course, it is
also possibly to simply use the various JDK remove methods or the GDK minus
operator.

ACCESSING LIST CONTENT
Lists have methods to query their elements for certain properties, iterate through
them, and retrieve accumulated results.

Query methods include a count of given elements in the list, min and max , a
find method that finds the first element that satisfies a closure, and methods to
determine whether every or any element in the list satisfies a closure.

Iteration can be achieved as usual, stepping forward with each or backward

126

Licensed to Charles Wise <ctwise@gmail.com>

128

with eachReverse.
Cumulative methods come in simple and sophisticated versions. The join

method is simple: It returns all elements as a string, using a given delimiter. The
inject method is inspired by Smalltalk. It uses a closure to inject new
functionality. That functionality operates on an intermediate result and the current
element of the iteration. The first parameter of the inject method is the initial
value of the intermediate result. Would it be worth using the word "accumulator"
here, or would that cause more confusion? (Jon) In listing 4.9, we use this method
to sum the elements in a list and then use it a second time to multiply them.

Listing 4.10 List query, iteration, and accumulation

def list = [1, 2, 3]

assert list.first() == 1
assert list.head() == 1
assert list.tail() == [2, 3]
assert list.last() == 3
assert list.count(2) == 1 //|#1 Querying
assert list.max() == 3 //|#1
assert list.min() == 1 //|#1

 //|#1
def even = list.find { item -> //|#1

 item % 2 == 0 //|#1
} //|#1
assert even == 2 //|#1

 //|#1
assert list.every { item -> item < 5 } //|#1
assert list.any { item -> item < 2 } //|#1

def store = ''
list.each { item -> //|#2 Iteration

 store += item //|#2
} //|#2
assert store == '123' //|#2

 //|#2
store = '' //|#2
list.reverseEach { item -> //|#2

 store += item //|#2
} //|#2
assert store == '321' //|#2

 //|#2
store = '' //|#2
list.eachWithIndex { item, index -> //|#2

 store += "$index:$item " //|#2
} //|#2
assert store == '0:1 1:2 2:3 ' //|#2

assert list.join('-') == '1-2-3' 	 //|#3 Accumulation
 //|#3

127

Licensed to Charles Wise <ctwise@gmail.com>

129

result = list.inject(0) { clinks, guests -> //|#3
 clinks + guests //|#3

} //|#3
assert result == 0 + 1 + 2 + 3 //|#3
assert list.sum() == 6 //|#3

 //|#3
factorial = list.inject(1) { fac, item -> //|#3

 fac * item //|#3
} //|#3
assert factorial == 1 * 1 * 2 * 3 //|#3

Understanding and using the inject method can be a bit challenging if you're
new to the concept. Note that it is exactly parallel to the iteration examples, with
store playing the role of the intermediary result. The benefit is that you do not
need to introduce that extra variable to the outer scope of your accumulation, and
your closure has no side effects on that scope.

This has already been a long list of methods but there is even more. First, the
methods , , and unique all come in three flavors: without parameters, max min

with a closure parameter, and with a comparator. The sum method also comes with
an overload taking a closure to specify how objects should be summed. In the
examples below, we use the it shortcut that refers to the item that is passed into
the closure.

def kings = ['Dierk', 'Paul']
assert kings.max { item -> item.size() } == 'Dierk'
assert kings.min { item -> item.size() } == 'Paul'
assert kings.sum { item -> item.size() } == 9

We've already mentioned that lists can be casted to arbitrary classes, which
results in the appropriate constructor calls. But there are other options: lists--and
indeed all other collections-- also support enforced type coercion with the as
operator by implementing the asType method. Groovy supports coercions to
types , , , and Stack , plus any subtype of List Set SortedSet Queue List

may implement the asType method. The code below gives some examples of this
in action.

Set names = ['Dierk', 'Paul'] as Set
assert names instanceof Set

assert names.toListString() ==~ /[w+, w+]/
assert names.asList() instanceof List

java.awt.Point p = [10, 20]
assert p.x == 10

128

Licensed to Charles Wise <ctwise@gmail.com>

130

Sometimes it is convenient to partition a collection (list, set, range, and so on)
based on some condition. The split method does so by returning two lists: a first
one that contains all the elements that satisfy the given closure, and a second one
for the rest. We use Groovy's parallel assignment feature (see XREF
parallel_assignment) to assign the return values to two different variables. In some
ways split can be regarded as a special version of the more general groupBy
method. This returns a map that uses a closure's return values as keys with values
that collect the list of items that returned that key. We will learn more about maps
in XREF map.

def list = [0, 3, 2, 1]
def (small, big) = list.split { it < 2 }
assert small == [0, 1]
assert big == [3, 2]

def group = list.groupBy { it % 2 }
assert group[0] == [0, 2]
assert group[1] == [3, 1]

Finally, there are nested lists where a list item is a list itself. A natural example
of this is a table, where you could have a list of rows, and each row is a list of
values. Groovy adds three methods to support working nested lists: collectAll
works like collect but recurses into nested collections, transpose applies the
eponymous matrix operation, and combinations returns a list of all item
combinations of all the nested lists.

def table = [
 [0, 1],
 [2, 3]

]
table = table.collectAll { item -> item + 1 }
assert table == [

 [1, 2],
 [3, 4]

]
assert table.transpose() == [

 [1, 3],
 [2, 4]

]
assert table.combinations() == [

 [1, 3], [2, 3], [1, 4], [2, 4]
]

The GDK introduces two more convenience methods for lists: asImmutable
and asSynchronized. These methods protect the list from unintended content

129

Licensed to Charles Wise <ctwise@gmail.com>

 m

131

changes and concurrent access. They become particularly important when dealing
with parallel programming that we will encounter in XREF parallel_programming.
See these methods' Javadocs for more details on the topic.

4.2.4 Lists in action
After all these artificial examples, you deserve to see a real one. Here it is: We will
implement Tony Hoare's Quicksort 43 algorithm in listing 4.10. To make things
more interesting, we will do so in a generic way rather than demanding a specific
datatype for sorting. We rely on duck typing -- as long as something walks like a
duck and talks like a duck, we happily treat it as a duck. In this case, this means
that as long as we can use the , , and > operators with our list items, we treat < =

them as if they were comparable.
Footnote 43 See http://en.wikipedia.org/wiki/Quicksort.

The goal of Quicksort is to be sparse with comparisons. The strategy relies on
finding a good pivot element in the list that serves to split the list into two sublists:
one with all elements smaller than the pivot, the second with all elements bigger
than the pivot. Quicksort is then called recursively on the sublists. The rationale
behind this is that you never need to compare elements from one list with elements
from the other list. If you always find the perfect pivot, which exactly splits your
list in half, the algorithm runs with a complexity of n*log(n). In the worst case, you
choose a border element every time, and you end up with a complexity of n2. In
listing 4.10, we choose the middle element of the list, which is a good choice for
the frequent case of preordered sublists.

Listing 4.11 Quicksort with lists

def quickSort(list) {
 if (list.size() < 2) return list
 def pivot = list[list.size().intdiv(2)]
 def left = list.findAll { item -> item < pivot } //|#1 Classify by pivot
 def middle = list.findAll { item -> item == pivot } //|#1
 def right = list.findAll { item -> item > pivot } //|#1
 return quickSort(left) + middle + quickSort(right) //#2 Recursive call

}

assert quickSort([]) == []
assert quickSort([1]) == [1]
assert quickSort([1,2]) == [1,2]
assert quickSort([2,1]) == [1,2]
assert quickSort([3,1,2]) == [1,2,3]
assert quickSort([3,1,2,2]) == [1,2,2,3]
assert quickSort([1.0f,'a',10,null])== [null, 1.0f, 10, 'a'] // #3 Item type mix
assert quickSort('bca') == 'abc'.toList() // #4 Non-list type

130

Licensed to Charles Wise <ctwise@gmail.com>

http://en.wikipedia.org/wiki/Quicksort

132

In contrast to the simple description, we actually use three lists in rather
than three. Use this implementation when you don't want to lose items that appear
multiple times.

Our duck-typing approach is powerful when it comes to sorting different types.
We can sort a list of mixed content types, as at , or even sort the characters in a
string, as shown at . This is possible because we did not demand any specific
type to hold our items. As long as that type implements size getAt(, index),
and findAll , we are happy to treat it as a sortable . Actually, we used duck
typing twice: for the items and for the structure.

NOTE By the Way
The sort method that comes with Groovy uses Java's sorting
implementation that beats our example in terms of worst-case
performance. It guarantees a complexity of n*log(n). However, we
win on a different front.

Of course, our implementation could be optimized in various ways. Our goal
was to be tidy and flexible, not to be the fastest on the block.

If we had to explain the Quicksort algorithm without the help of Groovy, we
would sketch it in pseudocode that looks very similar to listing 4.10. In other
words, the Groovy code itself is an ideal description of what it does. Imagine what
this can mean to your codebase, when all your code reads like a formal
documentation of its purpose!

You have seen lists to be one of Groovy's strongest workhorses. They are
always at hand; they are easy to specify in-line, and using them is easy due to the
operators supported. The plethora of available methods may be intimidating at
first, but that is also the source of lists' power. You are now able to add them to
your carriage and let them pull the weight of your code.

The next section about maps will follow the same principles that you have seen
for lists: extending the Java collection's capabilities while providing efficient
shortcuts.

131

Licensed to Charles Wise <ctwise@gmail.com>

 m

133

4.3 Working with maps
Suppose you were about to learn the vocabulary of a new language, and you set out
to find the most efficient way of doing so. It would surely be beneficial to focus on
those words that appear most often in your texts. So, you would take a collection of
your texts and analyze the word frequencies in that text corpus.44

Footnote 44 Analyzing word frequencies in a text corpus is a common task in computer linguistics and is
used for optimizing computer-based learning, search engines, voice recognition, and machine translation programs.

How does Groovy help you here? For the time being, assume that you can work
on a large string. You have numerous ways of splitting this string into words. But
how do you count and store the word frequencies? You cannot have a distinct
variable for each possible word you encounter. Finding a way of storing
frequencies in a list is possible but inconvenient--more suitable for a brain teaser
than for good code. Maps come to the rescue.

Some pseudocode to solve the problem could look like this:

for each word {
 if (frequency of word is not known)

 frequency[word] = 0
 frequency[word] += 1

}

This looks like the list syntax, but with strings as indexes rather than integers.
In fact, Groovy maps appear like lists, allowing any arbitrary object to be used for
indexing.

In order to describe the map datatype, we show how maps can be specified,
what operations and methods are available for maps, some surprisingly convenient
features of maps, and, of course, a map-based solution for the word-frequency
exercise.

4.3.1 Specifying maps
The specification of maps is analogous to the list specification that you saw in the
previous section. Just like lists, maps make use of the subscript operator to retrieve
and assign values. The difference is that maps can use any arbitrary type as an
argument to the subscript operator, where lists are bound to integer indexes and
ranges.

Another key difference between lists and maps is in terms of ordering. Lists are
inherently ordered sequences of entries, whereas most map implementations
provide no way of iterating over their entries in a particular order. However, there

132

Licensed to Charles Wise <ctwise@gmail.com>

 m

134

are exceptions to the rule, and Groovy defaults to using
java.util.LinkedHashMap for map literals so that the order in which the
entries are specified in the source code is preserved in the runtime map.

Simple maps are specified with square brackets around a sequence of items,
delimited with commas. The difference in syntax between lists and maps is that in
a map the items are key-value pairs that are delimited by colons:

[key value : , : , key value :] key value

In principle, any arbitrary type can be used for keys or values. When using
exotic45 types for keys, you need to obey the rules as outlined in the Javadoc for
java.util.Map.

Footnote 45 Exotic in this sense refers to types whose instances change their hashCode during their
lifetime. There is also a corner case with GStrings if their values write themselves lazily.

The character sequence [:] declares an empty map. By default, map literals
create instances of java.util.LinkedHashMap , but you can specify a
different implementation by calling the respective constructor. The resulting map
can still be used with the subscript operator. In fact, this works with any type of
map, however it was created, as you can see in listing 4.11 with type
java.util.TreeMap.

Listing 4.12 Specifying maps

def myMap = [a:1, b:2, c:3]

assert myMap instanceof LinkedHashMap
assert myMap.size() == 3
assert myMap['a'] == 1

def emptyMap = [:]
assert emptyMap.size() == 0

def explicitMap = new TreeMap()
explicitMap.putAll(myMap)
assert explicitMap['a'] == 1

def composed = [x:'y', *:myMap] // #1 Spread
assert composed == [x:'y', a:1, b:2, c:3]

In listing 4.11, we use the putAll(Map) method from java.util.Map to
easily fill the example map. An alternative would have been to pass myMap as an
argument to TreeMap's constructor. Just like list literals, map declarations can

133

Licensed to Charles Wise <ctwise@gmail.com>

135

include the content of existing ones by using the * spread operator.
For the common case where the keys are strings, you can omit the quotes in

map declarations:

assert ['a':1] == [a:1]

This is only allowed if the key contains no special characters (it needs to follow
the rules for valid identifiers), is neither a Groovy keyword nor a complex
expression.

This notation is very helpful in the vast majority of all cases but also has a
corner case when the content of a local variable is used as a key in a literal
declaration. Suppose you have local variable x with content 'a' . Because [x:1]
is equal to ['x':1] , how can you make it equal to ['a':1] ? The trick is that
you can force Groovy to recognize a symbol as an expression by putting it inside
parentheses:

def x = 'a'
assert ['x':1] == [x:1]
assert ['a':1] == [(x):1]

You won't need this functionality often, as literal declarations rarely use
symbols (local variables, fields, properties) as keys-- but when you do, forgetting
the parentheses is a likely source of errors.

4.3.2 Using map operators
The simplest operations with maps are storing objects in the map with a key and
retrieving them back using that key. Listing 4.12 these fundamental operations.
One option for retrieving is using the subscript operator. As you have probably
guessed, this is implemented with map's getAt method. A second option is to use
the key like a property with a simple dot-syntax. You will learn more about
properties in chapter 7. A third option is the get method, which additionally
allows you to pass a default value to be returned if the key is not yet in the map. If
no default is given, null will be used as the default. If a call to get(key,
default) returns the default because the key is not found, the key:default pair is
added to the map.

Listing 4.13 Accessing maps (GDK map methods)

def myMap = [a:1, b:2, c:3]

assert myMap['a'] == 1 //|#1 Retrieve existing elements

134

Licensed to Charles Wise <ctwise@gmail.com>

136

assert myMap.a == 1 //|#1
assert myMap.get('a') == 1 //|#1
assert myMap.get('a',0) == 1 //|#1

assert myMap['d'] == null //|#2 Attempt to retrieve
assert myMap.d == null //|#2 missing elements
assert myMap.get('d') == null //|#2

assert myMap.get('d',0) == 0 //|#3 Default value
assert myMap.d == 0 //|#3

myMap['d'] = 1 //|#4 Single putAt
assert myMap.d == 1 //|#4
myMap.d = 2 //|#4
assert myMap.d == 2 //|#4

Assignments to maps can be done using the subscript operator or via the
dot-key syntax. If the key in the dot-key syntax contains special characters, it can
be put in quotes, like so:

def myMap = ['a.b':1]
assert myMap.'a.b' == 1

Just writing myMap.a.b would not work here--that would be the equivalent of
calling myMap.get('a').get('b').

Listing 4.13 shows how information can easily be gleaned from maps, largely
using core java.util.Map . , ,JDK methods from Using equals size
containsKey , and containsValue is straightforward, as shown in listing
4.13. The methods keySet and values both return a set of keys and values: a
collection that is flat like a list but has no duplicate entries and no inherent
ordering. Luckily, since Groovy uses a LinkedHashSet by default, these
collections retain their order. See the Javadoc of java.util.LinkedHashSet
for details. In order to compare such a set against a list, we have to convert one or
the other. When converting the list to a set, we're comparing two sets, which means
that ordering is irrelevant. A stronger equality condition that includes ordering
applies when we convert the set of values to a list before comparing it to a fixed
list.

A map can also be converted into a collection by calling the entrySet
method, which returns a set of entries. Each entry can then be asked for its key
and value properties.

Listing 4.14 Query methods on maps

def myMap = [a:1, b:2, c:3]

135

Licensed to Charles Wise <ctwise@gmail.com>

137

def other = [b:2, c:3, a:1]

assert myMap == other //#1 Call to equals

assert myMap.isEmpty() == false //|#2 JDK methods
assert myMap.size() == 3 //|#2
assert myMap.containsKey('a') //|#2
assert myMap.containsValue(1) //|#2
assert myMap.entrySet() instanceof Collection //|#2

assert myMap.any {entry -> entry.value > 2 } //|#3 GDK methods
assert myMap.every {entry -> entry.key < 'd'} //|#3
assert myMap.keySet() == ['a','b','c'] as Set // #4 Lenient set equals
assert myMap.values().toList() == [1, 2, 3] // #5 Strong list equals

The GDK adds two more informational methods to the JDK map type: any and
every , as in . They work analogously to the identically named methods for
lists: They return a Boolean value to indicate whether any or every entry in the map
satisfies a given closure.

With the information about the map, we can iterate over it in a number of ways:
over the entries, or over keys and values separately. Because the sets that are
returned from , and entrySet are collections, we can use them keySet values

with the for-in-collection type loops. Listing 4.14 goes through some of the
possible combinations.

Listing 4.15 Iterating over maps (GDK)

def myMap = [a:1, b:2, c:3]

def store = ''
myMap.each { entry -> //|#1 Each entry

 store += entry.key //|#1
 store += entry.value //|#1

} //|#1
assert store == 'a1b2c3'

store = ''
myMap.each { key, value -> //|#2 Each key/value pair

 store += key //|#2
 store += value //|#2

} //|#2
assert store == 'a1b2c3'

store = ''
for (key in myMap.keySet()) { //|#3 For in set

 store += key //|#3
} //|#3
assert store == 'abc'

136

Licensed to Charles Wise <ctwise@gmail.com>

138

Map's each method uses closures in two ways: Passing one parameter into the
closure means that it is an entry; passing two parameters means it is a key and a
value. The latter is more convenient to work with for common cases.

Finally, the contents of the map can be changed in various ways, as shown in
listing 4.15. Removing elements works with the original JDK methods. The GDK
introduces the following new capabilities:

Creating a subMap of all entries with keys from a given collection (the JDK has such a
method only for SortedMaps)
findAll entries in a map that satisfy a given closure
find one entry that satisfies a given closure, where unlike lists it depends on the map
type whether it supports the notion of a first entry
collect in a list whatever a closure returns for each entry, optionally adding to a given
collection

Listing 4.16 Changing the contents of a map and building new objects from it

def myMap = [a:1, b:2, c:3]
myMap.clear()
assert myMap.isEmpty()

myMap = [a:1, b:2, c:3]
myMap.remove('a')
assert myMap.size() == 2

assert [a:1] + [b:2] == [a:1, b:2]

myMap = [a:1, b:2, c:3]
def abMap = myMap.subMap(['a', 'b'])
assert abMap.size() == 2

abMap = myMap.findAll { entry -> entry.value < 3 }
assert abMap.size() == 2
assert abMap.a == 1

def found = myMap.find { entry -> entry.value < 2 }
assert found.key == 'a'
assert found.value == 1

def doubled = myMap.collect { entry -> entry.value *= 2 }
assert doubled instanceof List
assert doubled.every { item -> item % 2 == 0 }

def addTo = []
myMap.collect(addTo) { entry -> entry.value *= 2 }
assert doubled instanceof List
assert addTo.every { item -> item % 2 == 0 }

The first two examples (clear and remove) are from the core JDK; the rest

137

Licensed to Charles Wise <ctwise@gmail.com>

139

are all GDK methods. The , , and findAll methods act as they collect find

would with lists, operating on map entries instead of list elements. The subMap
method is analogous to subList, but it specifies a collection of keys as a filter
for the view onto the original map.

In order to assert that the collect method works as expected, we recall a
trick that we learned about lists: We use the every method on the list to make
sure that every entry is even. The collect method comes with a second version
that takes an additional collection parameter. It adds all closure results directly to
this collection, avoiding the need to create temporary lists.

From the list of available methods that you have seen for other datatypes, you
may miss our dearly beloved isCase for use with grep and switch . Don't we
want to classify with maps? Well, we need to be more specific: Do we want to
classify by the keys or by the values? Either way, an appropriate isCase is
available when working on the map's keySet or values.

We may not have an isCase method on maps, but we have an elegant
asType implementation that allows to use the as operator for coercing a map into
any type you fancy. To make use of this feature, we declare a map where each key
represents a method name and the value is a closure that implements that method.
In 4.36 the method is compare and the implementation compares the absolute
values of the arguments. The as operator allows us to use this map as an
implementation of the Comparator type that we can pass to the sort method.

Listing 4.17 Maps and enforced coercion some other typeas

def absComp = [
 compare: { a,b -> a.abs() <=> b.abs() }

]
def list = [-3, -1, 2]
list.sort(absComp as Comparator)
assert list == [-1, 2, -3]

Note that

The as operator can be used with classes and interfaces alike

We only need to provide implementations for methods that are
effectively called. For example in 4.36 we provide no implementation for the
equals method, even though the Comparator interface would require us
to do so.

138

Licensed to Charles Wise <ctwise@gmail.com>

140

While enforced type coercion with as is an explicit operation, we have already
seen the implicit casting of a map in listing 3.10 that allows for conversions like

java.awt.Point p = [x:50, y:50]

The GDK introduces two more methods for the map datatype: asImmutable
and asSynchronized. These methods protect the map from unintended content
changes and concurrent access.

4.3.3 Maps in action
In 4.37, we revisit our initial example of counting word frequencies in a text
corpus. The strategy is to use a map with each distinct word serving as a key. The
mapped value of that word is its frequency in the text corpus. We go through all
words in the text and increase the frequency value of that respective word in the
map. We need to make sure that we can increase the value when a word is hit the
first time and there is no entry yet in the map. Luckily, the get(key,default)
method makes this very simple.

We then take all keys, put them in a list, and sort it such that it reflects the order
of frequency. Finally, we play with the capabilities of lists, ranges, and strings to
print a nice statistic.

The text corpus under analysis is Baloo the Bear's anthem on his attitude toward
life.

Listing 4.18 Counting word frequency with maps

def textCorpus =
"""
Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature's recipes
That bring the bare necessities of life
"""

def words = textCorpus.tokenize()
def wordFrequency = [:]
words.each { word ->

 wordFrequency[word] = wordFrequency.get(word,0) + 1
}
def wordList = wordFrequency.keySet().toList()
wordList.sort { wordFrequency[it] }

//#1

//#2

def statistic = "n"
wordList[-1..-4].each { word ->

139

Licensed to Charles Wise <ctwise@gmail.com>

141

 statistic += word.padLeft(12) + ': '
 statistic += wordFrequency[word] + "n"

}
assert statistic == """
 necessities: 4

 bare: 4
 the: 3

 your: 2
"""

The example nicely combines our knowledge of Groovy's datatypes.
Counting the word frequency is essentially a one-liner. It's even shorter than
the pseudocode that we used to start this section.

Having the method on the accept a closure turns out to sort wordList

be very useful, because it is able to implement its comparison logic on the
map--on an object totally different from the .wordFrequency wordList

Just as an exercise, try to do that in Java, count the lines, and compare the
readability of the two solutions.

Lists and maps make a powerful duo. There are whole languages that build on
just these two datatypes (such as Perl, with list and hash) and build all other
datatypes and even objects upon them.

Their power comes from the complete and mindfully engineered Java
Collections Framework. Thanks to Groovy, this power is now right at our
fingertips.

So far, we've casually switched back and forth between Groovy and Java
collection datatypes. We will throw more light on this interplay in the next section.

4.4 Notes on Groovy collections
The Java Collections API is the basis for all the nice support that Groovy gives you
through lists and maps. In fact, Groovy not only uses the same abstractions, it even
works on the very same classes that make up the Java Collections API.

This is exceptionally convenient for those who come from Java and already
have a good understanding of it. If you haven't, and you are interested in more
background information, have a look at your Javadoc starting at
java.util.Collection.

The JDK also ships with a guide and a tutorial about Java collections. It is

140

Licensed to Charles Wise <ctwise@gmail.com>

 m

142

located in your JDK's doc folder under guide/collections.
One of the typical peculiarities of the Java collections is that you shouldn't try

make a structural change while you're iterating through it. A structural change is
one that adds an entry, removes an entry, or changes the sequence of entries when
the collection is sequence-aware. This applies even when iterating through a view
onto the collection, such as using list[range].

4.4.1 Understanding concurrent modification
If you fail to meet this constraint, you will see a
ConcurrentModificationException . For example, you cannot remove
all elements from a list by iterating through it and removing the first element at
each step:

def list = [1, 2, 3, 4]
list.each{ list.remove(0) } // throws ConcurrentModificationException !!

NOTE	 Concurrent in this sense does not necessarily mean that a second
thread changed the underlying collection. As shown in the example,
even a single thread of control can break the “structural stability”
constraint.

In this case, the correct solution is to use the clear method. The Collections
API has lots of such specialized methods. When searching for alternatives,
consider , , , , and grep.collect addAll removeAll findAll

This leads to a second issue: Some methods work on a copy of the collection
and return it when finished; other methods work directly on the collection object
they were called on (we call this the receiver 46 object).
Footnote 46 From the Smalltalk notion of describing method calls on an object as sending a message to the
receiver.

4.4.2 Distinguishing between copy and modify semantics
Generally, there is no easy way to anticipate whether a method modifies the
receiver or returns a copy. Some languages have naming conventions for this, but
Groovy couldn't do so because all Java methods are directly visible in Groovy and
Java's method names could not be made compliant to such a convention. But
Groovy tries to adapt to Java and follow the patterns visible in the Collections API:

Methods that modify the receiver typically don't return a collection. Examples: add,
, , , and retainAll. Counter-examples: sort and unique.addAll remove removeAll

141

Licensed to Charles Wise <ctwise@gmail.com>

143

Methods that return a collection typically don't modify the receiver. Examples: grep,
, . Counter-examples: sort and unique.findAll collect

Methods that modify the receiver have imperative names. They sound like there could be
an exclamation mark behind them. (Indeed, this is Ruby's naming convention for such
methods.) Examples: , , , , ,add addAll remove removeAll retainAll sort.
Counter-examples: collect grep findAll, , , which are imperative but do not modify the
receiver and return a modified copy.
The preceding rules can be mapped to operators, by applying them to the names of their
method counterparts: << leftShift is imperative and modifies the receiver (on lists,
unfortunately not on strings--doing so would break Java's invariant of strings being
immutable); + plus and - minus are not imperative and return a copy.

These are not clear rules but only heuristics to give you some guidance.
Whenever you're in doubt and object identity is important, have a look at the
documentation or write a few assertions.

4.5 Summary
This has been a long trip through the landscape of Groovy's datatypes. There were
lots of different paths to explore that led to new and interesting places.

We introduced ranges as objects that--as opposed to control structures--have
their own time and place of creation,I don't really understand this "time and place
of creation" bit (Jon) can be passed to methods as parameters, and can be returned
from method calls. This makes them very flexible, and once the concept of a range
is available, many uses beyond simple control structures suggest themselves. The
most natural example you have seen is extracting a section of a list using a range as
the operand to the list's subscript operator.

Lists and maps are more familiar to Java programmers than ranges but have
suffered from a lack of language support in Java itself. Groovy recognizes just how
often these datatypes are used, gives them special treatment in terms of literal
declarations, and of course provides operators and extra methods to make life even
easier. The lists and maps used in Groovy are the same ones encountered in Java
and come with the same rules and restrictions, although these become less onerous
due to some of the additional methods available on the collections.

Throughout our coverage of Groovy's datatypes, you have seen closures used
ubiquitously to make functionality available in a simple and unobtrusive manner.
In the next chapter, we will demystify the concept, explain the common and some
not-so-common applications, and show how you can spice up your own code with
closures.

142

Licensed to Charles Wise <ctwise@gmail.com>

144

5Working with closures

A gentle introductions to closures from a Java programmer's
perspective

Declaring, passing, and calling closures

Closure use cases

I wouldn't like to build a tool that could only do what I had been able to imagine
for it.

-- Bjarne Stroustrup

Closures are important. Very important. They're arguably one of the most
useful features of Groovy--but at the same time they can be a strange concept until
you fully understand them. In order to get the best out of Groovy, or to understand
anyone else's Groovy code, you're going to have to be comfortable with them. Not
just “met them once at a wedding” comfortable, but “invite them over for a
barbecue on the weekend” comfortable.

Closures aren't hard, though--they're just different to anything you might be
used to. In a way, this is strange, because one of the chief tenets of
object-orientation is that objects have behavior as well as data. Closures are objects
whose main purpose in life is their behavior--that's almost all there is to them.

In the past few chapters, you've seen a few uses of closures, so you might
already have a good idea of what they're about. Please forgive us if we seem to be
going over the same ground again--it's so important, we'd rather repeat ourselves

143

Licensed to Charles Wise <ctwise@gmail.com>

145

than leave you without a good grasp of the basic principles.
In this chapter, we will introduce the fundamental concept of closures (again),

explain their benefits, and then show how they can be declared and called. After
this basic treatment, we will look in a bit more depth at other methods available on
closures and the scope of a closure--that is, the data and members that can be
accessed within it--as well as considering what it means to return from a closure.
We end the chapter with a discussion of how closures can be used to implement
many common design patterns and how they alleviate the need for some others by
solving the problem in a different manner.

So, let's take a look at what closures really are in the first place.

5.1 A gentle introduction to closures
Let's start with a simple definition of closures, and then we'll expand on it with an
example. A closure is a piece of code wrapped up as an object. It acts like a
method in that it can take parameters and it can return a value. It's a normal object
in that you can pass a reference to it around just as you can a reference to any other
object. Don't forget that the JVM has no idea you're running Groovy code, so
there's nothing particularly odd that you could be doing with a closure object. It's
just an object. Groovy provides a very easy way of creating closure objects and
enables some very smart behavior.

If it helps you to think in terms of real-world analogies, consider an envelope
with a piece of paper in it. For other objects, the paper might have the values of
variables on it: “x=5, y=10” and so on. For a closure, the paper would have a list of
instructions. You can give that envelope to someone, and that person might decide
to follow the instructions on the piece of paper, or they might give the envelope to
someone else. They might decide to follow the instructions lots of times, with a
different context each time. For instance, the piece of paper might say, “Send a
letter to the person you're thinking of,” and the person might flip through the pages
of their address book thinking of every person listed in it, following the
instructions over and over again, once for each contact in that address book.

The Groovy equivalent of that example would be something like this:

Closure envelope = { person -> new Letter(person).send() }
addressBook.each (envelope)

That's a fairly long-winded way of going about it, but it shows the distinction
between the closure itself (in this case, the value of the envelope variable) and
its use (as a parameter to the each method). Part of what makes closures

144

Licensed to Charles Wise <ctwise@gmail.com>

146

unfamiliar when coming to them for the first time is that they're usually used in an
abbreviated form. Groovy makes them very concise because they're so frequently
used--but that brevity can be detrimental to the learning process. Just for the
comparison, here's the previous code written using the shorthand Groovy provides.
When you see this shorthand, it's often worth mentally separating it out into the
longer form:

addressBook.each { new Letter(it).send() }

It's still a method call passing a closure as the single parameter, but that's all
hidden--passing a closure to a method is sufficiently common in Groovy that there
are special rules for it. Similarly, if the closure needs to take only a single
parameter to work on, Groovy provides a default name--it--so that you don't need
to declare it specifically. That's how our example ends up so short when we use all
the Groovy shortcuts.

Now, before going into details with the various ways of declaring a closure,
let's think about why we would want to have closures in the first place. Just keep
remembering: They're objects that enclose some code, and Groovy provides neat
syntax for them.

5.2 The case for closures
Java as a platform is great: it's portable, stable, scalable, and it performs reasonably
well. Java as a language has a lot of advantages but unfortunately also some
shortcomings.

Some of those deficiencies can be addressed in Groovy through the use of
closures. We'll look at two particular areas that benefit from closures: performing
everyday tasks with collections, and using resources in a safe manner. In these two
common situations, you need to be able to perform some logic that is the same for
every case and execute arbitrary code to do the actual work. In the case of
collections, that code is the body of the iterator; in the case of resource handling,
it's the use of the resource after it's been acquired and before it's been released. In
general terms, such a mechanism uses a callback to execute the work. Closures are
Groovy's way of providing transparent callback targets as first-class citizens.

5.2.1 Using iterators
A typical construction in Java code is traversing a collection with an iterator:

// since Java 5
for (ItemType item : list) {

145

Licensed to Charles Wise <ctwise@gmail.com>

 m

147

 // do something with item
}

The syntax may not be ideal47--the Java 5 designers were constrained in terms
of adding keywords--but it gets the job done, right? Clearly it's useful to have a
for loop that iterates through every item in a collection--otherwise Groovy
wouldn't have it, for starters. (Groovy's for statement is somewhat broader in
scope than Java 5's, however; see chapter 6 for more details.) It's useful, but it's not
everything we could wish for. There are common patterns for why we want to
iterate through a collection, such as

finding whether a particular condition is met by any or every element,

finding all elements met by a condition, or

transforming each element into another, thereby creating a new
collection.

Footnote 47 Groovy supports the Java 5 colon notation for compatibility but encourages using in instead as
that's clearer in terms of revealing the meaning of the expression and the role of the operands in use.

It would be madness to have a specialized syntax for all of those patterns.
Making a language too smart in a non-extensible way ends up like a road through
the jungle--it's fine when you're doing something anticipated by the designers, but
as soon as you stray off the path, life is tough. So, without direct language support
for all those patterns, what's left? Each of the patterns relies on executing a
particular piece of code again and again, once for each element of the collection.
Java has no concept of “a particular piece of code” unless it's buried in a method.
That method can be part of an interface implementation, but at that point each
piece of code needs its own (possibly anonymous) class, and life gets very messy.

Groovy uses closures to specify the code to be executed each time and adds the
extra methods (each any every find findAll collect , , , , and so forth) to
the collection classes to make them readily available. Those methods aren't magic,
though--they're simple Groovy, because closures allow the controlling logic (the
process of iterating over the collection) to be separated from the code to execute
for every element. If you find yourself wanting a similar construct that isn't already
covered by Groovy, you can add it easily as we will see below.

Separating iteration logic from what to do on each iteration is not the only
reason for introducing the closure concept. A second reason, perhaps even more
important than the first, is the use of closures to handle resources in a safe and

146

Licensed to Charles Wise <ctwise@gmail.com>

148

convenient manner.

5.2.2 Handling resources
How many times have you seen code that opens a stream but calls close at the
end of the method, overlooking the fact that the close statement may never be
reached when an exception occurs while processing? So, it needs to be protected
with a try-catch block? No--wait--that should be try-finally , or should
it? And inside the finally block, close can throw another exception that needs
to be handled. There are too many details to remember, and so resource handling is
often implemented incorrectly. With Groovy's closure support, you can put that
logic in one place and use it like this:

new File('myfile.txt').eachLine { println it }

The eachLine method of File now takes care of opening and closing the
file input stream properly. This guards you from accidentally producing a resource
leak of file handles.

Streams are just the most obvious tip of the resource-handling iceberg.

Database connections,

transactions,

native handles such as graphic resources,

network connections,

threads from a thread pool,

even your GUI is a resource that needs to be managed (that is, repainted
correctly at the right time), and observers and event listeners need to be removed
when the time comes, to avoid memory leaks.

Forgetting to clean up correctly in all situations ought to be a problem that only
affects neophyte Java programmers, but because the language provides little help
beyond try-catch-finally, even experienced developers end up making
mistakes. It is possible to code around this in an orderly manner, but Java leads
inexperienced programmers away from centralized resource handling. Code
structures are duplicated many times, and the probability of not-so-perfect
implementations rises with the number of duplicates.

Resource-handling code is often tested poorly. Projects that measure their test

147

Licensed to Charles Wise <ctwise@gmail.com>

149

coverage typically struggle to fully cover this area. That is because duplicated,
widespread resource handling is difficult to test and eats up precious development
time. Testing centralized handlers is easy and requires only a single set of tests.

Let's see what resource handling solutions Java provides and why they are not
used often, and then we'll show the corresponding Groovy solutions.

A COMMON JAVA APPROACH: USE INNER CLASSES
In order to do centralized resource handling, you need to pass resource-using code
to the handler. This should sound familiar by now--it's essentially the same
problem we encountered when considering collections: The handler needs to know
how to call that code, and therefore it must implement some known interface. In
Java, this is frequently implemented by an inner class for two reasons: First, it
allows the resource-using code to be close to the calling code (which is often
useful for readability); and second, it allows the resource-using code to interact
with the context of the calling code, using local variables, calling methods on the
relevant objects, and so on.

NOTE By the Way
JUnit, one of the most prominent Java packages outside the JDK,
follows this strategy by using the Runnable interface with its
runProtected method.

Anonymous inner classes are almost solely used for this kind of pattern--if Java
had closures, it's possible that anonymous inner classes might never have been
invented. The rules and restrictions that come with them (and with plain inner
classes) make it obvious what a wart the whole “feature” really is on the skin of
what is otherwise an elegant and simple language. As soon as you have to start
typing code like MyClass.this.doSomething , you know something is
wrong--and that's aside from the amount of distracting clutter required around your
code just to create it in the first place. The interaction with the context of the
calling code is limited, with rules such as local variables having to be final in order
to be used making life awkward.

In some ways, it's the right approach, but it looks ugly, especially when used
often. Java's limitations get in the way too much to make it an elegant solution. The
following example uses a Resource that it gets from a ResourceHandler ,
which is responsible for its proper construction and destruction. Only the boldface
code is really needed for doing the job:

148

Licensed to Charles Wise <ctwise@gmail.com>

150

// Java
interface ResourceUser {

 void use (Resource resource);
}
resourceHandler.handle (new ResourceUser(){

 public void use (Resource resource) {
resource.doSomething()

 }
});

The Groovy equivalent of this code reveals all necessary information without
any waste:

resourceHandler.handle { resource->
resource.doSomething()

}

Groovy's scoping is also significantly more flexible and powerful, while
removing the “code mess” that inner classes introduce.

AN ALTERNATIVE JAVA APPROACH: THE TEMPLATE METHOD PATTERN
Another strategy to centralize resource handling in Java is to do it in a superclass
and let the resource-using code live in a subclass. This is the typical
implementation of the Template Method [GOF] pattern.

The downside here is that you either end up with a proliferation of subclasses or
use (possibly anonymous) inner subclasses... which brings us back to the
drawbacks discussed earlier. It also introduces penalties in terms of code clarity
and freedom of implementation, both of which tend to suffer when inheritance is
involved. This leads us to take a close look at the dangers of abstraction
proliferation.

If there were only one interface that could be used for the purpose of passing
logic around, like our imaginary ResourceUser interface from the previous
example, then things would not be too bad. But in Java there is no such beast--no
single ResourceUser interface that serves all purposes. The signature of the
callback method use needs to adapt to the purpose: the number and type of
parameters, the number and type of declared exceptions, and the return type.

Therefore a variety of interfaces has evolved over time: Runnable, Observer,
Listener, Visitor, Comparator, Strategy, Command, Controller, and so on. This
makes their use more complicated, because with every new interface, there also is
a new abstraction or concept that needs to be understood.

In comparison, Groovy closures can handle any method signature, and the

149

Licensed to Charles Wise <ctwise@gmail.com>

151

behavior of the controlling logic can even change depending on the signature of the
closure provided to it, as you'll see later.

These two examples of pain-points in Java that can be addressed with closures
are just that--examples. If they were the only problems made easier by closures,
closures would still be worth having, but reality is much richer. It turns out that
closures enable many patterns of programming that would be unthinkable without
them.

Before you can live your dreams, however, you need to learn more about the
basics of closures. Let's start with how we declare them in the first place.

5.3 Declaring closures
So far, we have used the simple abbreviated syntax of closures: After a method
call, put your code in curly braces with parameters delimited from the closure body
by an arrow.

Let's start by adding to your knowledge about the simple abbreviated syntax,
and then we'll look at two more ways to declare a closure: by using them in
assignments and by referring to a method.

5.3.1 The simple declaration
Listing 5.1 shows the simple closure syntax plus a new convenience feature. When
there is only one parameter passed into the closure, its declaration is optional. The
magic variable it can be used instead. Listing 5.1 shows two equivalent closure
declarations.

Listing 5.1 Simple abbreviated closure declaration

def log = ''
(1..10).each { counter -> log += counter }
assert log == '12345678910'

log = ''
(1..10).each { log += it }
assert log == '12345678910'

Note that unlike counter, the magic variable it needs no declaration.
This syntax is an abbreviation because the closure object as declared by the

curly braces is the last parameter of the method and would normally appear within
the method call's parentheses. As you will see, it is equally valid to put it inside

48:parentheses like any other parameter, although it is hardly ever used this way

150

Licensed to Charles Wise <ctwise@gmail.com>

m

152

Footnote 48 Although I have seen long-time Java programmers that preferred this style and kept it over a
number of weeks before getting comfortable with more idiomatic Groovy.

def log = ''
(1..10).each({ log += it })
assert log == '12345678910'

This syntax is simple because it uses only one parameter, the implicit parameter
it. Multiple parameters can be declared in sequence, delimited by commas. A
default value can optionally be assigned to parameters, in case no value is passed
from the method to the closure. We will see examples of this in section 5.4.

NOTE Tip
Think of the arrow as an indication that parameters are passed
from the method on the left into the closure body on the right.

5.3.2 Using assignments for declaration
A second way of declaring a closure is to directly assign it to a variable:

Closure printer = { line -> println line }

The closure is declared inside the curly braces and assigned to the printer
variable.

NOTE Tip
Whenever you see the curly braces of a closure, think: new
Closure(){}.

There is also a natural kind of assignment to the return value of a method:

def Closure getPrinter() {
return{ line -> println line }

}

Again, the curly braces denote the construction of a new closure object. This
object is returned from the method call.

151

Licensed to Charles Wise <ctwise@gmail.com>

153

NOTE Tip
Curly braces can denote the construction of a new closure object or
a Groovy block . Blocks can be class, interface, static or object
initializers, or method bodies; or can appear with the Groovy
keywords if else synchronized for while switch try, , , , , , ,
catch, and finally. All other occurrences are closures.

As you can see, closures are objects. They can be stored in variables, they can
be passed around, and, as you probably guessed, you can call methods on them.
Being objects, you can also return a closure from a method.

5.3.3 Referring to methods as closures
The third way of declaring a closure is to reuse something that is already declared:
a method. Methods have a body, optionally return values, can take parameters, and
can be called. The similarities with closures are obvious, so Groovy lets you reuse
the code you already have in methods, but as a closure. Referencing a method as a
closure is performed using the reference.& operator. The reference is used to
specify which instance should be used when the closure is called, just like a normal
method call to reference.someMethod() . Figure 5.1 shows an assignment using a
method closure, breaking the statement up into its constituent parts.

Figure 5.1 The anatomy of a simple
method closure assignment
statement

Listing 5.2 demonstrates method closures in action, showing two different
instances being used to give two different closures, even though the same method
is invoked in both cases.

Listing 5.2 Simple method closures in action

class SizeFilter {
 Integer limit

152

Licensed to Charles Wise <ctwise@gmail.com>

154

 boolean filter (String value) {
 return value.length() <= limit

}
}

SizeFilter six = new SizeFilter(limit:6) //#1 GroovyBean constructor
SizeFilter five = new SizeFilter(limit:5) //#1 calls

Closure smallerSix = six.&filter //#2 Method closure assignment

def words = ['long string', 'medium', 'short', 'tiny']

assert 'medium' == words.find (smallerSix) //#3 Calling with closure
assert 'short' == words.find (five.&filter) //#4 Passing a method closure directly

Each instance (created at) has a separate idea of how long a string it will
deem to be valid in the filter method. We create a reference to that method
with six.&filter at and five.&filter , showing that the reference can
be assigned to a variable which is then passed (at) or passed as a parameter to
the find method at . We use a sample list of words to check that the closures
are doing what we expect them to.

Method closures are limited to instance methods, but they do have another
interesting feature--runtime overload resolution, also known as multimethods. You
will find out more about multimethods in chapter 7, but listing 5.3 gives a taste.

Listing 5.3 Multimethod closures--the same method name called with different
parameters is used to call different implementations

class MultiMethodSample {

 int mysteryMethod (String value) {
 return value.length()

 }
 int mysteryMethod (List list) {

 return list.size()
 }
 int mysteryMethod (int x, int y) {

 return x+y
 }

}

MultiMethodSample instance = new MultiMethodSample()
Closure multi = instance.&mysteryMethod //#1 Only a single closure is created

assert 10 == multi ('string arg') //#2 Different implementations
assert 3 == multi (['list', 'of', 'values']) //#2 are called based on
assert 14 == multi (6, 8) //#2 argument types

Here a single instance is used, and indeed a single closure (at)--but each

153

Licensed to Charles Wise <ctwise@gmail.com>

155

time it's called, a different method implementation is invoked, at . We don't
want to rush ahead of ourselves, but you'll see a lot more of this kind of dynamic
behavior in chapter 7.

With the topic presented so far, you should be able to understand a construction
that the Grails framework uses pervasively: properties of type Closure . The
interesting effect of this construction is that you can change a property value at
runtime, and consequently, you can assign a new closure to a property just as well.
Listing 0.0 mimics a Grails controller where we change the list “action” at runtime.

Listing 5.4 ClosureProperty that looks like a method but can be redefined at
runtime

class MultiMethodSample {

 int mysteryMethod (String value) {
 return value.length()

 }
 int mysteryMethod (List list) {

 return list.size()
 }
 int mysteryMethod (int x, int y) {

 return x+y
 }

}

MultiMethodSample instance = new MultiMethodSample()
Closure multi = instance.&mysteryMethod //#1 Only a single closure is created

assert 10 == multi ('string arg') //#2 Different implementations
assert 3 == multi (['list', 'of', 'values']) //#2 are called based on
assert 14 == multi (6, 8) //#2 argument types

What makes ClosureProperties attractive is that calling the closure looks
exactly like a method call but the ability to assign a new closure object yields
possibilities that would otherwise only be available through metaprogramming:
redefining execution logic at runtime on a per-instance basis.

Now that you've seen all the ways of declaring a closure, it's worth pausing for
a moment and seeing them all together, performing the same function, just with
different declaration styles.

154

Licensed to Charles Wise <ctwise@gmail.com>

156

5.3.4 Comparing the available options
Listing 5.4 shows all of these ways of creating and using closures: through simple
declaration, assignment to variables, and method closures. In each case, we call the
each method on a simple map, providing a closure that doubles a single value. By
the time we've finished, we've doubled each value three times.

Listing 5.5 List of closure declaration examples

Map map = ['a':1, 'b':2]
map.each{ key, value -> map[key] = value * 2 } //#1 Parameter sequence with commas
assert map == ['a':2, 'b':4]

Closure doubler = {key, value -> map[key] = value * 2 } //#2 Assign and then call
map.each(doubler) //#2 a closure reference
assert map == ['a':4, 'b':8]

def doubleMethod (entry){ //|#3 A usual method
 entry.value = entry.value * 2 //|#3 declaration

}
doubler = this.&doubleMethod //#4 Reference and call
map.each(doubler) //#4 a method as a closure
assert map == ['a':8, 'b':16]

In , we pass the closure as the parameter directly. This is the form you've
seen most commonly so far.

The declaration of the closure in is disconnected from its immediate use.
The curly braces are Groovy's way to declare a closure, so we assign a closure
object to the variable doubler . Some people incorrectly interpret this line as
assigning the result of a closure call to a variable. Don't fall into that trap! This line
creates a Closure object, but doesn't call it. The each method calls it instead.
You can see that passing the closure as an argument to the method via a reference
is exactly the same as declaring it in-place, the style that we followed in all the
previous examples.

The method declared in is a perfectly ordinary method. There is no trace of
our intention to use it as a closure.

In , the reference.& operator is used for referencing a method name as a
closure. Again, the method is not immediately called; the execution of the method
occurs as part of the next line. This is just like . The closure is passed to the
each method, which calls it back for each entry in the map.

Typing 49 is optional in Groovy, and consequently it is optional for closure
parameters. Just like for methods, if you choose to specify explicit type markers for

155

Licensed to Charles Wise <ctwise@gmail.com>

 m

157

closure parameters, Groovy guarantees that those parameters will be the right time
at runtime.
Footnote 49 The word typing has two meanings: declaring object types and typing keystrokes. Although
Groovy provides optional typing, you still have to key in your program code.

In order to fully understand how closures work and how to use them within
your code, you need to find out how to invoke them. That is the topic of the next
section.

5.4 Using closures
So far, you have seen how to create a closure for the purpose of passing it into a
method such as each . But what happens inside the each method? How does it
call your closure? If you knew this, you could come up with equally smart
implementations. First we'll look at how simple it is to call a closure and then
move on to explore some advanced methods that the Closure type has to offer.

5.4.1 Calling a closure
Suppose we have a reference x pointing to a closure; we can call it with
x.call() or simply x() . You have probably guessed that any arguments to the
closure call go between the parentheses.

We start with a simple example. Listing 5.5 shows the same closure being
called both ways.

Listing 5.6 Calling closures

def adder = { x, y -> return x+y }

assert adder(4, 3) == 7
assert adder.call(2, 6) == 8

We start off by declaring pretty much the simplest possible closure--a piece of
code that returns the sum of the two arguments it is passed. Then we call the
closure both directly and using the call method. Both ways of calling the closure
achieve exactly the same effect.

Now let's try something more involved. In listing 5.6, we demonstrate calling a
closure from within a method body and how the closure gets passed into that
method in the first place. The example measures the execution time of the closure.

Listing 5.7 Calling closures

def benchmark(int repeat, Closure worker) { //#1 Put closures last
 def start = System.nanoTime() //#2 Some pre-work

156

Licensed to Charles Wise <ctwise@gmail.com>

158

 repeat.times { worker(it) } //#3 Call closure a given number of times

 def stop = System.nanoTime() //|#4 Some post-work
 return stop - start //|#4

}
def slow = benchmark(10000) { (int) it / 2 } //|#5 Pass different closures
def fast = benchmark(10000) { it.intdiv(2) } //|#5 for benchmarking
assert fast * 15 < slow //|#5

Do you remember our performance investigation for regular expression patterns
in listing 3.7? We needed to duplicate the benchmarking logic because we had no
means to declare how to benchmark something. Now you know how. You can pass
a closure into the benchmark method, where some pre- and post-work takes
control of timing it appropriately.

We put the closure parameter at the end of the parameter list in to allow the
simple abbreviated syntax when calling the method. In the example, we declare the
type of the parameter to be a closure. This is only to make things more
obvious--the Closure type is optional.

We effectively start timing the benchmark at . From a general point of view,
this is arbitrary pre-work like opening a file or connecting to a database. It just so
happens that our resource is time.

At , we call the given closure as many times as our repeat parameter
demands. We pass the current count to the closure to make things more interesting.
From a general point of view, a resource is passed to the closure.

We stop timing at and calculate the time taken by the closure. This is where
the post-work logic belongs: closing files, flushing buffers, returning connections
to the pool, and so on.

The payoff comes at . We can now pass logic to the benchmark method.
Note that we use the simple abbreviated syntax and use the magic it to refer to the
current count. As a side effect, we learn that the general number division takes
more than 15 times longer than the optimized intdiv method.

NOTE By the Way
This kind of benchmarking should not be taken too seriously. There
are all kinds of effects that can heavily influence such wall-clock
based measurements: machine characteristics, operating system,
current machine load, JDK version, Just-In-time compiler and
Hotspot settings, and so on.

157

Licensed to Charles Wise <ctwise@gmail.com>

159

Figure 5.2 shows the UML sequence diagram for the general calling scheme of
the declaring object that creates the closure, the method invocation on the caller,
and the caller's callback to the given closure.

Figure 5.2 UML sequence diagram of the typical sequence of
method calls when a declarer creates a closure and attaches it to a
method call on the caller, which in turn calls that closure's call
method

When calling a closure, you need to pass exactly as many arguments to the
closure as it expects to receive, unless the closure defines default values for its
parameters. A default value is used when you omit the corresponding argument.
The following is a variant of the addition closure as used in listing 5.5, with a
default value for the second parameter and two calls--one that passes two
arguments, and one that relies on the default:

def adder = { x, y=5 -> return x+y }

assert adder(4, 3) == 7
assert adder.call(7) == 12

The same rules apply for default parameters in closures as they do for methods.
Also, closures can be used with a variable length argument list in the same way as
methods. We will cover this in section 7.1.2.

At this point, you should be comfortable with passing closures to methods and
have a solid understanding of how the callback is executed. Whenever you pass a
closure to a method, you can be sure that a callback will be executed one way or
the other (perhaps conditionally), depending on that method's logic. Closures are

158

Licensed to Charles Wise <ctwise@gmail.com>

160

capable of more than just being called, though. In the next section, you see what
else they have to offer.

5.4.2 More closure methods
The class groovy.lang.Closure is an ordinary class, albeit one with
extraordinary power and extra language support. It has various methods available
beyond call. We will present the most the important ones--even though you will
usually just declare and call closures, it's nice to know there's some extra power
available when you need it.

REACTING ON THE PARAMETER COUNT
A simple example of how useful it is to change behavior based on the parameter
count of a closure is map's each method, which we discussed in section 4.3.2. It
passes either a Map.Entry object or key and value separately into the given
closure, depending on whether the closure takes one argument or two. You can
retrieve the information about the expected parameter count (and types, if declared)
by calling the closure's getParameterTypes method:

def caller (Closure closure) {
 closure.getParameterTypes().size()

}

assert caller { one -> } == 1
assert caller { one, two -> } == 2

As in the Map.each example, this allows for the luxury of supporting closures
with different parameter styles, adapted to the caller's needs.

HOW TO CURRY FAVOR WITH A CLOSURE
Currying is a technique invented by Moses Schnfinkel and Gottlob Frege, and
named after the logician Haskell Brooks Curry (1900..1982), a pioneer in
functional programming. (Unsurprisingly, the functional language Haskell is also
named after Curry.) The basic idea is to take a function with multiple parameters
and transform it into a function with fewer parameters by fixing some of the
values. A classic example is to choose some arbitrary value n and transform a
function that sums two parameters into a function that takes a single parameter and
adds n to it.

In Groovy, Closure 's curry method returns a clone of the current closure,
having bound one or more parameters to a given value. Parameters are bound to
curry's arguments from left to right. Listing 5.7 gives an implementation of the

159

Licensed to Charles Wise <ctwise@gmail.com>

161

addition example.

Listing 5.8 A simple currying example

def adder = { x, y -> return x+y }
def addOne = adder.curry(1)
assert addOne(5) == 6

We reuse the same closure you've seen a couple of times now for general
summation. We call the curry method on it to create a new closure, which acts
like a simple adder, but with the value of the first parameter always fixed as 1.
Finally, we check our results.

If you're new to closures or currying, now might be a good time to take a
break--and pick the book up again back at the start of the currying discussion, to
read it again. It's a deceptively simple concept to describe mechanically, but it can
be quite difficult to internalize. Just take it slowly, and you'll be fine.

The real power of currying comes when the closure's parameters are themselves
closures. This is a common construction in functional programming, but it does
take a little getting used to.

For an example, suppose you are implementing a logging facility. It should
support customized formatting and appending to an output device. The idea is to
provide a single closure for a customized version of each activity, while still
allowing you to implement the overall pattern of when to do the formatting and
appending in one place. Listing 0.0 uses currying to inject the customized activities
into that pattern:

Listing 5.9 Using the method to configure formatting and appending of logcurry

entries

def logger = { formatter, appender, line -> //#1 General logging device
 appender(formatter(line))

}
def rightFormatter = { line -> line.padLeft(25) + "n" } //|#2 Tool
def out = new StringBuilder() //|#2 details
def stringAppender = { line -> out << line } //|#2

def myLog = logger.curry(rightFormatter, stringAppender) //#3 Custom device

myLog 'here is some log message'

assert out.toString().contains('log message')

Closure is like a recipe: given any output formatter, appender, and a line to

160

Licensed to Charles Wise <ctwise@gmail.com>

162

log, that line must first be formatted and then appended--easy. The short closures
in are the specific ingredients in the recipe. They could be specified every time,
but we're always going to use the same ingredients. Currying (at) allows us to
remember just one object rather than each of the individual parts. To continue the
recipe analogy, we've put all the ingredients together, and the result needs to be put
in the oven whenever we want to do some logging.

Currying is a strategy that the functional programming community needed to
develop since in a true functional world, you have no objects to carry mutable state
. But in Groovy, we do have objects and can use them together with closure
properties as a curry surrogate. Listing 0.0 puts the formatting and appending logic
into closures that are held by the GeneralLogger as properties.

Listing 5.10 Property closures as a curry surrogate

class GeneralLogger {
 Closure formatter = { line -> line } //|#1 Closure properties
 Closure appender = { } //|#1
 Closure logger = { line ->

 appender(formatter(line))
 }

}
def out = new StringBuilder()
def myLog = new GeneralLogger(

 formatter : { line -> line.padLeft(25) + "n" },
 appender : { line -> out << line }

).logger

myLog 'here is some log message'

assert out.toString().contains('log message')

This is another compelling example where closure properties demonstrate their
flexibility over methods with fixed implementations. Whatever style you prefer,
Groovy gives you the freedom of choice.

CLASSIFICATION VIA THE ISCASE METHOD
Closures implement the isCase method to make closures work as classifiers with
in grep and switch . In that case, the respective argument is passed into the
closure, and calling the closure needs to evaluate to a Groovy Boolean value (see
section 6.1). For example, consider this code:

def odd = { it % 2 == 1}

assert [1,2,3].grep(odd) == [1, 3]

161

Licensed to Charles Wise <ctwise@gmail.com>

163

switch(10) {
 case odd : assert false

}

if (2 in odd) assert false

You can see that the switch statement allows us to classify values with arbitrary
logic. Again, this is only possible because closures are objects.

REMAINING METHODS
For the sake of completeness, it needs to be said that closures support the clone
method in the usual Java sense.

The asWriteable method returns a clone of the current closure that has an
additional writeTo(Writer) method to write the result of a closure call
directly into the given Writer.

Finally, there are a getter and setter methods for the delegate of the closure. We
will explore the topic of what a delegate is and how it is used inside a closure when
investigating a closure's scoping rules in the next section.

5.5 Understanding scoping
You have seen how to create closures when they are needed for a method call and
how to work with closures when they are passed to your method. This is very
powerful while still simple to use.

In this section we'll look under the hood to get a deeper understanding of what
happens when you use this simple construction. We explore what data and methods
you can access from a closure, what the this reference means within a closure
body, and how to put your knowledge to the test with a classic example designed to
test any language's expressiveness.

This is a bit of a technical section, and you can safely skip it on your first read.
However, at some point you may want to come back to it and learn how Groovy
can provide all those clever tricks. Knowing the details may help you to come up
with particularly elegant solutions yourself.

The environment available inside a closure is called its scope . The scope
defines

Which local variables are accessible
What this (the current object) refers to
Which fields and methods are accessible

We'll start with an explanation of the behavior that you have seen so far,

162

Licensed to Charles Wise <ctwise@gmail.com>

164

revisiting a piece of code that does something 10 times:

def x= 0
10.times {

x++
}
assert x== 10

Clearly the closure that is passed into the times method can access variable x,
which is locally accessible when the closure is declared. Remember: The curly
braces show the declaration time of the closure, not the execution time. The
closure can access x for both reading and writing at declaration time.

This leads to a second thought: The closure surely needs to also access x at
execution time. How could it increment it otherwise? But the closure is passed to
the times method, a method that is called on the Integer 10 object. That
method, in turn, calls back to our closure. But the times method has no chance of
knowing about x! So it cannot pass it to the closure, and it surely has no means of
finding out what the closure is doing with it.

The only way in which this can possibly work is if the closure somehow
remembers the context at the point of its declaration and carries it along throughout
its lifetime. That way, it can work on that original context whenever the situation
calls for it.

This is called the birthday context of the closures. It needs to be a reference, not
a copy: if we merely copied the values of the fields (as Java does for anonymous
inner classes), there would be no way of changing the original from inside the
closure. But our example clearly does change the value of x--otherwise the
assertion would fail. Therefore, the birthday context must be a reference.

5.5.1 The simple variable scope
Figure 5.3 depicts your current understanding of which objects are involved in the
times example and how they reference each other.

163

Licensed to Charles Wise <ctwise@gmail.com>

165

Figure 5.3 Conceptual view of object references and method calls between

a calling script, an Integer object of value 10 that is used in the script, and

the closure that is attached to the Integer's times method for defining

something that has to be done 10 times

The Script creates a Closure that has a back reference to x, which is in the
local scope of its declarer. Script calls the times method on the Integer 10
object, passing the declared closure as a parameter. In other words, when times is
executed, a reference to the closure object lies on the stack. The times method
uses this reference to execute Closure 's call method, passing its local variable
count to it. In this specific example, the count parameter is not used within
Closure.call . Instead, Closure.call only works on the x reference that it
holds to the local variable x in Script.

Through analysis, you can see that local variables are bound as a reference to
the closure at declaration time.

5.5.2 The general closure scope
It would not be surprising if other scope elements were treated the same as local
variables: the value of this, fields, methods, local variables, and parameters.

This generalization is correct, but the this reference is a special case. Inside a
closure, you could legitimately assume that this would refer to the current object,
which is the closure object itself. On the other hand, it should make no difference
whether you use this.reference or plain reference for locally accessible
references. Therefore, the Groovy team has decided that inside a closure this
doesn't refer to the closure object but to its owner: the object in whose scope the
closure was declared.

A reference to that owner object is held in a special variable called owner
within the Closure class. Listing 5.8 extends the initial example to reveal the

164

Licensed to Charles Wise <ctwise@gmail.com>

166

remaining scope elements.
We implement a small class Mother that should give birth to a closure

through a method with that name. The class has a property and another method; the
birth method has a parameter and a local variable that we can study. The closure
should return a map of all elements that are in the current context (scope). Behind
the scenes, these elements will be bound at declaration time but not evaluated until
the closure is called. Let's investigate the result of such a call.

Listing 5.11 Investigating the closure scope

class Mother {
 int prop = 1
 int method() { return 2 }
 Closure birth (param) { //#1 This method creates and returns the closure

 def local = 3
 def closure = { caller ->

 [self : this, prop : prop , method: method(),
 local : local, param: param,
 caller: caller, owner: owner, delegate: delegate]

 }
 return closure

 }
}

Mother julia = new Mother()

def closure = julia.birth(4) //#2 Let a Mother give birth to a closure

def context = closure.call(this) //#3 Call the closure

assert context.self == julia //#4 'this' is owner
assert context.prop == 1 //|#5 No surprises?
assert context.method == 2 //|#5
assert context.local == 3 //|#5
assert context.param == 4 //|#5

assert context.owner == julia //#6 Declaring object
assert context.caller == this //#7 Calling object

firstClosure = julia.birth(4) //#8 Closure brace are
secondClosure = julia.birth(4) //#8 like 'new'
assert firstClosure != secondClosure //#8

We've added the optional return type to the method declaration in to point
out that this method returns a closure object. A method that returns a closure is not
the most common usage of closures, but every now and then it comes in handy.
Note that the method only declares the closure - it doesn't execute it. The map that
the closure will return when called doesn't exist yet.

165

Licensed to Charles Wise <ctwise@gmail.com>

 m

167

After constructing a new instance of Mother , we call its birth method at
to retrieve a newly born closure object. Even now, the closure hasn't been called.
The list of elements is not yet constructed.

Rubber meets road at . Now we call the closure using the explicit call syntax
to make it stand out. The closure constructs its list of elements from what it
remembers about its birth. We store that list in a variable for further inspection.
Notice that we pass ourselves as a parameter into the closure in order to make it
available inside the closure as the caller.

At we assert that inside the closure, this refers to the object that
constructed it.

The property prop, the result of calling method(), the local variable local,
and the parameter param all have the expected values, as demonstrated in .
This is the birthday recall that we expected.

But prop and foo() are a bit more involved as they appear. Since they are
not local references (local variables or parameters) and have no receiver specified
(like this.foo()), they are considered vanilla references50 . Resolving a vanilla
reference should by default work as if it was prefixed with this.reference. In
other words, they are resolved against the owner . Since the owner is julia,
everything works as if the enclosed code ran in the birthday context of the closure.
We will see later that the resolution mechanism is very flexible and even allows
vanilla references to be resolved against totally unrelated objects.
Footnote 50 References to classes are also vanilla references and if Groovy can resolve the reference name
to a class on the classpath, then this resolution has precedence over any other possible resolution.

Passing the caller explicitly into the closure is the way to make it accessible
inside. We demonstrate this at . Throughout all previous closure examples in
this book, the caller and the owner have been identical. Therefore, we could easily
apply side effects on it. You may have thought we were side-effecting the caller
while we were working on the owner. If this sounds totally crazy to you, don't
worry. Getting used to the scope available within a closure takes some time. It's
worth revisiting a simple example like times and experimenting with it to get a
better feel for what's happening. It'll become second nature soon enough.

At you can see that every call to birth constructs a new closure. Think of
the curly braces in a closure declaration as if the word new appeared before them.
Behind this observation is a fundamental difference between closures and methods:
Methods are constructed exactly once at class-generation time. Closures are objects

166

Licensed to Charles Wise <ctwise@gmail.com>

168

and thus constructed at runtime, and there may be any number of them constructed
from the same lines of code if that code happens to be called multiple times.

Figure 5.4 shows who refers to whom in listing 5.8.

Figure 5.4 Conceptual view of object references and
method calls for the general scoping example in listing 5.8,
revealing the calls to the julia instance of Mother for
creating a closure that is called in the trailing Script code to
return all values in the current scope

This is all a bit unfamiliar for many developers but the net effect of this
construction is that closures become fairly easy and straightforward to use. For the
vast majority of cases, there is no need to think about the scoping rules too deeply.

There are use cases of closures, though, that are bit more involved. Listing 0.0
introduces us to the concept of a delegate that a closure can consider in addition to
the owner for resolving vanilla references. The GDK provides a with method that
takes a closure argument and resolves all vanilla references inside that closure
against the receiver of with, which results in code that reads almost like Visual
Basic.

Listing 5.12 Closure delegate for the methodwith

def list = []
def expected = [1, 2]

list.with {
 add 1

167

Licensed to Charles Wise <ctwise@gmail.com>

169

 add 2
 assert delegate == expected

}

The line add 1 becomes a shorthand for list.add 1 since inside the with

closure, the add reference is resolved against list.
The delegate is a property of the closure itself and represents the receiver

object that the with method was called on, while expected is resolved against
our script--the owner of the closure.

Who is responsible for all this? Well, in the example above, it is the
implementation of the with method that looks conceptually like this:

def with(Closure doit) { // fake implementation
 doit.delegate = list
 doit()

}

Now we have three possible candidates to resolve a vanilla reference against:

the closure itself (for ,owner delegate)

the owner (for expected)

the delegate (for add)

There may be name clashes between those three and we need precedence rules
for the lookup. The closure itself always comes first. What can be resolved against
the closure always has precedence. The resolution rules between owner and
delegate are determined by the closure's resolveStrategy, which are:

Closure.OWNER_FIRST, which is the default and tries first the
owner, then the delegate.

Closure.DELEGATE_FIRST, which tries the delegate first, then the
owner.

Closure.OWNER_ONLY

Closure.DELEGATE_ONLY

Closure.TO_SELF, which neither looks at owner nor delegate but
only the (meta-) methods and properties of Closure.

The with method actually sets the resolve strategy of their closure parameter

168

Licensed to Charles Wise <ctwise@gmail.com>

--

170

to DELEGATE_FIRST . It is also a good example of the reason for having an
adaptable resolution strategy: to allow simplified access to an existing API, which
is an integral part of domain specific languages (see XREF ch_dsl) and builders
(see XREF ch_builder).

Lectures about lexical scoping and closures from other languages such as Lisp,
Smalltalk, Perl, Ruby, and Python typically end with some mind-boggling
examples about variables with identical names, mutually overriding references, and
mystic rebirth of supposed-to-be foregone contexts. These examples are like
puzzles. They make for an entertaining pastime on a long winter evening, but they
have no practical relevance. We will not provide any of those, because they can
easily undermine your carefully built confidence in the scoping rules.

Our intention is to provide a reasonable introduction to Groovy's closures. This
should give you the basic understanding that you need when hunting for more
complex examples in mailing lists and on the Web. Instead of giving a deliberately
obscure example, however, we will provide one that shows how closure scopes can
make an otherwise complex task straightforward.

5.5.3 Scoping at work: the classic accumulator test
There is a classic example to compare the power of languages by the way they
support closures. One of the things it highlights is the power of the scoping rules
for those languages as they apply to closures. Paul Graham first proposed this test
in his excellent article “Revenge of the Nerds” (
http://www.paulgraham.com/icad.html). Beside the test, his article is an interesting
and informative to read. It talks about the difference a language can make.

In some languages, this test leads to a brain-teasing solution. Not so in Groovy.
The Groovy solution is exceptionally obvious and straightforward to achieve.

Here is the original requirement statement:

“We want to write a function that generates accumulators--a function that takes
a number n, and returns a function that takes another number i and returns n
incremented by i”.

The following are proposed solutions for other languages:
In Lisp:

(defun foo (n) (lambda (i) (incf n i)))

169

Licensed to Charles Wise <ctwise@gmail.com>

http://www.paulgraham.com/icad.html

171

In Perl 5:

sub foo { my ($n) = @_; sub {$n += shift} }

In Smalltalk:

foo: n |s| s := n. ^[:i| s := s+i.]

The following steps lead to a Groovy solution, as shown in listing 5.9:

1. 	We need a function that returns a closure. In Groovy, we don't have functions, but
methods. (Actually, we have not only methods, but also closures. But let's keep it
simple.) We use def to declare such a method. It has only one line, which after creates a
new closure and returns it. We will call this method foo to make the solutions
comparable in size. The name createAccumulator would reflect the purpose more
clearly, of course.

2. 	Our method takes an initial value n as required.
3. 	Because n is a parameter to the method that declares the closure, it gets bound to the

closure scope. We can use it inside the closure body to calculate the incremented value.
4. 	The incremented value is not only calculated but also assigned to n as the new value.

That way we have a true accumulation.

We add a few assertions to verify our solution and reveal how the accumulator
is supposed to be used. Listing 5.9 shows the full code.

Listing 5.13 The accumulator problem in Groovy

def foo(n) {
 return { n += it }

}

def accumulator = foo(1)
assert accumulator(2) == 3
assert accumulator(1) == 4

All the steps that led to the solution are straightforward applications of what
you've learned about closures.

In comparison to the other languages, the Groovy solution is not only short but
also surprisingly clear. Groovy has passed this language test exceptionally well.

Is this test of any practical relevance? Maybe not in the sense that we would
ever need an accumulator generator, but it is in a different sense. Passing this test
means that the language is able to dynamically put logic in an object and manage
the context that this object lives in. This is an indication of how powerful
abstractions in that language can be.

170

Licensed to Charles Wise <ctwise@gmail.com>

172

5.6 Returning from closures
So far, you have seen how to declare closures and how to call them. However,
there is one crucial topic that we haven't touched yet: how to return from a closure.

In principle, there are two ways of returning:

The last expression of the closure has been evaluated, and the result of this evaluation is
returned. This is called end return. Using the return keyword in front of the last
expression is optional.
The return keyword can also be used to return from the closure prematurely.

This means the following ways of doubling the entries of a list have the very
same effect:

[1, 2, 3].collect { it * 2 }
[1, 2, 3].collect { return it * 2 }

A premature return can be used to, for example, double only the even entries:

[1, 2, 3].collect {
 if (it % 2 == 0) return it * 2
 return it

}

This behavior of the return keyword inside closures is simple and
straightforward. It sounds like it shouldn't cause any problems, but there is one
aspect which often catches people out.

WARNING Where to return from
There is a difference between using the return keyword inside and
outside of a closure.

Outside a closure, any occurrence of return leaves the current method. When
used inside a closure, it only ends the current evaluation of the closure, which is a
much more localized effect. For example, when using List.each, returning
early from the closure doesn't return early from the each method--the closure will
still be called again with the next element in the list.

As we progress further through the book, we will hit this issue again and
explore more ways of dealing with it. Section 13.1.8 summarizes the topic.

171

Licensed to Charles Wise <ctwise@gmail.com>

173

5.7 Support for design patterns
Design patterns are widely used by developers to enhance the quality of their
designs. Each design pattern presents a typical problem that occurs in
object-oriented programming along with a corresponding well-tested solution. Let's
take a closer look at the way the availability of closures affects how, which, and
when patterns are used.

If you've never seen design patterns before, we suggest you look at the classic
book Design Patterns: Elements of Reusable Object-Oriented Software by Gamma
et al, or one of the more recent ones such as Head First Design Patterns by
Freeman et al or Refactoring to Patterns by Joshua Kerievsky, or search for
“patterns repository” or “patterns catalog” using your favorite search engine.

Although many design patterns are broadly applicable and apply to any
language, some of them are particularly well-suited to solving issues that occur
when using programming languages such as C++ and Java. Often these involve
implementing new abstractions and new classes to make the original programs
more flexible or maintainable. With Groovy, some of the restrictions that face C++
and Java do not apply, and the design patterns are either of less value or are
directly supported using language features rather than introducing new classes.
We'll pick two examples to show the difference: the Visitor and Builder patterns.
As you'll see, closures and dynamic typing are the key differentiators in Groovy
that facilitate easier pattern usage.

5.7.1 Relationship to the Visitor pattern
The Visitor pattern is particularly useful when you wish to perform some complex
business functionality on a composite collection (such as a tree or list) of existing
simple classes. Rather than altering the existing simple classes to contain the
desired business functionality, a Visitor object is introduced. The Visitor
knows how to traverse the composite collection and knows how to perform the
business functionality for different kinds of a simple class. If the composite
changes or the business functionality changes over time, typically only the
Visitor class needs to change.

Listing 5.10 shows how simple the Visitor pattern can look in Groovy; the
composite traversal code is in the accept method of the Drawing class, whereas
the business functionality (in our case performing some calculations involving the

172

Licensed to Charles Wise <ctwise@gmail.com>

174

area of a shape) is contained in two closures, which are passed as parameters to the
appropriate accept methods. There is no need for a separate Visitor class in
this simple case.

Listing 5.14 The Visitor pattern in Groovy

class Drawing {
 List shapes
 def accept(Closure yield) { shapes.each{it.accept(yield)} }

}
class Shape {

 def accept(Closure yield) { yield(this) }
}
class Square extends Shape {

 def width
 def area() { width**2 }

}
class Circle extends Shape {

 def radius
 def area() { Math.PI * radius**2 }

}

def picture = new Drawing(shapes: [new Square(width:1), new Circle(radius:1)])

def total = 0
picture.accept { total += it.area() }
println "The shapes in this drawing cover an area of $total units."
println 'The individual contributions are: '
picture.accept { println it.class.name + ":" + it.area() }

5.7.2 Relationship to the Builder pattern
The Builder pattern serves to encapsulate the logic associated with constructing a
product from its constituent parts. When using the pattern, you normally create a
Builder class, which contains logic determining what builder methods to call
and in which sequence to call them to ensure proper assembly of the product. For
each product, you must supply the appropriate logic for each relevant builder
method used by the Builder class; each builder method typically returns one of
the constituent parts.

Coding Java solutions based on the Builder pattern is not hard, but the Java
code tends to be cumbersome and verbose and doesn't highlight the structure of the
assembled product. For that reason, the Builder pattern is rarely used in Java;
instead developers use unstructured or replicated builder-type logic mixed in with
their other code. This is a shame, because the Builder pattern is so powerful.

Groovy's builders provide a solution using nested closures to conveniently
specify even very complex products. Such a specification is easy to read, because

173

Licensed to Charles Wise <ctwise@gmail.com>

175

the appearance of the code reflects the product structure. Groovy has built-in
library classes based on the Builder pattern that allow you to easily build arbitrarily
nested node structures, produce markup like HTML or XML, define GUIs in
Swing or other widget toolkits, and even access the wide range of functionality in
Ant. You will see lots of examples in chapter 8, and we explain how to write your
own builders in section 8.6.

5.7.3 Relationship to other patterns
Almost all patterns are easier to implement in Groovy than in Java. This is often
because Groovy supports more lightweight solutions that make the patterns less of
a necessity--mostly because of closures and dynamic typing. In addition, when
patterns are required, Groovy often makes expressing them more succinct and
simpler to set up.

We discuss a number of patterns in other sections of this book, patterns such as
Strategy (see 9.1.1 and 9.1.3), Observer (see 13.2.3), and Command (see 9.1.1)
benefit from using closures instead of implementing new classes. Patterns such as
Adapter and Decorator (see 7.5.3) benefit from dynamic typing and method
lookup. We also briefly discuss patterns such as Template Method (see section
5.2.2), the Value Object pattern (see 3.3.2), the incomplete library class smell (see
7.5.3), MVC (see 8.5.6), and the DTO and DAO patterns (see chapter 10). Just by
existing, closures can completely replace the Method Object pattern.

Groovy provides plenty of support for using patterns within your own
programs. Its libraries embody pattern practices throughout. Higher-level
frameworks such as Grails take it one step further. Grails provides you with a
framework built on top of Groovy's libraries and patterns support. Because using
such frameworks saves you from having to deal with many pattern issues
directly--you just use the framework--you will automatically end up using patterns
without needing to understand the details in most cases. Even then, it is useful to
know about some of the patterns we have touched upon so that you can leverage
the maximum benefit from whichever frameworks you use.

5.8 Summary
You have seen that closures follow our theme of everything is an object. They
capture a piece of logic, making it possible to pass it around for execution, return it
from a method call, or store it for later usage.

Closures encourage centralized resource handling, thus making your code more
reliable. This doesn't come at any expense. In fact, the codebase is relieved from

174

Licensed to Charles Wise <ctwise@gmail.com>

176

structural duplication, enhancing expressiveness and maintainability.
Defining and using closures is surprisingly simple because all the difficult tasks

such as keeping track of references and relaying method calls back to the
delegating owner are done transparently. If you don't care about the scoping rules,
everything falls into place naturally. If you want to hook into the mechanics and
perform tasks such as redirecting the calls to the delegate, you can. Of course, such
an advanced usage needs more care. You also need to be careful when returning
from a delegate, particularly when using one in a situation where in other
languages you might use a for loop or a similar construct. This has surprised
more than one new Groovy developer, although the behavior is logical when
examined closely. Re-read section 5.6 when in doubt.

Closures open the door to several ways of doing things that may be new to
many developers. Some of these, such as currying, can appear daunting at first
sight but allow a great deal of power to be wielded with remarkably little code.
Additionally, closures can make familiar design patterns simpler to use or even
unnecessary.

Although you now have a good understanding of Groovy's datatypes and
closures, you still need a way of controlling the flow of execution through your
program. This is achieved with control structures, which form the topic of the next
chapter.

175

Licensed to Charles Wise <ctwise@gmail.com>

 m

177

6Groovy control structures

The pursuit of truth and beauty is a sphere of activity in which we are permitted to
remain children all our lives.

-- Albert Einstein

At the hardware level, computer systems use simple arithmetic and logical
operations, such as jumping to a new location if a memory value equals zero. Any
complex flow of logic executed by a computer can always be expressed in terms of
these simple operations. Fortunately, languages such as Java raise the abstraction
level available in programs we write so that we can express the flow of logic in
terms of higher-level constructs--for example, looping through all of the elements
in an array or processing characters until we reach the end of a file.

In this chapter, we explore the constructs Groovy provides to describe logic
flow in ways that are even simpler and more expressive than Java. Before we look
at the constructs themselves, however, we have to examine Groovy's answer to that
age-old philosophical question: What is truth? 51

Footnote 51 Groovy has no opinion as to what beauty is. We're sure that if it did, however, it would involve
expressive minimalism. Closures too, probably.

176

Licensed to Charles Wise <ctwise@gmail.com>

178

6.1 The Groovy truth
In order to understand how Groovy will handle control structures such as if and
while , you need to know how it evaluates boolean expressions. Many of the
control structures we examine in this chapter rely on the result of a boolean test
--an expression that is first evaluated and then considered as being either true or
false. The outcome of this determines which path is then followed in the code. In
Java, the consideration involved is usually trivial, because Java requires the
expression to be one resulting in the primitive boolean type to start with. Groovy
is more relaxed about this, allowing simpler code at the slight expense of language
simplicity. We'll examine Groovy's rules for boolean tests and give some advice to
avoid falling into an age-old trap.

.1.1 Evaluating boolean tests
The expression of a boolean test can be of any (non-void) type. It can apply to any
object. Groovy decides whether to consider the expression as being true or false by
asking the object for the result of its asBoolean() method.

You can implement this method yourself or rely on the default implementations
that Groovy provides as part of the GDK. Table 6.1 summarises these defaults; you
can also easily look up the details in

org.codehaus.groovy.runtime.DefaultGroovyMethods

Look for the various asBoolean(obj) implementations.
Note that choosing the appropriate asBoolean implementation is subject to

the standard Groovy method dispatch rules. The method can be inherited, it can be
overridden, and it can be modified by the means of metaprogramming (which we
will encounter later).

6

177

Licensed to Charles Wise <ctwise@gmail.com>

mTable 1.1 Default implementations of asBoolean() that implement Groovy's meaning of
truth.

Runtime type Evaluation criterion required for truth

java.lang.Object The object reference is non-null

java.lang.Boolean Corresponding Boolean value is true

java.util.regex.Matcher The matcher has a match

Collections, Arrays The collection is non-empty

Iterator, Enumeration There are more elements

java.util.Map The map is non-empty

CharSequence, String, GString The sequence is non-empty

Number, Character The value is nonzero

179

Listing 6.1 shows these rules in action, using the boolean negation operator ! to
assert that expressions which ought to evaluate to false really do so.

Listing 6.1 Example boolean test evaluations

assert true //|#1 Boolean values
assert !false //|#1 are trivial

assert ('a' =~ /./) //|#2 Matcher must
assert !('a' =~ /b/) //|#2 match

assert [1] //|#3 Collections must
assert ![] //|#3 be non-empty

Iterator iter = [1].iterator()
assert iter //|#4 Iterators

178

Licensed to Charles Wise <ctwise@gmail.com>

180

iter.next() //|#4 must have
assert ! iter //|#4 next element

assert ['a':1] //|#5 Maps must be
assert ![:] //|#5 non-empty

assert 'a' //|#6 Strings must be
assert !'' //|#6 non-empty

assert 1 //|#7 Numbers
assert 1.1 //|#7 (any type)
assert 1.2f //|#7 must be
assert 1.3g //|#7 non-zero
assert 2L //|#7
assert 3G //|#7
assert !0 //|#7

assert ! null //|#8 Objects must be
assert new Object() //|#8 non-null

class AlwaysFalse {
 boolean asBoolean() { false } //#9 Custom truth

}
assert ! new AlwaysFalse() //#10 Calls asBoolean()

The observant reader may spot some commonality between the asBoolean
and isCase method since both allow objects to specify their behavior in Groovy
control structures. This is entirely deliberate!

In fact, the isCase method also plays a role in boolean tests as it allows
objects to specify their behavior with respect to the in operator. That is, in a
statement like

if (candidate in classifier) { ... }

the if path will be executed if

classifier.isCase(candidate) == true

Since isCase is available for many types in Groovy, this allows for elegant
usages like these:

assert 1 in [0, 1, 2] // list
assert 1 in 0..3 // range
assert 'Hello' in String // class
assert 'Hello' in ~/H.*/ // pattern

We will see more examples of isCase when talking about the switch control
structure.

179

Licensed to Charles Wise <ctwise@gmail.com>

181

Evaluating objects as boolean values can make testing for “truth” simpler and
easier to read. However, they come with a price, as you're about to discover.

.2 Assignments within boolean tests
Before we get into the meat of the chapter, we have a warning to point out. Just
like Java, Groovy allows the expression used for a boolean test to be an
assignment--and the value of an assignment expression is the value assigned.
Unlike Java, the type of a boolean test is not restricted to booleans, which means
that a problem you might have thought was ancient history reappears, albeit in an
alleviated manner. Namely, an equality operator == incorrectly entered as an
assignment operator = is valid code with a drastically different effect than the
intended one. Groovy shields you from falling into this trap for the most common
appearance of this error: when it's used as a top-level expression in an if
statement. However, it can still arise in less common cases.

Listing 6.2 leads you through some typical variations of this topic.

Listing 6.2 What happens when == is mistyped as =

def x = 1

if (x == 2) { //#1 Normal comparison
 assert false

}
/*******************
if (x = 2) { //#2 Not allowed! Compiler error!

 println x
}
********************/
if ((x = 3)) { //#3 Assign and test in nested expression

 println x
}
assert x == 3

def store = []
while (x = x - 1) { //#4 Deliberate assign and test in while

 store << x
}
assert store == [2, 1]

while (x = 2) { //#5 Ouch! This will print 2!
 println x
 break

}

The equality comparison in is fine and would be valid in Java. In , an
equality comparison was intended, but one of the equal signs was left out. This

6.1

180

Licensed to Charles Wise <ctwise@gmail.com>

182

raises a Groovy compiler error, because an assignment is not allowed as a top-level
expression in an if test.

However, boolean tests can be nested inside expressions in arbitrary depth; the
simplest one is shown at , where extra parentheses around the assignment make
it a subexpression, and therefore the assignment becomes compliant with the
Groovy language. The value 3 will be assigned to x, and x will be tested for truth.
Because 3 is considered true , the value 3 gets printed. This use of parentheses to
please the compiler can even be used as a trick to spare an extra line of assignment.
The unusual appearance of the extra parentheses then serves as a warning sign for
the reader.

The restriction of assignments from being used in top-level boolean expressions
applies only to if and not to other control structures such as while . This is
because doing assignment and testing in one expression are often used with while
in the style shown at . This style tends to appear with classical usages like
processing tokens retrieved from a parser or reading data from a stream. Although
this is convenient, it leaves us with the potential coding pitfall shown at , where
x is assigned the value 1 and the loop would never stop if there weren't a break
statement. 52

Footnote 52 m Remember that the code in this book has been executed. If we didn't have the break statement,
the book would have taken literally forever to produce.

This potential cause of bugs has given rise to the idiom in other languages (such
as C and C++, which suffer from the same problem to a worse degree) of putting
constants on the left side of the equality operator when you wish to perform a
comparison with one. This would lead to the last while statement in the previous
listing (still with a typo) being

while(1 = x) { // should be ==
 println x

}

This would raise an error, as you can't assign a value to a constant. We're back
to safety--so long as constants are involved. Unfortunately, not only does this fail
when both sides of the comparison are variables, it also reduces readability.
Whether it is a natural occurrence, a quirk of human languages, or conditioning,
most people find while (x==3) significantly simpler to read than while
(3==x). Although neither is going to cause confusion, the latter tends to slow
people down or interrupt their train of thought. In this book, we have favored

181

Licensed to Charles Wise <ctwise@gmail.com>

183

readability over safety--but our situation is somewhat different than that of normal
development. You will have to decide for yourself which convention suits you and
your team better.

Now that we have examined which expressions Groovy will consider to be true
and which are false, we can start looking at the control structures themselves.

6.2 Conditional execution structures
Our first set of control structures deals with conditional execution. They all
evaluate a boolean test and make a choice about what to do next based on whether
the result was true or false. None of these structures should come as a completely
new experience to any Java developer, but of course Groovy adds some twists of
its own. We will cover if statements, the conditional operator, switch
statements, and assertions.

6.2.1 The humble if statement
Our first two structures act exactly the same way in Groovy as they do in Java,
apart from the evaluation of the boolean test itself. We start with if and if/else
statements.

Just as in Java, the boolean test expression must be enclosed in parentheses.
The conditional block is normally enclosed in curly braces. These braces are
optional if the block consists of only one statement. 53

Footnote 53 m Even though the braces are optional, many coding conventions insist on them in order to avoid
errors that can occur through careless modification when they're not used.

A special application of the “no braces needed for single statements” rule is the
sequential use of else if. In this case, the logical indentation of the code is
often flattened; that is, all else if lines have the same indentation although their
meaning is nested. The indentation makes no difference to Groovy and is only of
aesthetic relevance.

Listing 6.3 gives some examples, using assert true to show the blocks of
code that will be executed and assert false to show the blocks that won't be
executed.

There should be no surprises in the listing, although it might still look slightly
odd to you that non-boolean expressions such as strings and lists can be used for
boolean tests. Don't worry--it becomes natural over time.

Listing 6.3 The if statement in action

if (true) assert true

182

Licensed to Charles Wise <ctwise@gmail.com>

184

else assert false

if (1) {
 assert true

} else {
 assert false

}

if ('non-empty') assert true
else if (['x']) assert false
else assert false

if (0) assert false
else if ([]) assert false
else assert true

Finally, there is a notable speciality of if in Groovy: it plays well with the
optional return statement. If your last expression of a method or closure is an if
statement, then it is evaluated like an expression. Note, how the following code
needs no return statements:

def mac() {
 if (System.properties.'os.name'.contains('Mac'))

 "We're on Mac." // no 'return'
 else

 "Oh, well ..." // no 'return'
}
println mac()

6.2.2 The conditional ?: operator
Groovy also supports the ternary conditional ?: operator for small inline tests, as
shown in listing 6.4. This operator returns the object that results from evaluating
the expression to the left or right of the colon, depending on the test before the
question mark. If the first expression evaluates to true, the middle expression is
evaluated. Otherwise, the last expression is evaluated. Just as in Java, whichever of
the last two expressions isn't used as the result isn't evaluated at all.

Listing 6.4 The conditional operator

def result = (1==1) ? 'ok' : 'failed'
assert result == 'ok'

result = 'some string' ? 10 : ['x']
assert result == 10

Again, notice how the boolean test (the first expression) can be of any type.
Also note that because everything is an object in Groovy, the middle and last

183

Licensed to Charles Wise <ctwise@gmail.com>

185

expressions can be of radically different types.
Opinions about the ternary conditional operator vary wildly. Some people find

it extremely convenient and use it often. Others find it too Perl-ish. You may well
find that you use it less often in Groovy because there are features that make its
typical applications obsolete--for example, GStrings (covered in section 3.4.2)
allow the dynamic creation of strings that would be constructed in Java using the
conditional operator.

A common use case for the ternary conditional operator is checking whether a
reference is has a non-empty value, and using a default otherwise:

value ? value : default

This code has two issues: first, it contains duplication; second, if accessing the
value is expensive, doing it twice may take to long. That's why Groovy has
introduced the Elvis operator to achieve the above as:

value ?: default

If you turn your head sideways and look at the operator as a smiley emoticon,
you will recognize "The King". Elvis makes sense in Groovy, since we have the
Groovy truth, which allows us to use value as an object and inside a boolean test at
the same time. This feature was proposed for Java 7 but then withdrawn when
people realized it makes no sense if you can only assign boolean values.

So far, so Java-like. Things change significantly when we consider switch
statements.

.2.3 The switch statement
On a recent train ride, I (Dierk) spoke with a teammate about Groovy, mentioning
the oh-so-cool switch capabilities. He wouldn't even let me get started, waving
his hands and saying, “I never use switch!” I was put off at first, because I lost
my momentum in the discussion; but after more thought, I agreed that I don't use it
either-- in Java.

The switch statement in Java is very restrictive. You can only switch on an
int type, with byte , char , and short automatically being promoted to int .
54 With this restriction, its applicability is bound to either low-level tasks or to
some kind of dispatching on a type code. In object-oriented languages, the use of
type codes is considered smelly. 55

6

184

Licensed to Charles Wise <ctwise@gmail.com>

186

Footnote 54 m As of Java 5, enum types can also be switched on, due to some compiler trickery, and with Java
7 we may be able to switch on Strings.

Footnote 55 m See “Replace Conditional with Polymorphism” in Refactoring by Martin Fowler (Addison
Wesley, 2000).

THE SWITCH STRUCTURE
The general appearance of the switch construct is just like in Java, and its logic
is identical in the sense that the handling logic falls through to the next case
unless it is exited explicitly. We will explore exiting options in section 6.4.

Listing 6.5 shows the general appearance.

Listing 6.5 General switch appearance is like Java or C

def a = 1
def log = ''
switch (a) {

 case 0 : log += '0' //|#1 fall
 case 1 : log += '1' //|#1 through
 case 2 : log += '2' ; break
 default : log += 'default'

}
assert log == '12'

Although the fallthrough is supported in Groovy, there are few cases where this
feature really enhances the readability of the code. It usually does more harm than
good (and this applies to Java, too). As a general rule, putting a break at the end of
each case is good style.

Just like the if statement in Groovy, switch can be used without return if it is the
last statement of a method or closure:

def mac() {
 switch(System.properties.'os.name') {

 case 'Mac OS X': "We're on Mac."; break // no 'return'
 default: "Oh, well ..." // no 'return'

 }
}
println mac()

SWITCH WITH CLASSIFIERS
You have seen the Groovy switch used for classification in section 3.5.5 and
when working through the datatypes. A classifier is eligible as a switch case if it
implements the isCase method. In other words, a Groovy switch like

switch (candidate) {

185

Licensed to Charles Wise <ctwise@gmail.com>

 case classifier1 : handle1() ; break
 case classifier2 : handle2() ; break
 default: handleDefault() }

is roughly equivalent (beside the fallthrough and exit handling) to

if (classifier1 isCase candidate. ()) handle1()
else if (classifier2 isCase
 . (candidate)) handle2()
else handleDefault()

This allows expressive classifications and even some unconventional usages
with mixed classifiers. Unlike Java's constant cases, the candidate may match more
than one classifier. This means that the order of cases is important in Groovy,
whereas it cannot affect behavior in Java. Listing 6.6 gives an example of multiple
types of classifiers. After checking that our number 10 is not zero, not in range
0..9, not in list [8,9,11], not of type Float, and not an integral multiple of 3
, we finally find it to be made of two characters.

Listing 6.6 Advanced switch and mixed classifiers

switch (10) {
 case 0 : assert false ; break
 case 0..9 : assert false ; break
 case [8,9,11] : assert false ; break
 case Float : assert false ; break //#1 Class case
 case {it%3 == 0}: assert false ; break //#2 Closure case
 case ~/../ : assert true ; break //#3 Pattern case
 default : assert false ; break

}

The new feature in is that we can classify by type. Float is of type
java.lang.Class , and the GDK enhances Class by adding an isCase
method that tests the candidate with isInstance.

The isCase method on closures at passes the candidate into the closure
and returns the result of the closure call coerced to a Boolean.

The final classification as a two-digit number works because ~/../ is a
Pattern and the isCase method on patterns applies its test to the toString
value of the argument.

In order to leverage the power of the switch construct, it is essential to know
the available isCase implementations. It is not possible to provide an exhaustive
list, because any custom type in your code or in a library can implement it, but
table 6.2 has the list of known implementations in the GDK.

187 186

Licensed to Charles Wise <ctwise@gmail.com>

mTable 1.2 Implementations of isCase for switch

Class a.isCase(b) implemented as

Object a.equals(b)

Class a.isInstance(b)

Collection a.contains(b)

Range a.contains(b)

Pattern a.matcher(b.toString()).matches()

String (a==null && b==null) || a.equals(b)

Closure a.call(b)

188

NOTE Recall
The isCase method is also used with grep on collections such
that collection .grep(classifier) returns a collection of
all items that are a case of that classifier.

The same logic applies when using the in operator in boolean
tests.

Using the Groovy switch in the sense of a classifier is a big step forward. It
adds much to the readability of the code. The reader sees a simple classification
instead of a tangled, nested construction of if statements. Again, you are able to
reveal what the code does rather than how it does it.

As pointed out in section 4.1.2, the switch classification on ranges is
particularly convenient for modeling business rules that tend to prefer discrete
classification to continuous functions. The resulting code reads almost like a
specification.

187

Licensed to Charles Wise <ctwise@gmail.com>

189

It's worth actively looking through your code for places to implement isCase.
A characteristic sign of looming classifiers is lengthy else if constructions.

NOTE Advanced Topic

It is possible to overload the isCase method to support different

kinds of classification logic depending on the type of the candidate.

For example, if you provide both isCase(String candidate)
and isCase(Integer candidate) , then switch ('1') can

behave differently than switch(1) with your object as a classifier.

Our next topic, assertions, may not look particularly important at first glance.
However, although assertions don't change the business capabilities of the code,
they do make the code more robust in production. Moreover, they do something
even better: enhance the development team's confidence in their code as well as
their ability to remain agile during additional enhancements and ongoing
maintenance.

6.2.4 Sanity checking with assertions
This book contains several hundred assertion statements--and indeed, you've
already seen a number of them. Now it's time to go into some extra detail. We will
look at producing meaningful error messages from failed assertions, reflect on
reasonable uses of this keyword, and show how to use it for inline unit tests. We
will also quickly compare the Groovy solution to Java's assert keyword and
assertions as used in unit test cases.

PRODUCING INFORMATIVE FAILURE MESSAGES
When an assertion fails, it produces a stacktrace and a message. Put the code

def a = 1
assert a == 2

in a file called FailingAssert.groovy, and let it run via

> groovy FailingAssert

It is expected to fail, and it does so with the message

Caught: Assertion failed:

assert a == 2
 | |

188

Licensed to Charles Wise <ctwise@gmail.com>

 m

190

 1 false

 at FailingAssert.run(FailingAssert.groovy:2)

You can see that when it fails, the assertion prints out the failed expression as it
appears in the code plus the value of the variables in that expression together with
the value of all subexpressions. The trailing stack-trace reveals the location of the
failed assertion and the sequence of method calls that led to the error; as of Groovy
1.7 the stack trace is "sanitized" to skip over Groovy internals.

This is a exactly the kind of information that is needed to locate and understand
the error in most cases, but not always. Let's try another example that tries to
protect file-reading code from being executed if the file doesn't exist or cannot be
read. 56

Footnote 56 Perl programmers will see the analogy to or die.

try {
 input = new File('no such file')
 assert input.exists()
 assert input.canRead()
 println input.text

} catch (AssertionError error) {
 assert "n" + error.message == '''

assert input.exists()
 | |
 | false
 no such file'''

}

This error message shows that the file named "no such file" was not available.
That is a good first indication but often, we need more information like the
directory where the file was expected or the absolute path that was used. We can
give the assertion a second argument to reveal this information in case of failure.

try {
 input = new File('no such file')
 assert input.exists(), "cannot find: $input.absolutePath"
 assert input.canRead()
 println input.text

} catch (AssertionError error) {
 assert error.message ==

'cannot find: ' +
'/projects/trunk/groovy-book/listings/chap06/no such file.' +
'Expression: input.exists()'
}

This is the information we need. However, assertions are not always needed.

189

Licensed to Charles Wise <ctwise@gmail.com>

191

Given that without the assertion, we run into a meaningful exception anyway, we
can also leave them out:

def input = new File('no such file')
println input.text

The result is the following error message that may often be sufficient:

FileNotFoundException: no such file (The system cannot find the file specified)

This leads to the following best practices with assertions:

Before writing an assertion, let your code fail, and see whether any other thrown
exception is good enough.
When you write an assertion, let it fail once to see whether the default message is
sufficient. If it isn't, specify a more useful one then let it fail again to check that it now
gives you all the information you'd need in a production situation.
If you feel you need an assertion to clarify or protect your code, add it regardless of the
previous rules.
If you feel you need a message to clarify the meaning or purpose of your assertion, add it
regardless of the previous rules.

INSURE CODE WITH INLINE UNIT TESTS
Finally, there is a potentially controversial use of assertions as unit tests that live
right inside production code and get executed with it. Listing 6.7 shows this
strategy with a nontrivial regular expression that extracts a hostname from a URL.
The pattern is first constructed and then applied to some assertions before being
put to action. We also implement a simple method assertHost to make it easy
to assert a match grouping. 57

Footnote 57 m Please note that we're only using regexes to show the value of assertions. If we needed to find
the hostname of a URL in real code, we would use candidate.toURL().host.

Listing 6.7 Use assertions for inline unit tests

def host = ///([a-zA-Z0-9-]+(.[a-zA-Z0-9-])*?)(:|/)/ //#1 Regular expression matching host

assertHost 'http://a.b.c:8080/bla', host, 'a.b.c'
assertHost 'http://a.b.c/bla', host, 'a.b.c'
assertHost 'http://127.0.0.1:8080/bla', host, '127.0.0.1'
assertHost 'http://t-online.de/bla', host, 't-online.de'
assertHost 'http://T-online.de/bla', host, 'T-online.de'

def assertHost (candidate, regex, expected){
 candidate.eachMatch(regex){ assert it[1] == expected }

}

190

Licensed to Charles Wise <ctwise@gmail.com>

192

//#2 Trailing code goes here

Reading this code with and without assertions, their value becomes obvious.
Seeing the example matches in the assertions reveals what the code is doing and
verifies our assumptions at the same time. Traditionally, these examples would live
inside a test harness or perhaps only within a comment. This is better than nothing,
but experience shows that comments go out of date and the reader cannot really be
sure that the code works as indicated. Tests in external test harnesses also often
drift away from the code. Some tests break, they are commented out of a test suite
under the pressures of meeting schedules, and eventually they are no longer run at
all.

Some developers may fear the impact on performance of this style of inline unit
tests. The best answer is to use a profiler and investigate where performance is
really relevant. Our assertions in listing 6.7 run in a few milliseconds and should
not normally be an issue. When performance is important, one possibility would be
to put inline unit tests where they are executed only once per loaded class: in a
static initializer.

RELATIONSHIPS TO OTHER ASSERTIONS
Java has had an assert keyword since JDK 1.4. It differs from Groovy assertions
in that it has a slightly different syntax (colon instead of comma to separate the
boolean test from the message) and that it can be enabled and disabled--and
assertions are even disabled by default! Java's assertion feature is not as powerful,
because it only works on a Java boolean test, whereas the Groovy assert takes a full
Groovy conditional (see section 6.1).

The JDK documentation has a long chapter on assertions that talks about the
disabling feature for assertions and its impact on compiling, starting the VM, and
resulting design issues. Although this is fine and the design rationale behind Java
assertions is clear, we feel that the disabling feature is the biggest stumbling block
for using assertions in Java. You can never be sure that your assertions are really
executed.

Some people claim that for performance reasons, assertions should be disabled
in production, after the code has been tested with assertions enabled. On this issue,
Bertrand Meyer, 58 the father of design by contract , pointed out that it is like
learning to swim with a swimming belt and then taking it off when leaving the pool
and heading for the ocean.

191

Licensed to Charles Wise <ctwise@gmail.com>

 m

193

Footnote 58 See Object Oriented Software Construction, 2nd ed., by Bertrand Meyer (Prentice Hall, 1997).

In Groovy, your assertions are always executed.
Assertions also play a central role in unit tests. Groovy comes with a version of

JUnit included automatically. JUnit makes a lot of specialized assertions available
to its TestCases, and Groovy adds even more of them. Full coverage of these
assertions is given in chapter 14. The information that Groovy provides when
assertions fail makes them very convenient when writing unit tests, because it
relieves the tester from writing lots of messages.

Assertions can make a big difference to your personal programming style and
even more to the culture of a development team, regardless of whether they are
used inline or in separated unit tests. Asserting your assumptions not only makes
your code more reliable, but it also makes it easier to understand and easier to work
with.

That's it for conditional execution structures. They are the basis for every kind
of logical branching and a prerequisite to allow looping--the language feature that
makes your computer do all the repetitive work for you. The next two sections
cover the while and for looping structures.

6.3 Looping
The structures you've seen so far have evaluated a boolean test once and changed
the path of execution based on the result of the condition. Looping, on the other
hand, repeats the execution of a block of code multiple times. The loops available
in Groovy are while and for, both of which we cover here.

6.3.1 Looping with while
The while construct is like its Java counterpart. The only difference is the one
you've seen already--the power of Groovy boolean test expressions. To summarize
very briefly, the boolean test is evaluated, and if it's true, the body of the loop is
then executed. The test is then re-evaluated, and so forth. Only when the test
becomes false does control proceed past the while loop. Listing 6.8 shows an
example that removes all entries from a list. We visited this problem in chapter 3,
where you discovered that you can't use each for that purpose. The second
example adds the values again in a one-liner body without the optional braces.

Listing 6.8 Example while loops

def list = [1, 2, 3]
while (list) {

192

Licensed to Charles Wise <ctwise@gmail.com>

194

 list.remove(0)
}
assert list == []

while (list.size() < 3) list << list.size() + 1
assert list == [1, 2, 3]

Again, there should be no surprises in this code, with the exception of using just
list as the boolean test in the first loop.

Note that there is no do {} while(condition) or repeat {} until
(condition) construct in Groovy.

6.3.2 Looping with for
Considering it is probably the most commonly used type of loop, the for loop in
Java is relatively hard to use, when you examine it closely. Through familiarity,
people who have used a language with a similar structure (and there are many such
languages) grow to find it easy to use, but that is solely due to frequent use, not due
to good design. Although the nature of the traditional for loop is powerful, it is
rarely used in a way that can't be more simply expressed in terms of iterating
through a collection-like data structure. Groovy embraces this simplicity, leading
to probably the biggest difference in control structures between Java and Groovy.

Groovy for loops follow this structure:

for (variable in iterable) {
body

}

where variable may optionally have a declared type. The Groovy for loop
iterates over the iterable. Frequently used iterables are ranges, collections, maps,
arrays, iterators, and enumerations. In fact, any object can be an iterable. Groovy
applies the same logic as for object iteration, described in chapter 9.

Curly braces around the body are optional if it consists of only one statement.
Listing 6.9 shows some of the possible combinations.

Listing 6.9 Multiple loop examplesfor

def store = '' //|#1 Statically typed, over String
for (String i in 'a'..'c') store += i //|#1 range, no braces
assert store == 'abc' //|#1

store = '' //|#2 Dynamically typed, over
for (i in [1, 2, 3]) { //|#2 list as collection,

 store += i //|#2 braces
} //|#2

193

Licensed to Charles Wise <ctwise@gmail.com>

195

assert store == '123'

def myString = 'Equivalent to Java'
store = ''
for (i in 0 ..< myString.size()) {

store += myString[i]
}
assert store == myString

store = ''
for (i in myString) {

store += i
}
assert store == myString

//|#2

//|#3 Dynamically typed,
//|#3 over half-exclusive
//|#3 IntRange, braces
//|#3
//|#3
//|#3

//|#4 Dynamically typed,
//|#4 over String as collection,
//|#4 braces
//|#4
//|#4

Example uses explicit typing for i and no braces for a loop body of a single
statement. The looping is done on a range of strings.

The usual for loop appearance when working on a collection is shown in
Recall that thanks to the autoboxing, this also works for arrays.

Looping on a half-exclusive integer range as shown in is equivalent to the
Java construction

.

Figure 6.1

which is referred to as the classic for loop, which is also available in Groovy.
The remaining difference is that Groovy does not allow the Java style of multiple,
comma-separated initialization and increment statements.

// Java and Groovy alike:
for (int i; i < 10; i++) { /* ... */ }
// Java, but NOT Groovy:
for (int i, int j; i < 10; i++, j++) { /* ... */ }

Example is provided to make it clear that is not the typical Groovy style
of code for working on strings. It is more Groovy to treat a string as a collection of
characters.

Using the for loop with object iteration as described in section 9.1.3 provides
some very powerful combinations.

You can use it to print a file line-by-line via

def file = new File('myFileName.txt')
for (line in file) println line

194

Licensed to Charles Wise <ctwise@gmail.com>

196

or to print all one-digit matches of a regular expression:

def matcher = '12xy3'=~/\d/
for (match in matcher) println match

If the iterable object is null, no iteration will occur:

for (x in null) println 'This will not be printed!'

If Groovy cannot make the iterable object iterate by any means, the fallback
solution is to do an iteration that contains only the iterable object itself:

for (x in new Object()) println "Printed once for object $x"

Object iteration makes the Groovy for loop a sophisticated control structure. It
is a valid counterpart to using methods that iterate over an object with closures,
such as using Collection 's each method.

The main difference is that the body of a for loop is not a closure! That means
this body is a block:

for (x in 0..9) { println x }

whereas this body is a closure:

(0..9).each { println it }

Even though they look similar, they are very different in construction.
A closure is an object of its own and has all the features that you saw in chapter

5. It can be constructed in a different place and passed to the each method.
The body of the for loop, in contrast, is directly generated as bytecode at its

point of appearance. No special scoping rules apply.
This distinction is even more important when it comes to managing exit

handling from the body, as we'll see in the next section.

6.4 Exiting blocks and methods
Although it's nice to have code that reads as a simple list of instructions with no
jumping around, it's often vital that control is passed from the current block or
method to the enclosing block or the calling method--or sometimes even further up
the call stack. Just like in Java, Groovy allows this to happen in an expected,
orderly fashion with return , break , and continue statements, and in
emergency situations with exceptions. Let's take a closer look.

195

Licensed to Charles Wise <ctwise@gmail.com>

197

6.4.1 Normal termination: return/break/continue
The general logic of return , break , and continue is similar to Java. One
difference is that the return keyword is optional for the last expression in a
method or closure. If it is omitted, the return value is that of the last expression.
Methods with an explicit return type of void do not return a value, whereas
closures always return a value. 59

Footnote 59 m You may be wondering what happes if the last evaluated expression of a closure is a void
method call. In this case, the closure returns null.

Listing 6.10 shows how the current loop is shortcut with continue and
prematurely ended with break. Like Java, there is an optional label.

Listing 6.10 Simple break and continue

def a = 1
while (true) { //#1 Do forever

 a++
 break //#2 Forever is over now

}
assert a == 2

for (i in 0..10) {
 if (i==0) continue //#3 Proceed with 1
 a++
 if (i > 0) break //#4 Premature loop end

}
assert a==3

Using break and continue is sometimes considered smelly. However, they
can be useful for controlling the workflow in services that run in an endless loop,
or to break apart complex conditional logic, such as this:

for(i in whatever){
 if (filterA) continue // skip if filter matches
 if (conditionB) break // exit loop if condition matches
 // normal case here

}

Similarly, returning from multiple points in the method is frowned upon in
some circles, but other people find it can greatly increase the readability of
methods that might be able to return a result early. We encourage you to figure out
what you find most readable and discuss it with whoever else is going to be
reading your code--consistency is as important as anything else.

As a final note on return handling, remember that when closures are used with

196

Licensed to Charles Wise <ctwise@gmail.com>

198

iteration methods such as each , a return statement within the closure returns
from the closure rather than the method, as explained in section 5.6. (Yes, we
know we've mentioned it several times already... but we'd be surprised if you didn't
get caught out by it at least once.)

6.4.2 Exceptions: throw/try-catch-finally
Exception handling is exactly the same as in Java and follows the same logic. Just
as in Java, you can specify a complete try-catch-finally sequence of
blocks, or just try-catch , or just try-finally . Note that unlike various
other control structures, braces are required around the block bodies whether or not
they contain more than one statement. The only difference between Java and
Groovy in terms of exceptions is that declarations of exceptions in the method
signature are optional, even for checked exceptions. Listing 6.11 shows the usual
behavior.

Listing 6.11 Throw, try, catch, and finally

def myMethod() {
 throw new IllegalArgumentException()

}

def log = []
try {

 myMethod()
} catch (Exception e) {

 log << e.toString()
} finally {

 log << 'finally'
}
assert log.size() == 2

In accordance with optional typing in the rest of Groovy, a type declaration is
optional in the catch expression. And like in Java, you can declare multiple
catches.

There are no compile-time or runtime warnings from Groovy when checked
exceptions are not declared. When a checked exception is not handled, it is
propagated up the execution stack like a RuntimeException in Java.

We cover integration between Java and Groovy in more detail in chapter 11;
however, it is worth noting an issue relating to exceptions here. When using a
Groovy class from Java, you need to be careful--the Groovy methods will not
declare that they throw any checked exceptions unless you've explicitly added the
declaration, even though they might throw checked exceptions at runtime.

197

Licensed to Charles Wise <ctwise@gmail.com>

 m

199

Unfortunately, the Java compiler attempts to be clever and will complain if you try
to catch a checked exception in Java when it believes there's no way that the
exception can be thrown. If you run into this and need to explicitly catch a checked
exception generated in Groovy code, you may need to add a throws declaration
to the Groovy code, just to keep javac happy.

6.5 Summary
This chapter was our tour through Groovy's control structures: conditionally
executing code, looping, and exiting blocks and methods early. We haven't seen
any big surprises: everything turned out to be like Java, enriched with a bit of
Groovy flavor. The only structural difference is the for loop. Exception handling
is very similar to Java, except without the requirement to declare checked
exceptions. 60

Footnote 60 Checked exceptions are regarded by many as an experiment that was worth performing but
which proved not to be as useful as had been hoped.

Groovy's handling of boolean tests is consistent between conditional execution
structures and loops. We examined the differences between Java and Groovy in
determining when a boolean test is considered to be true. This is a crucial area to
understand, because idiomatic Groovy will often use tests that are not simple
boolean expressions.

The switch keyword, the in operator and their use as a general classifiers
bring a new object-oriented quality to conditionals. The interplay with the isCase
method allows objects to control how they are treated inside that conditional.
Although the use of switch is often discouraged in object-oriented languages, the
new power given to it by Groovy gives it a new sense of purpose.

In the overall picture, assertions find their place as the bread-and-butter tool for
the mindful developer. They belong in the toolbox of every programmer who cares
about their craft.

With what you learned in the tour, you have all the means to do any kind of
procedural programming. Of course, you should have higher goals and want to
master object-oriented programming. The next chapter will teach you how.

198

Licensed to Charles Wise <ctwise@gmail.com>

8
Dynamic Programming with Groovy

"Until real software engineering is developed, the next best practice is to develop with a
dynamic system that has extreme late binding in all aspects."

- Alan Kay

This chapter covers

 How Groovy supports dynamic programming

 Explanation of the Meta-Object-Protocol (MOP)

 How to utilize the MOP for your own purposes

We’re going to start our journey with some general considerations about dynamic programming, how it differs
from conventional object-oriented approaches, and why we want to have it in our toolbox. We will experience
how the Meta-Object-Protocol (MOP) serves as the central hub that provides us with dynamic programming
capabilities. Groovy comes with dynamic features out-of-the-box but you can also add your own. There are
various ways of achieving this and we will start with the simpler ones and slowly move on to the more
advanced use cases. As you will see, there is no reason to be scared about words like 'dynamic' or 'meta'. If by
the end of this chapter you say: "Well, it isn't so magical after all", then we have achieved our goal.

If you seek perfection in completeness, designing and implementing an object-oriented system becomes hard.
It may well be impossible.

Imagine you are responsible for java.lang.Integer. You are of course aware that this class will be used
for counting, indexing, calculations, and so on but you cannot possibly anticipate all use cases.

Not before long, somebody will come along and would like to use it with a times method like in 3.times
{ println it } , which you haven't foreseen, or calculate dates as in 2.weeks.from.today but you
haven't provided a getWeeks() method on Integer as would be needed to make the above possible. On
another occasion, the user of your class may prefer having an exception being thrown on
Integer.MAX_VALUE + 1 rather than returning a negative number.

A third user would like to optimize an algorithm and to this end count the number of modulo operations on
any integer that happens when his algorithm is executed. You are very unlikely to have anticipated such a
requirement.

The good news is: dynamic programming allows adding such features later - without even touching the
original! And the original can even be a Java class as long as it is called from Groovy.

199

Licensed to Charles Wise <ctwise@gmail.com>

Changes to such a ubiquitously used class as Integer are better only applied to the scope where you
actually need them or you risk interference with seemingly unrelated parts of your codebase. Therefore,
dynamic programming allows using such a feature only temporarily: adding and removing it at runtime,
limiting its use to a given piece of code, to a class or only single instances, or even confine it to the current
thread of execution.

Dynamic programming has a wide range of applicability, including

 designing domain specific languages (DSLs, see chapter 18),

 implementing builders (see chapter 10),

 advanced logging, tracing, debugging, and profiling,

 automated testing even where testing seems "impossible" (see chapter 16),

 putting lipstick on existing APIs, e.g. by eliminating the smell "incomplete library class"1, to make them
more complete, coherent, and accessible, and finally

 organizing the codebase such that features are kept in one place even if their behavior involves the
collaboration of multiple classes. For example, you need abstractions for date, time, and duration
working together to provide the date-calculation feature.

The last point is particularly interesting. You can observe it in Grails (xxx reference) where the persistency
feature is dynamically available in all domain classes. On a domain class like Person you can call
Person.findAllByFirstName('Dierk') to find all people in the database that share my first name, even
though this method does not exist!

Note that such an approach has one quality that static code generation never achieves: since the code is
not materialized anywhere, you cannot introduce errors in it! Also, your code is kept as clean as possible and
you never have to read through code that was generated!

In this chapter, we will go through the various means of dynamic programming in Groovy and provide
examples of the use cases above. Now, let's start with looking at what mechanics make our programming
dynamic.

8.1 What is dynamic programming?
In classic object-oriented systems, every class has a well-known set of states, captured in the fields of that
class, and well-known behavior, defined by its methods. Neither the set of states nor the behavior ever
changes after compilation and it is identical for all instances of a class.

Dynamic programming breaks this limit by allowing the introduction of a new state but even more
importantly, allowing the addition of a new behavior or modification of an existing one.

And what is "meta"?

"Meta" means applying a concept onto itself, e.g. meta-information is information about information.
Likewise, since programming is "writing code", meta-programming means writing code that writes code. This
includes source-code generation (e.g. producing a long String that is then evaluated as a Script), byte-code
generation as explained in the next chapter, and pretending or synthesizing methods. The latter is part of
dynamic programming and we will encounter it further down.

The use of "meta" as a qualifier in the Groovy runtime system is in many places debatable. Anyway, it is not
only there for historical reasons, it also suggests that we are working on an elevated level of abstraction
whenever this word is used.

How can we possibly add new state and behavior at runtime, when we are working on the JVM and the
Java object model provides no such means? As the saying goes: "Every problem in computer science can be

1 "Refactoring", Martin Fowler, Kent Beck

200

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

solved with a layer of indirection."2 (beside the problem of too many layers of indirection). Enter the Meta-
Object-Protocol.

8.2 The Meta-Object-Protocol
The approach is actually rather straightforward. Whenever "Groovy calls a method" it doesn't call it directly but
asks an intermediate layer to do so on his behalf. The intermediate layer provides hooks that allow us to
influence its inner workings.

A protocol is a collection of rules and formats. The Meta-Object-Protocol (MOP) is the collection of rules of
how a request for a method call is handled by the Groovy runtime system and how to control the intermediate
layer. The "format" of the protocol is defined by the respective APIs, which we will walk through in the course
of this chapter.

An important part for understanding the mechanics is what it means when we say "Groovy calls a method".
When writing Groovy source code, the Groovy compiler generates bytecode that calls into the MOP.

As an illustration, assume that our Groovy source code contains the statement
println 'Hello' // Groovy
Then the resulting bytecode that Groovy produces is roughly equivalent to the following Java code
InvokerHelper.invokeMethod(this, "println", {"Hello"}); // Java
When executed, the InvokerHelper as part of the MOP looks for the method named "println" with a

String argument, finds that the Groovy runtime has registered such a method for java.lang.Object, and
calls that implementation. This is a very shallow description of what actually happens but one that explains the
principle and one that we can start with.

Takeaway

Every innocent method call that you write in Groovy is actually a call into the MOP, regardless of whether the
call target has been compiled with Groovy or Java. This applies equally to static and instance method calls,
constructor calls, and property access, even if the target is the same object as the caller.

Figure 8.1 shows how the MOP works like a filter for all method calls, which originate from code that was
compiled by Groovy. The MOP is like a pair of rainbow-colored glasses that make all objects appear rich and
powerful.

Figure 8.1 Every method call from a Groovy class or object into either Groovy or Java automatically goes through the Meta-
Object-Protocol. Method calls from Java to both, Groovy and Java targets, do not use the MOP per default.

2 Attribution is unclear, maybe David Wheeler or Andrew Koenig.

201

Licensed to Charles Wise <ctwise@gmail.com>

Figure 8.1 shows what happens by default. Of course, you can also call into the MOP from Java but this
requires calling InvokerHelper.invokeMethod() explicitly. By default, Java classes only see what is in the
bytecode of a class and not what the MOP adds to it - even if the target class was compiled by Groovy.

There is no spoon

Relating to the 'Matrix' motion picture3, there is no such thing as a "Groovy class". You may have noticed
that I avoid the wording of Java class versus Groovy class. That is because classes are classes are classes,
regardless who compiled them. They have the exact same format and constraints. Of course, they differ in
content but so do all classes anyway.

The MOP needs a lot of information in order to find the right call target for each method call that it serves.
This information is stored in so-called meta classes. These meta classes are not fixed. One part of dynamic
programming is changing the content of meta classes and replacing one meta class with another. We will
explore this in section 8.4.

But even with the default meta class being in place - which does nothing fancy beside providing the GDK
methods and doing some very advanced performance optimizations - the MOP knows about some special
methods that allow the first degree of dynamic behavior. We call them "hooks methods".

8.3 Customizing the MOP with hook methods
Core of the MOP responsibilities is finding and selecting the right target method and handling the case when
the requested method cannot be found. The first hook method that we will look at allows customizing the
"missing method" case. A second hook method covers the case that a property access fails to find a property
of the requested name. Then we explore the effects of combining hook methods with closure properties to
allow instance-specific hooks that can even change at runtime. We finish up with custom logic for methods
that objects need to provide if they implement the GroovyObject interface.

8.3.1 Customizing methodMissing
Whenever a method cannot be found in the target object, the MOP tries looks for the hook method

Object methodMissing(String name, Object arguments)
and invokes this method with the requested method name and arguments.

Listing 8.1 uses this hook in a Pretender class to merely return a String that shows what had been
requested. The Pretender only pretends4 to have the method hello(String) while in the bytecode of the
class, there is no such method.

Listing 8.1 Bouncing when a missing method is called
class Pretender {
 def methodMissing(String name, Object args) {
 "called $name with $args"
 }
}
def bounce = new Pretender()
assert bounce.hello('world') == 'called hello with [world]'

The target is absolutely free in what it does inside missingMethod. It may provide a more sophisticated error
handling than merely throwing a MissingMethodException (which is the default), delegate all calls to a
collaborating object, or inspect method name and arguments to derive what needs to be done.

3 The main character sees a child playing with a "dynamic spoon object" and realizes that it is not a truly physical
object. Dynamic programming is kind of like that.

4 Some call this a synthesized method but I feel this suggests that it somehow materializes, which it doesn't.

202

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

The last use case above goes into the direction that Grails provides with its dynamic finder methods in the
Groovy object-relational mapping (GORM). Listing 8.2 outlines the approach. A method name like findByXXX
is analyzed to select the search criterion.

Listing 8.2 Using missingMethod to simulate a miniature GORM

#1 Extract criterion from method name
#2 Setting up test data
#3 Call with pretended methods

Of course, a full implementation of GORM dynamic finder methods is more complex, but the principle and
the mechanics are the same.

For the geeks

You can share the implementation of missingMethod by various means. One is to put it in a base
superclass. Later, in section 8.4, we will see how methods can be injected into a class without even having
access to the code of that class! In other words, you can even pretend having hook methods.

The missingMethod hook is quite simple to understand and use. Yet, it is very versatile and covers the
vast majority of use cases for dynamic programming with DSLs. It is a very good entry point into dynamic
programming and a good default choice when deciding upon which means of dynamic programming to apply.
It comes with a counterpart that does to property access what methodMissing does to method calls.

8.3.2 Customizing propertyMissing
What missingMethod is for method calls is propertyMissing for property access. You implement

Object propertyMissing(String name)
to catch all access to non-existing properties. All the rest is exactly analogous to methodMissing such

that listing 8.3 should be rather self-explanatory. We try to access the hello property, which is not in the
bytecode.

Listing 8.3 Bouncing when a missing property is accessed
class PropPretender {
 def propertyMissing(String name) {
 "accessed $name"
 }
}
def bounce = new PropPretender()
assert bounce.hello == 'accessed hello'

This hook is a specialization of methodMissing: if you pretend the respective getter Method, you achieve
the same effect. Anyway, having this more specialized hook is sometimes convenient. In listing 8.4 we use this
hook as a method of the Script class to implement an easy way to calculate with binary numbers. This
actually feels like a DSL.

The idea is quite simple. We would like to use symbols like IOOI to specify a positive integer of value 9 in
its binary form. Now, simply using this symbol would throw us a MissingPropertyException. By providing
a propertyMissing hook we can do the translation from a String into an Integer.

Listing 8.4 Using propertyMissing to calculate with binary numbers in DSL style
def propertyMissing(String name) {
 int result = 0
 name.each {
 result <<= 1
 if (it == 'I') result++
 }
 return result
}

assert IIOI +
 IOI ==
 I00I0

203

Licensed to Charles Wise <ctwise@gmail.com>

In case you have difficulties with the String-to-Integer translation logic above, don't worry, it is an
implementation detail. The main point to take away is how to use the hook method.

Where there is specialization, there may also be generalization and actually, there is. But before we come
to that in section 8.3.4, we enter a new dimension of dynamicity.

8.3.3 Using closures for dynamic hooks
By now, you may have the impression that MOP hook methods are very conventional. And in a way they are.
They are just ordinary methods.

But if you think that this means that their behavior is guaranteed to be identical for all instances of your
class, then this is not quite so in Groovy. In fact, if you wish so, you can even change the hook logic during the
lifetime of an object!

Hook methods are not static. They are instance methods. Being that, they can work with the object's state.
This state can include parameters for the hook logic. If these properties are of type Closure, then we have
another example of "parameterization with logic" (cp. chapter 5 "Closures").

Listing 8.5 maintains a whatToDo property of type Closure that is called from inside a hook method. This
allows changing the hook logic at runtime - and (not shown) having multiple instances of DynamicPretender
using different closures.

Listing 8.5 Using the closure property pattern to change hook logic at runtime

#1 Closure property with default logic
#2 Delegating to the closure
#3 Change hook behavior at runtime

In classic Java programming, the behavior of a class never changes and the behavior is the same for all
objects of the class. At best, you can use a Strategy Pattern5 to switch between objects that behave
differently. The above pattern of using a closure property to customize behavior of an object has a dynamic
touch in itself, even though it is totally independent of the MOP. But in combination with the MOP, it adds a
new dimension to the solution space.

The closure property pattern

All features of dynamic programming that are explained in this chapter can be combined with closure
properties to open another dimension of versatility.

The hook methods that we have talked about so far apply regardless whether the call target is compiled by
Groovy or Java. The next section will be about some more specific handling that the MOP applies to Groovy
targets.

8.3.4 Customizing GroovyObject methods
All classes that are compiled by Groovy implement the GroovyObject interface, which looks like this:

public interface GroovyObject {
 public Object invokeMethod(String methodName, Object args);
 public Object getProperty(String propertyName);
 public void setProperty(String propertyName, Object newValue);
 public MetaClass getMetaClass();
 public void setMetaClass(MetaClass metaClass);
}

Again, you are free to implement any of such methods in your Groovy class to your liking. If you don't,
then the Groovy compiler will insert a default implementation for you. This default implementation is the same
as if you would inherit from GroovyObjectSupport, which basically relates all calls to the meta class. It
roughly looks like this (excerpt):

5 "Design Patterns: Elements of Reusable Object-Oriented Software", Gamma et al., 1994

204

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

public abstract class GroovyObjectSupport implements GroovyObject {

 public Object invokeMethod(String name, Object args) {
 return getMetaClass().invokeMethod(this, name, args);
 }
 public Object getProperty(String property) {
 return getMetaClass().getProperty(this, property);
 }
 public void setProperty(String property, Object newValue) {
 getMetaClass().setProperty(this, property, newValue);
 }
 // more here...
}

We defer the explanation of the meta class handling to the next section. For the moment, it is just a device
that we can use for calling into the MOP.

Java can be Groovy

We can fool the MOP into thinking that a class that was actually compiled by Java was compiled by Groovy.
We only need to implement the GroovyObject interface or - more conveniently - extend
GroovyObjectSupport.

As soon as class implements GroovyObject, the following rules apply:

 Every access to a property calls the getProperty() method6.

 Every modification of a property calls the setProperty() method.

 Every call to an unknown method calls invokeMethod(). If the method is known, invokeMethod()
is only called if the class implements GroovyObject and the marker interface
GroovyInterceptable.

Let's use this newly acquired knowledge to play with the Groovy language rules. In Groovy, parentheses for
method calls are optional for top-level statements - but only if there is at least one argument. This is needed
to distinguish method calls from property access. We cannot call toString() without the parentheses since
toString would refer the property of the name toString. Listing 8.6 allows us to go around this limitation.
We implement getProperty() such that if the property exists, we return its value, if not, we assume that
the parameterless method shall be executed. Such a feature can be interesting when designing DSLs.

Listing 8.6 Using the getProperty hook to allow calling parameterless methods without parentheses
class NoParens {
 def getProperty(String propertyName) {
 if (metaClass.hasProperty(this, propertyName)) { //#1
 return metaClass.getProperty(this, propertyName)
 }
 invokeMethod propertyName, null //#2
 }
}

class PropUser extends NoParens { //#3
 boolean existingProperty = true
}

def user = new PropUser()
assert user.existingProperty
assert user.toString() == user.toString //#4

#1 Properties have priority
#2 Dynamic invocation

6 There is a special handling for maps in the default meta class that makes sure that even though Map is not a
GroovyObject, every property access on a map is relayed to the respective MapEntry.

205

Licensed to Charles Wise <ctwise@gmail.com>

#3 Subclass for feature sharing
#4 Look Ma! No parens!

This example uses the meta class and so leads us slowly into the topic of the next section where we will
explore this concept in more details.

When we (#1) check whether a known property is requested, we ask our metaClass (i.e. we call the
getMetaClass() method) if it has such a property. In case it has, we ask the metaClass for its value. Note
that we cannot simply use this."$propertyName" since this would call getProperty() again, leading to
endless recursion.

In order to (#2) eventually execute the method, we call the default implementation of the
invokeMethod() hook, which relays the call to the meta class.

We see in (#3) that subclasses can share this "no-parens" feature. Subclassing is generally not a good way
of sharing features but it works. We will discuss this further down and provide better alternatives.

Finally, we (#4) assert that omitting parentheses really works with selecting the ubiquitously available
toString() method as our test candidate. Existing properties remain untouched.

 Implementing get/setProperty can often improve the elegance of an API. Just consider Groovy maps.
They relay property access like map.a to map content access like map['a'] and you can do the equivalent
with your own objects.

Note: getProperty() shadows propertyMissing()

Once you have implemented getProperty(), every property will be found and thus propertyMissing() will no
longer be called.

So far, we have seen means of dynamic programming that require access to the source code of the target
class and the possibility to apply modifications to it. We call this approach intrusive. You may be glad to hear
that there also is a non-intrusive approach, which is the topic of our next section.

8.4 Modifying behavior through the meta class
By now you should feel at ease with the situation that all method calls that originate from Groovy code are
routed through the MOP. If the last sentence still sounds odd to you, consider re-reading section 8.2 and doing
some more experiments around the provided examples until you gained enough confidence to proceed.

With methodMissing and propertyMissing we have seen examples of hook methods that the MOP
invokes when it cannot find the requested method or property. In this section, we will explore how Groovy
tries to locate those and how we can use the lookup mechanism for our purposes of customizing the object's
behavior.

8.4.1 MetaClass knows it all
For every class A in the class loader, Groovy maintains a meta class - an object of type MetaClass. This meta
class maintains the collection of all methods and properties of A, starting with the bytecode information of A
and adding additional methods that Groovy knows about per default (DefaultGroovyMethods).

Generally, all instances of class A share the same meta class. However, Groovy also supports having per-
instance meta classes, i.e. different instances of A may refer to different meta classes. We will revisit this
situation further down.

We can easily ask any meta class for its information and actually, we have seen this information already in
the very beginning of this book in figure 1.6, which displayed the Groovy Object Browser.

Listing 8.7 inspects the capabilities of MetaClass by asking String for its meta class and calling various
methods on it. We inspect the availability of methods with respondsTo, list all properties, list all methods
from the bytecode, list all metaMethods that Groovy added dynamically, and we call invokeMethod,
invokeStaticMethod, and invokeConstructor to show dynamic invocation.

206

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Listing 8.7 Capabilities of MetaClass make the core of the Groovy reflection and dynamic method
invocation

MetaClass mc = String.metaClass
final Object[] NO_ARGS = []
assert 1 == mc.respondsTo("toString", NO_ARGS).size()
assert 3 == mc.properties.size()
assert 75 == mc.methods.size()
assert 152 == mc.metaMethods.size()
assert "" == mc.invokeMethod("","toString", NO_ARGS)
assert null == mc.invokeStaticMethod(String, "println", NO_ARGS)
assert "" == mc.invokeConstructor(NO_ARGS)

There are more methods and more variants of the above in MetaClass but they give a good overview of
what it does in general: providing means of reflection and dynamic invocation.

Calling a method means calling the meta class

As a rule of thumb you can assume that Groovy never calls methods directly in the bytecode but always
through the object's meta class. At least, this is how it looks for you as a programmer.

Behind the scenes there are optimizations going on that technically circumvent the meta class but only when
it is safe to do so.

Even the MOP hook methods that we have seen in earlier sections make no exception. If you provide your
own implementation of let's say invokeMethod, then this method is added to your object's meta class at
class loading time and later invoked from there.

All this should look to you as a pretty simple rule and you may ask what is so special about it. The trick is
that a meta class can change at runtime and that an object may also change its meta class. Let's first
investigate how Groovy finds meta classes.

8.4.2 How to find the meta class and invoke methods
We have seen that all GroovyObjects have a metaClass property (setMetaClass and getMetaClass
methods). That makes it easy to find the meta class for them. We simply ask the object with
obj.metaClass.

If we do not provide a custom implementation of the metaClass property accessor methods, the default
implementation looks up the meta class in the so-called MetaClassRegistry. The registry maintains a map
of classes and their meta classes. Figure 8.2 displays the connection between GroovyObject, MetaClass,
and MetaClassRegistry.

Figure 8.2 UML class diagram of the GroovyObject interface that refers to an instance of class MetaClass, where MetaClass
objects are also aggregated by the MetaClassRegistry to allow class-based retrieval of MetaClasses in addition to
GroovyObject’s potentially object-based retrieval

207

Licensed to Charles Wise <ctwise@gmail.com>

Objects that do not inherit from GroovyObject are not asked for the metaClass property. Their meta
class is retrieved from the MetaClassRegistry.

For the geeks

The default meta class can actually be changed from the outside without touching any application code. Let's
assume you have a class "Custom" in package "custom". Then you can change it's default meta class by
putting a meta class with the name "groovy.runtime.metaclass.custom.CustomMetaClass" on the classpath.

This device has been proven useful when inspecting large Groovy codebases in production.

Putting all this together is a bit of a challenge. Below is a sketch in pseudo-code to keep the level of detail

manageable while still revealing the core of the logic. Important methods from the meta class are shown in
bold italics, hook methods as underlined. Note that invokeMethod appears twice: with two parameters
as a hook method and with three parameters in MetaClass.

At the very beginning, we decide whether we have a GroovyObject and if not, look for the meta class in
the registry and use it to invoke the requested method.

// MOP pseudo code
def mopInvoke(Object obj, String method, Object args) {
 if (obj instanceof GroovyObject) {
 return groovyObjectInvoke(obj, method, args)
 }
 registry.getMetaClass(obj.class).invokeMethod(obj, method, args)
}

If we have a GroovyObject, we use the metaClass property to find the meta class but we also have to
care for the special handling around GroovyInterceptable and unknown methods (see section 8.2).

def groovyObjectInvoke(Object obj, String method, Object args){
 if (obj instanceof GroovyInterceptable) {
 return obj.metaClass.invokeMethod(method, args)
 }
 if (! obj.metaClass.respondsTo(method, args)) {
 return obj.metaClass.invokeMethod(method, args)
 }
 obj.metaClass.invokeMethod(obj, method, args)
}

You may ask why methodMissing does not appear in the code above. This case is handled in the default
meta class:

// Default meta class pseudo code
def invokeMethod(Object obj, String method, Object args) {
 if (obj.metaClass.respondsTo(method, args)) {
 return methodCall(obj, method, args)
 }
 if (methodMissingAvailable(obj)) {
 return obj.metaClass.methodMissing(method, args)
 }
 throw new MissingMethodException()
}

Don't forget that all the above is pseudo-code. That actual implementation differs quite a bit - mostly for
performance reasons. Also, the code is supposed to have Java semantics, i.e. all method calls and property
access are direct and do not go through the MOP itself. Otherwise, we would run into endless recursion.

The mechanics of the MOP may appear complex but for usual case you can simply assume that all method
calls go through the meta class and the default meta class is in place. This raises the question what other meta
classes are available and why we would want to use them.

208

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

8.4.3 Setting other meta classes
Groovy comes with a number of meta classes:

 the default meta class MetaClassImpl, which is used in the vast majority of cases,

 the ExpandoMetaClass, which can expand state and behavior,

 a ProxyMetaClass, which can decorate a meta class with interception capabilities, and

 more meta classes that are used internally and for testing purposes.

Let's look at ProxyMetaClass as an example of how to use a customized meta class. A
ProxyMetaClass wraps an existing meta class that it relays all method calls to. When doing so, it provides
the ability to execute customized logic before and after each method call. That customized logic is captured in
a so-called Interceptor. With Groovy comes a TracingInterceptor that simply logs all method access to
a Writer, effectively providing a trace of all method calls. Listing 8.8 configures such a ProxyMetaClass with
a TracingInterceptor and assigns this meta class to an arbitrary Groovy object that should be subject to
tracing.

Listing 8.8 Assigning a ProxyMetaClass to a GroovyObject for tracing method calls

#1 Setup
#2 Assigning a meta class
#3 Normal method call

Our self-testing code requires a small change to the default. In (#1) we set up the TracingInterceptor
to not print to System.out but to use a StringWriter that we can later inspect for its content.

In (#2) we assign our meta class to the object under inspection. We do have a per-instance meta class this
way.

When we call any method on our object under inspection as in (#3), then all method calls and returns are
traced - even in private methods. Note that this does not require any change in InspectMe nor is that class in
any way aware of the tracing. It is all controlled from the outside. This is what we call non-intrusive.

Interceptors are more than aspects

Interceptors may remind one or the other reader on aspect oriented programming (AOP) and the
TracingInterceptor suggests this connotation. However, interceptors can do much more: they can
redirect to a different method, change the arguments, suppress the method call, and even change the return
value!

Oftentimes, you may want to use the proxy meta class only temporarily and set the meta class back to the
original afterwards. In such a case can put the proxy-using code inside a closure and give it to the use method
like

proxyMetaClass.use(inspectMe){
 inspectMe.outer() // proxy in use
}
// proxy is no longer in use

Manually setting the meta class of a Groovy object works as expected and working through the example

has confirmed our understanding of the MOP. But Groovy wouldn't be Groovy if it would leave us behind with
only the low-level devices.

In the next sections we will see ways of working with the MOP on a higher level of abstraction to make it
more accessible, more flexible, and more convenient to work with for specialized use cases.

8.4.4 Expanding the meta class
Since its early days, Groovy has a class called Expando. It is a tiny class with few methods but one interesting
characteristic: it can expand its state and behavior. Listing 8.9 uses an Expando as a boxer who can take
some hits but will eventually fight back.

209

Licensed to Charles Wise <ctwise@gmail.com>

Listing 8.9 An Expando can extend state and behavior at runtime
def boxer = new Expando()

boxer.takeThis = 'ouch!'
boxer.fightBack = { times -> takeThis * times }

assert boxer.fightBack(3) == 'ouch!ouch!ouch!'

New state is assigned to not-yet-existing properties, analogous to what we have seen for maps.
New behavior is assigned to not-yet-existing properties as closures. After the assignment, it can be called

as if it was a method.
The reason for explaining the Expando class here is that there is an ExpandoMetaClass in Groovy that -

as you may have guessed - is a meta class that works like an Expando. You can register new state
(properties) and new behavior (methods) in the meta class by simply using property assignments.

Listing 8.10 introduces the concept with an example that adds the a new method called low() to
java.lang.String. It does the same as toLowerCase() but is shorter and the spelling is easier to
remember. We do not need to set the ExpandoMetaClass explicitly. Groovy automatically replaces the
default meta class with an ExpandoMetaClass when we apply any modification to it.

Listing 8.10 Adding the low() method to java.lang.String via ExpandoMetaClass
assert String.metaClass =~ /MetaClassImpl/
String.metaClass.low = {-> delegate.toLowerCase() }
assert String.metaClass =~ /ExpandoMetaClass/

assert "DiErK".low() == "dierk"

Note that our closure uses the delegate reference to refer to the actual String instance that the closure
is called upon. The closure must also have the right number of parameters. The usual rules for closure
parameters apply, i.e. type markers are optional, you can use default values, varargs, etc. Since our method
shall not have any parameters we use an empty parameter list {-> ...}.

Listing 8.11 adds a new property myProp and a new method test to the meta class of MyGroovy1 - a
class that is written in Groovy. Note that the dynamic test method refers to the dynamic property myProp.
These dynamic features are only available for objects of type MyGroovy1 that have been constructed after the
meta class modification.

Listing 8.11 Modifying the meta class of a class (Groovy & Java)
class MyGroovy1 { }

def before = new MyGroovy1()

MyGroovy1.metaClass.myProp = "MyGroovy prop"
MyGroovy1.metaClass.test = {-> myProp }

try {
 before.test() //#1
 assert false, "should throw MME"
} catch(mme) { }

assert new MyGroovy1().test() == "MyGroovy prop"

#1 not available

Above, we have changed the meta class of a class and thus for all instances of that class. In listing 8.12 we

do the very same but only on a single instance. Only the myGroovy instance gets the new dynamic features
since we only modify a per-instance meta class.

210

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Listing 8.12 Modifying the meta class of a Groovy instance
class MyGroovy2 { }

def myGroovy = new MyGroovy2()

myGroovy.metaClass.myProp = "MyGroovy prop"
myGroovy.metaClass.test = {-> myProp }

try {
 new MyGroovy2().test() //#1
 assert false, "should throw MME"
} catch(mme) { }

assert myGroovy.test() == "MyGroovy prop"

#1 not available

Per-instance meta classes are very valuable since they allow fine-grained control over where and how

dynamic features are added.
Imagine a large development team where accidentally two developers modify the same meta class with the

same method names for different reasons. The last modification wins and may compromise the logic of the
developer who did the first change.7

With per-instance meta classes such clashes are easier to avoid. Listing 8.13 uses per-instance meta
classes even for such a ubiquitous Java object as a String while avoiding clashes.

Listing 8.13 Modifying the meta class of a Java instance
def myJava = new String()

myJava.metaClass.myProp = "MyJava prop"
myJava.metaClass.test = {-> myProp }

try {
 new String().test() //#1
 assert false, "should throw MME"
} catch(mme) { }

assert myJava.test() == "MyJava prop"

#1 not available

So far, we have asked classes and objects for their meta class every single time when we did a

modification. Listing 8.14 introduces a new so-called builder style for doing multiple changes at once. We use it
to encode and decode Strings by moving every character up and down the alphabet with the respective
methods, a meta class property to capture how many characters to shift up or down, and we also provide
property accessor methods to work more conveniently with the code and the original.

If you have ever seen Stanley Kubrick's motion picture "A Space Odyssey", you may remember the super-
intelligent computer "HAL". I turns out that this is an encoded version of "IBM". Well, things could have been
worse for that company if the writer Arthur C. Clarke would have chosen a different shift distance for the
encoding...

Listing 8.14 Decoding a space odyssey with a meta class builder
def move(string, distance) {
 string.collect { (it as char) + distance as char }.join()
}

String.metaClass {

7 This situation is often called "monkey patching", referring to programmers that use programming constructs that
they have seen elsewhere without fully understanding what they do: "monkey see - monkey do".

211

Licensed to Charles Wise <ctwise@gmail.com>

 shift = -1
 encode {-> move delegate, shift }
 decode {-> move delegate, -shift }
 getCode {-> encode() }
 getOrig {-> decode() }
}

assert "IBM".encode() == "HAL"
assert "HAL".orig == "IBM"

def ibm = "IBM"
ibm.shift = 7
assert ibm.code == "PIT"

Note that we can change the shift distance on a per-instance basis by setting the respective property.

Note

Modifying the meta class of the String class will affect all future String instances.

In all the examples above, we have added new instance methods to all instances of a class or to only a
specific instance of a class. Listing 8.15 adds a static method to java.lang.Integer by using the static
keyword. We can now ask the Integer class (as opposed to an Integer object) for the answer to "life, the
universe, and everything".

Listing 8.15 Adding a static method to a class
Integer.metaClass.static.answer = {-> 42}

assert Integer.answer() == 42

When talking about objects, we also have to consider inheritance. Listing 8.16 adds a new method
toTable() dynamically to a superclass and asserts that it is transparently available in its subclass.

We can even modify the meta class of interfaces and all classes that implement this interface share the
new behavior. This feature isn't enabled by default, though. We have to enable it via
ExpandoMetaClass.enableGlobally().

Listing 8.16 Meta class changes for superclasses and interfaces
class MySuperGroovy { }
class MySubGroovy extends MySuperGroovy { }

MySuperGroovy.metaClass.added = {-> true }

assert new MySubGroovy().added()

//ExpandoMetaClass.enableGlobally() // xxx delete?

Map.metaClass.toTable = {->
 delegate.collect{ [it.key, it.value] }
}

assert [a:1, b:2].toTable() == [
 ['a', 1],
 ['b', 2]
]

Note that we call toTable() on a literally declared map, which is of type LinkedHashMap. Even though
we have added our new method to the meta class of the java.util.Map interface, it is available for all
instances of its subtypes.

212

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

We mop8 the meta class topic up with an example that should illustrate that we can add any kind of
method dynamically - even operator methods and MOP hook methods.

Listing 8.17 adds the >>> operator to Strings with the rightShiftUnsigned operator method to split
the string by words and push them to the right. It then replaces names with nicknames by calling a method of
the to-be-replaced name with the replacement as the argument. To make this possible for every conceivable
name, it adds the methodMissing hook to String.

Listing 8.17 Meta class injection of operator and MOP hook methods
String.metaClass {
 rightShiftUnsigned = { prefix ->
 delegate.replaceAll(~/\w+/) { prefix + it }
 }
 methodMissing = { String name, args->
 delegate.replaceAll name, args[0]
 }
}

def people = "Dierk,Guillaume,Paul,Hamlet,Jon"
people >>>= "\n "
people = people.Dierk('Mittie').Guillaume('Mr.G')

assert people == '''
 Mittie,
 Mr.G,
 Paul,
 Hamlet,
 Jon'''

Finally, some takeaways and rules of thumb for meta classes:

 All method calls from Groovy code go through a meta class.

 Meta classes can change - for all instances of a class or per single instance.

 Meta class changes affect all future instances in all running threads.

 Meta classes allow non-intrusive changes to both Groovy and Java code as long as the caller is Groovy.
We can even change access to final classes like java.lang.String.

 Meta class changes can well take the form of property accessors (pretending property access), operator
methods, GroovyObject methods, or MOP hook methods.

 ExpandoMetaClass makes meta class modifications more convenient.

 Meta class changes are best applied only once - preferably at application startup time.

The last point directly leads us to another concept of dynamic programming in Groovy.
ExpandoMetaClass is not designed for easily removing a once dynamically added method or un-doing any
other change. For such temporary changes, Groovy provides category classes.

8.4.5 Temporary MOP modifications using category classes
Meta classes are the main workhorses for dynamic programming in Groovy but sometimes we do not need
their full power and would prefer an alternative that is small and focused and confined to the current thread
and a small piece of code. This is exactly what category classes are. We will look into how to use existing
category classes, what benefits they bring, and how to write our own ones.

Using a category class is trivial. Groovy adds a use method to java.lang.Object that takes two
parameters: a category class (or any number thereof) and a closure.

use CategoryClass, {
 // new methods are available

8 pun intended

213

Licensed to Charles Wise <ctwise@gmail.com>

}
// new methods are no longer available

While the closure is executed, the MOP is modified as defined by the category. After the closure execution

is finished, the MOP is reset to its old state.
Listing 8.18 leads us through two examples of using a category: a TimeCategory that is part of Groovy

and the java.util.Collections class.
TimeCategory allows simplified working with date, time, and duration for both, easier definition and

easier calculation. If you have an appointment in two weeks, you can find the date with
2.weeks.from.today.

Collections is the unmodified class from the JDK. It contains a number of static helper methods.

Listing 8.18 How to use existing categories like TimeCategory and Collections
import groovy.time.TimeCategory

def janFirst1970 = new Date(0)
use TimeCategory, {
 Date xMas = janFirst1970 + 1.year - 8.days
 assert xMas.month == Calendar.DECEMBER
 assert xMas.date == 24
}

use Collections, {
 def list = [0, 1, 2, 3]
 list.rotate 1
 assert list == [3, 0, 1, 2]
}

Inside the closures, we have new properties on numbers (1.year) new operator methods for calculating
dates, and a new rotate method on lists. Outside the closures, no such feature is visible. Note that
janFirst1970 was constructed before the use closure.

Category classes are by no means special. Neither do they implement a certain interface nor do they inherit
from a certain class. They are not configured or registered anywhere! They just happen to contain static
methods with at least one parameter.

When a class is used as an argument to the use method, it becomes a category class and every static
method like

static ReturnType methodName(Receiver self, optionalArgs) {...}

becomes available on the receiver as if the Receiver had an instance method like

ReturnType methodName(optionalArgs) {...}

An example says it better than any explanation. Listing 8.19 defines a class Marshal with static methods

to marshal and unMarshal an integer to and from a string. The string version may be used for sending the
integer to a remote machine. When we use the Marshal category class, we can call marshal() on an
integer and unMarshal() on a string.

Listing 8.19 Running your own category to marshal/unmarshal integers to/from strings
class Marshal {
 static String marshal(Integer self) {
 self.toString()
 }
 static Integer unMarshal(String self) {
 self.toInteger()
 }
}

use Marshal, {

214

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

 assert 1.marshal() == "1"
 assert "1".unMarshal() == 1
 [Integer.MIN_VALUE, -1, 0, Integer.MAX_VALUE].each {
 assert it.marshal().unMarshal() == it
 }
}

Naming the receiver object self is just a convention. You can use any name you want. Groovy's design
decision of using static methods to implement category behavior has some beneficial effects. First, we are
much less likely to run into concurrency issues, since there is less shared state. Second, we can use a plethora
of classes as categories even if they have been implemented without knowing about Groovy. Collections
was just an example of many classes with static methods that reside in widely used helper libraries. Third,
they can easily be created in Groovy, Java, or any other JVM language that produces classes and static
methods.

Category classes are a good place to collect methods that work conjointly on different types, e.g. Integer
and String, to accomplish a feature, e.g. marshalling.

Key characteristics of using category classes:

 The use method applies categories to the runtime scope of the closure (as opposed to the literal scope).
That means you can extract code from the closure into a method and call the method from inside the
closure.

 Category usage is confined to the current thread.

 Category use is non-intrusive.

 If the receiver type refers to a superclass or even an interface, then the method will be available in all
subclasses/implementors without further configuration.

 Category method names can well take the form of property accessors (pretending property access),
operator methods, and GroovyObject methods. MOP hook methods cannot be added through a
category class9.

 Category methods can override method definitions in the meta class.

 In places where performance is crucial, use categories with care and measure their influence.

 Categories cannot introduce new state in the receiver object, i.e. they cannot add new properties with a
backing field.

The last point reveals that even though categories are a great tool for combining behavior into reusable
features they do have their limitations when it comes to sharing state. For this, we have Mixins, which are the
final topic in our dynamic programming tour.

8.4.6 Merging classes with Mixins
Have you ever noticed that in Java many interface names end with "-able"? Appendable, Adjustable,
Activatable, Callable, Cloneable, Closeable, etc. make a really long list. That is because they refer
to an ability.

An object may have many abilities and so its class may implement many interfaces but reusing
implementations of any such ability is restricted to only one superclass. In Java and Groovy alike, you can only
inherit once even though you can implement many interfaces.

Reuse by inheritance in questionable

Using inheritance for reuse of an ability implementation is often frowned upon. Instead of implementation
reuse, it is considered good object-oriented design to only use inheritance if there is a true "is-a" relationship
between subclass and superclass.

9 This is a restriction as of Groovy 1.8. The feature may become available in later versions.

215

Licensed to Charles Wise <ctwise@gmail.com>

If you have a superclass A with a subclass B than any object of class B is not only a B, it also is an A! The
definitions of A and B typically reside in different files10. The situation looks as if A and B would be merged
when constructing an instance of B. They share both state and behavior.

This "class merging" by inheritance is pretty restricted in Java.

 You cannot use it when inheritance has already been used for other purposes.

 You cannot merge (i.e. inherit from) more than one class.

 It is intrusive, i.e. you have to change the class definition.

 You cannot do it with final classes.

Groovy provides a feature called Mixin that addresses exactly these limitations. Listing 8.20 uses the
@Mixin class annotation to mix reusable state and behavior into a test case that uses inheritance in order to
be recognized by the testing framework.

Listing 8.20 Mixing a feature into a test case by using the @Mixin annotation
@Mixin(MessageFeature)
class FirstTest extends GroovyTestCase {
 void testWithMixinUsage() {
 message = "Called from Test"
 assertMessage "Called from Test"
 }
}
class MessageFeature {
 def message
 void assertMessage(String msg) {
 assertEquals msg, message
 }
}

Note that you can execute listing 8.20 as a script and it will run the test case with the bundled JUnit. Test
frameworks for both unit and functional tests tend to use inheritance a lot even though this is no longer
considered good framework design. Inheritance makes it more difficult to nicely factor out common state and
behavior. With Mixins, we can circumvent this restriction. They make a good companion for unit tests with
JUnit and functional tests with Canoo WebTest.

Using the @Mixin annotation is intrusive. We have to change the code of the class that receives the new
features. Listing 8.21 in contrast works non-intrusively. It calls the mixin method on the List interface to
mix in two different features that "sieve" factors of 2 or any other number from a list of numbers. Such a
feature is helpful when implementing the Sieve of Erastothenes11 to efficiently find prime numbers.

Listing 8.21 Mixing-in multiple sieve features non-intrusively
class EvenSieve {
 def getNo2() {
 removeAll { it % 2 == 0}
 return this
 }
}
class MinusSieve {
 def minus(int num) {
 removeAll { it % num == 0}
 return this
 }
}

10 Because of Java's late binding, you cannot even be sure that the A that was available at compile time is the same A
that is used at runtime. Java is much more dynamic than many might assume.

11 http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

216

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

List.mixin EvenSieve, MinusSieve

assert (0..10).toList().no2 - 3 - 5 == [1, 7]

You see that we can mix-in multiple classes (EvenSieve, MinusSieve) with property accessor methods
(getNo2) and operator methods (minus) not only to concrete classes but also to interfaces (List).

The surprising part is how easily the sieve classes implement their feature methods as if they were of type
List themselves, which they aren't. Even the return value "this" refers to the actual ArrayList instance
when the method is called from the ArrayList - but not when you are looking at "this" from inside the
feature method.

Mixins are often compared with multiple inheritance but they are of a different nature. In the first place,
our ArrayList doesn't become a subtype of MinusSieve. Any instanceof test will fail. There is no "is-a"
relationship and no polymorphism. You can use enforced type coercion with the "as" operator, though.

Unlike many models of multiple inheritance, the mixing-in of new features always happens in traceable
sequence and in case of conflicts, the latest addition wins. Mixins work like meta class changes in that respect.

To sum it up, here are the important characteristics of Mixins:

 You can instantiate objects from a blend of many classes. The object's state and behavior encompasses
all properties and methods of all mixed classes.

 There is an intrusive use with the @Mixin class annotation and a non-intrusive use with the mixin
method on classes. Both alternatives happen at runtime (as opposed to compile time). @Mixin happens
at class construction time in a static initializer.

 Mixins are visible in all threads.

 There are no restrictions what methods to mix in. Property accessors, operator methods,
GroovyObject methods, and even MOP hook methods all work fine.

 You can mix into superclasses and interfaces.

 A Mixin can override a method of a previous Mixin but not methods in the meta class.

 There is no per-instance Mixin. You can only mix into classes and meta classes. To achieve the effect of
a per-instance Mixin, you can mix into a per-instance meta class.

 Mixins cannot easily be un-done.

In general, Mixins are designed for sharing features while not modifying any existing behavior of the
receiver. Features can build on top of each other and merge and blend with the receiver.

MOP priorities

It is always a good advice to keep things simple. With dynamic programming one can easily go overboard by
doing too much, e.g. using category classed, meta class changes, and Mixins in combination. If you do
anyway, then categories are looked at first, then the meta class, and finally the Mixins:

category class > meta class > mixin

But this only applies to methods that are defined for the same class and have the same parameter types.
Otherwise, the rules for method dispatch by class/superclass/interface take precedence.

Latest wins

In case of multiple method definitions, a category class shadows a previously applied category class.

Changes to an ExpandoMetaClass override previously added methods in that meta class.

Later applied Mixins shadow previously applied Mixins.

217

Licensed to Charles Wise <ctwise@gmail.com>

That it was for the technical description of Groovy's dynamic programming devices. It was quite a number
of different concepts to understand and remember. Their real value will become apparent when you use them
in practice and the following use cases may give you some inspiration when and how to try some dynamic
programming yourself.

8.5 Real-world dynamic programming in action
After having seen the various means of dynamic programming in Groovy you may ask yourself how this
applies to real-world projects. If you haven't seen much dynamic programming in your career so far, you may
even ask whether it is valuable at all since apparently, you have been able to live without it so far.

This section presents five scenarios that we have derived from working experience with Groovy. They are
taken from real codebases with minor modifications. We will always start with explaining the task such that
you can take it as an exercise to come up with your own solution. Then we will present a solution and talk
about the design rationale. We start simple and proceed to the more complex.

8.5.1 Calculating with metrics
I always do silly mistakes when calculating with measurements that have a different orders of magnitude. How
many nanoseconds are there in a second? Hm - I must concede that I would rather look it up than guessing.

But Groovy can help us. Let's take meters, centimeters and millimeters as a simple example. If we could
simply write "1m + 20.cm - 8.mm", that would be much easier than calculating with 1192 millimeters.

The task is to make the above possible. Calculations shall be done in millimeters. The feature shall be
ubiquitously available.

Listing 8.22 addresses the requirements by adding the respective property accessor methods.

Listing 8.22 Metric calculations that avoid common magnitude mistakes
Number.metaClass {
 getMm = { delegate }
 getCm = { delegate * 10.mm }
 getM = { delegate * 100.cm }
}

assert 1.m + 20.cm - 8.mm == 1.192.m

We chose a meta class modification as the vehicle to introduce the new getters for the remainder of the

program. We add them to the Number interface to not only accommodate Integers but also Doubles,
Floats, etc.

Note that from inside one new feature method we can call the others. Specifying that one meter is 100 cm
is more obvious than trying to specify a meter in terms of millimeters.

A solution like the above can be found in many domain specific languages. You will find more examples in
chapter 18.

8.5.2 Replacing constructors with factory methods
New objects are usually constructed by using the "new" keyword and a constructor as in "new
Integer(42)". Many question this language design and you often hear the advice to favor factory methods
over direct constructor calls.

The task is to change the Groovy language so that every class can be constructed by a static factory
method called "make" with the same parameters as the respective constructor, e.g. "Integer.make(42)"
shall replace "new Integer(42)".

Listing 8.23 goes for a solution that is essentially a one-liner, even though it is typeset on three lines for
better reading. It tests itself with factory methods that take zero, one, and two parameters.

Listing 8.23 Introducing static factory methods to all classes
import java.awt.Dimension

Class.metaClass.make = { Object[] args ->
 delegate.metaClass.invokeConstructor(*args)

218

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

}

assert new HashMap() == HashMap.make()
assert new Integer(42) == Integer.make(42)
assert new Dimension(2, 3) == Dimension.make(2, 3)

Quite obviously, we have to introduce the 'make' method on some meta class. But which one? Well, it shall
be available on every class, i.e. on every instance of java.lang.Class. Therefore, we add it to the meta
class of the Class class.12

Invoking the constructor is done dynamically, i.e. on the meta class of the current Class object, which we
refer to as the delegate. To allow any number of parameters we use varargs (Object[]) in the closure
parameter list and spread all arguments over the invokeConstructor argument list with the spread
operator (*args).

This has been a tiny change and we have seemingly changed all classes in the system! That is the true
power of dynamic programming. Try this with a static language!

Our example has a number of real-world usages. The Ruby language for example solely relies on this
approach to constructing objects. Tammo Freese first explored the solution when he, Johannes Link, and I
designed our "Groovy in a day" workshop.

8.5.3 Fooling IDEs for fun and profit
Imagine you had a set of components that you have to connect to each other. One component's output
channel shall be connected to another component's input channel. Let's call the process of defining the
connections "wiring".

We could do the wiring by maintaining a list of pairs where every pair reflects one connection between a
source and a target component. However, we do not get much IDE support when we create such pairs.

The task is to allow an approach to wiring that gives us IDE support and checks for assignable types such
that only channels of assignable types are wired. All components should remain untouched in the wiring
process.

Listing 8.24 comes up with a solution that fools your IDE into thinking that there would be property
assignments while we actually intercept the assignment and only register the call for the wiring. Depending on
the quality of your IDE support, it will check the assignment statements for assignable types and will suggest
only those.

Listing 8.24 Temporarily faking property assignments for configuration purposes
interface ChannelComponent {}
class Producer implements ChannelComponent {
 List<Integer> outChannel
}
class Adaptor implements ChannelComponent {
 List<Integer> inChannel
 List<String> outChannel
}
class Printer implements ChannelComponent {
 List<String> inChannel
}

class WiringCategory {
 static connections = []
 static setInChannel(ChannelComponent self, value){ //#1
 connections << [target:self, source:value]
 }
 static getOutChannel(ChannelComponent self){
 self
 }
}

12 If you have gone cross-eyed by now, don't worry. That is a healthy reaction. Re-reading and understanding the last
paragraph will improve your nerd level at the possible risk of compromising your common sense.

219

Licensed to Charles Wise <ctwise@gmail.com>

Producer producer = new Producer()
Adaptor adaptor = new Adaptor()
Printer printer = new Printer()

use WiringCategory, {
 adaptor.inChannel = producer.outChannel //|#2
 printer.inChannel = adaptor.outChannel //|#2
}

assert WiringCategory.connections == [
 [source: producer, target: adaptor],
 [source: adaptor, target: printer]
]

#1 Intercept assignments
#2 Fake assignments

Since the components shall remain untouched, we use a category class for the scope of the wiring. The
assignments are intercepted by overriding the respective property getter and setter methods non-intrusively
on the common interface of all components.

The solution is a simplified version of the wiring in the PillarOne project (www.pillarone.org). PillarOne is an
open-source project for risk calculation in the insurance industry. It makes heavy use of Groovy for specifying
risk models made from wired components.

8.5.4 Undoing meta class modifications
Modifying a meta class is simple. Undoing such a modification can be a bit involved, though. The task is to try
various approaches and to start with an experiment that modifies the size() method of String such that it
returns twice the actual value by referring to the old implementation. Later we want to set the size()
method back to the original behavior.

Listing 8.25 searches the meta class of String for the meta method of size() and stores it for later
reference. A MetaMethod has an invoke method that takes the receiver object as the first parameter.

Listing 8.25 Method aliasing and undoing meta class modifications
MetaClass oldMetaClass = String.metaClass //#1

MetaMethod alias = String.metaClass.metaMethods //#2
 .find { it.name == 'size' }
String.metaClass {
 oldSize = { -> alias.invoke delegate }
 size = { -> oldSize() * 2 }
}

assert "abc".size() == 6
assert "abc".oldSize() == 3

if (oldMetaClass.is(String.metaClass)){
 String.metaClass { //#3
 size = { -> alias.invoke delegate }
 oldSize = { -> throw new UnsupportedOperationException() }
 }
} else {
 String.metaClass = oldMetaClass //#4
}

assert "abc".size() == 3

#1 Store old meta class
#2 Store meta method
#3 Reverse modification
#4 Reset meta class

220

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
http://www.pillarone.org/

When overriding a method on the meta class, there is nothing like "super" that we would have used in
subclasses to refer to an original implementation in a superclass. As a replacement, we introduce a new
method oldSize() as an alias for the (#2) old method such that we can refer to it.

Undoing that modification comes in two flavors: doing a (#3) reverse modification or (#4) setting the meta
class instance back to the (#1) original instance in case the instance has changed. If before the modification
the default meta class was in use, then it was changed into an ExpandoMetaClass with the first modification
and we can reset to the old meta class. Otherwise, we have already started with an ExpandoMetaClass and
only modified that instance.

Resetting the meta class instance is the cleaner way but it is only available if they were no changes to the
meta class of String before we started. The code above is again a simplified version of meta class handling in
the PillarOne project.

8.5.5 The intercept/cache/invoke pattern
The methodMissing hook method is a cornerstone of the MOP. Some people even define dynamic
programming by the availability of such a method. However, it comes at a cost. Since Groovy first tries all
other possibilities of finding a suitable method before it finally calls methodMissing, this requires some time.
It is also very common that a method that has been called once will be called again.

The task is to step into methodMissing at most once for every distinct method call. As an example we
want to support methods of the form findBy<propertyName>(value) that searches any collective
datatype for items that have a property of that name with the given value. We seek an optimized and non-
intrusive version of listing 8.2.

Listing 8.26 searches a list of maps for planets with a given name or average distance from earth in
astronomical units (rounded).

 Listing 8.26 The intercept/cache/invoke pattern for finding-by-property-value
Object.metaClass.methodMissing = { String name, Object args ->
 assert name.startsWith("findBy")
 assert args.size() == 1
 Object.metaClass."$name" = { value -> //#1
 delegate.find { it[name.toLowerCase()-'findby'] == value }
 }
 delegate."$name"(args[0]) //#2
}

def data = [
 [name:'moon', au: 0.0025],
 [name:'sun', au: 1],
 [name:'neptune', au:30],
]

assert data.findByName('moon') //#3
assert data.findByName('sun') //#4
assert data.findByAu(1)

#1 Cache the method
#2 Invoke the method
#3 Intercepted call
#4 Cached call

We add the methodMissing hook to the meta class of Object. We choose type Object since we have

no known restrictions. Whenever we enter the hook method we (#1) add a new method of the requested
name to our meta class. For this new method, the missing method hook method will never be called again,
since it is no longer "missing". We have synthesized a new method.

We also need to execute the synthesized method, which we do in #2.
The intercept/cache/invoke pattern was invented by Graeme Rocher, the project lead of the Grails web

platform. It is a core part of the Grails infrastructure. The productive version is a bit more elaborate than our
example, mainly to work nicely in highly concurrent environments, but the general approach is the same.

221

Licensed to Charles Wise <ctwise@gmail.com>

8.6 Summary
We hope that by the end of this chapter you have gained a good overview of the various concepts that allow
dynamic programming with Groovy. These language capabilities may have been new to you and thus
unfamiliar and maybe even daunting.

But even if they appear like magic, they are all easily explained by the fact that Groovy sees the world
through the glasses of the meta object protocol. The MOP itself offers many alternatives for adapting it to new
necessities.

We can use the MOP hook methods intrusively or apply non-intrusive changes by switching meta classes,
modifying meta classes, using categories, or mixing-in new state and behavior. All these devices come in
combination with the Groovy method dispatch, property handling, operator methods, GroovyObject
methods, and inheritance. The pervasive use of closures adds another dimension of dynamically changing
behavior at runtime.

Once you have experienced the merits of dynamic programming, you will find it unwieldy to go back to a
static language.

You may be surprised to hear that the topic of dynamic programming isn't over, yet. What we have covered
so far is the runtime aspect of it. But there are also compile-time aspects that we will explore in the next
chapter.

222

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

9
Compile-Time Metaprogramming and

AST Transformations

By Hamlet D'Arcy

“It is my firm belief that all successful languages are grown and not merely designed from
first principles.”

– Bjarne Stroustrup, The Design and Evolution of C++

This chapter covers

• Removing redundancy and verbosity with Groovy's metaprogramming annotations

• Writing your own compiler extensions using the AST transformations feature

• Compile-time metaprogramming testing, tools, and pitfalls

In the last chapter we looked at dynamic programming with Java, where the behavior of a type or even an
individual object can change while the program is executing. We don’t always need the behavior to vary that
dynamically though – sometimes we just want to be able to apply common patterns in an expressive and
efficient manner, once and for all when the class is compiled.

We'll start by briefly explaining what compile-time metaprogramming is, the concept of AST
transformations in Groovy, and why they’re important. Then we'll explore most of the transformations Groovy
ships with, such as @ToString, @EqualsAndHashCode, and @Lazy, and how these keep your code lean and clean.
Next we'll dive into writing your own transformations using the Local and Global Transformations mechanism.
We'll also show various ways to create an AST, and some tools available for viewing and testing it. We’ll round
the chapter off with a discussion of common mistakes and limitations encountered with compile-time
metaprogramming.

9.1 A Brief History
You may never have heard the term "compile-time metaprogramming". It has only recently entered the
vocabulary of mainstream Groovy developers and some of the more daring Java developers. However, Java
has had a long history of code generation: tools and frameworks that automatically create code in the hopes of
reducing development time. In the good old days, when CORBA services were the standard remoting
technology, it was common to have Java source code automatically generated as part of your build process.
More modern applications still do similar things. The common "wsdl2java" and "wsimport" applications read
WSDL interface documents and produce source code for projects using web services. This approach is so

223

Licensed to Charles Wise <ctwise@gmail.com>

common that Maven even has a convention for dealing with the files: put them all in a folder called
"generated".

9.1.1 Generating bytecode, not source code
The technologies listed so far share a common trait: they all generate source code as part of the build

process. Like many other modern languages, Groovy takes a different approach to code generation. Instead of
writing out source that the standard compiler can later read and convert to byte code, Groovy lets you, the
programmer, get involved in the compilation process.

HOW ARE GETTERS AND SETTERS GENERATED?

In Groovy there is no need to write getters and setters for fields: they will be generated for you. This occurs
without a separate source code file listing these getters and setters hidden on the disk somewhere. The
Groovy compiler is smart enough to just read your source and write out the correct class definition in the
.class file. These changes are all visible from Java or other languages calling your code, because they’re part
of the compilation process. As far as anything looking at the class is concerned, the getters and setters
simply exist as if they’d been hand-written.

From the very beginning, Groovy has made life easier for programmers by manipulating what gets written
into the final JVM .class file. The difficulty was that if you wanted a new feature in the language, then you
needed to download the Groovy source code and write the feature yourself. But this all changed with the 1.6
release.

9.1.2 Putting the power of code generation in the hands of developers
Groovy 1.6 introduced a feature called AST Transformations. The AST part of this is an Abstract Syntax

Tree – a representation of code as data. This feature allows you to modify the code being generated without
ever needing a source code representation. For example, you can add new methods and fields to a class, or
add code into to method bodies. Although no source code is generated, the bytecode is present in the final
class file in an entirely ordinary way. This is important because it means Java objects calling your Groovy
objects will see the new code, which is not the case for changes made through runtime-metaprogramming.

Compile-time metaprogramming is an exciting area of the language. There are many new libraries and
frameworks for Groovy that generate verbose, boilerplate code directly into the .class files instead of forcing all
the users to write extra source code. Code generation is no longer limited to those brave developers willing to
download and build the source code for the Groovy compiler: it's available to anyone using Groovy. If you
have a great idea for a new language feature then it's possible to write it today as a library. This powerful
technique creates a living language, where you are allowed to extend the language in the direction best suited
to your project. Many of Groovy's features are implemented on top of the AST transformation framework. For
example, the @Delegate, @Immutable, and @Log annotations all hook into the compiler and affect the final
.class file. @Bindable is the secret to UI property binding in the Griffon framework (or writing Groovy Swing in
general). The Spock and GContracts libraries both leverage AST Transforms, providing useful and productivity
boosting results. Compile-time metaprogramming is used by these libraries to produce more readable tests
and more correct runtime behavior.

Before we start writing our own transformations, we’ll look at some of the annotations which ship with
Groovy, so you can get a feel for what’s possible. It’s worth bearing in mind any repetitive coding tasks you’ve
recently had to perform – if they sound like the kind of work that these annotations help with, you may well be
able to eliminate them soon.

9.2 Making Groovy Cleaner and Leaner
Groovy ships with many AST transformations that you can use today to get rid of those annoying bits of
repetitive code in your classes. When applied properly, the annotations described here make your code less
verbose, so that the bulk of the code expresses meaningful business logic to the reader instead of meaningful
code templates to the compiler. AST transformations cover a wide range of functionality, from generating
standard toString() methods, to easing object delegation, to cleaning up Java synchronization constructs, and

224

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

more. You don't need to know anything about compilers or Groovy internals before using the annotations
described in this section: just annotate a class or method and watch your standard code templates disappear.

For the purposes of this section, we’ve divided the existing AST transformations into six categories:

 Code Generation Transformations

 Class Design Annotations

 Logging Improvements

 Declarative Concurrency

 Easier Cloning and Externalizing

 Safer Scripting

Let's start by looking at some annotations that write code into your class so that you don't have to.

9.2.1 Code Generation Transformations
AST transformations often focus on automating the repetitive task of writing common methods like
equals(Object), hashCode(), and constructors; generating the code for you so that you don't have to write it
yourself. The built-in annotations in this category are @ToString, @EqualsAndHashCode, @Canonical, @Lazy,
@IndexedProperty, @InheritConstructors, and @TupleConstructor.

@GROOVY.TRANSFORM.TOSTRING
Annotating a class with the @ToString annotation gives that class a standard toString() method. @ToString prints
out the class name and, by default, all of the field values, as you can see in the simple example from listing
9.1.

Listing 9.1: Using @ToString to generate a toString() method.

@groovy.transform.ToString
class Person {
 String first, last
}
def p = new Person(first:'John', last:'Doe')
assert p.toString() == 'Person(John, Doe)'

You can use annotation parameters to control the information that toString() displays. For example, you can
exclude certain properties, include properties from the super class, and include the property names if you
wish. A full description of all the parameters for @ToString appears in Appendix E.

@groovy.transform.EqualsAndHashCode

Implementing the equals() and hashCode() methods correctly is repetitive and error-prone. Luckily the
@EqualsAndHashCode annotation does it for you. The generated equals() method obeys the contract of
Object.equals(), and hashCode() produces an integer based on the common principles of producing object
hashes. Listing 9.2 shows using @EqualsAndHashCode in action on our Person class.

Listing 9.2: Using @EqualsAndHashCode to generate an equals() and hashCode() method.

@groovy.transform.EqualsAndHashCode
class Person {
 String first, last
}
def p1 = new Person(first:'John', last: 'Doe')
def p2 = new Person(first:'John', last: 'Doe')
assert p1 == p2

You can customize the equals() and hashCode() methods created using three different annotation parameters.
You can easily exclude certain properties from the calculation, include properties from the super class, or even
include fields in the calculation. A full description of all the available parameters appears in Appendix E.

@groovy.transform.TupleConstructor

225

Licensed to Charles Wise <ctwise@gmail.com>

Groovy has a flexible syntax for creating objects, such as named arguments and identity blocks. However,
sometimes you want the object constructor to take all of the fields explicitly, especially when you're creating
the Groovy object from Java code. The @TupleConstructor annotation adds this constructor onto the object, as
you can see in listing 9.3.

Listing 9.3: Using @TupleConstructor to generate Java-style constructors.

@groovy.transform.TupleConstructor
class Person {
 String first, last
}
def p1 = new Person('John', 'Doe')
def p2 = new Person('John')

By default, the overloaded constructors use the declaration order of the properties in order to determine the
order of the parameters. However, you can fine tune the exact behavior in a very flexible way. Appendix E
provides a full explanation of all the annotation parameters.

@groovy.transform.Canonical

@ToString, @EqualsAndHashCode, and @TupleConstructor are commonly used together to create standard, or
canonical, objects. Groovy provides @Canonical to make this a little easier. @Canonical is the combination of all
three of these transformations. As you can see in listing 9.4, a canonical object has tuple constructors, equals()
and hashCode() implementations, and a standard toString() representation.

Listing 9.4: Using @Canonical to generate equals(), hashCode(), toString(), and constructors.
@groovy.transform.Canonical
class Person {
 String first, last
}

def p1 = new Person('John', 'Doe')
def p2 = new Person('John')
assert p1.first == p2.first
assert p1.toString() == 'Person(John, Doe)'

Unlike the original annotations @Canonical is based on, the @Canonical annotation does not take any
parameters. Instead it uses sensible defaults and let's you override the defaults by using the other annotation
in conjunction with @Canonical. For example, if you want to use @Canonical but customize the @ToString
behavior, then annotate the class with both @Canonical and @ToString. The @ToString definition and
parameters takes precedence over @Canonical. And just what exactly is a sensible default? A complete listing
of the default values for @Canonical are described in Appendix E.

@groovy.transform.Lazy

Lazy instantiation is a common idiom in Java. If a field is expensive to create, such as a database connection,
then the field is initialized to null, and the actual connection is created only the first time the getter for that
field is called. Typical in this idiom is a null check and instantiation within a getter method. But not only is this
boilerplate code, it's also frequently done wrong. The @Lazy field annotation correctly delays field instantiation
until the time when that field is first used. For example, listing 9.5 constructs a Person object, which would
normally throw an exception if the connection field when initialized as part of the object initialization

Listing 9.5: Using @Lazy to delay property instantiation.
import java.sql.Connection
import static java.sql.DriverManager.*

class Person {
 @Lazy
 def connection = getConnection('jdbc:odbc:dummy', 'sa', '')
}
assert new Person()

226

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Groovy will instantiate the connection the first time the connection property is referenced. If you mark a field
as @Lazy but don't provide an initial value, then Groovy tries to create the @Lazy field using the type's default,
no-arg constructor. For clarity, and to avoid a missing constructor exception, we recommend you supply an
initial value.

Also, by default, this lazy initialization is not thread safe. If you want thread safe lazy initialization then
mark the field as transient. The transient keyword is normally used to mark a field as not serializable, but here
in the @Lazy annotation the keyword is treated differently. @Lazy transient fields will be initialized from within
a synchronized double checked lock block. Double checked locking is an important idiom to write correctly, and
using @Lazy with a transient field is an easy way to make sure your code is correct.

There is one parameter called 'soft' available on the annotation. The 'soft' parameter determines if the field
should be a SoftReference, and therefore eligible for garbage collection. By default, the field is not a soft
reference.

@groovy.transform.InheritConstructors

The @InheritConstructors annotation removes the boilerplate of writing matching constructors for a super
class. For example, the java.io.PrintWriter class has eight constructors, and your subclass should probably
provide the same set of creation options. @InheritConstructors to the rescue. The annotation creates matching
constructors for every super class constructor, as you can see in listing 9.6.

Listing 9.6: Using @InheritConstructors to generate constructors matching the super class's
constructors.

@groovy.transform.InheritConstructors
class MyPrintWriter extends PrintWriter { }

assert new MyPrintWriter(new File('out.txt'))

You can still write your own constructors, of course. If there is a conflict with a super class constructor then
@InheritConstructors is smart enough to back off and not overwrite your implementation. A word of warning
however: think about your subclass when using this annotation. If your subclass introduces required
properties, then it is best to make those properties required in a constructor and not implement too many of
the super class constructors. Plus, some Groovy features rely on the availability of a constructor without
parameters, so having one on your class is typically a good idea.

That's the last of the code generation annotations in Groovy 1.8. Next up on the tour are some annotations
that help you maintain a better designed and more object-oriented system.

9.2.2 Class Design Annotations
Some transformations focus on implementing common design patterns or best practice idioms. The goal is to
make the right design decisions also the easiest design to implement. In Java, one of easiest ways to reuse
existing code is with a parent class, but just because it's easy doesn't mean that it's the best approach. The
annotations in this category are @Delegate, @Singleton, and @Immutable, and their goal is to making the
right decision also making the easy decision.

@GROOVY.LANG.DELEGATE
A delegate is a 'has-a' relationship between two classes. Typically, one class will contain a reference to another
class and then also share some of the API with that class. The example in listing 9.7 might explain this better.

Listing 9.7: Handwritten delegation.
class NoisySet implements Set {
 @Delegate
 Set delegate = new HashSet()

 @Override
 boolean add(i) {
 println "adding $i"
 delegate.add(i)
 }

227

Licensed to Charles Wise <ctwise@gmail.com>

 @Override
 boolean addAll(Collection i) {
 for(def x : i) { println "adding $x" }
 delegate.addAll(i)
 }
}

In this example, we have a “noisy set” class that performs some basic println statements when elements
are added to the set. A naïve way to code a noisy set is to simply subclass HashSet and override the two
methods: but this approach is broken. If NoisySet subclassed HashSet, then every println statement would be
called twice each time addAll was invoked. The problem? HashSet implements addAll by calling the add
method. This is an implementation detail that is exposed if we choose to subclass instead of use delegation.

The alternative is delegation, our NoisySet has-a HashSet. The @Delegate transformation adds all of the
public instance methods from the delegate onto your class, and automatically calls the delegate when those
methods are invoked. This is how our NosiySet can implement Set yet only declare two methods instead of
every method on the Set interface. By default, the owning class is also made to implement all of the interfaces
defined by the delegate as well. There could be a conflict between the owner class and one of the delegate
methods, or between two of the delegates methods. In that case, the first delegate's method will be delegated
to, and the second delegate's method will not. Several annotation parameters are available to fine-tune the
behavior, and they are fully described in Appendix E.

@groovy.lang.Singleton

The singleton pattern is intended to ensure that only one instance of a class exists within your system at a
time. It requires that the class has a private static reference to this instance, a private constructor so that it
cannot be instantiated outside the class, and a public static method to access the single instance. Listing 9.9
shows how to implement a singleton manually in Groovy.

Listing 9.9: Handwritten singleton pattern.

class Zeus {
 static final Zeus instance = new Zeus()
 private Zeus() { }
}

assert Zeus.instance

This is not too much code to write, particularly as the code generation in Groovy already supplies the accessor
method, but it can be simplified using the @Singleton annotation. The obvious advantage is less code, but it
also means that invoking the private constructor results in an exception, as shown in listing 9.10.

Listing 9.10: Using @Singleton to enforce a single instance of an object.

@Singleton
class Zeus {
}

assert Zeus.instance
try { new Zeus() }
catch (RuntimeException e) { }

An additional advantage is that you can use the 'lazy' annotation parameter to properly generate a lazily
instantiated instance, which marks the instance variable as volatile and correctly performs double checked
locking in the instantiation method. Table 9.7 describes the parameter.

NOTE

The singleton pattern can be useful, but it’s considered by some to be an anti-pattern. Singletons offer no
layers of abstraction: it is a concrete type and cannot be extended or easily mocked or changed. Also,
improper serialization or multiple classloaders can result in two instances of the Singleton object, and there
are also thread safety complications. Singletons are useful, but be aware of the downsides.

228

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

@GROOVY.TRANSFORM.IMMUTABLE
Immutable types (such as String) permit no changes in state: when an instance has been created it can never
altered. The main advantages of immutability is that the object is side-effect free and thread safe. There is
almost no way to change an immutable object from within a method or any way to abuse an immutable object
across threads (without resorting to using Reflection, that is). Also, there is never a need to make a defensive
copy of an immutable object, or worry about what other objects may have references to your internal state.
Working with immutable objects is highly recommended on the Java platform. Groovy provides the
groovy.transform.Immutable transformation to help you easily create immutable objects, as shown in listing
9.11.

Listing 9.11: Using @Immutable to mark fields final and suppress setter methods.
@groovy.transform.Immutable
class Person {
 String firstName, lastName
}

new Person(firstName: 'Dierk', lastName: 'Koenig')
def p = new Person('Hamlet', "D'Arcy")
assert p.firstName == 'Hamlet'

try { p.firstName = 'John' }
catch (ReadOnlyPropertyException e) { }

The Person class has quite a lot of generated code:
• a Map based constructor
• a tuple constructor
• a getter for each property

The @Immutable annotation is very intelligent about which fields to handle. All fields in an @Immutable class
must also be marked Immutable, or be of a know immutable type such as a primitive type, String, Color, or
URI. Known 'effectively immutable' fields are also handled. Dates are defensively copied in the constructor and
getters so that state cannot be changed, and List, Map, and Collection classes are converted to Immutable
objects in the constructor. Also, the Immutable annotation shares similar behavior to @ToString and
@EqualsAndHashCode: your class receives a nicely formatted toString() method and correct equals(Object) and
hashCode() implementations. @Immutable uses sensible defaults for generating the toString(), equals(Object), and
hashCode() methods, and they are fulyl described in Appendix E.

WARNING

The Groovy code-base contains two @Immutable annotations: groovy.lang.Immutable and
groovy.transform.Immutable. The one in the groovy.lang package is deprecated. Please only use the new
one in groovy.transform.

That's the end of the discussion of the class design annotations. Before moving on to concurrency and scripting
annotations, let's see some of the new annotation based logging improvements in Groovy.

9.2.3 Logging Improvements
There’s still a surprising amount of debate about the best way of logging errors and informative messages
from Java, and new logging frameworks are still in development. The @Log family of annotations exists to
simplify correct logging idioms from Groovy code. The family includes @Log, @Log4j, @Slf4j, and @Commons.

The annotation does more than just create a logger for you. To understand the power of @Log, consider
listing 9.12 and ask yourself if the runLongDatabaseQuery() method will be executed.

Listing 9.12: Using @Log to inject a Logger object into an object.
@groovy.util.logging.Log
class Person {
 def method() {
 log.fine(runLongDatabaseQuery())
 }
}

229

Licensed to Charles Wise <ctwise@gmail.com>

new Person().method()

From a Java background, the obvious answer would be ‘yes’ - because in Java method arguments are always
evaluated before the method is called. There’s no way to avoid this. In Groovy, the answer is 'maybe': it
depends on whether the FINE log level is enabled.

The @Log annotation first creates a logger based on the name of your class. It then wraps any logging
method with a conditional checking whther that level is enabled before trying to execute the logging line. The
result is equivalent to wrapping the logging call in a 'if (logger.isEnabled(LogLevel.FINE))' condition. The
arguments to the method may never be evaluated depending on the logging configuration. The transformation
is smart too; no check is made if the parameter is a constant such as a simple String or Integer. This improves
the readability significantly – there’s no more need to include manual checks everywhere for the sake of
performance. Groovy does the correct thing by default.

The @Log family of annotations all take one optional parameter: the name of the log variable. By default
the log variable is called 'log', but you can change it to whatever you want. If you don't like how Groovy
initializes the Logger object based on the current class name, then add your own logger field and update the
annotation to refer to the field name. The four major logging frameworks are covered by Groovy, and each has
its own annotation. The four annotations are detailed in table 9.9.

Table 9.9: The Four @Log Annotations

Name Description

@groovy.util.logging.Log
Injects a static final java.util.logging.Logger into your class and
initializes it using Logger.getLogger(class.name).

@groovy.util.logging.Commons
Injects a Apache Commons logger as a static final
org.apache.commons.logging.Log into your class and initializes it
using LogFactory.getLog(class).

@groovy.util.logging.Log4j
Injects a Log4j logger as a static final org.apache.log4j.Logger into
your class and initializes it using Logger.getLogger(class).

@groovy.util.logging.Slf4j

Injects an Slf4j logger as a static final org.slf4j.Logger into your
class and initializes it using
org.slf4j.LoggerFactory.getLogger(class). The LogBack framework
uses Slf4j as the underlying logger, so LogBack users should use
@Slf4j.

It doesn't stop there though, because the @Log feature is extensible. You can use your own company's logger
as well, as long as you implement one interface in order to define your new annotation. This extension
mechanism is how the standard four @Log annotations are implemented, so there are four good examples in
the Groovy code base. To implement the interface you need to define a new Logger object and instantiate it,
determine if a method should be wrapped in a conditional check, and then wrap the log call in a guard. Writing
the AST for this is not hard, but you'll need to understand the rest of the chapter before tackling the problem.

Next we’ll look at declarative concurrency. Groovy provides annotations to declare how your code is locked
during multi-threaded access instead of writing the code that performs low level locking.

9.2.4 Declarative Concurrency
Synchronization and access to mutable state is hard to get right. Proper synchronization can leave your little
branch of business logic hidden, surrounded by a forest of lock acquire and lock release code. The concurrency
related annotations aim to remedy this problem: @Synchronized, @WithReadLock, and @WithWriteLock.

@GROOVY.TRANSFORM.SYNCHRONIZED
Code that is accessed from several threads at once often needs to be synchronized to avoid common
concurrency problems. One problem with this is that correct concurrent code is hard: it’s all too easy to
introduce one problem when trying to solve another. The easiest solution for Java developers is to add the

230

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

'synchronized' keyword to the method declaration. This is another instance where the easiest solution is not
the best solution.

AVOID LOW LEVEL SYNCHRONIZATION

Java contains many fine primitives for working with concurrent code, such as the synchronized keyword and
the contents of the java.util.concurrent package. However, these are mostly primitives, and not abstractions.
The tools are low level and meant to serve as a foundation. GPars is a framework for parallelization that is
built on top of these primitives. It provides many abstractions that shield you from low level coordination
tasks. GPars is described fully in chapter 17Todo: add dynamic chapter ref.

The problem with method level synchronization is that it is very coarse grained and it’s also part of the public
API of the object. You're effectively locking on a publicly accessible references: the this reference. Some
secure coding standards ban method level synchronization or synchronization on the 'this' reference because
an attacker that has a reference to your object can interfere with your synchronization by synchronizing on it.
It is best to declare a local, private lock and expose that lock to subclasses if classes need to coordinate
locking. Doing this correctly is easy with the @Synchronized annotation, as seen in listing 9.15.

Listing 9.15: Declarative synchronization with @Synchronized

class Person {
 private final phoneNumbers = [:]

 @groovy.transform.Synchronized
 def getPhoneNumber(key) {
 phoneNumbers[key]
 }
 @groovy.transform.Synchronized
 def addPhoneNumber(key, value) {
 phoneNumbers[key] = value
 }
}

This annotation injects a lock object into your class. The object is a zero length Object array so that your class
remains Serializable (which Object is not). And any method marked with the annotation has a synchronized
block around it but without method synchronization. If you want to limit the scope of your synchronized block,
then provide a name for the lock using the default annotation parameter and write the synchronized block
yourself when needed, as shown in listing 9.16.

Listing 9.16: Mixing @Synchronized with custom synchronized block.

@groovy.util.logging.Log
class Person {
 private final phoneNumbers = [:]
 private final lock = new Object[0]

 @groovy.transform.Synchronized('lock')
 def getPhoneNumber(key) {
 phoneNumbers[key]
 }

 def addPhoneNumber(key, value) {
 log.info("Adding phone number $value")
 synchronized (lock) {
 phoneNumbers[key] = value
 }
 }
}

Synchronization is a low level, primitive operation. Java has some higher level locking mechanisms as well,
and the following two annotations help make them easy to use.

231

Licensed to Charles Wise <ctwise@gmail.com>

@GROOVY.TRANSFORM.WITHREADLOCK AND @GROOVY.TRANSFORM.WITHWRITELOCK
Java 5 included the java.util.concurrent.locks.ReentrantReadWriteLock class as a tool to use when you need
more control over locking than simply using synchronized blocks. A ReentrantReadWriteLock can guard against
either read access or write access, where many readers are allowed concurrently, but only one writer is
allowed. Although this is a very useful concurrency abstraction, acquiring and release a lock correctly is
cumbersome, as you can see in listing 9.17.

Listing 9.17: Hand-written read and write locking.

import java.util.concurrent.locks.ReentrantReadWriteLock
class Person {
 private final phoneNumbers = [:]
 final private lock = new ReentrantReadWriteLock()
 def getPhoneNumber(key) {
 lock.readLock.acquire()
 try {
 phoneNumbers[key]
 } finally {
 lock.readLock.release()
 }
 }
 def addPhoneNumber(key, value) {
 lock.writeLock.acquire()
 try {
 phoneNumbers[key] = value
 } finally {
 lock.writeLock.release()
 }
 }
}

Phew, that's quite a bit of code. It does do the right thing: reading data is guarded with a read lock and writing
data is guarded with a write lock. However, the code is much simpler when we use the @WithReadLock and
@WithWriteLock annotations instead.

Listing 9.18: Declarative read and write locking using @WithReadLock and @WithWriteLock.

class Person {
 private final phoneNumbers = [:]

 @groovy.transform.WithReadLock
 def getPhoneNumber(key) {
 phoneNumbers[key]
 }
 @groovy.transform.WithWriteLock
 def addPhoneNumber(key, value) {
 phoneNumbers[key] = value
 }
}

This time the logic of the class stands out instead of being drowned in a sea of try/finally blocks, and you’ll
never forget to release a lock. Similar to @Synchronized, these annotations take a parameter for the lock name,
and that lock will be used if it exists in the class.

These examples all show how annotations for AST transformations work. There are other ways to be thread
safe as well. For instance, you could use a ConcurrentHashMap for thread safety or use immutable objects.
The value in the Groovy annotation approach is that synchronization and safety are declarative. You don't
explain how the synchronization works, you just declare that it exists and let Groovy do the rest.

In general, declarative solutions offer good abstractions, where you don't need to see the details and can
focus on the more important parts of the code instead of the low level mechanics. The same is true for other
areas where you traditionally end up with a lot of boilerplate code to write. Each individual bit of boilerplate is
simple enough, but after you’ve written it enough times you’re bound to make a subtle mistake – and it really
impacts the readability of the class. The same idea extends to other operations we might wish to perform on
our objects, too.

232

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

9.2.5 Easier Cloning and Externalizing
Implementing Cloneable and Externalizable correctly is not always simple. The @AutoClone annotation can give
you a reasonable and configurable cloning strategy by adding just the annotation. In a similar vein,
@AutoExternalize makes implementing Externalizable simpler by correctly creating default read and write
methods.

@GROOVY.TRANSFORM.AUTOCLONE
Classes that implement Cloneable should provide a public clone method that creates a copy of the class. At its
simplest, the @AutoClone annotation causes your class to implement Cloneable and provides a default and
simple clone method implementation. The super class clone() method is invoked, followed by invoking clone() on
each Cloneable field or property in the class. If a field or property is not Cloneable then it is simply copied in a
bitwise fashion. If some properties don't support cloning, then a CloneNotSupportedException is thrown. Deep
copies are left to the end user (you) to implement. For non-trivial objects, it is best to write your own clone
method so that you can have finer control.

A popular alternative implementation for the clone() method is called the 'Copy Constructor' style. The clone
method implementation is moved into the body of a constructor that takes a parameter of the same type as
the class. Then calls to clone() simply return the result of calling this constructor. Marking a simple Person class
with @AutoClone logically produces code similar to listing 9.19.

Listing 9.19: Handwritten 'Copy Constructor' style cloning.
class Person implements Cloneable {

 String firstName, lastName
 Date birthday

 protected Person(Person other) throws CloneNotSupportedException {
 first = other.first
 last = other.last
 birthday = other.birthday.clone()
 }
 Object clone() throws CloneNotSupportedException {
 new Person(this)
 }
}

One other style that is supported by @AutoClone is the Serialization style. If a class already implements
Serializable, then that mechanism can be used to create a copy of the instance. This feature performs deep
copy automatically, attempting to copy the entire tree of objects including array and list elements. The
generated clone() method looks something like listing 9.20.

Listing 9.20: Handwritten 'Serialization' style cloning.

Object clone() throws CloneNotSupportedException {
 def baos = new ByteArrayOutputStream()
 baos.withObjectOutputStream{ it.writeObject(this) }
 def bais = new ByteArrayInputStream(baos.toByteArray())
 bais.withObjectInputStream(getClass().classLoader){ it.readObject() }
}

There are some downsides to the Serialization style. It's typically slower, doesn't allow final fields, and takes
up more memory than the alternatives.

You can use several annotation parameters to fine tune AutoClone, and these parameters are described in
Appendix E.

@groovy.transform.AutoExternalize

The Externalizable interface is similar to Serializable in that it is used to persists objects into a binary form.
Externalizable was added to the JDK after Serializable. The new interface gives you more control over the

233

Licensed to Charles Wise <ctwise@gmail.com>

persisted form than Serializable does, and it does not use reflection, which at one time was a performance
bottleneck. Some performance sensitive applications prefer using Externalizable.

A class marked @AutoExternalize automatically implements the Externalizable interface, gaining two new
method implementations: readExternal(ObjectInput) and writeExternal(ObjectOutput). Our Person example with three
properties would have methods generated similar to those in listing 9.21.

Listing 9.21: Handwritten Externalizable implementation.

class Person implements Externalizable {
 String firstName, lastName
 Date birthday
 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeObject(firstName)
 out.writeObject(lastName)
 out.writeObject(birthday)
 }
 public void readExternal(ObjectInput oin) {
 firstName = oin.readObject()
 lastName = oin.readObject()
 birthday = oin.readObject()
 }
}

You can find the the @AutoExternalize behavior using the annotation parameters described in Appendix E.

That's all for the cloning and externalizing annotations. The next set of annotations we'll discuss exist to make
using Groovy as a scripting language safe and secure.

9.2.6 Safer Scripting
Security and robustness are important aspects of modern software. Groovy makes it easy to run scripts
submitted by your users (as well as your own scripts), but this can be a security hole which needs to be
shielded not only against unauthorized access but also against accidental programming errors. No one wants a
set of long running scripts to cause a denial of service. These scripting annotations automatically add safety
hooks into scripts so that they timeout, respect a thread interrupt, or otherwise behave correctly. They are
designed to be automatically added to scripts executing in GroovyShell or another evaluator, but you can also
use them yourself on your own scripts and classes.

@GROOVY.TRANSFORM.TIMEDINTERRUPT
Annotating a class with @TimedInterrupt sets a maximum time the script or instances of the class are allowed to
exist. If the maximum time is exceeded then a TimeoutException is thrown. This annotation is designed to
guard against runaway processes, infinite loops, or a maliciously long running user script.

When annotated, the object instance marks the instantiation time in the constructor. If this instance later
detects that the maximum run time is exceeded then it throws an exception. Checks are made at the
beginning of every method call, the first line of every closure, and within every iteration of a for or while loop.
If the object sits idle and is never invoked, then no exception is thrown regardless of how much time passes.

There are a variety annotation parameters you can use to fine tune the behavior, which are described in
Appendix E.

@groovy.transform.ThreadInterrupt

Long running user scripts should periodically check the Thread.currentThread().isInterrupted() status and throw
InterruptedExceptions when an interrupt is detected. However, in practice scripts are almost never written this
way. An easy way to properly respect the interrupted flag is to use the @ThreadInterrupt annotation. When this
annotation is present, your script or class will automatically check the isInterrupted() flag and throw an
InterruptedException if the thread is interrupted. These checks occur at the start of every method call, at the
start of every closure, and within every iteration of a loop.

234

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Similar to @TimedInterrupt, there are some parameters you can use to tweak the behavior of
@ThreadInterrupt, which are detailed in Appendix E.

@groovy.transform.ConditionalInterrupt

The last annotation in the Interrupt family is @ConditionalInterrupt. This annotation allows you to specify your
own custom interrupt logic to be weaved into a class. Like the others, the interrupt check occurs at the start of
every method, the start of every closure, and each iteration of a loop.

The way you specify the conditional interrupt is within a closure annotation parameter. You can reference
any variable that is in scope within this closure. For scripts, general script variables are in scope, and for
classes instance field are in scope. Listing 9.22 shows a script that executes some work 1000 times or until 10
exceptions have been thrown, whichever comes sooner.

Listing 9.22: Using @ConditionalInterrupt to set an automatic error threshold.

@ConditionalInterrupt({ errorCount >= 10})
import groovy.transform.ConditionalInterrupt

errorCount = 0

1000.times {
 try {
 // do some work
 } catch (Throwable t) {
 errorCount++
 }
}

As with all the Interrupt annotation, there are a variety of parameters you can use to tweak the functionality,
as described in Appendix E.

9.2.7 And More Transformations
There are other transformations as well, but they are covered elsewhere in the book. @PackageScope has
already been discussed in Chapter X, and @Category and @Mixin are covered in Chapter X. See the Swing
chapter for a discussion of @Bindable, @Vetoable, and @ListenerList. @Newify is covered later in the DSL chapter,
and @Field is covered in Chapter X.

That's the end of our tour of the AST transformations that come with Groovy. You can go and use these
annotations today without knowing much more. But you don't have to be satisfied with just what Groovy gives
you. You're free to write your own annotation as well. The rest of this chapter delves into the task of
implementing your own annotations using AST transformations. We’re going to discuss local and global
transformations, writing your own AST, testing your work, and the known limitations.
 So why exactly would you want to write your own AST transformation? There are some good reasons to
use compile-time metaprogramming instead of runtime. If you want Java to see the dynamic changes you
make to a Groovy class, then use an AST transformation to write your changes directly into the produced class
file. The code generation transformations are good examples of doing this. If you need to avoid evaluating a
method parameter before a method is invoked, then use an AST Transform to avoid or wrap the call, as the
@Log transformation does. And as we'll see later, you may also find compile-time metaprogramming a good fit
for advanced or fine grained control over domain specific languages (DSLs). Lastly, if you want to do
something wildly different, like change the semantics of the language, then your best approach is an AST
Transform. Let's get into some deeper explanations and in-depth examples.

9.3 AST by Example: Local Transformations
All of the examples presented so far, such as @ToString and @Canonical, are known as "local
transformations". A local transformation relies on annotations to rewrite Groovy code. There are other forms of
transformations as well, however a local transformation has the advantage of being the easiest to write:
Groovy takes care of instantiating and invoking your transformation correctly, as well as making sure to avoid

235

Licensed to Charles Wise <ctwise@gmail.com>

calling it when it is not needed. Features written as local transformations modify the class generated by
Groovy and are activated by annotating either a method or a class.

Let's start our exploration with a simple initial example of a “Local Transformation”. To demonstrate a local
transformation, we are going to create a method annotation that marks a method as being a Java main
method. The transformation will automatically give the JVM class file a main method that can be a public entry
point to run the class, and that main method will contain a copy of the code defined in the greet() method.
Listing 9.23 contains the contents of Greeter.groovy, which shows how to use the annotation to annotate a
method.

Listing 9.23: Annotating a public method as a main(String[]) method in Greeter.groovy.
package examples

class Greeter {

 @Main
 def greet() {
 println "Hello from the greet() method!"
 }
}

After we are finished, we will have written a transformation that creates a main method on the Greeter class.
This main method will create an instance of the Greeter class and then invoke the greet() method on it. Our
example has a limitation: the enclosing class must have a parameterless constructor that creates the object in
a usable state. We have to have an instance in order to call an instance method, of course – and requiring a
parameterless constructor just keeps things simple. Of course, another alternative would be to integrate with a
Dependency Injection framework such as Guice… or to make the annotated method static instead. Listing 24
shows how we want the class to be invoked and run from Java, which relies on a public static void main(String[])
method existing in the class.

Listing 9.24: Expected output when using the @Main annotation
$ java -cp groovy-all-1.8.0.jar examples.Greeter
Hello from the greet() method!

From the sample usage we can glean some information about the objects involved. We need to define an
annotation called Main, and that must trigger the AST transformation to create the main method. There isn't
much more to it than that. Creating and invoking the object is all done internally by Groovy. Figure 9.1 shows
the classes involved with a local AST transformation.

[TODO: Use Standard Tools for this]

Figure 9.1: Classes involved with the @Main local AST transformations.

We're going to define the @Main annotation as a standard Java annotation; there is no Groovy magic involved.
The retention policy should be SOURCE, meaning that Java does not carry the presence of this annotation

236

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

through to the final class file. The target element type specifies what the annotation can be applied to – so in
this case, we’re going to use METHOD.
 The only thing special about this annotation definition is the use of the GroovyASTTransformationClass
annotation. This specifies the class which implements the logic of the AST transformation, and is how the
compiler binds the pieces together. The argument for GroovyASTTransformationClass is a list of the the classes
you want invoked when the annotation is found by the Groovy compiler. Listing 9.25 shows the definition of
an @Main annotation defined in Main.groovy.

Listing 9.25: Defining an Annotation to be used in a local AST transformation in Main.groovy

package examples

import org.codehaus.groovy.transform.GroovyASTTransformationClass
import java.lang.annotation.*

@Retention (RetentionPolicy.SOURCE)
@Target ([ElementType.METHOD])
@GroovyASTTransformationClass (classes=[examples.MainTransformation])
public @interface Main { }

Now the only piece left to implement is the MainTransformation class. This will be instantiated and invoked by
Groovy when your annotation is encountered. The ASTTransformation interface we have to implement has a
single method, called visit. Typically, you only need to use the ASTNode[] parameter. Element 0 contains the
annotation that triggered the transformation and element 1 contains the ASTNode that was annotated. The
skeleton of the @Main algorithm is simple:

 find the method that was annotated with @Main (in this case greet())

 get a reference to the enclosing class (Greeter)

 create a synthetic public static void main method and instantiate the Greeter instance within it

 invoke the greet() method

 add the new method onto the Greeter class.

The implementation is shown in listing 9.26.

Listing 9.26: Implementing the ASTTransformation for the @Main annotation.

package examples

import org.codehaus.groovy.control.CompilePhase
import org.codehaus.groovy.transform.*
import org.codehaus.groovy.ast.*
import org.codehaus.groovy.control.SourceUnit
import org.codehaus.groovy.ast.builder.AstBuilder
import org.objectweb.asm.Opcodes

@GroovyASTTransformation(phase = CompilePhase.INSTRUCTION_SELECTION)
public class MainTransformation implements ASTTransformation {

 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 // use guard clauses as a form of defensive programming.
 if (!astNodes) return
 if (!astNodes[0] || !astNodes[1]) return
 if (!(astNodes[0] instanceof AnnotationNode)) return
 if (astNodes[0].classNode?.name != Main.class.name) return
 if (!(astNodes[1] instanceof MethodNode)) return

 MethodNode annotatedMethod = astNodes[1]
 ClassNode declaringClass = annotatedMethod.declaringClass
 MethodNode mainMethod = makeMainMethod(annotatedMethod)
 declaringClass.addMethod(mainMethod)
 }

 MethodNode makeMainMethod(MethodNode source) {

237

Licensed to Charles Wise <ctwise@gmail.com>

 def className = source.declaringClass.name
 def methodName = source.name

 def phase = CompilePhase.INSTRUCTION_SELECTION
 def ast = new AstBuilder().buildFromString(phase, false, """
 package $source.declaringClass.packageName

 class $source.declaringClass.nameWithoutPackage {
 public static void main(String[] args) {
 new $className().$methodName()
 }
 }
 """)
 ast[1].methods.find { it.name == 'main' }
 }
}

There are several important things to note about this example. First, the class is annotated with
@GroovyASTTransformation, which tells the Groovy compiler the phase in which we want our transformation to
be invoked. This is a required annotation for a transformation and must be Semantic Analysis or later. It can't
be any earlier than that because your original annotation would not be compiled at that point. There is a bit of
a chicken and egg problem with trying to go earlier.

The makeMainMethod method is especially interesting, because it shows how to create ASTNode objects. You
can call constructors directly, and with an IDE this is often the easiest way to create the AST you need.
However, you're also free to use the AstBuilder object, which has an API to simplify the creation of AST nodes.
We’ll cover it in more depth later, but in this example we're creating a new method that is public, static, and
void, and has the appropriate String[] parameter. The body of the method instantiates an instance of our
annotated class and invokes the annotated method on it.

This code sample does some error checking on the input because in production code it is always best to
state your assumptions with a few assertions or guard clauses. It may not be obvious, but there are quite a
few assumptions made in this small example. For instance, what happens if a class has two methods
annotated with @Main? What happens if the class already has a main method defined? You should probably
report these as compile errors using SourceUnit.addError(SyntaxException) or SourceUnit.addException(Exception).
What happens if there is no parameterless constructor? As you can see, the edge cases of writing
transformations can sometimes be challenging. Writing an AST transformation forces you to sit and think
about just what could happen in the language, and you'll come away from the experience with a much better
understanding of Groovy.

When you write an AST transformation, you will need to decide which compiler phase to target. The choice
depends on what you're trying to do to the AST. A full description of the different compiler phases, as well as
some hints for choosing which phase to target, appears in Appendix F.
Local transformations require an annotation, which is not particularly limiting when you consider that Groovy
annotations are more flexible than Java annotations. They can appear in more places within a source file than
in Java, including import statements. When in doubt choose a local transformation because it is the easiest to
write. You can always refactor to a global transformation or hard-code a transformation into a classloader
later.

9.4 AST by Example: Global Transformations
Global transformations are similar to local transformations except that no annotation is required to wire-in a
visitor. Instead of having the end user specify when your transformation is applied, global transformations are
simply applied to every single source unit in the compilation. Global transformations can also be applied to any
phase in the compilation, even those before semantic analysis. With this flexibility comes a performance
penalty. All compilations will take longer, even if your transformation is not used. For this reason you should
use global transformations with reticence and consider implementing global transformations in Java for the
performance benefits.

Global transformations are specified in jar file metadata. To deploy a global transformation it must be
packaged into a jar file, and the META-INF metadata must specify the fully-qualified path of your
transformation class. Let's see this in action with an example. Imagine a transformation that adds a static

238

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

method to every class that returns the date and time of the compilation as a String. You could use it from a
script as in listing 9.27.

Listing 9.27: Example showing usage of getCompiledTime() on a class.

println 'script compiled at: ' + compiledTime
class MyClass { }
println 'script class compiled at: ' + MyClass.compiledTime

Remember, free standing scripts without classes still get generated into a Script subclass during complication,
so adding a getCompiledTime() method to every Class in the SourceUnit should be enough to accomplish this
feature. For this transformation we're going to add a public static method called "getCompiledTime" to every
class in the SourceUnit, and it will simply return the date of compilation as a String. In local transformations we
manipulated the supplied ASTNode[] to find the context in which we were invoked. For global transformations
this array holds little of interest. Instead we need to query the SourceUnit to find our source AST. It contains all
the classes that were defined in the file along with the script, which itself is a class of type Script.
 Listing 9.28 shows the implementation of a global transformation.

Listing 9.28: Adding a new method to a class using a global AST transformation.

package transforms.global

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.transform.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.ast.stmt.*
import java.lang.annotation.*
import org.codehaus.groovy.ast.builder.AstBuilder
import static org.objectweb.asm.Opcodes.*

@GroovyASTTransformation(phase=CompilePhase.CONVERSION)
public class CompiledAtASTTransformation implements ASTTransformation {

 private final static compileTime = new Date().toString()

 public void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 List classes = sourceUnit.ast?.classes
 classes.each { ClassNode clazz ->
 clazz.addMethod(makeMethod())
 }
 }

 MethodNode makeMethod() {

 def ast = new AstBuilder().buildFromSpec {
 method('getCompiledTime', ACC_PUBLIC | ACC_STATIC, String) {
 parameters {}
 exceptions {}
 block {
 returnStatement {
 constant(compileTime)
 }
 }
 annotations {}
 }
 }
 ast[0]
 }
}

For simplicity, the error checking was left out of the example; in a real transformation you’d apply similar
guard clauses to the ones we used in the @Main example. Now all we need to do is to tell the compiler about
our transformation so it can be applied appropriately.

239

Licensed to Charles Wise <ctwise@gmail.com>

The first requirement is that the transformation must be deployed in a jar file. The jar must contain your
AST transformation class and a special file named org.codehaus.groovy.transform.ASTTransformation in the
META-INF/services directory. The services directory is part of the jar file specification, and it contains
configuration files like the one we need to create. The configuration file is a simple text file, and each line is a
fully-qualified class name of an AST transformation. The file content for our transformation needs to contain
the line “transforms.global.CompiledAtASTTransformation”. The full contents of our jar file, including classes
and services, can be seen in figure 9.x. The jar must contain all our classes plus our new text file named
"org.codehaus.groovy.transform.ASTTransformation".

Figure 9.x: Contents of LoggingTransform.jar

The name of the jar file does not matter. As long as it is on the class path during compilation, the Groovy
compiler will read the configuration file and apply any transformations listed within it.
 The fact that the transformation must be in a jar file has an effect on your project structure. If you define
a global transformation and want to use it on your project, then the transformation jar must be built before
the compilation of the rest of your project. For most build tools and IDEs this means creating a separate
project for the transformation, possibly along with a separate build script.

ERROR REPORTING

Errors can be reported using the addError and addException methods on SourceUnit, however it is much better
to use an ErrorHandler, which can be retrieved from the SourceUnit with the getErrorHandler() method. This
object collects all of the error messages during the compile and has a broader API. There are methods to
add an error and fail the build, add an error but continue, add warnings and more. And please, for the sake
of your users, always add error messages that contain a good description of what happened, the conditions
that caused the error, and the line number where the error occurred. If your users really wanted cryptic or
bizarre compilation failures, they’d be using C++.

There is one more feature of global AST transformations which DSL writers find useful. You can specify a
file extension to which the Groovy compiler will automatically apply your transformation. For example,
Groovy++ applies a global transformation to all files ending in .gpp and .grunit. The mechanism to define a file
extension is similar to defining the transformation. Simply write the file extensions (without any wildcards) into
a file called "org.codehaus.groovy.source.Extensions" and include it in your jar next to the
"org.codehaus.groovy.transform.ASTTransformation file. Each line of the file should list a file extension without
any sort of wildcards attached. Your final jar file needs to contain both the ASTTransformation and the
extensions configuration file, plus any required .class files.

240

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

By now you've seen both local and global transformations and how they are implemented. You've also
heard the term abstract syntax tree several times, usually abbreviated as AST – but we haven’t really looked
at what it really means. It's time to take a deep dive into AST and the Groovy compiler.

9.5 Exploring AST
To understand how this neat stuff is implemented, we'll need at least a little knowledge of the Groovy
compiler. In this section we'll define and explain abstract syntax trees (ASTs), show some of the AST
visualization tools available for the platform, and cover the basics of the Groovy compiler.

An abstract syntax tree is a representation of your program in tree form. The tree has nodes which can
have leaves and branches, and there’s a single root node. Many compilers, not just Groovy, create an AST as a
step towards a compiled program. In general and simplified terms, running a Groovy script is a five step
process, as shown in figure 9.2.

Figure 9.2: The general process of running a Groovy script

First the Groovy compiler reads the source file and checks it for basic forms of validity. Then the source
code is converted into an AST, which is eventually converted to bytecode. Finally the JVM loads the class and
executes it. The AST is where all of the interesting language stuff happens. For example, adding getters and
setters for properties happens in AST and giving a script a main() method happens there. If you want to write a
language feature, then you will quite possibly be working with the AST. Let's see some simple AST examples to
help understand it better. Figure 9.3 shows the tree representing the expression "1 + 1", the simplest non-
trivial example.

Figure 9.3: An abstract syntax tree for the expression '1 + 1'

The Plus operation is a binary one: it has two operands, a left and a right. When this program is executed,
a plus operation is executed and (hopefully) the result is 2. Figure 9.4 shows a slightly more advanced
example: the expression "1 + 2 + 3".

241

Licensed to Charles Wise <ctwise@gmail.com>

Figure 9.4: The abstract syntax tree for the expression '1 + 2 + 3'

It is no accident that the branch "1 + 2" forms the left most branch. Addition is associated left to right, and
to compute the answer to "1 + 2 + 3" you must first compute "1 + 2". Only then will you be able to evaluate
"3 + 3" and see the result as 6. The final figure (figure 9.5) shows a more realistic example, the groovy script
"assert 1 + 1 == 2".

Figure 9.5: The abstract syntax tree for the expression 'assert 1 + 1 == 2'

In Groovy terms, this script creates an AssertStatement, which has a BooleanExpression, which in turn has
a BinaryExpression. It is this BinaryExpression which holds the "==" equals operator. Entire programs are
easily represented in tree form, and the tree can be analyzed, navigated, and transformed as part of the
compilation.

Each language (or compiler, really) has its own tree structure, and its up to the AST implementors to
determine the exact structure. In Groovy, each element of the tree is an instance of the class ASTNode, and
there is a subclass for everything in the language: BooleanExpression, ForStatement, WhileStatement,

242

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

ClosureExpression, to name but a few. There are over 75 subclasses of ASTNode, and having a good IDE to
help you navigate the class hierarchy is highly recommended. Just point your IDE to the Groovy sources and
you should be fine; some IDEs will automatically download them for you.

HOMOGENEOUS VS. HETEROGENEOUS AST

The term for having one subclass of ASTNode for each language element is "Heterogeneous AST". The tree is
populated with many different types, and analyzing the tree means reading the type of the tree leaves, not
just reading the leaf properties. The javac compiler from Oracle also uses a heterogeneous AST. The
advantage is that it's easy to store and retrieve node specific data from the AST leaves. Other languages use
a homogeneous AST, where every node in the tree is the same type. Imagine if all the objects in the entire
tree were of the concrete type ASTNode. The main advantage in this approach is that tree visitors are trivial
to write, but static analysis is more difficult. The book "Language Implementation Patterns" by Terence Parr
offers excellent in-depth coverage of ASTs.

9.5.1 Tools of the Trade
At this point you no doubt have many questions about Groovy, ASTs, and class files. Groovy compiles to Java
class files, so if you want to analyze bytecode of a .class file you can always use javap from the JDK if you
really want to. However, that’s a very low level approach, which can be time-consuming and frustrating –
particularly if you’re trying to examine code of any significant size. Luckily, there are many tools at your
disposal if you're interested in digging a little deeper into how things work. If you plan on working with
compile-time meta-programming then each of the tools listed here will be an invaluable asset in your
toolbox.Groovy Console's AST Browser and Source Viewer
GroovyConsole, which is included in the Groovy installation, contains a tool that lets you view and analyze the
AST of a Groovy script. Once you have GroovyConsole open, you can analyze any script using the menu item
Script-> View AST or the Ctrl + T shortcut (Cmd + T on Macs). The window that opens is called the AST
Browser. The AST Browser has three parts: the tree view, the property table, and the decompiled source view,
as shown in figure 9.6.

Figure 9.6: Groovy's standard AST Browser

The tree view displays the abstract syntax tree of your script using a standard tree widget. You can expand
and navigate nodes, and otherwise explore the AST. As you click a tree node, the property table on the right

243

Licensed to Charles Wise <ctwise@gmail.com>

lists all of the properties of the node, and the main GroovyConsole window highlights the source code
corresponding to that AST node. The decompiled source view, along the bottom of the window, displays the
AST rendered as Groovy source code. The generated source is perhaps the easiest way to understand what the
AST contains because it is much easier to read source code than a tree component. Consider again our Person
class annotated with @ToString, repeated again in listing 9.35.

Listing 9.35: A simple person class annotated with @ToString

@groovy.transform.ToString
class Person {
 String firstName, lastName
}

Within the AST Browser, if you change the Phase drop down list to Canonicalization, then the decompiled
source pane renders the Person class as along with the toString() implementation, shown in listing 9.36.

Listing 9.36: What the Groovy compiler sees for a @ToString annotated Person.

public class Person extends java.lang.Object {
 private java.lang.String firstName
 private java.lang.String lastName
 private boolean $print$names

 public java.lang.String toString() {
 java.lang.Object _result = new java.lang.StringBuffer()
 _result.append('Person')
 _result.append('(')
 if ($print$names) {
 _result.append('firstName')
 _result.append(':')
 }

 _result.append(org.codehaus.groovy.runtime.InvokerHelper.toString(
 firstName))
 _result.append(', ')
 if ($print$names) {
 _result.append('lastName')
 _result.append(':')
 }

 _result.append(org.codehaus.groovy.runtime.InvokerHelper.toString(
 lastName))
 _result.append(')')
 return _result.toString()
 }
}

As you can see, the @ToString annotation adds a field to our class called "$print$names" and the toString()
method reads the fields and creates a toString implementation. The decompiled source viewer is one of the
best features to learn and understand how Groovy works. Even if you're not attempting to write AST
transformations, it can be a real learning experience to see how different pieces of Groovy source get
transformed into the final output. Other Tools
The last important tools are a good decompiler and debugger. A decompiler will reverse engineer the source
code out of a class file, and the results can be quite amazing. Any Java decompiler should work perfectly well
with Groovy, and there are many open source and free ones to choose from. My favorite is the JD-GUI, which
is free for non-commercial use but is not open source. Also a good IDE and debugger aide greatly when
exploring the large ASTNode class hierarchy. When there are over 75 subclasses to navigate, it is important to
be able to quickly find the source code you need and view the current state of instances. There are several
open source and free options available for IDEs with great Groovy support.

We've seen a lot already: local transformations, global transformations, and some useful tools. Through the
examples we've seen a few approaches to writing ASTs, such as the AstBuilder. Those really were just
examples though – now we’ll look at the topic in a lot more detail.

244

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

9.6 AST by Example: Creating ASTs
This section examines creating ASTs in more depth, first by building an AST manually, and then using the
three different approaches offered by AstBuilder. It's hard to make a general comparison between the options...
each approach has advantages and disadvantages and should be used in different scenarios. The next four
examples all produce the same AST; a return statement that returns a new instance of java.util.Date. This is the
same thing as the source code "return new Date()", except that it is the AST and not actual source. The examples
start at the lowest level possible, working directly with ASTNode instances, and ascend towards a higher level,
where you can write code that is automatically converted into an AST. Let's see it in action.

9.6.1 By Hand
The most basic approach is to directly manipulate and construct the concrete classes. The main disadvantages
are verbosity, complexity, and a lack of abstraction. As you can see in listing 9.37, the code to produce just a
return statement can become quite large.

Listing 9.37: Creating AST objects by hand.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.stmt.*
import org.codehaus.groovy.ast.expr.*

new ReturnStatement(
 new ConstructorCallExpression(
 ClassHelper.make(Date),
 ArgumentListExpression.EMPTY_ARGUMENTS
)
)

For simple problems that approach suffices. An IDE gives you code completion and some type checking, and
should allow you to navigate to the source code of the ASTNode class hierarchy, which helps a lot with the
learning process. Also, there are no limitations on the AST you can produce. Any tree whatsoever can be
created by directly using the classes like this - something which isn’t the case for some of the other
approaches. Also, it is quite easy to merge in information from the calling context. For instance, if you wanted
to write a string value you know at compile time (as in with our CompiledAtASTTransformation example), then it's
just a matter of passing it to the correct constructor as an argument.

There are some serious disadvantages to this approach, and for larger, more real-world examples this
technique becomes a burden. First, the code to create AST quickly becomes large and doesn't really resemble
the source code it's trying to model. For big examples it is difficult to read the source code you write and
mentally map it into the code it is meant to produce. Second, you need to manage things like VariableScope
and tying the nodes together yourself. For example, many tasks involve two steps, such as creating a
MethodNode and then adding it to the parent class. To be effective you'll need to learn a large part of the API.
Lastly, this approach offers no abstraction layer over the raw AST.

The lack of abstraction can be seen in the example. For example, a ConstructorCallExpression accepts a
ClassNode and an Expression as arguments (they are used as the constructor type and arguments). To write
this AST by hand you need to know that an empty argument list is ArgumentListExpression.EMPTY_ARGUMENTS
and not null. Also, you need to know that the best type to use for the constructor arguments is an
ArgumentListExpression object. You can use other types but they probably aren't what you intend. Lastly and
most importantly, a ClassNode should be made by calling the ClassHelper.make() method.

CREATE CLASSNODES WITH CLASSHELPER

The ClassHelper class contains logic for creating and caching ClassNodes correctly, which is not exactly a
simple process. If you need a ClassNode object then always create it through ClassHelper passing either a
Class reference or a String representing a fully qualified class name. The String parameter is useful when you
do not want a compile time dependency on the target class.

245

Licensed to Charles Wise <ctwise@gmail.com>

These are all implementation details of the ASTNode classes. A good abstraction should allow you to create
ASTNode types without knowing all of this low level information. Luckily, Groovy provides the AstBuilder.

9.6.2 AstBuilder.buildFromSpec
You've already seen the buildFromSpec option in a previous section. This approach provides a lighter DSL over
the ASTNode class hierarchy, and you can see it is slightly cleaner than the By Hand example of producing
"return new Date()" (listing 9.38).

Listing 9.38: Creating AST objects using buildFromSpec

import org.codehaus.groovy.ast.builder.AstBuilder

def ast = new AstBuilder().buildFromSpec {
 returnStatement {
 constructorCall(Date) {
 argumentList {}
 }
 }
}

assert ast[0] instanceof ReturnStatement

The AstBuilder is a convenient shortcut for writing shorter, more concise AST. A shorthand notation exists for
every ASTNode type, and much of the API is simplified. For instance, you can work directly with Class objects
instead of ClassNode objects, and scopes are largely handled for you. And similar to the “by hand” approach,
there are no limitations on the AST you create and it is easy to merge in code and parameters from the
surrounding context. The best documentation for buildFromSpec is the unit test, which shows the correct usage
of every single node type.

AstBuilder.buildFromSpec helps eliminate verbosity and some complexity. It almost matches the flexibility of
calling the constructors by hand, suffering only from the fact that passing and referencing Class literals means
that class must be present at compile time (a limitation the manual approach does not share). The
buildFromSpec API currently does not allow you to use ClassHelper in all cases, class literals are sometimes
required. However, the main disadvantage is that the DSL offers little in terms of abstraction. To effectively
write new AST you'll still need to know a lot about what AST you want to produce. You don't need to worry
about scopes, but you will need to know that a ReturnStatement requires an Expression and a
ConstructorCallExpression requires an ArgumentListExpression. The next two alternatives offer better
abstraction but with some loss in flexibility.

9.6.3 AstBuilder.buildFromString
The AstBuilder object has a buildFromString method that converts Groovy source code into the corresponding
AST. By default it compiles the code to the Class Generation phase and returns only the AST for the enclosed
script, not any classes defined within the script. Of course, both of these behaviors can be changed by passing
different arguments to the method. This approach allows you to create an AST without knowing anything about
the underlying object hierarchy: at this point we have a genuine abstraction over the AST classes. Listing 9.39
shows the buildFromString approach in action.

Listing 9.39: Creating AST objects using buildFromString

def ast = new AstBuilder().buildFromString('new Date()')
assert ast[0] instanceof BlockStatement
assert ast[0].statements[0] instanceof ReturnStatement

The only knowledge required is that a script is a BlockStatement and that BlockStatement has a ReturnStatement in
its list. As you can see, this is a terse mechanism for AST creation, and the intent of the produced code is
clear. This is the preferred approach when accepting and compiling user input, because it can usually be
converted into a String.

The main limitation is flexibility. How exactly do you merge in code or variables from the calling context?
How would we implement the getCompiledTime method? We would need to resort to String concatenation, and

246

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

for more advanced examples it might be too difficult to manage. Also, what happens when you need access to
the ASTNode implementation such as VariableScope objects? This is an abstraction over ASTNodes that doesn't
easily allow you to dive deeper into the code when the need arises. Finally, synthesizing some types of
structural nodes is difficult. Listing 9.40 shows how hard it is to generate a free-standing method, such as the
getCompiledTime() method from the previous section.

Can we add a frown face or something to this example?

Listing 9.40: Trying to mix dynamic code with buildFromString

import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.control.CompilePhase
import org.codehaus.groovy.ast.*

def ast = new AstBuilder().buildFromString(
 CompilePhase.CLASS_GENERATION,
 false,
 ' static String getCompiledTime() { "' + new Date().toString() + '" } '
)

assert ast[1] instanceof ClassNode
def method = ast[1].methods.find { it.name == 'getCompiledTime' }
assert method instanceof MethodNode

That's a little complicated! You can use the buildFromString method for this type of task, but it’s fraught with
difficulties. Pushing compile time data, such as the current date, into the AST requires String concatenation
and escaping, and getting the MethodNode requires searching through all the methods defined on the class and
pulling it out by name. The buildFromString method and the next approach are great for creating method bodies,
expressions, or statements. But if you're dealing with structure like ClassNodes, MethodNodes, or FieldNodes,
then it is easier to use buildFromSpec or create the nodes by hand.

9.6.4 AstBuilder.buildFromCode
The last approach is possibly the most interesting. Using the buildFromCode method you can specify your
source code directly as source code, and the builder turns it into AST. This is similar to the buildFromString
approach exception that the input is not a String, it is just code.

Listing 9.41: Creating AST objects using buildFromCode

def ast = new AstBuilder().buildFromCode {
 new Date()
}
assert ast[0].statements[0] instanceof ReturnStatement

This is quite simple, and it reads like code because it is code! The advantage is that the Groovy compiler and
IDEs will syntax highlight correctly, do code completion, and generally validate your input. But its strength is
also its weakness. The main disadvantage is that the Groovy compiler will validate your input. For instance,
you cannot declare a new class within a closure body, so declaring a new class (or method) using
buildFromCode is not allowed. Also, there is no way to bind in data from the enclosing context. The "new Date()"
expression here is only executed at runtime. The scope at compile time is different from the scope at runtime,
so any variables in scope at compile time will not be available when the code is executed. There is no way to
write the "getCompiledTime()" method using this approach. When it’s appropriate, this is the most elegant
solution, and offers the best abstraction level – but there’s a price to pay in flexibility.

There are many different scenarios where ASTs can be useful, and there are several APIs to help you build
them. There is no one right way to create an AST. In general, my advice is the same for most things in life:
start simple, stay simple. If you think the AstBuilder simplifies your implementation, then by all means use it.
But if you find yourself fighting against it, or spending too much time figuring out how it works, then just go
the simple route and write the AST by hand. There is a lot to learn with compile-time metaprogramming, and
your time is probably better spent writing a few more tests than trimming down your AST generation by a few
more lines of code. That brings us to our next topic: testing.

247

Licensed to Charles Wise <ctwise@gmail.com>

9.7 Testing AST Transformations
Test, test, test. It is hard to over-test an AST transformation because source code can come in a dizzying
array of variations, each exposing unique edge cases. Also, during upgrades between Groovy versions you
need a good regression test. Luckily, transformations are easy to test. Local transformations are the most
testable. Typically, you create an inner class within your test case that contains your annotation and then test
against that class. Consider the test for @WithReadLock in listing 9.48.

Listing 9.48: Possible unit test for the @WithReadLock transformation.

class ReadWriteLockTest extends GroovyTestCase

 private static class MyClass {
 @groovy.transform.WithReadLock
 public void readerMethod1() { }
 }

 public void testLockFieldDefaultsForReadLock() {
 def field = MyClass.getDeclaredField('$reentrantlock')
 assert Modifier.isPrivate(field.modifiers)
 assert !Modifier.isTransient(field.modifiers)
 assert Modifier.isFinal(field.modifiers)
 assert !Modifier.isStatic(field.modifiers)
 assert field.type == ReentrantReadWriteLock
 }
}

This test case asserts that WithReadLock on a method creates a private final instance field called
"$reentrantlock" with type ReentrantReadWriteLock. This is a simple and readable approach, and it works
especially well within an IDE where the class can be verified and easily seen in searches. But there are two
disadvantages. One, with a lot of tests come a lot of inner classes, and this can clutter up your namespace.
Your build will create many, many extra classes that don’t have meaning outside of a specific test method. And
two, there is no way to debug the AST transformation in an IDE because by the time the test runs the class is
already compiled. To work around these issues you can use a GroovyClassLoader to compile the class. The same
test is presented in listing 9.49 but this time using a GroovyClassLoader.

Listing 9.49: Improved unit test for the @WithReadLock transformation.

class ReadWriteLockTest extends GroovyTestCase {

 public void testLockFieldDefaultsForReadLock() {
 def tester = new GroovyClassLoader().parseClass('''
 class MyClass {
 @groovy.transform.WithReadLock
 public void readerMethod1() { }
 }
 ''')

 def field = tester.getDeclaredField('$reentrantlock')
 assert Modifier.isPrivate(field.modifiers)
 assert !Modifier.isTransient(field.modifiers)
 assert Modifier.isFinal(field.modifiers)
 assert !Modifier.isStatic(field.modifiers)
 assert field.type == ReentrantReadWriteLock
 }
}

With this approach debugger breakpoints should be hit when compiling MyClass, making development and
troubleshooting much easier. Also, all class definitions are local to the test method, so the test is not polluted
with dozens of private classes and there are never naming conflicts. However, the class definition within a
String makes it more difficult to find usages of your annotation. If you need to create instances or run a script
as setup, you may want to use GroovyShell instead of GroovyClassLoader, as shown in listing 9.50.

248

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Listing 9.50: An AST transformation unit test based on GroovyShell.

class ReadWriteLockTest extends GroovyTestCase {

 public void testLockFieldDefaultsForReadLock() {
 def tester = new GroovyShell().evaluate('''
 class MyClass {
 @groovy.transform.WithReadLock
 public void readerMethod1() { }
 }
 new MyClass()
 ''')

 def field = tester.getClass().getDeclaredField('$reentrantlock')
 assert Modifier.isPrivate(field.modifiers)
 // and more assertions...
 }
}

Notice how this script returns a new instance of MyClass. GroovyClassLoader and GroovyShell are similar, and
which you use is largely a matter of preference. One tip: try to leave your assertions out of the String script.
The more you can leave out of the String the better, because tools will have a much easier time understanding
and supporting your code.

Global transformations are a little harder to test because they must generally be packaged and on the
classpath before your test is compiled. To make testing global transformations easier, Groovy contains a class
created specifically for testing called TransformTestHelper. You configure the object with a transformation and a
compiler phase in which the transform should run, and then ask it to compile a File or String into a class you
can test against. Listing 9.51 shows an example of TransformTestHelper.

Listing 9.51: Using TransformTestHelper for testing transformations.

def transform = new CompiledAtASTTransformation()
def phase = CompilePhase.CONVERSION
def helper = new TransformTestHelper(transform, phase)
def clazz = helper.parse(' class MyClass {} ')
assert clazz.getCompiledTime() != null

Between GroovyShell, GroovyClassLoader, and TransformTestHelper, there are quite a few options for testing. The
hard part of testing is not overall test coverage, but covering the edge cases. For instance, do your tests cover
code that is written as a script and code that is written as a class? How about a mixture of both? Does it cover
inner classes and anonymous classes? Have you considered what happens with internal naming conflicts? How
does it run when other transformations are present? Properly testing transformations is a fun challenge. There
are many opportunities to learn from your own experience but also the experience of others. The Groovy
source code contains many unit tests for transformations. Doing a little code archeology now is time well
spent, especially if it avoids a future late-night support call.

9.8 Limitations
Congratulations, you have almost finished your training in compile-time metaprogramming. Consider

yourself armed and dangerous, both to others and yourself. It may be tempting to write a new language
feature, but be careful. There are limitations and drawbacks to mucking about with the Groovy compiler. This
section contains the bare minimum set of limitations you should know before embarking on your journey.
It's Early Binding

Groovy's power comes from late binding. Methods can be added to classes at runtime. Method overloading
is resolved at runtime. Missing method exceptions can be caught and handled at runtime. In contrast, all the
AST transformation work occurs at compile time, making it less flexible than dynamic metaprogramming. It
can be very useful, but in general runs against the spirit of Groovy. If you can find a runtime solution then use
it. The best answer to the question "When should I use compile-time metaprogramming?" is "only when you
have to".
It's Fragile

249

Licensed to Charles Wise <ctwise@gmail.com>

The syntax of Groovy and the GDK classes (anything in the groovy.* package) all form a public contract
that is guaranteed to be backwards compatible between releases. You may have noticed from the import
statements in the code examples that most the AST related code is in org.codehaus.groovy packages. The
backwards compatibility promises are weaker here. As new features are added to the language, there may be
instances where breaking changes are introduced to the AST node hierarchy. For instance, Groovy 1.7
contained a class called RegExExpression that is entirely missing in the 1.8 branch. Some open source projects
(notably Spock) are complex enough to require a different build for each version of Groovy they support.
It Adds Complexity

When you use compile-time metaprogramming you are basically adding a feature to the language. If you
add too many features, your users will drown in complexity. If you provide too many similar features, users be
confused about the best way to use an object. Language designers talk about orthogonality and composition:
features should be independent of one another and be able to be used together without conflicts. Complexity
lies at the intersection of overlapping language features. Consider how Java generics, autoboxing, and
primitive types intersect. There are many edge cases where unboxing a Boolean into a boolean throws a
NullPointerException. Or a List can hold all objects except primitives. When several features come together
edge cases occur, and sharp edges are dangerous. Be sparing in your cleverness.
Its Syntax is Fixed

AST transformations can change the meaning, or semantics, of code. For instance, Spock repurposes the
logical OR operator (|) and the break/continue label to have a special meaning in test specifications. However,
Spock does not introduce any new syntax. The syntax of Groovy is fixed by the parser. Invalid Groovy will not
parse, and AST transformations will not be invoked for it. You can change the semantics of the language, but
you cannot change the syntax… except that you actually can if you are determined enough. Under the covers,
Groovy uses ANTLR as a parser, and it’s possible to write an ANTLR plugin for Groovy. That's a topic that
deserves its own book, but information about how to do it can be found online.
It's Not Typed

Most interesting AST transformations rely on knowing the type of a variable. To Groovy, almost everything
is an Object. It is surprisingly difficult to determine the type of an instance and impossible to determine at
compile time exactly where a method call will dispatch. For instance, metaClass additions are rarely known at
compile time yet effect method dispatch. You can try to keep track of this information yourself, but as soon as
a closure is declared, or a second thread is run, then the variable may no longer be what you think it is. This is
acceptable for some tools like IDE integration or static analysis that read and make suggestions based on AST.
But if you're rewriting AST and generating new bytecode then guessing the type of an instance and getting it
wrong can have disastrous effects on a program, especially if it fails to compile because of your mistake. Be
careful with what you think you know about types. It's easy to make a guess, and it's easy to be wrong.
It's Unhygienic
It is possible, using an AST transformation, to introduce a field, class, method, or variable that conflicts with
an existing one. For instance, if you add a method called getCompiledTime(), you need to consider the possibility
that the target class already has that method. The term for a compile-time metaprogramming system that
allows naming conflicts is "unhygienic". It's not really a term of derision, but it is obvious that the term was
coined by users with a hygienic language. It's not an insurmountable problem, and you should carefully select
names for synthetic variables and private fields and methods. The $ symbol is typically used in the identifier
name because this symbol is rarely used in user-written code. For example, @WithReadLock generates a field
called "$reentrantlock". You can still have a conflict, but it should be rare. Choose your names carefully.

And with that the compile-time metaprogramming training is complete. It's time to go out into the world

and write some interesting code.

9.9 Next Steps
If you have an idea you want to implement, then the next steps are fairly obvious. Take a look at the
templates in the Groovy source distribution, set up a project, and write some code. But before going too far I
recommend talking about the idea on the Groovy mailing list. The community takes an active role helping

250

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

people refine their ideas and make decisions about implementation. You may find you're talked into using
runtime meta-programming instead.

If you don't have a specific idea but want to learn more, then writing a static analysis rule for CodeNarc is
an excellent way to get started. It is a small and well-contained project, the community is friendly, and you
should be able to make a contribution within an hour or two. There is a "create-rule" script that comes with the
project that creates all the needed files and unit test templates for new rules. CodeNarc is based on AST
visitors, and the various types of visitors are fully described in Appendix G.

For bookworms who prefer reading, there are other resources available. One of the authors keeps an active
blog that includes several articles related to Groovy and compile-time metaprogramming. But other languages
are worth investigating as well. Java, C#, Clojure, and JRuby also expose their ASTs to programmers or allow
you to work directly with expression trees, and their documentation is easily found with a search engine. Of
the languages listed, Clojure has the best support with a feature called Macros, which is arguably a more
advanced and powerful form of the AST transformations described in this chapter. For an overview of language
implementation in general, I highly recommend "Language Implementation Patterns" by Terence Parr. Finally,
for an overview and classic reference for compile-time metaprogramming in Lisp, read Paul Graham's "On Lisp"
which is freely available for download on the Internet.

9.10 Summary
Compile-time metaprogramming is a new, exciting, and growing area of the Groovy ecosystem. Many of the
new Groovy features use compile-time metaprogramming to eliminate redundant or verbose code. Use
annotations like @Canonical, @Lazy, and @InheritConstructors to remove this unnecessary code from your source
files yet still have it visible from Java. Use @Delegate, @Immutable, and @Singleton for an easy path to correct
object design. The annotations @Log, @Commons, @Log4j, and @Slf4j streamline declaring and using loggers.
Declarative concurrency constructs like @Synchronized clean up multithreaded code considerably, @AutoClone
and @AutoExternalize help make externalizing and cloning simple, and scripting has become much safer with
@TimedInterrupt, @ThreadInterrupt, and @ConditionalInterrupt.

Writing your own transformation involves either a local AST transformation, which manipulates the AST
when a certain annotation is discovered, or a global AST transformation, which is run for every compiled class.
If your transformation needs to know information about the tree, then you'll probably need a code visitor to
walk the entire abstract syntax tree, visiting nodes as they are found in the source code. If neither a local or
global transformation is suitable for your scenario then you can always weave a visitor directly into a
classloader without too much effort.

Groovy contains several alternatives for generating ASTs. Writing them by hand using the class
constructors is always an option, but it’s worth learning the AstBuilder API as well. The buildFromSpec method
offers a useful DSL over the constructors; buildFromString offers a useful abstraction over all the classes, and
buildFromCode provides an intuitive and elegant way to convert source into an AST.

There are several standard tools for working with ASTs. The javap application displays the raw .class file
output. Groovy Console's AST Browser is much more advanced, and shows the AST in tree form and also
generated source form. A good Java decompiler is always a useful view of transformation results too, but
perhaps the best tool is a large suite of unit tests. GroovyClassLoader, GroovyShell, and TransformTestHelper can
all be used to test drive (or regression test) AST transformations.

Compile-time metaprogramming is not suitable for every scenario. In general, prefer late binding and
flexibility. But there are concrete advantages: Java integration, easy embedded language development,
delayed evaluation, and the ability to change the semantics of the language. AST transformations are opening
a whole new world of what's possible with Groovy. Hopefully, after reading this chapter you are better
prepared to go into that world and see what new and useful tools you can create.

251

Licensed to Charles Wise <ctwise@gmail.com>

17
Concurrent Groovy with GPars

The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities.

Edsger Dijkstra, How do we tell truths that might hurt?

This chapter covers

 How Groovy makes concurrency more approachable

 Parallel collections, fork/join, map/filter/reduce, dataflow, actors, and safe agents

 Putting these concepts to work with the GPars library

We’re going to start our exploration with some general considerations about concurrency followed by moving
from the simple to the more advanced usages of concurrency. Along the way, we’ll visit waypoints that show
various means of coordinating concurrent tasks: from predefined coordination to implicit and explicit control.
We’ll move on to investigate how to safeguard objects in a concurrent environment and wrap the topic up with
a final showcase. But let's start by considering why we might want to enter this challenging landscape in the
first place.

Public wisdom has it that we will no longer see the major speed-ups in processor cycle times that we all got
so used to. In the past, the safest way to improve software performance was to wait for 18 months, get a new
computer, and enjoy the doubled speed.

These days, it’s more likely that you’ll see a slight decrease in processor speed but with the benefit of
having twice as many processing units (cores). Our programs must now be prepared to take advantage of the
new direction of hardware evolution.

This could mean putting the burden of managing concurrency on the application programmer. But
considering the huge amount of difficulties that come with classical approaches to concurrency this doesn’t
seem like a wise choice.

An alternative approach is to put the burden on framework designers so that we can run our code in a
managed environment that handles concurrency for us. The Java Servlet framework may serve as an example:
the Servlet programmer – and this includes all Servlet-based technologies like JSP, GSP, JSF, Wicket, and else
- doesn’t care much about concurrency but the webserver executes the application for many requests in
parallel. The programmer only has to obey some restrictions like not spawning threads on his own and only
sharing mutable state in dedicated scopes. Admittedly, some projects break these restrictions since they are
not technically enforced, but by and large this has been a very successful model.

252

Licensed to Charles Wise <ctwise@gmail.com>

The concurrency concepts we will look at in this chapter follow the successful Servlet approach, in that they
introduce an elevated level of abstraction. This allows the application programmer to focus on the task at hand
and leave the low-level concurrency details to the framework.

17.1 Concurrency for the rest of us
Your job as an application programmer is to get the sequential parts of your code right, including their test
cases. When concurrency is required, you can choose one of the tools explained in this chapter, passing it you
sequential code for execution. Understanding the concepts is a prerequisite for choosing the most appropriate
one for the situation. You don’t have to understand the inner workings of each implementation but you need to
understand its approach and constraints.

17.1.1 Concurrent != parallel
A full exposition of concurrency is beyond the scope of this chapter, given that there are whole books devoted
to the topic. Also, it is not our job to explain the concurrency support provided by the Java language and the
java.util.concurrent package in the Java standard library. We’ll approach the topic from a Groovy point
of view and assume that you are at least somewhat familiar with the Java basics. The Groovy view starts with
the observation that concurrency is more than parallelism.

NOTE

Concurrency allows better utilization of resources, higher throughput, and faster response times – but the
real value is in the coherence of the programming model. Each concurrent task fulfils one single coherent
purpose. Multiple such tasks may run sequentially, in intermixed time slices or in parallel.

Let’s start with resource utilization. The obvious resource that you want to use efficiently is your processing
capacity: spreading calculations over many processing cores to get the results faster. Note that this only
makes sense if those cores would be otherwise idle! With a dual-core machine you are often better off leaving
the second core to the operating system to run its other processes. Prominent examples of “other processes”
are your database and web server.

Spreading computation over many cores, processors, or even remote machines is what we call parallelism.
Concurrency goes beyond parallelism, though. It allows asynchronous access to the database, file system,
external devices, the network, and foreign processes in general, no matter whether they are managed by the
operating system or other applications. If you are into service-oriented architectures (SOA), you can think of
all of these resources as services that are typically slow. If we were to work in a synchronous fashion – waiting
for each service to complete before progressing to the next step – we would not exploit other resources to
their maximum, especially not our processing capacity.

There is one special service that is particularly slow but has very low tolerance for latency: the user. His
input is notoriously slow but as soon as he submits it, he expects a response immediately. A responsive user
interface may be the best example of concurrency. Even on a single-core machine, the user legitimately
expects that he can move the mouse, enter text, click a button, and so on while the application is fetching web
pages or sending them to a printer. This may well make the overall task marginally slower as the processor
spends time switching context between background threads and the user interface – but the experience is a
much more pleasant one for the user.

All this may sound as if asynchronous resource consumption is the only goal of concurrency. It is the most
obvious one but certainly not the only one, and possibly not even the most important one. At its heart,
concurrency is a great enabler for a coherent programming model.

Imagine writing a graphical application from scratch. You wouldn’t want to intermix your application code
with checking every tenth of a second whether the mouse has moved and the cursor on the UI needs
repainting. Nor would you want to repeatedly check for garbage collection from within your application.
Luckily, Java comes with a concurrent solution that takes care of updating the UI and running the garbage
collector. The main point here is that this allows each piece of the system – your application code, the UI
painter, and the garbage collector – to focus on its own responsibility while remaining blissfully unaware of the
others.

253

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

CONCURRENCY FOR SIMPLER CODE

Concurrency enables us to write simple, small, coherent actions that implement exactly one task. Simple
actions like these are easier to test, easier to maintain, and easier to implement in the first place.

These benefits do not come for free. There is controlling effort for starting and stopping each task, mutually
exclusive assignment of resources (scheduling), safeguarding shared resources, and coordination of control
when, for example, one task consumes what a second task has produced.

Far too many developers are obsessed with performance improvements, overlooking the other benefits that
a well-designed concurrent programming model yields.

JAVA’S BUILT-IN CAPABILITIES
Java has supported concurrency at the language and library level right from the first version. Starting a new
Thread and waiting for its completion is simple. Groovy sprinkles a little sugar on top with the GDK so that
you can start a new Thread more easily by using the start method with a closure argument.

def thread = Thread.start { println "I'm in a new thread" }
thread.join()

The introduction of the java.util.concurrent package brought many improvements, including thread

pools, the executor framework, and many datatypes with support for concurrent access. If you haven’t looked
at this package yet, now is the time to do so. You will find excellent tutorials on the web as well as very good
books like Java Concurrency in Practice (B. Götz et al., 2006) and Concurrent Programming in Java (D. Lea,
1999).

Reading these books can also be a scary experience, though. The authors walk through various examples
of seemingly simple code and explain how it fails when called concurrently. I guess this is the reason why
many developers shy away from concurrency. They don’t want to appear incompetent and leave those fields to
the experts that can manage this black art. Well, we have to overcome this fear somehow, and the concepts
introduced in this chapter are targeted at giving you an enjoyable pathway into concurrency.

The first notable difference is that we are rarely going to use the concept of a thread. Instead, we’ll think in
terms of tasks. A task is a piece of sequential code that may run concurrently with other tasks. This may
involve thread management and pooling under the covers but you don’t have to care.

We will free you from dealing with Java language features such as volatile and synchronized. They
require some advanced knowledge of the Java memory and threading model and are all too easy to get wrong.
Likewise, there is no more need for wait/notify constructions for thread coordination, which is an infamous
source of errors. Since we don’t expose threads, we can offer less error-prone task coordination mechanics.

17.1.2 Introducing new concepts
In order to make concurrent programming easier, we will introduce concepts that are new in the sense that
they are not yet widely known, even though most of them were developed a long time ago and have
implementations in other languages as well. They cover three main areas:

 Starting and stopping concurrent tasks

 Coordinating concurrent tasks

 Controlling access to shared mutual state

Parallel collections with fork/join and map/filter/reduce are concepts that hide the work of starting and
stopping concurrent tasks from the programmer and coordinate these tasks in a predefined manner.

Actors create a frame in that tasks can run without interference but they start, stop, and coordinate
explicitly.

Dataflow variables, operators, and streams coordinate concurrent tasks implicitly such that downstream
data consumers automatically wait for data providers.

If your tasks need to access shared mutual state, you can delegate the coordination of concurrent state
changes to an agent.

254

Licensed to Charles Wise <ctwise@gmail.com>

As you will see, we will use a lot of Groovy features to make the above possible, particularly closures,
meta-programming, and AST transformations. The real heavy lifting is done by the implementation in the
GPars library.

USING GPARS
At the time of writing, GPars is still an external library. By the time you read this, it may have become part of
the Groovy standard library. The package structure is already prepared for that move so that you can run the
code presented here without modification.

The simplest way to use the GPars library is to just prefix your code with

@Grab('org.codehaus.gpars:gpars:0.10')
<some import statement here>

This statement will transparently download and cache the specified version of the library (0.10 as of now)

and its dependencies. If you would rather like to add GPars as a dependency to your Gradle or Maven build or
download its jars manually, please refer to http://gpars.codehaus.org, which is also the place to find additional
information including many demos and the comprehensive documentation.

Now we’ve set the stage, let’s visit a very common application of concurrency: processing all the items in a
collection concurrently.

17.2 Concurrent collection processing
Processing collections is particularly auspicious when each item in the collection can be processed
independently. This situation also lends itself naturally into processing the items concurrently.

Groovy’s object iteration methods (each, collect, find, and else) all take a closure argument that is
responsible for processing a single item. Let's call such closures tasks. Naturally, GPars builds on this concept
with the capability to process these tasks concurrently in a fork/join manner.

FOR CLARIFICATION

In this chapter, the term "fork/join" always indicates that several items are each processed in their own
"forked" task and all tasks are immediately "joined" after execution. Please be aware that there the same
term may have different meanings in other contexts.

Listing 17.1 uses the fork/join approach to concurrently calculate the squares of a given list of numbers by
using the collectParallel method that the withPool method adds through meta-programming to a list of
numbers. This method works exactly like Groovy’s collect method, beside that we collect concurrently now.

Listing 17.1 Calculating a list of squares concurrently
@Grab('org.codehaus.gpars:gpars:0.10')
import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

withPool {
 assert squares == numbers.collectParallel { it * it }
}

The concurrency is almost invisible: there is no thread creation, no thread control, and no synchronization
on the resulting list visible in the code. This is all safely handled under the covers.

DISCLAIMER

Calculating squares concurrently is only an introductory example for educational purposes. In practice, the
overhead of concurrency only makes sense if the tasks can be split up in reasonably sized, time consuming
chunks.

255

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
http://gpars.codehaus.org/

You may wonder how many threads listing 17.1 uses for calculating the squares. The short answer is: you
shouldn’t care. The longer one is: GPars uses a default that is calculated from the number of available cores
plus one. That makes three for a dual-core machine. Alternatively, you can explicitly supply the number of
threads to use as the first argument to the withPool method:

withPool(10) {
 // do something with a thread pool of size 10
}

GParsPool does not create threads. Instead, it takes them from a fork/join thread pool of the jsr166y
library, which is a candidate for inclusion in future Java versions. GPars uses this library extensively, especially
its support for parallel arrays that are the basis for all parallel collection processing in GPars.

17.2.1 Transparently concurrent collections
Having the *Parallel counterparts of the Groovy object iteration methods is nice and convenient. However,
the method names are a bit lengthy and do not feel very groovy. Couldn’t we just use the standard method
names and give them a concurrent meaning?

Listing 17.2 makes the list of numbers transparently subject to concurrent treatment with a method name
that withPool adds to collections and that is aptly named makeTransparent.

Listing 17.2 Calculating a list of squares with transparent concurrency
import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

withPool{
 assertSquares(numbers.makeTransparent(), squares)
}
def assertSquares(numbers, squares) {
 assert squares == numbers.collect { it * it }
}

Note to self: makeTransparent() has been renamed.
Groovy meta-programming is again in action here. When called from within the withPool closure, the

standard collect method is modified to delegate to the collectParallel method for collections that have
been made transparent.

Note that the assertSquares method knows nothing about concurrency! In fact, when this method is
called from outside the withPool closure, it will calculate the squares sequentially. When called from inside
the withPool closure, the calculation runs concurrently.

IN OTHER WORDS

Transparently concurrent collections enable you to pass collections into methods that have been written for
sequential execution and make them work concurrently for a specific caller. The caller can even decide about
the "amount" of concurrency by passing the pool size argument to the withPool method.

Think how much easier this makes unit testing of methods like assertSquares. Of course, this approach
has its limits. If we do something really silly, let's say side-effecting from inside our task, then our code may
run fine sequentially but not when passed a transparently concurrent collection.

For example, the following code does not construct an ordered String of squares:

def assertSquares(numbers, squares) {
 String result = ''
 numbers.each { result += it * it } // This is wrong, don't do it!!!
 assert squares.join('') == result
}

When called with numbers.makeTransparent() the above may work accidentally but at times, a higher

number will be processed before a smaller number and the assertion will fail. Even worse, modifying a variable
in this way is not a thread-safe operation! There are three separate operations involved: reading the current

256

Licensed to Charles Wise <ctwise@gmail.com>

value from the variable, computing the new value, and then writing the new value to the variable. If these
operations are interrupted by another task the results may be inconsistent, with one task overwriting the
result of another. This is a special case of a race condition: a missing update.

Therefore, when you run the above code multiple times, you will see that the result string is often missing
squares.

For the record, the correct and concurrency-friendly solution would be

def assertSquares(numbers, squares) {
 assert squares.join('') == numbers.collect{ it * it }.join('')
}

The good news is that you can easily avoid errors like the one above by simply sticking to the rule of

avoiding state changes from inside the iteration methods.
Transparency has some interesting characteristics. First, it is idempotent. Calling makeTransparent on a

collection that already is transparent returns the collection unmodified. Second, it is transitive. When you call a
method like collect on a transparently concurrent collection, the returned list is again transparently
concurrent such that you can chain calls. Listing 17.3 chains calls to collect and grep with the effect that
grep is also called concurrently. The code first collects all squares and then filters the small ones.

Listing 17.3 Using transitive transparent concurrency to find squares < 10
import static groovyx.gpars.GParsPool.withPool

withPool {
 def numbers = [1, 2, 3, 4, 5, 6].makeTransparent()
 def squares = [1, 4, 9]
 assert squares == numbers.collect{ it * it }.grep{ it < 10 }
}

The collect and grep methods use the same fork/join thread pool. In fact, every concurrent collection
method called from the same withPool closure will do so, regardless of whether they appear as transparent
or *Parallel invocations.

The fork/join approach is probably the simplest step into concurrent programming but for the small squares
problem, we could do better. Listing 17.3 first collects all squares, stores them in a list, and then processes the
temporary list to filter the small squares. It would be more efficient to spare the temporary list and do the
squaring and filtering in one task. We will revisit this approach in section 17.2.

17.2.2 Available fork/join methods
The full list of available concurrent methods is in class groovyx.gpars.GParsPoolUtil. The transparent
methods are in groovyx.gpars.TransparentParallel. Table 17.1 puts the two versions next to each
other.

Table 17.1 Concurrency-aware methods in "withPool"

Transparent Transitive? Parallel
any { ... } anyParallel { ... }

collect { ... } yes collectParallel { ... }

count(filter) countParallel(filter)

each { ... } eachParallel { ... }

eachWithIndex{ ... } eachWithIndexParallel { ... }

every { ... } everyParallel { ... }

find { ... } findParallel { ... }

findAll { ... } yes findAllParallel { ... }

findAny { ... } findAnyParallel { ... }

fold { ... } foldParallel { ... }

fold(seed) { ... } foldParallel(seed){ ... }

257

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

grep(filter) yes grepParallel(filter)

groupBy { ... } groupByParallel { ... }

max { ... } maxParallel { ... }

max() maxParallel()

min { ... } minParallel { ... }

min() minParallel()

split { ... } yes splitParallel { ... }

sum() sumParallel()

 Contrasting table 17.1 with the Groovy object iteration methods shows a few notable differences that are due
to the concurrent processing.

 In addition to find, there also is a findAny. While find always returns the first matching item in the
order of its collection, findAny may return whatever matching item it finds first.

 The GDK inject method is replaced by fold. While inject runs through the collection in strict order,
there is no such order in concurrent processing and thus the contract differs. The fold method acts like
inject but you have to be aware that its task closure may be invoked with any combination of items
and/or temporary results.

 Transparent concurrent methods are only transitive when they return a collection as their return type.
Note that using the transparent find method on a list of lists also returns a collection but this will not
be made transparent automatically.

 Not all Groovy object iteration methods have a concurrent counterpart. Some are simply missing at the
time of writing, while others don't make sense in a concurrent context.

 Finally, it is worth noting that this approach to concurrent processing is not restricted to collections but can
be used with any Java or Groovy object - the Groovy object iteration logic applies.

We will now elaborate on this approach a bit further by investigating the map/filter/reduce concept.

17.3 Becoming more efficient with map/filter/reduce
We have seen concurrent tasks of calculating squares and filtering in listing 17.3 with the fork/join approach.
First we had to collect all the squares; only then could we proceed with the filtering part. This isn’t ideal: we
don’t really need the intermediate results as a collection.

Fortunately, there’s an alternative. The map/filter/reduce approach allows us to chain tasks in a way that
doesn't restrict us to finish all the squaring before filtering. To make the difference even more obvious, listing
17.4 shows a map/filter/reduce performing a variant of the squaring problem. We’ve made two changes:
incrementing the value before squaring it and adding the squares instead of filtering. What has been collect
and fold in fork/join, becomes map and reduce for map/filter/reduce. The methods are used in a similar
fashion but as we will see they work quite differently.

Listing 17.4 Using map/filter/reduce to increment each number in a list, square it, and add up the squares
- all concurrently

import static groovyx.gpars.GParsPool.withPool

withPool {
 assert 55 == [0, 1, 2, 3, 4].parallel
 .map { it + 1 }
 .map { it ** 2 }
 .reduce { a, b -> a + b }
}

The map and reduce methods are available on parallel collections. We get such an instance by holding
onto the parallel property of our list. This property is available inside the withPool closure.

Figure 17.1 depicts the difference in the workflow. Assume that time flows from left to right, bubbles
denote states of execution, and arrows show scheduled tasks. If you imagine a sweeping vertical line, you can
see which tasks can be executing at any point in time. While fork/join always has the same order, the

258

Licensed to Charles Wise <ctwise@gmail.com>

map/filter/reduce example is only one of many possible execution orders. Its inner bubbles can freely flow
horizontally like pearls on a string.

Figure 17.1 Contrasting task concurrency for fork/join vs. map/filter/reduce where map/filter/reduce can achieve a higher
degree of concurrency.

In the map/filter/reduce example there are many valid execution orders. On one run all the increments
may be calculated before all squares, effectively giving you fork/join workflow, but this would be a very
unlikely coincidence.

Equally, on another run we could end up with one increment and its square being calculated, then a second
one, and then both being passed into the reduce task even before the third increment starts!

Either way, GPars makes sure that all the increments, squares, and their sum are calculated correctly in
the end. But the many different possible workflows open more possibilities for different tasks running
concurrently. The task coordination is still predefined even though the coordination scheme spans over more
tasks and allows for more variability in scheduling.

With fork/join, a collect task could only run concurrently with other invocations of that collect task. With
map/filter/reduce, any task can run concurrently with any other one, thus providing a higher degree of
concurrency.

FOR THE GEEKS: THE MERITS OF "MORE CONCURRENCY"

If the scheduler has more options for assigning a task to a thread, there is a lower probability that a few
slow task invocations thwart the overall execution. With more options in the workflow, map/filter/reduce
offers more concurrency over fork/join.

We have seen that map/filter/reduce works on a parallel abstraction that comes with the concurrency-aware
methods listed in table 17.2. Note that only map and filter return a parallel datatype that allows further
map/filter/reduce processing.

Table 17.2 Concurrency-aware methods for map/filter/reduce

Method Chainable Analogous to
filter { ... }

True
findAll

259

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

getCollection()

map { ... }
True

collect

max { ... }

max()

min { ... }

min()

reduce { ... }

inject, fold

reduce(seed) { ... }

inject, fold

size()

sum()

This gives us enough knowledge to finally present the small squares problem with map/filter/reduce in

Listing 17.5.
We make use of the filter method that only passes temporary results down the execution stream if they

satisfy the given closure. This is analogous to the findAll method for sequential code. The filter method
is such an important part of the concept that we have included it in the name. This also distinguishes it from
the more commonly known "map/reduce" label that is also used in very different1 contexts.

For the assertion in listing 17.5, we need to refer to the collection property to unwrap our parallel
datatype and make it comparable to the list of expected numbers.

Listing 17.5 Collecting the small squares with map/filter/reduce
import static groovyx.gpars.Parallelizer.GParsPool.withPool

withPool {
 def numbers = [1, 2, 3, 4, 5, 6]
 assert [1, 4, 9] == numbers.parallel
 .map { it * it }
 .filter { it < 10 }
 .collection
}

So far, fork/join and map/filter/reduce have proven to be concurrency concepts that are fairly easy to use.

This is mostly due to their baked-in, predefined task coordination that implements a well-known flow of data.
When one task needs to wait for data from a preceding one, this is all known in advance and handled
transparently. There’s no room for errors to creep in.

In the next section, we will investigate how to coordinate tasks when we need more flexibility in the flow of
data.

17.4 DataFlow for implicit task coordination
Both fork/join and map/filter/reduce work on collection data types that are transformed and processed. That
makes their data flow predictable and allows for an efficient implementation.

In the more general case, we may need to derive a value from data that delivered by concurrent tasks. For
this to work, we need to ensure that all the affected tasks are scheduled in a sequence that allows data to flow
from assignment to usage. This may sound difficult, but with the DataFlow concept it's a snap.

Listing 17.6 demonstrates a simple sum where the input data isn’t known at the time where we declare the
logic of the task. Therefore, each reference is wrapped with a dataflow. Assignments to dataflow references
happen in concurrent tasks.

1 compare http://en.wikipedia.org/wiki/MapReduce

260

Licensed to Charles Wise <ctwise@gmail.com>

Listing 17.6 A basic DataFlow adds numbers that are assigned in concurrent tasks
import groovyx.gpars.dataflow.DataFlows
import static groovyx.gpars.dataflow.DataFlow.task

def flow = new DataFlows()
task { flow.result = flow.x + flow.y } //#1
task { flow.x = 10 } //|#2
task { flow.y = 5 } //|#2
assert 15 == flow.result //#3

#1 Assign derived value
#2 Assign value
#3 Read value

We start with the calculation in #1 where a data flow variable result is derived from data flow variables x

and y, even though x and y are not yet assigned. This calculation happens in a new task that is started by the
task factory method. It has to wait until x and y have been assigned values.

Assignments to x and y in two other concurrent tasks #2 make these values available so that #1 can
execute.

The main thread waits at #3 until result can be read. This means that #1 has to finish, which can only
happen after both the tasks in #2 have finished. The data flow from #2 to #1 to #3 happens regardless of
which task is started first. This is implicit thread coordination in action.

17.4.1 Reproducible deadlocks
Predefined coordination schemes like fork/join and map/filter/reduce are deadlock-free. It is guaranteed that
the task coordination itself never produces a deadlock - the situation when concurrent tasks block each other
in a way that prohibits any further progress.

Don't get me wrong: it is still possible to write code that uses fork/join mechanics and runs into a deadlock
anyway. However, this wouldn’t be the result of the coordination scheme, but an error elsewhere in the code.
If the forked code blocks on shared resources, you can still end up with a deadlock in the normal way.

On the other hand, with dataflow concurrency, we cannot guarantee the absence of deadlocks in the
coordination itself. The following example demonstrates a dataflow deadlock due to circular assignments.

def flow = new DataFlows()
task { flow.x = flow.y }
task { flow.y = flow.x } //#1

#1 Deadlock!

However, for all practical cases, dataflow-based deadlocks are reproducible. The above example will always
deadlock.

This has a huge benefit: it makes the coordination scheme unit-testing friendly! Aside from pathological
cases, you can be sure that your code does not deadlock if your test cases do not deadlock.

FOR THE GEEKS: A PATHOLOGICAL CASE

Testability fails as soon as assignments to dataflow variables happen at random, like this: flow.x =
Math.random() > 0.5 ? 1 : flow.y

Beside the testability, dataflow variables have another feature that makes them convenient to use in the
concurrent context: their references are immutable. They never change the instance they refer to after the
initial assignment. This makes them not only safe to use but also very efficient since no protection is needed
for reading (non-blocking read). The benefit is greatest when the dataflow variable refers to an object that is
also immutable, such as a number or a string.

But since dataflow variables can refer to any kind of object - which may happen to have mutable state - we
may run into problems like below where a (mutable) list is assigned to a dataflow variable but possibly
changes its state after assignment:

def flow = new DataFlows()

261

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

task { flow.list = [0] }
task { flow.list[0] = 1 } //#1
println flow.list //#2

#1 bad idea!
#2 prints [0] or [1] without guarantee

NOTE

Dataflow variables work best when used with immutable datatypes. Consider using the asImmutable()
methods, use types that are handled by the @Immutable AST transformation, or safeguard your objects
with agents (see section 17.4).

17.4.2 Dataflow on sequential datatypes
So far, we have only seen the merits of implicit task coordination with the dataflow concept for simple
datatypes. This naturally leads to the question of whether we can use this concept just as well for processing
more than simple data – and the answer is, “Yes, we can.”

Think about it like this: implicit task coordination means that we automatically calculate a result as soon
as dataflow variables x and y have assigned values. We can easily expand this concept to calculating a result
whenever such an x and y are available!

In other words, we have an input channel that we can ask for x and a second one that gives us the next y
to process. Whenever we have a pair of x and y, we calculate the result.

Listing 17.7 leads us into this concept by calculating statistical payout values that derive from the amount
of a possible payout and the chance that this payout might happen. You can think of this as a gambling
situation where you weigh the possible payout against your ante. Insurance companies follow a comparable
approach when calculating risks.

The operator() method creates a DataFlowOperator and starts it immediately. The chances and
amounts variables represent the input channels, and there is one output channel for the payouts. All the
channels are of type DataFlowStream for implicitly coordinated reading and writing of input and output data.
The closure that is passed to the operator() method defines the action to be taken on the input data. The
next available, unprocessed item of each input channel is passed into it (chance, amount).

Listing 17.7 DataFlow streams and operators for implicit task coordination over sequential input data
import groovyx.gpars.dataflow.DataFlowStream
import static groovyx.gpars.dataflow.DataFlow.*

def chances = new DataFlowStream()
def amounts = new DataFlowStream()
def payouts = new DataFlowStream()

operator(inputs: [chances, amounts],
 outputs: [payouts],
 { chance, amount -> payouts << chance * amount }
)

task { [0.1, 0.2, 0.3].each { chances << it } }
task { [300, 200, 100].each { amounts << it } }

[30, 40, 30].each { assert it == payouts.val }

Note that the operator and the value assignments for the input channels all work concurrently but thanks
to the implicit task coordination, we still have a predictable outcome.

The DataFlowOperator and DataFlowStream APIs are rather wide and full coverage is beyond the
scope of this chapter. Please refer to the API documentation, the reference guide and the GPars demos for
more details. There is one feature that shouldn't go unnoticed, though: dataflow operators are composable.

 It is no coincidence that input and output channels are both of type DataFlowStream. The output
channel of one operator can be wired as the input channel of a second operator. One can make a whole
network of concurrent, implicitly coordinated operators.

262

Licensed to Charles Wise <ctwise@gmail.com>

17.4.3 Final thoughts on dataflow
Dataflow variables are very lightweight. You can easily have millions of them in a standard JVM.

They are also very efficient. A scheduler for dataflow tasks has additional information that allows picking
tasks "sensibly" for execution.

Dataflow abstractions can help when writing unit tests for concurrent code. They can easily replace
Atomic* variables, latches, and futures in many testing scenarios.

Most of all, dataflow is an abstraction that lends itself naturally for all those concurrent scenarios where the
primary concern is the flow of data. Take the classical producer-consumer problem where a consumer
processes data that producer delivers concurrently. It is all about the flow of data. Listing 17.7 is a more
elaborate form of the same pattern, combining two producers, synchronizing on them effortlessly: we’ve
solved the coordination and data flow aspects of the problem without even thinking about it!

It is a matter of modeling. We either model the flow of data indirectly through the concurrent operations
that we perform on it or directly through dataflow abstractions.

Some experts go so far as to claim that without the need for data handling, concurrency is trivial and
otherwise dataflow should be the first area to consider. This claim may be a little bit too bold, however. There
are times when we need more control over task coordination than dataflow can provide. This is where actors
enter the stage.

17.5 Actors for explicit task coordination
We have seen predefined task coordination with fork/join and map/filter/reduce and implicit task coordination
with dataflow. The actor abstraction fills the hole of how to coordinate concurrent tasks explicitly.

Actors were introduced many decades ago and have undergone a rollercoaster ride of academic popularity,
great hopes, challenges, disillusions, sleeping beauty, rediscovery, and recently resurgence in popularity.
They’ve been at the heart of the Erlang concurrency and distribution model for a long time, proving the
concept’s value for parallel execution, remoting and building fault-tolerant systems.

Actors provide a controlled execution environment. Each actor is like a frame that holds a piece of code and
calls that code under the following conditions:

 There is a message waiting in the actor's inbox.

 The actor is not concurrently processing any other message.

This description is the lowest common denominator between all the various actor concepts and
implementations available. Beyond it, you will find all kinds of variations about whether or not an actor is
allowed to have mutable state, whether messages have to be immutable, whether the actor and/or the
messages have to be serializable, how their lifecycle is controlled, and so on. For the remainder of this
chapter, we will avoid such controversy: whenever we use the word actor, we mean the GPars definition.

Listing 17.8 gets us started by creating three actors: a decrypt actor, an audit actor, and a main actor.
The main actor sends an encrypted message to the decrypt actor, which replies with the decoded message.
When the main actor receives that reply, it reacts to it by sending it to the audit actor, which in turn prints

top secret

Listing 17.8 Three actors for explicit coordination of decrypting and printing tasks
import static groovyx.gpars.actor.Actors.*

def decrypt = reactor { code -> code.reverse() } //#1
def audit = reactor { println it } //#2

def main = actor { //#3
 decrypt 'terces pot' //#4
 react { plainText -> //#5
 audit plainText //#6
 }
}
main.join()
audit.stop()
audit.join()

263

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

#1 reactor factory method
#2 reactor factory method
#3 actor factory method
#4 send message
#5 wait for reply
#6 send message

Hopefully by now you are comfortable with the static factory methods that GPars has consistently provided
us. The actor #1 and the reactor #2 methods are two more examples of the same, living in the Actors
class. They each return an Actor instance, which is started right away.

They both have a closure argument, telling them what the generated actor should do when its act()
method is called, which happens as part of starting the actor. This is straightforward for the actor{} #3
factory method but a bit more involved in the case of reactor{}. Here, the given closure is wrapped so that
it gets executed concurrently whenever a message is waiting in the inbox and the actor is not already busy.
The message is passed to the closure and the closure result is replied to the sender. You can think of a reactor
as having an act() method of

loop { react { message -> reply reactorClosure(message) } }
This construction is needed so often that the GPars team has put it into the reactor factory method for

your convenience.

NOTE

You never call the act() method directly! This would undermine the actor's concurrency guarantees.
Instead, you call the actor's send(msg) facility that puts the given message in its inbox for further
processing. Sending is available in various shortcuts: the send(msg) method, leftShift(msg) to
implement the << operator, and call(msg), which enables the transparent method call (see xxx) that we
use in listing 17.8 for sending messages (#4 #6).

Sending a message to an actor takes the form of an asynchronous request. The actor is free to process our
message at any time. This also means that we do not wait for its response, unless we use the
sendAndWait() method. When an actor replies to a message, it sends the reply to the originating actor. In
listing 17.8, you see the main actor sending a message to the decrypt actor #4 and going into react mode
#5, waiting for the reply message to arrive. The decrypt actor replies to the main actor, effectively sending
the decrypted plain text as a message.

REACT MODE IS A STATE

Using an actor facility that makes the actor wait for a reply is an example of state. GPars supports such actor
states but this is not common between various actor implementations. It’s up to you to decide whether or
not to use this kind of state.

Actors can be seen as asynchronous services. They wait idly until they have a message to process, do their
job, and either stop or wait again. Running actors do not prevent the JVM from exiting; they are backed by a
pool of daemon threads. This is why we need the last three lines in listing 17.8.

The main.join() waits until the main actor is finished. We can be sure that it has received the plain text
and has sent it to the audit actor. But since the audit actor handles the request asynchronously, we cannot
be sure that the printing has been done. We have to wait for the audit actor to finish as well by
audit.join(). The audit actor is a reactor, though. It never finishes until we send it the stop() message.
So

main.join()
audit.stop()
audit.join()
is the necessary coordination control that makes sure that the decrypted message appears on the console

before our program exits. Try the program without these lines; it you run it several times you will see the
output appearing at random.

264

Licensed to Charles Wise <ctwise@gmail.com>

There are so many conceivable applications of actors that we cannot possibly do them justice in this

chapter. Table 17.3 lists some actor capabilities by method name.

Table 17.3 Actor capabilities (excerpt)

Method Capability
start()

Starts the actor. Automatically called by the factory methods.
stop()

Accept no more messages, stop when finished.
act()

Contains the code to execute safely per message.
send(msg)

Passes a message to the actor for asynchronous sequential
processing. Aliases for actor x:
x.leftShift(msg), x << msg, x.call(msg), x(msg).

sendAndWait(msg)
Passes a message to the actor for synchronous sequential
processing. Waits for the reply. Comes with timeout variants.

loop{}
Do work until stopped.

react{msg->}
This is only available on subtypes of
SequentialProcessingActor. It waits for a message to be
available in the inbox, pops one message out of the inbox and
passes it into given closure for execution. Comes with timeout
variants.

msg.reply(replyMsg)
Sends the replyMsg back to the sender of the msg. Most useful
inside a react closure where it is delegated to the processed msg so
that it can be called without knowing the receiver.

receive()
Just like react but without a closure parameter to process. Returns
the message. Comes with timeout variants.

join()
Waits for the actor to be finished before proceeding with current task.

Although this should give you an initial feeling for the Actor API, using it wisely is not quite as easy as it

might seem. Out of all the concepts in this chapter, this is possibly the one at the lowest level of abstraction
and with the highest potential for errors.

First, it is often suggested that actors should be free of side-effects, which is very restrictive since this
doesn't allow printing to a console, storing a file, modifying a database, updating a user interface, writing to
the network, and so on. A more practical requirement, however, is that only one actor should access one such
device thus avoiding concurrent access. This is exactly what the audit actor in listing 17.8 does. The next
time you see an actor presentation without such a safeguard, shout out loud!

Second, keep it simple. With many actors sending and replying to messages it is all too easy to run into
deadlocks from circular references and other concurrency traps that we are here to avoid. They can also be
difficult to debug and unit-test. If you cannot sketch your actor dependencies as easily as in figure 17.3,
consider whether any of the other concurrency concepts may yield a simpler solution. They often do.

265

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Figure 17.3 A simple example network of actors for processing a request. A coordination actor waits for the authorization reply
and triggers a calculation. Many actors inform the audit actor. A collector returns the result.

Third, sendAndWait() is a troublesome feature. You may wait forever. So give it a timeout at least. But if
that times out, what shall we do? Try again? The rule of thumb is that if you’re using actors together with
sendAndWait(), you’ve probably chosen the wrong concept.

 When creating a network of actors you may get some inspiration for tailoring responsibilities along the
lines of enterprise integration patterns as implemented in the Apache Camel project (see
http://camel.apache.org/enterprise-integration-patterns.html and Camel in Action
http://manning.com/ibsen/). If you start thinking in terms of Enricher, Router, Translator, Endpoint, Splitter,
Aggregator, Filter, Resequencer, and Checker, you are on the right track.

17.5.1 Using the strengths of Groovy
We have seen that Groovy provides a very clean and concise API for creating and using actors. Listing 17.8 is
pretty much the most compact piece of actor code that one can think of without sacrificing readability.

But there are two more Groovy features that make our language particularly interesting in this context:
assigning event hooks through meta programming and using dynamic dispatch for reacting appropriately
based on the message type.

Let's start with meta programming. Listing 17.9 uses a standard reactor that simply calls its own stop()
method as soon as it receives a message. We would like to get notified when the actor stops and look into its
inbox. What we will see is the remaining stop message:

[Message from null: stopMessage]

Listing 17.9 Hooking into the actor lifecycle through meta programming
import static groovyx.gpars.actor.Actors.*

def stopper = reactor { stop() }
stopper.metaClass.afterStop = { inbox -> println inbox }
stopper.send()

Actors can implement the optional afterStop() message for that purpose but the standard reactor that

we use above has no such method. We don’t need to write our own Actor implementation as we can add such
a method through the metaclass.

Besides afterStop() There are other lifecycle hook methods like afterStop(): onTimeout(),
onException(throwable), and onInterrupt(throwable). The final two in this list are particularly
important since proper exception handling is easily overlooked in a concurrent context.

266

Licensed to Charles Wise <ctwise@gmail.com>

http://camel.apache.org/enterprise-integration-patterns.html
http://manning.com/ibsen/

The third benefit of using Groovy for actors is its dynamic method dispatch. Whenever actors respond
differently based on the message type they receive, there is some dispatch to be done - either manually or
automatic.

Listing 17.10 compares the two approaches. The manual reactor switches on the message type, effectively
taking a do-it-yourself approach to method dispatch. The auto message handler in the second part of the
example defines when clauses for each message type and leaves the dispatch to Groovy.

Listing 17.10 Comparing manual and automatic method dispatch for message-type aware actors
import static groovyx.gpars.actor.Actors.*

def manual = reactor { message ->
 switch (message) { //#1
 case Number: reply 'number'; break
 case String: reply 'string'; break
 }
}

def auto = messageHandler {
 when { String message -> reply 'string' } //#2
 when { Number message -> reply 'number' }
}

#1 Self-made dispatch
#2 Groovy method dispatch

The difference may not look very significant in this small example but it makes a considerable difference
when managing any reasonably sized actor of that kind. The messageHandler is again a factory method that
returns an Actor, which happens to be a DynamicDispatchActor. You can use it in a number of different
ways: through the factory method, by calling various constructors that allow registering of when closures, or
by subclassing and implementing onMethod(messageType) hooks.

BY THE WAY

Static languages - the ones that have no dynamic method dispatch - have a hard time supporting actors with
dispatch on the message type in a way that doesn't compromise their static language paradigm.

Actors can be difficult to handle but compared to other low-level constructs for explicit task coordination
they have a pleasant structure and the send-reply-react scheme is easier to understand and handle than most
of Java's built-in facilities.

Now that we have seen predefined, implicit and explicit task coordination we have the difficulty of choosing
between them. Luckily, there is yet another candidate that we can delegate to.

17.6 Agents for delegated task coordination
Delegation is my favorite strategy. Whenever I don't know what to do, don't want to do it, or simply don't
want to decide, I happily hand the work to a delegate. Delegates are abundant. They often appear as agents
(think "real-estate") that are happy to work on your behalf. GPars can also create such helpful fellows and we
use them for working on shared mutable state.

When it comes to shared mutable state, lots of concurrency experts shiver with disgust. But it is totally
unavoidable as long as we integrate with Java, use its common datatypes, and call its methods - not only in
the JDK but also in the vast space of open-source, commercial, and home-grown APIs that we rely upon.

So instead of denying reality, it’s more pragmatic to look for ways to safeguard our valuable assets. Listing
17.11 uses an agent to safeguard access to a String that we change in a concurrency-safe manner. We update
the value by sending update instructions to our agent that does all the tiring work for his client.

267

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

IMMUTABILILITY IS NOT ENOUGH

Note that we do not need to safeguard the String as such since Strings are immutable. Anyway, we have to
safeguard the reference that holds the String to make sure that the concatenation has been done on our
original String - and not a concurrently changed one.

Listing 17.11 Safeguarding a String for concurrent modifications
import groovyx.gpars.agent.Agent

def guard = new Agent<String>()

guard { updateValue('GPars') }
guard { updateValue(it + ' is groovy!') }

assert "GPars is groovy!" == guard.val

Agents protect a secure place where the safeguarded object cannot be changed by anyone but the agent.

Instructions on how to change the object are sent to the agent. Again, the usual methods are available; listing
17.11 demonstrates send, leftShift, <<, call, and a transparent method. The updateValue() message
is used when the safeguarded object itself is to be replaced by a new one.

Agents can easily be used in combination with all the other concurrency concepts we’ve seen in this
chapter. They are a very simple yet ubiquitously useful tool for the concurrent programmer.

17.7 Concurrency in Action
Let's round up our tour through Groovy concurrency with an example that fetches stock prices from the web in
order to find the most valuable one. This task has recently gained some popularity for a number of reasons:

 Fetching web pages is slow compared to local calculations. Therefore, using concurrency is promising no
matter how many processing cores we have.

 The effect can be achieved with many different approaches, which gives us freedom of choice.

 There are many solutions published for different languages that we can compare our solution against.

We start with the easy part: fetching the year-end closing price of a given stock ticker. Listing 17.12
connects to a Yahoo service that provides this information in CSV format. The result of fetching its URL looks
like this2:

Date, Open, High, Low, Close, Volume, Adj Close
2009-12-01,202.24,213.95,188.68,210.73,19068700,210.73

From that data, we need the fifth entry in the second line, which is what the getYearEndClosingUnsafe

method returns. This method doesn't handle any problems with connecting to the service, so we’ve created an
exception-safe variant getYearEndClosing for convenience.

Listing 17.12 Fetching the year-end closing price for a given stock ticker symbol
class YahooService {
 static getYearEndClosingUnsafe(String ticker, int year) {
 def url = "http://ichart.finance.yahoo.com/table.csv?" +
 "s=$ticker&a=11&b=01&c=$year&d=11&e=31&f=$year&g=m"
 def data = url.toURL().text
 return data.split("\n")[1].split(",")[4].toFloat()
 }
 static getYearEndClosing(String ticker, int year) {
 try {
 getYearEndClosingUnsafe(ticker, year)
 } catch (all) {
 println "Could not get $ticker, returning -1. $all"

2 slightly formatted for better readability

268

Licensed to Charles Wise <ctwise@gmail.com>

 return -1
 }
 }
}

Providing an exception-safe variant in addition to an unsafe method allows both convenience and caller-
specific exception handling where each is required.

The API design of YahooService goes for static methods with immutable parameter types, which makes
it very concurrency-friendly even though the code shows no trait of being concurrency aware. It almost
entirely avoids access to foreign objects with the exception of println. Printing this way is considered a
concurrency design flaw and only acceptable when printing a single line, knowing that the PrintStream
synchronizes internally.

Stateless methods are often frowned upon as being against traditional OO style but for concurrency-
friendly services, they make a lot of sense.

Now, let's assume we wish to check the prices for Apple, Google, IBM, Oracle, and Microsoft using the
following stock ticker symbols:

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

Then we could sequentially find the most valuable one by collecting all prices together with its ticker

symbol and selecting the one with the maximum price:

def top = tickers
 .collect { [ticker: it, price: getYearEndClosing(it, 2009)] }
 .max { it.price }

Nothing fancy here. This is all plain non-concurrent code that connects to the YahooService for one stock

ticker after the other.
Listing 17.13 makes one small addition to turn this into a concurrent solution: by calling

makeTransparent() on the tickers, which results in calling the collect logic concurrently. This fork/join
approach requires us to put the code inside a withPool scope.

Listing 17.13 Fetching prices concurrently with fork/join
import static groovyx.gpars.GParsPool.withPool
import static YahooService.getYearEndClosing

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

withPool(tickers.size()) {
 def top = tickers.makeTransparent()
 .collect { [ticker: it, price: getYearEndClosing(it, 2009)]}
 .max { it.price }
 assert top == [ticker: 'GOOG', price: 619.98f]
}

Note that we use the withPool method with an argument to define the pool size. We want to have a
concurrent task for processing each ticker such that we don't limit our network usage by our processing
capacity. We go for highest concurrency even on a machine with a single core.

The solution in listing 17.13 is arguably the simplest one that we can get and it is so close to optimal that if
you are a practitioner, you may want skip the rest of this section and go right to the summary. The
concurrency-addicted developer may want to read on. There are some interesting variants coming!

 Calculating the maximum once we have all prices available is a very quick operation and usually not worth
optimizing but for the sake of exploring the concepts, we do it anyway. Listing 17.13 first collects all prices and
starts calculating the maximum only after all the prices have been fetched. We could do a little bit better.

Suppose that AAPL and GOOG have been fetched but the remaining ones are still loading. We could use that
network delay to eagerly calculate the maximum of the prices we already know. Listing 17.14 introduces what
looks like a minimal change in the code to make this happen but is a rather fundamental change in scheduling.

269

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Listing 17.14 Fetching prices concurrently with map/filter/reduce
import static groovyx.gpars.GParsPool.withPool
import static YahooService.getYearEndClosing

def ticker = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

withPool(ticker.size()) {
 def top = ticker.parallel
 .map { [ticker: it, price: getYearEndClosing(it, 2009)] }
 .max { it.price }
 assert top == [ticker: 'GOOG', price: 619.98f]
}

We have gone from fork/join to a map/filter/reduce approach since finding a price is conceptually a
mapping from a ticker symbol to its price and finding the maximum is a special logic of reducing the result set.

Note that neither max nor any other reduction method guarantees that we process prices as soon as two of
them are available. In the worst case, we wait for the two candidates that finally turn out to be the slowest
ones. But in average, we win.

Now, is listing 17.14 the best we can get? Well, there are so many options and we are entering the space
of personal taste. Some interesting variants come with dataflow. Let's explore at least one in listing 17.15 that
spawns a task for each ticker symbol, which is used as the dataflow index. When calculating the maximum, we
refer to the price data flow entry thus implicitly waiting if the price has not yet been fetched.

Listing 17.15 Fetching prices concurrently with DataFlows
import groovyx.gpars.dataflow.DataFlows
import static YahooService.getYearEndClosing
import static groovyx.gpars.dataflow.DataFlow.task

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

def price = new DataFlows()
tickers.each { ticker ->
 task { price[ticker] = getYearEndClosing(ticker, 2009) } //#1
}
def top = tickers.max { price[it] } //#2
assert top == 'GOOG' && price[top] == 619.98f

#1 Set when available
#2 Read sequentially

We get the same concurrency characteristics as with map/filter/reduce in listing 17.14 but without the need
for the extra ticker/price mapping.

This example is very well suited to investigate further concepts and you will find some more demos in the
GPars codebase. Look for the DemoStockPrices* scripts. There are also actor-based solutions but I
personally find them less attractive since the problem doesn't really call for explicit coordination. They also
tend to be lengthier in terms of the code required.

Another interesting approach would be to use the dataflow whenBound feature where one can deposit a
closure that is executed asynchronously after a value has been bound to a dataflow variable. However, this
comes with some considerable effort in terms of coordinating the tasks to assert that all prices have been
processed and also shielding the temporary maximum against concurrent access. This approach has the appeal
of always calculating the currently best-known maximum as early as possible but it is anything but simple.

Weighing algorithmic appeal against simplicity is a design choice that we often encounter in concurrent
scenarios. Don't think twice. Go for simplicity!

 17.8 Summary
As a Groovy or Java programmer, you don't have to be afraid of the multi-core era. Java has provided us with
a solid, battle-tested foundation for concurrent programming that Groovy uses to build more high-level
abstractions upon.

Now is the time to make yourself comfortable with the various approaches to coordinate concurrent tasks.
The predefined control flow on collections through fork/join and map/filter/reduce is possibly the easiest one to

270

Licensed to Charles Wise <ctwise@gmail.com>

understand and start with. Implicit coordination with dataflow should be your choice whenever your focus is on
the flow of data rather than the manipulation steps. Explicit control with actors should be your last
consideration when no other concept applies. And regardless of how you coordinate your concurrent tasks,
always consider using agents to protect shared mutable state.

It goes without saying that a mere chapter that tries to cover so many concepts cannot do justice to the
full API of such a rich project as GPars and necessarily fails to present such a wide topic as concurrency in all
its beauty.

Even more concepts are expected in the near future and may be available by the time you read this. Keep
an eye on http://gpars.codehaus.org to get the latest updates.

Please allow me to point your attention to the grace and elegance that Groovy has shown once again in this
chapter. The functional nature of closures blends naturally with the need to demarcate pieces of code for
concurrent execution. Object iteration methods provide a perfect base for fork/join. Last not least, actors profit
from dynamic method dispatch and meta programming. I'm so glad we have this language!

271

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

18
Domain-Specific Languages

Throughout this chapter, we’ll cover:
• How Groovy allows you to write Domain-Specific Languages (nicknamed DSLs), i.e. languages tailored

towards representing a particular domain of knowledge,
• How to concretely integrate DSLs in your applications,
• What the various techniques are to create readable and expressive languages,
• And how to test, secure and provide good error reporting.

Various papers and studies will give you statistics about project successes and failures. On the other end of the
spectrum, proponents of development methodologies will tell you about various techniques and approaches
you should adopt to ensure that your projects have better chances to succeed. You can read a lot of
interesting literature on those topics and I would argue that oftentimes, a common denominator in those
sources about what leads a project on its path to success or failure is the quality of communication between
the different parties involved, how the various stakeholders exchange information and cooperate together
towards a common goal of producing quality software that delivers on their promises at solving a particular
domain problem.

Languages are at the root of any kind of communication and involve two interlocutors. A Subject Matter
Expert (often reduced to the SME acronym) can write specifications in his mother tongue, say, English, with
tons of very domain specific words and concept names that will be read by software developers. A developer
can also somehow speak with a computer with different languages to tell it about the business rules of the
application the SME is longing to play with. The former will use a natural language while the latter will use one
or several general-purpose programming languages. There is obviously some translation process involved to
codify requirements into executable code. And this process is usually not that straightforward as there may be
ambiguities in the natural language used — a word can have several meanings depending on the context.
Moreover, different approaches exist for implementing the same behavior — using different patterns,
algorithms or idioms. More so than typing issues or lacking null pointer checks, what introduces bugs in our
machinery is the imperfection of our understanding of each other’s words and their meaning.

Let’s step back a little and reflect on these considerations. In this Babel of languages, what if we had one
language that everybody would unambiguously understand? What if this language contained words that all
stakeholders would put the same meaning on, that would be both readable and expressive? And imagine that
Esperanto even be understood by computers themselves? But does such a dreamed up ubiquitous language
can even exist? Well, I wouldn’t write that prose if I didn’t think Groovy could play a central role here, and this
chapter wouldn’t be named “Domain-Specific Languages” if one couldn’t create a special language in Groovy
that would help reduce the gaps in understanding each other and help us make our project a success rather
than a failure.

272

Licensed to Charles Wise <ctwise@gmail.com>

18.1 Groovy’s flexible nature
The grammar of the Groovy language directly derives from Java 5, meaning that you can often copy and paste
some Java code into your Groovy programs and have it run as is without any modification. However, as a Java
developer, as you learn Groovy, you’ll progressively start writing more idiomatic Groovy code. Over the course
of the past chapters, you’ve discovered many language features and APIs which will make your code groovier
and more concise! For instance, you’ll get rid and even forget about those boring semi-colons — isn’t the
compiler supposed to be clever enough to figure out when a statement ends? You’ll also quickly omit
parentheses in various places, like for example in your println statements. You are rapidly benefiting from
Groovy’s flexible nature, at the syntax level, as well as the API level — after all, println is already a shortcut
notation for System.out.println! Let’s review what Groovy offers out of the box for making your code looks a
little nicer on the eye.

18.1.1 Back on parentheses omission
In Groovy, the parentheses can be omitted under some circumstances. Basically, all top-level statements or
expressions, called command expressions, can benefit from that rule.

Imagine you are a NASA engineer, and you’ve sent a rover on the ground of planet Mars. In the comfy
seats of the Earth base commandment station, from miles and miles away — certainly with a delay due to the
speed of light at which information travels — you are planning the journey of your little robot, on the rocky
soil. You will tell your robot to move left and right. In Java, you would need to create a class (lots of
surrounding boilerplate code), and describe the orders in a method, whereas in Groovy, you could just put all
the orders in a simple script, but let’s put all the accompanying code aside. What could the orders look like?

In Java, you would need some parentheses and a final semi-colon:

move(left);

Whereas in Groovy, this would look like an English-like imperative sentence:

move left

We don’t gain yet that much, but the Groovy variant is free of punctuation noise.
In either case, you would simply need to have a method named move() defined in your script or class

taking one parameter of type Direction, perhaps even an Enum value.
But here, we are only showing the command the operator sends to his remote robot! If we just have the

move left order in our Groovy script and execute it, we will get some exception telling us the left variable is
not found, and if it is found, we will get another exception afterwards indicating the move() method could not
be found. So let us have a look at what the full script could look like:

Listing 18.1 Our naïve approach with a full script
import static Direction.* #2

enum Direction { #1
 left, right, forward, backward #1
} #1

class Robot { #3
 void move(Direction dir) { #4
 println "robot moved $dir" #4
 } #4
}

def robot = new Robot() #5

robot.move left #6

Firstly, in #1, we define an enum for the directions, so that our robot can understand the left, right,

forward and backward movements. In #2, we use a static import to import all the enum constants, so they are

273

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

available in the body of our script. Then who receives the commands? Ah yes, the robot! So we, obviously,
need a robot! In #3, we create a Robot class. This little robot has a move() method in #4, taking a Direction
value. Then, in #5, we instantiate our Robot class to create a robot. And at last, in #6, we can tell our robot to
actually move left.

That’s quite a bit of code for telling our robot to move left, isn’t it? A Domain-Specific Language isn’t

supposed to be concise and readable? For a single move, we need an enum definition, a static import, an
instantiation, and the final command. All in all, fifteen lines of code for a mere command! Furthermore, our
command does not really look like the one we mentioned earlier: there’s a robot prefix! Have I lied to you?
Can’t we do better? Yes, we can!

Okay, first of all, we could start by speaking of integration. We should differentiate the infrastructural code,
from the business code: the code of the robot, the directions, the instantiation of the robot are all about
infrastructure, whereas the order we send to the robot, that’s the actual business code, our Domain-Specific
language code.

This is a good practice to cleanly separate both kinds of code, and that’s also what will allow us to
streamline the DSL bits, so they remain short, concise and readable. All the cleverness of the DSL will come
from the infrastructural code, and how we integrate everything together. This dichotomy is also a separation of
concerns: the infrastructure stays the same, or evolves at its own pace, and the same is true for the business
code, as the orders sent to our rover vary depending on where the robot is, and where we want it to go.

GrooovyShell will be our weapon of choice for evaluating our business rules: this will be the class that will
be integrated in our backend (it could be a pure Java or Groovy backend, or a mix of the two). The Direction
enum and the Robot class will be part of our infrastructural code, already pre-compiled on our classpath, as
part of the build process of our overall application. So compared to our full script from earlier, they will be
taken out, in their specific files (in Listing 2 and Listing 3), and will be part of our domain model package
(projectmars.model).

Listing 18.2 Our enum for directions: projectmars.model.Direction
package projectmars.model

enum Direction {
 left, right, forward, backward
}

Listing 18.3 Our core robot class: projectmars.model.Robot
package projectmars.model

import static projectmars.model.Direction.*

class Robot {
 void move(Direction dir) {
 println "robot moved $dir"
 }
}

Given those domain model classes, our business rules, in the form of a Groovy script, are already shorter,
as shown in Listing 4.

Listing 18.4 Our updated business rules
import projectmars.model.Robot #1
import static projectmars.model.Direction.* #2

def robot = new Robot() #3

robot.move left #4

#1 We need to import the Robot class so we can give it orders
#2 A static import for directions for the movement directions
#3 The instantiation of the robot

274

Licensed to Charles Wise <ctwise@gmail.com>

#4 The actual move order

What is still missing in our big picture is the actual code integrating everything together, which is supposed

to be using the GroovyShell class we mentioned earlier. For simplicity sake, we keep business rules in a
simple multiline Groovy string, but they can come from some configuration file, from a database, or entered
interactively in a kind of console application. Listing 5, shows our concrete integration. As our overall
application is so far pretty simple, we keep our application main entry point inside a Groovy script, but
obviously, this could also be a more involved full-blown class with more responsibilities.

Listing 18.5 Main.groovy, our integration and main entry point of our application
package projectmars.integration #1

def shell = new GroovyShell() #2
shell.evaluate ''' #3
 import projectmars.domain.Robot #3
 import static projectmars.domain.Direction.* #3
 #3
 def robot = new Robot() #3
 #3
 robot.move left #3
''' #3

Main.groovy lives in the projectmars.integration package as shown on #1, instantiates the
GroovyShell class in #2, then we call its evaluate() method in #3, which takes a String — here a
multiline String — in parameter. That method can also take a Reader or a File as parameter, if you are
reading the scripts to evaluate from a different place, like a remote location, or from the file system.

EXTERNAL DSL FILE

In our example from , we evaluated a DSL which was in the form of a string. But the idea here, is that your
DSL might come from an external file. You could as well store this DSL in a database, or elsewhere. Instead
of the verbatim string, you could call shell.evaluate(new File(filename)), pointing at the file
containing the code of your DSL.

Given we are done with our infrastructural code (our domain model classes and our application main entry
point integrating the business rules), let us have another look back at our business logic from Listing 4 Our
updated business rules. We have an import and a static import, a robot instantiation, and eventually the
command we send to our robot. Is it perfect? Well, for one, we could consider the two imports as some useless
boilerplate code (at least from the perspective of the person writing the business rules). Same thing for the
instantiation of the robot: it is probably boilerplate as well, but above all, doesn’t it give you a bitter taste in
your mouth? We need a reference to the robot. That will definitely help us test our business code if we could
inject a mock robot at some point, and if one day our robot is upgraded to a newer version, we could later
inject a different instance of the robot. Last thing, the style used for sending our commands to the robot isn’t
looking like what we promised in introduction of our chapter, as we have this robot prefix.

To summarize, we want to:

• Get rid of the imports,
• Inject the robot more transparently,
• Improve the way we send orders to the robot.

We’ll take care of those three points in the next sections.

18.2 Variable, constant and method injection
Tackling the injection first will permit us to get rid of the instantiation of the class and to remove the related
import. How can we achieve this? By using the script’s binding: every script has got a special kind of map in
which dynamic variables can be saved and looked up.

275

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Let’s have a look at a simple example first, evaluating math expressions: Listing 6 shows how the binding
can be created in #1, and passed to the GroovyShell in its constructor in #2. We created a distance and time
variables in the binding, and those two variables are actually available when we evaluate our math formula. No
MissingPropertyException is thrown, the variables are present globally in the body of that script, without
any prior definition or particular explicit lookup. You notice we assign the quotient of distance over time into a
speed variable in #3. We have neither “def-ed” that variable, nor used a different approach than a plain
assignment to pass the result of the calculation to the binding. In #4, the variables we had put into the
binding are still there — and we haven’t updated their values, but we could have done that. And in #5, we
discover that the binding now contains an additional variable: our speed variable is here, containing the result
of the computation.

Leveraging the script’s binding is a great technique to exchange variables and values in and out, during the
execution of a script.

Listing 18.6 Exchanging variables and values through the Script's binding
def binding = new Binding([distance: 11400, time: 5*60]) #1

def shell = new GroovyShell(binding) #2
shell.evaluate '''
 speed = distance / time #3
'''

assert binding.distance == 11400 #4
assert binding.time == 5*60 #4
assert binding.speed == 38 #5

With that knowledge in mind, you have guessed that the binding is going to be the approach we will be

using for injecting the robot instance into our command script. And there is even a bonus: thanks to the duck-
typing approach, we can just use that robot instance without having to specify in any way that that robot is an
instance of Robot, and especially also without having to import the Robot class! As demonstrates Listing 7, we
can remove one import and inject the robot into our DSL script, through a binding object.

Listing 18.7 Injecting a variable into the script's binding
def binding = new Binding([robot: new Robot()]) #1

def shell = new GroovyShell(binding) #2
shell.evaluate '''
 import static projectmars.domain.Direction.*

 robot.move left
'''

#1 We create a Binding object, that takes a map as parameter, containing our injected robot instance
#2 We pass that binding to the GroovyShell constructor

We have injected a robot into our DSL script. We don’t need to instantiate a robot object, and we managed

to get rid of one import. But we are left with the static import for the directions, and the prefixed move
method.

We managed to inject the robot variable, we can apply the same technique to inject the direction
constants. This is a first approach we will take, but we will also have a look at a couple more approaches.

18.2.1 Injecting constants through the binding
In Listing 8, we enumerate the various directions manually, and we add them in the binding to be passed to
the shell.

Listing 18.8 Injecting constants through the binding
def binding = new Binding([
 // injecting the robot

276

Licensed to Charles Wise <ctwise@gmail.com>

 robot: new Robot(),
 // injecting the direction constants
 left: Direction.left, #1
 right: Direction.right, #1
 forward: Direction.forward, #1
 backward: Direction.backward #1
])

def shell = new GroovyShell(binding)
shell.evaluate '''
 robot.move left #2
'''

This approach is certainly the simplest one: in #1, we add each and every direction manually into the

binding, and in #2 we notice that the static import for the constants has totally disappeared from the script
DSL. However, it is a bit fragile: what happens if we add a new direction value? We would have to update both
the enum definition, as well as the integration where we inject the enum values into the binding. Fortunately,
Groovy’s magic will empower us to make things less brittle by using the collectEntries() method and
spread map operator!

Listing 9 explains how we can inject all the Direction enum constants into the binding automatically,
rather than manually. The collectEntries() method creates a map which is the association of the name of
the enum values, and the respective values, and the spread map operator will merge those entries into the
binding map.

Listing 18.9 Using the enum values with collectEntries() and the spread map operator
def binding = new Binding([
 robot: new Robot(),
 *:Direction.values().collectEntries { [(it.name()): it] }
])

This new binding definition still injects the robot, and spreads the content of a map into the binding map, to

form one consistent map. The obvious benefit is that if ever you need more directions, maintenance is going to
be easier since you just need to update the Direction enum, and not have to touch your integration code.
No duplication!

With enums, we managed to solve the problem of maintenance and duplication elegantly, but sometimes,

you don’t have enums at your disposal — perhaps some legacy classes and interfaces you have no control
over, or you don’t want to import all of the enum values but just some. So you can go with manually adding
each constant like we did in Listing 8 Injecting constants through the binding. But there are also other ways to
add variables and constants into your DSL scripts. We will have a look at two techniques: adding imports and
static imports automatically, and using a special base script class for your DSL scripts.

18.2.2 Adding imports and static imports automatically
Our integration so far used GroovyShell for evaluating our robot moves, and we saw we could pass
paramaters like a Binding in order to pass variables and constants to be available during the execution of the
script. But GroovyShell’s constructor also takes a CompilerConfiguration as parameter. And through
the latter, we are able to define compiler customizers (there are three kinds of them, and one can create his
own), as well as a custom base script class.

Let us start with looking at one special customizer: the import customizer. The name is pretty explicit: an
import customizer helps you customize the imports of your scripts and classes. With it, you are able to add
imports, static imports, as well star imports and star static imports. You can also do type aliasing for your
imports and static imports.

Have a look at Listing 10, where we continue improving our integration script, by only injecting the robot
variable in #1, by creating an import customizer in #2, then adding a static star import for the direction enum
values in #3, specifying the customizer to be used by the compiler configuration, and eventually passing the
configuration to the GroovyShell constructor in #5.

277

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Listing 18.10 Using import customizers to add imports transparently
import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.*

import projectmars.domain.Robot
import projectmars.domain.Direction

def binding = new Binding([robot: new Robot()]) #1

def importCustomizer = new ImportCustomizer() #2
importCustomizer.addStaticStars Direction.class.name #3

def config = new CompilerConfiguration()
config.addCompilationCustomizers importCustomizer #4

def shell = new GroovyShell(binding, config) #5
shell.evaluate '''
 robot.move left
'''

#1 We now only inject variables into the binding
#2 We create an import customizer
#3 The Direction.* enum values are statically imported with a star import
#4 The import customizer is added to the compiler configuration object
#5 The compiler configuration is passed as argument of the GroovyShell instance

Given you have instantiated an ImportCustomizer, you can add:

• normal imports: addImports(String… fqnClassNames)
• an aliased import: addImport(String alias, String fqnClassName)
• a static import: addStaticImport(String fqnClassName, String fieldName)
• an aliased static import : addStaticImport(String alias, String fqnClassName,

String fieldname)
• star imports: addStarImports(String… packageNames)
• static star imports: addStaticStars(String… fqnClassNames)

In our case, we only needed the latter variant that allowed us to add a static star import for all the enum
constant values.

Compiler configuration customizers are interesting for Domain-Specific Languages purposes, and we will

discover further down this chapter the other customizers for securing the scripts you are running, for applying
transformations, or even creating your own customizers. But before that, let’s come back on our original goals
with our Mars rover. From our original script, we managed to get rid of the imports, and to inject the robot
instance. However, the movement of the robot is still “prefixed”, and is not as concise as it could be:

robot.move left

We want the movements to be sent to the robot, but we would like the code to look as if we were speaking

directly to the robot, telling him explicitely “move left”, because he knows we are talking to him — a pretty
clever robot understanding human speech! But a move method would be a method on the current script that is
running, not on the robot. So can we, somehow, redirect the methods to the robot? What we are looking for
here, is a way to inject methods. There are some interesting approaches to do that.

18.2.3 Injecting methods into a script
A naïve approach could be to append methods at the end of our script code, before it gets evaluated, as
illustrated by the approach in Listing 11. You would create your own evaluation method that would call
GroovyShell#evaluate, but which would in turn do string concatenation to append each method definitions
you would need to be carried over to our robot instance.

278

Licensed to Charles Wise <ctwise@gmail.com>

Listing 18.11 Appending method definitions to a script code
shell.evaluate '''
 move left
''' + '''
 def move(dir) {
 robot.move dir
 }
'''

This naïve approach is not ideal for a number of reasons. The implementation is fragile because you put

code in a String that is not easily refactorable. For maintenance, this would also be problematic as you would
have to update those appended method definitions when the Robot class is evolving. And last but not least, if
the scripts end users are sending you are bogus and don’t compile properly, you may get weird compilation
error messages, as the parser would see some def token afterwards. So although this approach is easy, it
should be avoided.

A proper way to add methods to the script class is to use a custom base script class. Scripts are all

extending the groovy.lang.Script base abstract class, and CompilerConfiguration actually allows us to
define a different base class for our scripts (as long as it is extending groovy.lang.Script).

First of all, we need to create our own script base class, as shown in Listing 12. Our class in #1 is declared
abstract like its parent, and extends groovy.lang.Script. We then simply add a move() method with
the same signature as the one of the robot in #2. In #3, we retrieve the robot from the script’s Binding —
the same binding that we pass to GroovyShell. Then in #4, we can delegate the call to the robot.

Listing 18.12 Defining a custom base script class
package projectmars.integration

import projectmars.domain.Direction

abstract class RobotBaseScriptClass extends Script { #1
 void move(Direction dir) { #2
 Robot robot = this.binding.robot #3
 robot.move dir
 }
}

Now that we have our base script class ready, it is time to put it to good use, thanks to another option of

CompilerConfiguration, as demonstrates Listing 13.

Listing 18.13 Configuring and using a custom base script class
import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.*

import projectmars.domain.Robot
import projectmars.domain.Direction

import projectmars.integration.RobotBaseScriptClass #1

def binding = new Binding([robot: new Robot()])

def importCustomizer = new ImportCustomizer()
importCustomizer.addStaticStars Direction.class.name

def config = new CompilerConfiguration()
config.addCompilationCustomizers importCustomizer
config.scriptBaseClass = RobotBaseScriptClass.class.name #2

def shell = new GroovyShell(binding, config)
shell.evaluate '''
 move left
'''

279

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

#1 Import our new script base class
#2 Specify the base script class to use for script that will be compiled through GroovyShell. The class name must be
passed as a fully qualified class name, in the form of a String.

NOTE:

When you add a getter in your base script class, for example getMyConstant(), you can then access it
with myConstant in your script, as if it were passed through the binding. So that is another way of
injecting a constant in the binding. However, if you defined a setMyConstant() setter method, this
method would not be called upon assignment of myConstant, as the variable would go into the binding. If
you wanted to call that setter, you would have to call it explicitely in the form of its method call.

Coming back to our abstract base script class, you certainly noticed we replicated the move() method from
the Robot class. The script base class serves as a façade. The decoupling is certainly interesting, and here, we
currently only have one method, but you would have to put a delegate method for each method of the Robot
class otherwise.

If you recall from previous chapters talking about AST Transformations, you might find that using the
@Delegate transformation a good fit for delegating methods. Listing 14 shows how to achieve this idea. The
transformation will automatically add all the methods from Robot at compile-time in your script base class.
You will also notice that we combined the @Lazy transformation as well, as the binding is populated after the
class initialization and instance contruction.

Listing 18.14 Using @Delegate for method injection and delegation
abstract class RobotBaseScriptClass extends Script {
 @Delegate @Lazy Robot robot = this.binding.robot
}

The approach of delegation is good if you want to delegate all method calls, but if you are just interested in

a specific set of methods, our previous solution worked well (by copying the signatures of our robot and
delegating to the robot’s methods). You can as well use the same approach that we used earlier for injecting
variables, through the binding, by adding method closures into the binding, as we shall see further, when you
want to manually pick some methods, or add some dynamic routines and don’t want to have to use a custom
base script class.

18.2.4 Adding closures to the binding
The script binding is a mere wrapper around a map. In that map of variables, we have the keys that represent
the variable names, and the values that are the actual variable values. A value can be anything… including
closures! And calling closure variables just looks like a plain method call.

You can quickly wrap method calls to a certain object instance with the method closures (sometimes called
method pointers too), using the .& notation. If we revisit our previous examples, we could get a reference to
the move() method of Robot, and add it to the binding of our script as Listing 15 shows.

Listing 18.15 Using a method closure to inject a method
def robot = new Robot()
def binding = new Binding([
 robot: robot,
 move: robot.&move #1
])

#1 Obtain a method closure reference which wraps a call to the robot’s move() method

In this case, we are only injecting one method, and if we had to add all of them (robot’s methods), we

would have to manually add them all, or resort to using some reflection to find out all the available methods.
But for one-off utility methods that need to be available to the script, using the binding in that way is very
easy without necessitating the need for a custom base script class. Furthermore, when the functions needed

280

Licensed to Charles Wise <ctwise@gmail.com>

can be totally dynamic, depending on the context, the ability to add any closure, referenced under any name,
can be very useful.

Taking this idea further, what if our DSL was able to be case insensitive? Users of that DSL could make
mistakes in their casing, and still have the robot obey their orders. In that situation, we can’t add all possible
methods and constants in all the possible combinations of uppercase and lowercase letters in the script base
class or in the binding. So how could we proceed? We have two solutions at our disposal, again with custom
base script classes or with custom binding classes: for arbitrary casing for method calls, we leverage our
custom base script class, and for constants or variables, we’ll use a custom binding class.

For arbitrary casing for our methods, Listing 16 Implementing invokeMethod() in the script base class
shows how we added an invokeMethod() implementation in #1, to our base script class to intercept method
calls. The calls are then delegated to the robot variable stored in the binding in #2. We use the GString
method calls, putting the name into lowercase, and we spread the argument of the calls (using the spread
operator *) back in the call of the method of our rover.

Listing 18.16 Implementing invokeMethod() in the script base class
abstract class RobotBaseScriptClass extends Script {
 @Delegate @Lazy Robot robot = this.binding.robot

 def invokeMethod(String name, args) { #1
 robot."${name.toLowerCase()}"(*args) #2
 }
}

For our direction constants, we will use a custom binding class, overriding the getVariable(String

name) method so that we handle our own logic for retrieving variables from the binding, as displayed in
Listing 17.

Listing 18.17 A custom binding overriding getVariables(String)

class CustomBinding extends Binding {
 private Map variables

 CustomBinding(Map vars) {
 this.variables = [
 *:vars, #1
 *:Direction.values().collectEntries { [(it.name()): it] } #1
]
 }

 def getVariable(String name) {
 variables[name.toLowerCase()] #2
 }
}
#1 We merge the variables passed to the constructor, as well as the Direction constants as mis-cased constants are not
taken into account by the static import injection
#2 We search from the variables map an entry with a key in lowercase format

The techniques we have used so far were centered more around integration aspects. They allowed us to

properly integrate our business rules using our Domain-Specific Language, and cleanly separate them from our
domain model and from the infrastructural code, for a better design, easier maintenance, and overall better
readability, without the usual boilerplates of imports and too much punctuation.

But there are many more techniques that we will discover in the next sections to add more flesh to our
examples.

18.3 Adding properties to numbers
Now imagine you want to be a bit more precise in your robot movements and wish to specify some notion of
distance. How would you go about telling your rover to move right by two meters? Well, we need to update
our move() method to support a direction and a distance, and we need to implement that concept of distance.

281

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

For the latter, we can represent it as a combination of an amount (ex: 2, a number) and a unit (ex: meters, in
the form of an enum), as proposes Listing 18.

Listing 18.18 Distance and unit concepts
package projectmars.model

import groovy.transform.TupleConstructor

enum Unit {
 centimeter ('cm', 0.01),
 meter ('m', 1),
 kilometer ('km', 1000)

 String abbreviation
 double multiplier

 Unit(String abbr, double mult) {
 this.abbreviation = abbr
 this.multiplier = mult
 }

 String toString() { abbreviation }
}

@TupleConstructor
class Distance {
 double amount
 Unit unit

 String toString() { "$amount $unit" }
}

We update our Robot class to support a movement with a direction and a distance by simply adding an

overloaded move() method like this:

void move(Direction dir, Distance d) {
 println "robot moved $dir by $d"
}

In our DSL script, we can now call the new method with:

move right, new Distance(3, Unit.meters)

Is it satisfying? We are back with a feeling of “programming” — as if it were ugly — rather than giving plain

English commands to our robot. What could we do to make things a bit better? We could inject the Unit
constants with another start static import injection, to have something like the following:

move right, new Distance(3, meters)

We still have the new keyword, and the class name Distance, which are perhaps slightly redundant when

a robot operator sees 3 and meters, he knows it is a distance. There is an increasing trend in the Java
ecosystem towards “fluent APIs”, that is, APIs that “read” well, closer to a spoken language. With a factory
method on Distance, we could turn our order into:

move right, Distance.of(3, meters)

This is already more pleasing to the eye, even if the overall command doesn’t sound yet like an English

sentence. But what I suggest now is that we support the following syntax in our DSL:

move right, 3.meters

282

Licensed to Charles Wise <ctwise@gmail.com>

This notation is much more concise, reads well, and is closer to plain English. Later on, we’ll also provide
the shorcut notation of 3.m in the international measures format. But how can we add properties to numbers
in Groovy? There are a couple of approaches, actually. As we have discovered in Chapter 9 on the Groovy
Meta-Object Protocol, we can modify the meta class or use a Category to add new methods and properties to
any type, including to number types.

We could simply add the meters property to the meta class of Number with a statement like:

Number.metaClass.getMeters = { new Distance(delegate, Unit.meters) }

But modifying the meta class has a drawback: its reach is pretty much global to our JVM, and that means

we would pollute the namespace of numbers even outside the reach of our DSL. We would also need a place to
register that method: we can obviously do that in our integration script as usual. As an alternative, I would like
to explore with you the idea of using a Category. Categories have the nice aspect of providing more fine-
grained control over the scope of the “monkey patching” we are doing on numbers: changes to the affected
classes are only available under the scope of the use() method, and in the current thread exclusively. As
soon as you leave the block, the changes disappear.

Listing 19 shows the implementation of our Category.

Listing 18.19 Implementation of a distance category
class DistanceCategory {
 static Distance getCentimeters(Number num) {
 new Distance(num, Unit.centimeter)
 }

 static Distance getMeters(Number num) {
 new Distance(num, Unit.meter)
 }

 static Distance getKilometers(Number num) {
 new Distance(num, Unit.kilometer)
 }
}

Given our distance Category implementation, we need to apply that Category to the execution of our DSL

script. To do that, we simply wrap the evaluation of the script with a use() block as follows:

use(DistanceCategory) {
 shell.evaluate '''
 move left
 move right, 3.meters
 '''
}

Now we are talking! Or actually, that is our DSL that is speaking for itself. Perhaps we could also let him

express himself with some more formalism by allowing the following form:

move right, by: 3.meters

Notice that our method now takes a normal argument as well as a named argument. Mixing named and

non-named argument is also an interesting technique for making our Domain-Specific Languages more fluent.
In the next section, we will have a look at leveraging this approach.

18.4 Leveraging named-arguments
Groovy’s support for named arguments in method calls helps clarify the meaning of the parameters that are
given to a method, instead of relying purely on the position of those parameters.

283

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

When a method call is made using a mix of named and non-named arguments, Groovy follows a convention
for the signature of the method to call. All named arguments are put in a map, which is passed as the first
argument of the call, and all the other non-named arguments are passed afterwards, in the order with which
they appear in the call. More concretely, given an hypothetical call like:

method argOne, keyOne: valueOne, argTwo, keyTwo: valueTwo, argThree

Groovy’s runtime will interpret the call as:

method([keyOne: valueOne, keyTwo: valueTwo], argOne, argTwo, argThree)

And will in the end call the method with the signature:

def method(Map m, argOne, argTwo, argThree)

With that new knowledge in our bag of tricks, let’s see how we can apply that to our Robot class by adding

a new move() method variant with that approach:

void move(Map m, Direction dir) {
 println "robot moved $dir by $m.by"
}

Very straightforward. All the named arguments (here, only the by argument) are passed in the first Map

parameter of the method, and all the non-named arguments (here, only the direction argument) are passed in
the order with which they appear in the call, after the Map.

To go further with named arguments, we could imagine defining a speed of movement, to support a syntax
like:

move right, by: 3.meters, at: 5.km/h

Our move() method can cope with an additional named argument, which will go into the Map parameter.

We just need to adapt our dummy println statement for now:

void move(Map m, Direction dir) {
 println "robot moved $dir by $m.by at ${m.at ?: '1 km/h'}"
}

If no particular speed is provided, we assume the default speed is simply one kilometer per hour, by using

the Elvis operator.
There are two things, which are not yet going to work: first of all, we haven’t defined abbreviations in our

distance category to support m, km, etc. Listing 20 shows an updated distance category. Secondly, we have
actually a notion of speed here, which is a distance divided by a duration. But we have neither the notion of
speed nor of duration.

Listing 18.20 New unit shortcuts for distances
static Distance getCm(Number num) { getCentimeters(num) }
static Distance getM (Number num) { getMeters(num) }
static Distance getKm(Number num) { getKilometers(num) }

Let’s start with the notion of speed with the Speed class of Listing 21, where we assume speeds are always

“per hour”.

Listing 18.21 Speed class
@TupleConstructor
class Speed {

284

Licensed to Charles Wise <ctwise@gmail.com>

 double amount
 Unit unit

 String toString() { "$amount $unit/h" }
}

Now we need to figure out how to construct our speed objects from our DSL. You noticed that we used the

divide operator /, and an h constant. That means we will need two things: operator overloading (seen in
Chapter 3) to be able to call the div() method on distances, and a new constant in the binding of the script
to provide the h hour unit.

This time, we’ll start by the second point: we are going to introduce a duration concept, and inject the hour
constant in the binding. For that we need a Duration enum as displayed in Listing 22.

Listing 18.22 Duration enum
enum Duration {
 hour
}

And we can inject the hour constant manually in the binding, since we really only care for that specific

constant of time, with:

def binding = new Binding([
 robot: new Robot(),
 h: Duration.hour
])

When writing 5.km/h, we have the shortcut equivalent of 5.getKm().div(h). The getKm() method

comes from the distance Category. And we need to amend the Distance class to support the division as
shown in Listing 23.

Listing 18.23 Updated distance with an overloaded division operator
@TupleConstructor
class Distance {
 double amount
 Unit unit

 Speed div(Duration dur) {
 new Speed(amount, unit)
 }

 String toString() { "$amount$unit" }
}

Supporting the familiar notation of speed like 5.km/h involved three techniques at the same time: adding

properties to number, operator overloading, and binding constant injection. Sometimes, for more concise
elements in your Domain-Specific Languages, you will need to combine several techniques at the same time,
to achieve your goals of readability and expressivity.

Our more complex command now looks like this:

move right, by: 3.m, at: 5.km/h

It is very readable, like plain English when we read that sentence aloud, but visually, there may be

something that could be annoying: the quantity of punctuation that is needed to separate the various elements
of that sentence. What if we could get rid of commas and colons, for instance? Thanks to Groovy’s command
chains, we can go as far as writing this kind of statements:

move right by 3.m at 5.km/h

285

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Except the dots between the numbers and units, we got rid of the commas and colons. In the following
section, we’re going to have a look at these command chains, so we learn how to construct them, for the
benefit of our Domain-Specific Languages.

18.5 Command chains
We started our journey about Domain-Specific Languages by speaking briefly about Groovy’s flexible nature,
and particularly the fact we can drop parentheses (and semi-colons) for top-level method calls. A standalone
call to a method that takes some arguments can be written that way, making our println’s a bit nicer on the
eye. These kinds of calls are called command expressions or top-level statements, as they look more like
commands or orders than like usual Java programming. Command expressions can as well take named-
arguments, or a mix of named and non-named arguments, as we saw in our examples. When the Groovy
developers designed that specific aspect of the syntax, they always felt that at some point, we could probably
go beyond just top-level statements, and find a way to expand those simple command expressions, into more
complex constructs, where we would chain or nest method calls with that parentheses-free syntax. It took
several years before a proposal emerged, providing an approach that sounded good enough, with a good dose
of groove, and that would help developers write even more beautiful DSLs.

Let’s step back a little and analyze a simple command expression. What is it? A method name (the method
to call), some whitespace, and a comma-separated list of named and non-named arguments:

methodName argOne
methodName argOne, argTwo
methodName argOne, keyOne: valueOne, argTwo, keyTwo: valueTwo

We always have those two parts: method name, and arguments.
Now, what if we expanded that concept to chained method calls, what could the syntax look like?

methodOne argOne methodTwo argTwo
methodOne argOne methodTwo argTwo methodThree argThree
methodOne argOne, keyOne: valueOne methodTwo argTwo, keyTwo: valueTwo

And how would they be interpreted? As chained method calls with the usual syntax:

methodOne(argOne).methodTwo(argTwo)
methodOne(argOne).methodTwo(argTwo).methodThree(argThree)
methodOne(argOne, keyOne: valueOne).methodTwo(argTwo, keyTwo: valueTwo)

Notice the alternation and repetition of a method name and arguments (named and non-named). This is

the essence of the command chains expressions introduced in Groovy 1.8.
So, a syntax like the one we want to achieve:

move right by 3.meters at 5.km/h

Is equivalent to:

move(right).by(3.meters).at(5.km/h)

Once we have mentally managed to parse that new syntax in our head with the right added parentheses

and dots, the implementation becomes trivial. We change the implementation of the Robot class to have a
move() method that takes a Direction, which returns some object (instead of void currently), on which we
can call a method named by() that takes a Distance and returns yet another object (or the same!) that
then has a method called at() which takes a Speed as argument.

This pattern is often used in Java fluent APIs, where we can chain method calls on the same object, as all
the methods in the chain actually return this, the current object on which we operate. We could follow this
approach of returning this, but instead, I will show you a nice trick with nested maps and closures, which

286

Licensed to Charles Wise <ctwise@gmail.com>

allows us to avoid having to create a more complex fluent API approach à la Java. Here’s what our new
move() method can look like in Listing 24.

Listing 18.24 Chained method calls with nested maps and closures
def move(Direction dir) {
 [by: { Distance dist ->
 [at: { Speed speed ->
 println "robot moved $dir by $dist at $speed"
 }]
 }]
}

Let’s decompose that implementation. First, our method is called: move(right). This calls returns a map,

whose sole key is by. From that map, you get the value associated with the by key, that’s a closure, that you
call with the 3.meters distance as parameter, which in turn returns a new map with the at key, which
corresponds to a last closure that we call passing it the 5.km/h speed argument. This sequence of call is
decomposed as shows Listing 25.

Listing 18.25 Decomposition of an extended command expression call sequence
def map1 = move(right)
def byClosure = map1['by']
def map2 = byClosure(3.meters)
def atClosure = map2['at']
atClosure(5.km/h)

Obviously, you will prefer the abbreviated version than the expanded one! At least I hope so. Command

chain expressions will allow you to write more English-friendly sentences, with the minimum amount of clutter.
We discovered the pattern of the sequence of method name and arguments, with an even number of

elements (ie. always a method and some arguments), but it’s also possible to have an odd number, with a
series of method name and arguments, and a final property access. Let’s have a look at that with a concrete
example: our robot moves, but it has also got arms to examine the rocky soil, so we can tell it to deploy his
left or right arm:

deploy left arm

Now we have a “sentence” with three words. It doesn’t fit our pattern of method name / arguments

anymore. But when faced with an odd number of “elements”, command chains have their own tricks! The last
element is a property access. So the above is equivalent to:

deploy(left).arm

If you want to implement that chain of calls, you can apply our technique with nested maps and closures,

but with a little twist, as the last element is not a method call:

def deploy(Direction dir) {
 [arm: {-> println "deploy $dir arm" }()]
}

Notice here particularly how the arm property from the map is associated with a closure call — see the

parentheses after the closure definition. Otherwise, the .arm part of the expression would just return the
closure, without executing it.

Similarly with odd number of words, we can use some “silent words” used as parameters of chained
method calls, and use maps with default values in the place of method names as shows Listing 26.

Listing 18.26 An order DSL
def of = "silent word" #1

287

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

def buy(n) {
 [shares: { of -> #2
 [:].withDefault { ticker -> #3
 println "buy $n shares of $ticker"
 }
 }]
}

buy 200 shares of GOOG

In #1, we defined a dummy variable called of, to which we assign a random value (it could as well be

null). This variable is passed as parameter of the closure value of the shares key of the map in #2, but we
don’t use that parameter at all through the rest of the implementation. Then in #3, since we may have an
infinite set of stock tickers (unlike in the case of the Mars rover with only a finite set of instruments like its
arm), we use a map with default values, thanks to the Groovy development kit method withDefault().
Each time we try to access a key that wasn’t in the original empty map on which that method is called, we
execute the closure (which simply prints a message here).

With this approach of command chains, we are able to tackle DSL sentences that are more varied in style,
and can correspond to proper English. But Domain-Specific Languages are not just about the ability to write
English phrases, and we can go beyond some imperative commands and add various form of control flow to
our mini-languages. Of course, it is possible to use all the control flow logic from Groovy in your DSLs (if/else,
for loops, while loops, etc.), but in the next section, we will also discover how to create your own control
structures.

18.6 Your own control structures
The ubiquituous if branching instruction is available in virtually all existing languages. It takes a boolean
expression as parameter, and a block of code that is executed when the boolean expression is evaluated to
true. For some reason, perhaps your business users are more comfortable with “when” than “if”? Could we
have a control structure like our if, but with a when as keyword? What would we need to achieve that goal? A
method taking a boolean expression and a closure to represent our code block to execute, as Listing 27 shows.

Listing 18.27 An alternative to if
def when(boolean condition, Closure block) {
 if (condition) block()
}

def a = 1
def b = 2

when(a < b, { println "a < b" }) #1

Our when() method does take a boolean expression as first parameter and a closure as second parameter

on #1, but this doesn’t look quite like our if statement yet. So what’s missing? You guessed it, we remember
about this syntactical rule which allows us to put the last closure argument “outside” of the parentheses — like
inject(seed){}, etc. By following this rule, we can rewrite our control structure as:

when(a < b) { println "a < b" }

This is exactly what we wanted to achieve, we now have created a synonym of if. You can also imagine

implementing an unless method that would be like if, but when negating the boolean expression: unless
(condition) {}.

The astute reader might however notice one thing: since that’s a closure we pass as last argument, the

curly braces are always needed even when the closure only contains one instruction. Some will say it’s a nice

288

Licensed to Charles Wise <ctwise@gmail.com>

way of enforcing the good practice of always requiring curly braces, but others could think it’s a lack of
flexibility.

There are some cases like this one, where mere method calls with the nice Groovy syntax tweaks still differ
in a way or another, but we can find workarounds, for example by using AST transformations, to alter the
structure of our programs to reach our syntactical goals, but as a developer, you should also remember that it
can come at a certain price. If you really want to have your when statement to support single block
statements without curly braces, you would have to implement an AST transformation. That means that you
would have more code to develop, test and maintain, and it will take you more time. As a developer, and as
the guiding hand of the syntax of the DSL, you might have to make some compromises: do you want (or do
your users want) as much flexibility of syntax as possible but at the expense of more time spent implementing
the feature and more code to develop and maintain, or are they happy with a little sacrifice (like requiring
curly braces) but have their DSL implemented more rapidly and easier to develop and maintain for the
developers?

You will have to keep those considerations in mind when crafting your DSL. Sometimes, as developers, we
tend to over-engineer code because we think in the end it’ll please the end users, but we forget the agile
mantra of “YAGNI” (You Ain’t Gonna Need It), as those end users don’t necessarily need that added flexibility
of the language you’re creating for them.

After this little warning stance, you may still want to know the solution on how to get rid of curly braces? I
know you would want to know how to do that, damn engineer that you are! Before diving in, let me show you
another example where curly braces might be good to remove, as the behavior of the code might be surprising
otherwise, and where mandating the curly braces make the statement look weirder than it should.

Let me introduce you to the till construct! Just like while, till is a looping construct. The sole
difference is that instead of looping while a condition is true, we will loop till the condition’s evaluation
becomes true. The problem here is that the condition should be evaluated each time we iterate and call the
block of code, to see if we must still continue to iterate or stop. If we tried the naïve approach of Listing 28 we
would get an infinite loop, as the condition is evaluated once as false, and the condition is not re-evaluated
later on.

Listing 18.28 Erroneous implementation of the till construct
def till(boolean condition, Closure closure) {
 while(!condition) closure() #2
}

def counter = 0

till(counter == 10) { #1
 counter++
}

On #1, when the call to the till() method is made, the boolean expression is evaluated only once, at

that specific moment. It’s not re-evaluated each time. The consequence is that our while loop in the
implementation will loop forever, which is definitely not the outcome we wished for.

How can we have an expression that is re-evaluated each time? By using a closure, as Listing 29 explains.

Listing 18.29 Implementation of till() using a closure condition
def till(Closure condition, Closure block) {
 while(!condition()) block() #1
}

def counter = 0

till({counter == 10}) { #2
 counter++
}

assert counter == 10

289

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

In the implementation, on #1, we now evaluate the negation of the result of the boolean expression

contained in the closure condition, but on #2, we noticed that the till() usage has become somewhat less
appealing as we require curly braces for the condition, making the look different from our goal to create a
construct like while(). Obviously, like in our when case, we wouldn’t mind also being able to get rid of the
curly braces for the block of code as well (the one increasing the counter).

We have already come up with three cases where it could be handy if we could treat a simple statement or

expression as if it were a closure, by managing to find a solution where we could abandon the surrounding
curly braces.

In the case of the when statement, we would have to transform:

when (condition);
statement;

Into:

when (condition) {
 statement
}

Whereas in the case of till, we would like to transform:

till ({ condition }) {
 statement
}

Into the following:

till (condition) {
 statement
}

Or if we wanted to get rid the curly braces of the single statement case, that would mean transforming:

till (condition);
statement;

Into this form:

till ({ condition }) {
 statement
}

Have you fastened your seat belt? Okay, let’s have some fun transforming some nodes of the Abstract

Syntax Tree that the Groovy parser creates!
In the following paragraphs, we’ll focus on one particular transformation: allowing curly-braces-free when

calls. We’ll let you have fun with implementing all the cases — otherwise we would have to kill a couple more
trees for producing the book with the increased number of pages.

In the AST Transformation chapter, you learned about the two kinds of transformations Groovy supports:
local transformations and global transformations. Global transformations, in our case, are interesting because
they are applied everywhere without the need of annotating elements of our business code with annotations,
but that’s also the drawback of the global application of the transformation, so everywhere we might have a
till or when, the transformation would kick in. On the other hand, although local transformations exhibit
annotations that may be foreign to business users’ eyes, they have the advantage that the transformations are
really just local.

290

Licensed to Charles Wise <ctwise@gmail.com>

For the purpose of this example, we will actually use local transformations, but as we don’t wont to impose
on our business users to have to use an explicit annotation, we will also learn how to hide the annotation, by
injecting the local transformation transparently, thanks to compilation customizers. We will get the benefits of
both kinds of transformations without their drawbacks: locality and transparency of application.

First of all, we will start by defining an annotation for our local transformation. Listing 30 shows our
annotation definition.

Listing 18.30 CustomControlStructure annotation
import java.lang.annotation.*
import org.codehaus.groovy.transform.*

@Retention(RetentionPolicy.SOURCE) #1
@Target(ElementType.TYPE) #2
@GroovyASTTransformationClass(classes = [WhenTillTransform]) #3
@interface CustomControlStructure {}

Our annotation doesn’t have to be available at runtime through reflection, so the source retention policy,
on #1, will be sufficient for our needs. The annotation will be put on types (ie. classes), on #2, and we will see
how we are going to inject that annotation on the base script of our business rules, in a short moment. And on
#3, we instruct the compiler that the transformation is implemented by the transform class called
WhenTillTransform that we have still to implement.

Let us build an empty shell for our transformation, in Listing 31, where we fill in the gaps, as we will
progress on our journey.

Listing 18.31 The WhenTillTransform class
import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.ast.stmt.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.transform.*
import org.codehaus.groovy.tools.ast.*

@GroovyASTTransformation(phase = CompilePhase.SEMANTIC_ANALYSIS)
class WhenTillTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 // we’ll fill in the gaps!
 }
}

To take care of our new control structure, we use a technique we have already used, with a base script

class implementing our special when() method, taking a boolean and a closure as parameters, as shown in
Listing 32.

Listing 18.32 A base script class for our business logic's control structure
abstract class BusinessLogicScript extends Script {
 def when(boolean condition, Closure block) {
 if (condition) block()
 }
}

As we flesh out our overall solution, we need a little infrastructure to test our transformation with Listing

33.

Listing 18.33 Testing our transformation
def binding = new Binding([customer: [name: 'John Doe', age: 32]]) #1

def config = new CompilerConfiguration() #2
config.scriptBaseClass = BusinessLogicScript.class.name #3
config.addCompilationCustomizers(#4
 new ASTTransformationCustomizer(CustomControlStructure)) #4

291

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

def shell = new GroovyShell(this.class.classLoader, binding, config) #5
def result = shell.evaluate ''' #6
 when (customer.age >= 21) { #6
 "Alcohol allowed for ${customer.name}" #6
 } #6
'''
assert result == "Alcohol allowed for John Doe" #7

In #1, we are going to define a binding containing the data on which our business rule will work on. We
inject a variable called customer, corresponding to a simple map (but of course, you can use plain classes,
numbers, whatever you want). In #2, we instantiate a CompilerConfiguration object that we will use to
define a base script class, in #3, for our business logic (that we just defined) and a compiler customizer that
will inject our local AST transformation, in #4. GroovyShell will be our weapon of choice for evaluating our
business rules using our new control structure. In #5, when instantiating the shell, we are passing the current
classloader of the script as parameter, as I scaffold this example in the Groovy console, and I have actually
put everything (annotation and transformation) in the same compilation unit (ie. in the same script), the shell
needs to know all the classes that we’re working on. We are also passing the binding for sharing the
information that our business rules need, and the compiler configuration object. The business rule using our
custom control structure in #6 is using the evaluate() method of the shell. We can then check the result
returned by the evaluation of the business rule in #7.

So far so good, but what happens if we remove the curly braces, to implement our no-curlies requirement?
We get the following exception:

groovy.lang.MissingMethodException: No signature of method: BusinessLogic.when() is
applicable for argument types: (java.lang.Boolean) values: [false]
Possible solutions: when(boolean, groovy.lang.Closure), wait(), run(), run(), grep(),
wait(long)
 at BusinessLogic.run(Script1.groovy:9)

What’s happening here? Well, as we hinted before, Groovy thinks the when method call takes only a

boolean argument, and treats the supposed body of the when as another statement, not part of the when call.
It treats that code as if it were written as follows (semi-colons helps better visualize what Groovy understands
here):

when (customer.age >= 21);
"Alcohol allowed for ${customer.name}";

So the goal of our transformation will be to analyze this AST to recognize the when calls, to wrap the

following standalone statement within a closure expression, and to pass that expression as a second
parameter of the when calls, while removing that free-standing statement from the code block it belongs to.

Let’s put than plan into action, by filling the gaps of our transformation’s visit() method, by creating our
own implementation of ClassCodeVisitorSupport, in Listing 34.

Listing 18.34 Visiting code with ClassCodeVisitorSupport
@GroovyASTTransformation(phase = CompilePhase.CONVERSION)
class WhenTillTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 ClassNode annotatedClass = nodes[1]
 new ClassCodeVisitorSupport() {
 def currentMethod
 def currentBlock
 def currentStatement

 void visitMethod(MethodNode method) {
 currentMethod = method
 super.visitMethod(method)
 }

 void visitBlockStatement(BlockStatement block) {

292

Licensed to Charles Wise <ctwise@gmail.com>

 currentBlock = block
 super.visitBlockStatement(block)
 }

 void visitExpressionStatement(ExpressionStatement statement) {
 currentStatement = statement
 super.visitExpressionStatement(statement)
 }
 void visitMethodCallExpression(MethodCallExpression mCall) {
 super.visitMethodCallExpression(mCall)
 }

 protected SourceUnit getSourceUnit() { unit }
 }.visitClass(annotatedClass)
 }
}

ClassCodeVisitorSupport is going to be very handy for us, for “visiting” the data structure that is the

Abstract Syntax Tree. It implements the famous visitor pattern, calling many visit* methods, as it
encounters a particular node in the AST.

In our situation, we are interested in four particular methods: visitMethod(),

visitBlockStatement(), visitExpressionStatement(), and visitMethodCallExpression().
To illustrate why those four methods are the ones we are going to pay attention to, let’s have a quick look

at the structure of the AST on for the following when instruction:

when (a > b) {
 println "a > b"
}

Figure 18.1 Structure of a when() call

The “when” MethodCallExpression is wrapped in an ExpressionStatement, which is an element of
the list of statements of the BlockStatement, that is in turn child of a MethodNode (that we don’t see in

293

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

this screenshot of the Groovy console AST browser). We’ll track this structure by implementing the four
adequate visitor methods.

Please note the fact we are always calling the super methods of the same name, as the parent class of our
anonymous inner class knows all the traversing logic, and you don’t have to take care of that logic yourself,
that’s that super call that will handle that for you.

Let’s focus on the visitMethodCall() implementation now, as the other methods are really here only to

track where we are in the AST, and have the right pointers for the places where the modifications of the AST
will happen. Listing 35 shows how we can find the relevant when() calls we want to look at.

Listing 18.35 Spotting the when call
void visitMethodCallExpression(MethodCallExpression mCall) {
 if (
 mCall.objectExpression instanceof VariableExpression && #2
 mCall.objectExpression.variable == 'this' && #1
 mCall.method instanceof ConstantExpression && #3
 mCall.method.value == 'when' && #4
 mCall.arguments.expressions.size() == 1 #5
) {}
 super.visitMethodCallExpression(mCall)
}

Such when() calls are actually method calls on the this (#1) variable expression (#2), and the name of

the method being called is a constant expression (#3) with value when (#4). We also differentiate calls when
the normal boolean / closure pair is used as arguments, or when we trick the compiler into believing a
when(boolean) call followed by a plain statement is actually another form of our control structure — here we
don’t want to modify the boolean / closure call at all, only the latter one.

We have found the calls we want to act upon, now what’s next? Firstly, we should check that there actually
is another statement after the when call, that will be our single-statement when body. Otherwise, if there were
no following statement, that would mean the when instruction is not complete, and that will be spelled as a
compilation error. But how do we know there is no following statement?

As Listing 36 demonstrates, we’ll have a look at the list of statements contained in the block statement,
find the index of the expression statement wrapping the method call (#1), to check if its index is the last one
of the block #2). If the index is the last one, that means the associated when statement is missing, and we
are instructing the compiler that a compilation error should occur.

Listing 18.36 Checking the index of the when call (snippet)
def idx = currentBlock.statements.findIndexOf { #1
 it == currentStatement #1
} #1
if (idx + 1 >= currentBlock.statements.size()) { #2
 addError("The when instruction has no body.", mCall) #3
} else { /* ... */ }

As usual, the Groovy development kit offers useful methods that we can take advantage of, for example, in

#1, the findIndexOf() method allows us to find the index of the statement wrapping the when call, in the
list of statements of the current block of code. As you realize, the other visitor methods have helped us
tracking where we were (current code block and current statement). With the knowledge of the position of the
statement in the block, we verify in #2 that the call is not the last element of the block, as otherwise, that
means no following statement can be attached to our when call. If this verification fails in #3, we add a
compilation error message that the compiler will throw at you! You can check that the error is thrown by
commenting the last statement of the business rule. Finally, in the else part, we are going to continue our
implementation, with the transformation per se.

294

Licensed to Charles Wise <ctwise@gmail.com>

So what’s left to do? We want to find the statement associated with our when call, wrap it in a closure, and
modify the when call to take that closure as second parameter.

We know the index of the when call, so the statement to be attached to the when call is the one following

when:

def whenCode = currentBlock.statements[idx + 1]

We wrap that code within a ClosureExpression, whose constructor takes two arguments: an array of

parameters that the closure can receive, and the statements forming the body of the closure:

def closureExp = new ClosureExpression(Parameter.EMPTY_ARRAY, whenCode)

With that closure expression we just created, we can push it as a second parameter of our when call with:

mCall.arguments.addExpression(closureExp)

The statement that we wrapped in a closure is still present in the list of statements of the block of code

containing our when call, so we need, as a last step, to remove it from the list of statements with:

currentBlock.statements.remove(idx + 1)

Now, if you run the business rule again, you will notice that the new syntax is allowed: a when call and a

curly-braces free single statement. Our final transformation class looks like Listing 37.

Listing 18.37 The complete AST transformation to allow brace-free ‘when’ statements
@GroovyASTTransformation(phase = CompilePhase.SEMANTIC_ANALYSIS)
class WhenTillTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 ClassNode annotatedClass = nodes[1]
 new ClassCodeVisitorSupport() {
 def currentMethod
 def currentBlock
 def currentStatement
 void visitMethod(MethodNode method) {
 currentMethod = method
 super.visitMethod(method)
 }
 void visitBlockStatement(BlockStatement block) {
 currentBlock = block
 super.visitBlockStatement(block)
 }
 void visitExpressionStatement(ExpressionStatement statement) {
 currentStatement = statement
 super.visitExpressionStatement(statement)
 }
 void visitMethodCallExpression(MethodCallExpression mCall) {
 if (
 mCall.objectExpression instanceof VariableExpression &&
 mCall.objectExpression.variable == 'this' &&
 mCall.method instanceof ConstantExpression &&
 mCall.method.value == 'when' &&
 mCall.arguments.expressions.size() == 1
) {
 def idx = currentBlock.statements.findIndexOf {
 it == currentStatement
 }
 if (idx + 1 >= currentBlock.statements.size()) {
 addError(
 "The when instruction has no body.", mCall)
 } else {
 def whenCode = currentBlock.statements[idx + 1]

295

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

 def closureExp = new ClosureExpression(
 Parameter.EMPTY_ARRAY, whenCode)
 closureExp.variableScope = new VariableScope()
 closureExp.variableScope.parent =
 currentBlock.variableScope
 mCall.arguments.addExpression(closureExp)
 currentBlock.statements.remove(idx + 1)
 }
 }
 super.visitMethodCallExpression(mCall)
 }
 protected SourceUnit getSourceUnit() { unit }
 }.visitClass(annotatedClass)
 }
}

Such a transformation is not necessarily a big amount of code, but the explanations usually take longer

than what is really takes in lines of code. The hardest part I would say, however, is to get to know better the
internals of the Groovy compiler and its machinery, and how the AST is structured.

We solved one of the cases we listed, and I’ll let as an exercise to the reader to continue fleshing out this
transformation to cover the other cases.

Before closing this section on custom control structures, let’s have a look at a last one, where we will be

able to take advantage of command chains. A lot of testing frameworks these days are following the “Behavior
Driven Development” approach, adopting the vocabulary of “user stories”: given / when / then. For example,
let’s consider the scenario:

Given two numbers, a and b whose values are 1 and 2
When you add a and b together
Then the result of the addition is 3

We can interpret that scenario with the custom control structure shown below. It’s a similar construct as if

/ else:

given {
 a = 1
 b = 2
} when {
 result = a + b
} then {
 result == 3
}

Such a structure is actually a chained method call structure equivalent to:

given({ … }}.when({ … }).then({ … })

We will apply the technique will learned with nested maps and closures:

def given(Closure g) {
 g()
 [when: { Closure w ->
 w()
 [then: { Closure t ->
 t()
 }]
 }]
}

The three closures are called and executed serially.

296

Licensed to Charles Wise <ctwise@gmail.com>

In the context of a script, when you assign values to variables that haven’t been defined, then the script
binding is used to store those values. So our example works fine inside a script. But if you’d run this inside a
class, you’d get the following error message:

groovy.lang.MissingPropertyException: No such property: a for class: Test

To make it work for classes as well, you should use some kind of value holder object, for example a map,

which should be used as delegate of all the closures. And to have the assignments be done on that value
holder object, you should also set the resolve strategy of closures to use the delegate first, as otherwise, the
containing class would be used, as shown in Listing 38:

Listing 18.38 given / when / then with closure delegation
def given(Closure g) {
 def valueHolder = [:]
 g.delegate = valueHolder
 g.resolveStrategy = Closure.DELEGATE_FIRST
 g()
 [when: { Closure w ->
 w.delegate = valueHolder
 w.resolveStrategy = Closure.DELEGATE_FIRST
 w()
 [then: { Closure t ->
 t.delegate = valueHolder
 t.resolveStrategy = Closure.DELEGATE_FIRST
 t()
 }]
 }]
}

Taking advantage of the way properties are resolved in the context of a closure is often used in Domain-

Specific Languages, for builders for example, for switching the context of execution. In the next section, it’s
worth investigating a bit more what you can do with this technique, and particularly, how you can use the
Groovy development kit’s with{} method.

18.7 Context switching with closures
When you use POJOs (Plain Old Java Objects) or POGOs (Plain Old Groovy Objects) with lots of properties or
when you assign values to many of those properties, your code can become quite verbose.

Considering an address bean like this:

class Address {
 String line1
 String line2
 String city
 String zipCode
 String country
}

If you instantiate such a class the “Java-way”, you’d get the following code:

def addr = new Address()
addr.line1 = '1st, Main Street'
addr.line2 = 'Suite 345'
addr.city = 'Metropolis'
addr.zipCode = '12345'

The verbosity shows itself with the repetition of the addr. prefix. Constructors with named arguments

improves the situation:

addr = new Address(
 line1: '1st, Main Street',

297

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

 line2: 'Suite 345',
 city: 'Metropolis',
 zipCode: '12345'
)

But Groovy also adopts the context switching technique with closure delegation in the form of the with{}

method:

addr = new Address()
addr.with {
 line1 = '1st, Main Street'
 line2 = 'Suite 345'
 city = 'Metropolis'
 zipCode = '12345'
}

All the assignments are done on the properties of the object. They are not done on some fields or local

variables.

If we come back to our examples with our Mars rover, a simple context switching might have been good

enough for our users, as demonstrated by Listing 39. Furthermore, this example also proves this context
switching works as well with method calls.

Listing 18.39 Robot and context switching with closures
def robot = new Robot()

robot.with { #1
 move left #2
 move forward #2
}

In #1, we use again the with{} method with our robot instance, whereas in #2 we can give it its orders

with the streamlined syntax.
One little downside though, is that perhaps the usage of “with” as a method name doesn’t look ideal within

the context of the rover, but we can very well alias this method, simply by adding (or injecting by
metaprogramming) a method on Robot that would just delegate to Groovy’s with{} method:

void execute(Closure actions) {
 this.with actions
}

Then you’d be able to send your commands that way:

robot.execute {
 move left
 move forward
}

Let’s finish this section with a concrete example of how we can improve the usage of a library, using

command chains, and using with{} again. In recent years, we have seen many projects using the “fluent
API” approach, that we mentioned when we spoke about command chains. To illustrate this, I’ll take
inspiration from a class called FetchOptions from the Google App Engine project SDK, that is used to
parameterize how data is fetched from the datastore used for storing non-relational information. This class can
be easily replicated by the class presented in Listing 40.

Listing 18.40 A "fluent" API example
final class FetchOptions { #2
 private int limit, offset, chunkSize, prefetchSize

298

Licensed to Charles Wise <ctwise@gmail.com>

 private FetchOptions() {} #3

 FetchOptions limit(int lim) {
 this.limit = lim
 return this #1
 }
 FetchOptions offset(int offs) {
 this.offset = offs
 return this
 }
 FetchOptions chunkSize(int cs) {
 this.chunkSize = cs
 return this
 }
 FetchOptions prefetchSize(int ps) {
 this.prefetchSize = ps
 return this
 }

 static final class Builder { #5
 private Builder() {} #6
 static FetchOptions withDefaults() { #4
 new FetchOptions() #4
 }
 static FetchOptions withLimit(int lim) { #7
 new FetchOptions().limit(lim)
 }
 static FetchOptions withOffset(int offs) {
 new FetchOptions().offset(offs)
 }
 static FetchOptions withChunkSize(int cs) {
 new FetchOptions().chunkSize(cs)
 }
 static FetchOptions withPrefetchSize(int ps) {
 new FetchOptions().prefetchSize(ps)
 }
 }
}

The FetchOptions class an implementation of the classic “Gang of Four” Builder Pattern. You can find

various variants with slightly different approaches, but the key aspect and common gene between
implementations is usually the fact that you have several methods always returning this, the current
instance, like in #1. That way, you can chain calls to methods of that instance that you are building, and
create sentences that read well, although with a bit too much punctuation that blurs the reading of those
sentences.

Looking at #2, you quickly realize that you cannot extend the class at will since the class is final, and you
cannot easily instantiate it as the constructor is private, as shown in #3. The sole class allowed to instantiate
FetchOptions is the internal Builder class, in #4, but unfortunately, this class is once again final (#5) and
has got a private constructor (#6). It’s not very friendly for hacking!

The Builder class then gives you various static methods (like in #7) so you can create FetchOptions
instances, and then chain calls easily on FetchOptions once you’ve got your first instance created.

Let us now use this FetchOptions class and its Builder. Here is what we can do:

def options = FetchOptions.Builder.withLimit(10).offset(60).chunkSize(1000)

Having to prefix all options creations with FetchOptions.Builder is not necessarily very beautiful. But if

you use a static import on the methods of the Builder, then the situation improves nicely with:

import static FetchOptions.Builder.*

def options = withLimit(10).offset(60).chunkSize(1000)

299

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Now, combine that with command chains, and you can remove lots of punctuation noise:

def options = withLimit 10 offset 60 chunkSize 1000

What happens if ever we have such fluent APIs with literally tons of methods we need to call in a chain?

You’ll have to split the statement across several lines. Without command chain expressions, you can get away
with:

def options = withLimit(10)
 .offset(60)
 .chunkSize(1000)

However, with command chains, you would have to use a backslash to split over several lines, as otherwise

the Groovy compiler might think these are individual method calls (ie. not chained):

def options = withLimit 10 \
 offset 60 \
 chunkSize 1000

Using backslashes is probably not very intuitive for business users. Furthermore with a static import, we

don’t necessarily remember that we are creating fetch options, since we just see the various options
themselves only.

Right, but what are we trying to achieve here? We want to have a concise and readable way of expressing
the creation of fetch options. We’d like to be able define the various options on one line or many,
transparently, but not at the expense of odd characters or abandoning command chain expressions, and still
visually understand we do want to create fetch options. Fortunately, there’s a solution for that, by combining
static imports, command chains, and context switching with with{}.

Let’s create our own fetch options builder utility class that will wrap the usage of FetchOptions.Builder
in Listing 41.

Listing 18.41 The FetchOptionsBuilder class
class FetchOptionsBuilder {
 static FetchOptions fetchOptions(Closure c) {
 def opts = FetchOptions.Builder.withDefaults()
 opts.with c
 return opts
 }
}

Our very own FetchOptionsBuilder class contains a single static method called fetchOptions. We’ll

be able to static import it too. What’s more interesting are the three lines of code from this single method. The
first one hides the usage of the long form of the creation of the first fetch options instance. The second one
then uses with to delegate all method calls and property accesses from within the body of the closure passed
in parameter, so that the calls and access are routed to the FetchOptions. And the last one actually returns
that FetchOptions instance.

Let’s see this little cutie in action in Listing 42.

Listing 18.42 The FetchOptionsBuilder in action
import static FetchOptionsBuilder.fetchOptions

fetchOptions {
 limit 10 offset 60
 chunkSize 1000
}

300

Licensed to Charles Wise <ctwise@gmail.com>

You can create a FetchOptions instance by importing and calling our newly created utility class and its
static method, by passing a closure to that method call, in which you can then define all the options you need,
by chaining calls on a single line with command chains, or by stacking them up spanning several lines, or even
a combination of both. Furthermore, you can assign the result of that call to variables, or use such calls
verbatim as parameters of the datastore commands.

All that without the standard method call syntax of Java, or too much punctuation or weird line continuation
characters. We managed to pimp our library with a more Groovy-friendly builder class, to instantiate a
complex object.

Speaking of builders, we have talked about closure delegation and resolve strategy, a technique used by

Groovy’s with{} method and by many builders in the wild (like Grails’), and you have also learned a lot about
them in the chapter about Groovy builders, on how to use existing ones provided by Groovy or how to create
your own. Groovy builders are really great for creating hierarchical data structures. But in the next section, I’ll
show you another handy trick to create such trees of data.

18.8 Another technique for builders
Hierarchical data is everywhere. When you think of a car, it can be described with the decomposition of its
various parts. Or if you look at your folders or your hard drive, once again, the hierarchical nature of the file
system shows up. Groovy builders can come to the rescue for implementing a DSL for hierarchical
representations (extending BuilderSupport, FactoryBuilderSupport or using ObjectGraphBuilder),
but you can also take advantage of the @Newify transformation. But first, a few words about this
transformation.

The standard way of instantiating an instance of the class is to use the new keyword that calls one of the

constructors of the class. Several languages beyond Groovy use this notation, but others adopt different
syntaxes. Ruby prefers a factory-like approach where new is actually a class method, so you can call
MyObject.new(). Python, on the other hand, just doesn’t use a method or a keyword, it simply appends
parentheses and arguments to the name of the class with MyObject(). The @Newify transformation
proposes to add those syntaxes to Groovy.

Listing 18.43 Ruby-style instantiation
import groovy.transform.*

@ToString
class Car {
 String make
 String model
}

@Newify
def car = Car.new(make: 'Porsche', model: '911')

assert car.toString() == 'Car(Porsche, 911)'

To use the Ruby-style approach, you annotate a class, a method, a field, or a local variable with the

@Newify annotation, as shown in Listing 43. Then in the scope of application of that annotation, a new static
method new() appears on all types so that you can instantiate objects by calling that factory method.

For Python-style notation, you need to use the @Newify annotation with a class or array of classes as
parameter, as demonstrated in Listing 44.

Listing 18.44 Python-style instantiation
@Canonical
class Country {
 String name
}

301

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

@Canonical
class City {
 String name
 String zipCode
 Country country
}

@Newify(City, Country)
def paris = City('Paris', '75000', Country('France'))

assert paris.toString() == 'City(Paris, 75000, Country(France))'

Given the Country and City classes, and using the @Canonical transformation to have a nice

toString() output and a Java-like tuple constructor, we can then apply the @Newify transformation with
the classes for which we want to abandon the usage of the new keyword altogether.

You already see in that example how we can build something from its parts with a more concise
instantiation notation. Let’s push that further with another example where we can have some arbitrarily nested
structure. As we’re in the chapter about DSLs, and the L stands for Language, we’re going to build a term
expression language to represent some formula.

We need a base interface for representing terms, as well as several implementations of that term: one for a
value, one for representing an addition, and another one for a multiplication (and you can add other ones if
you so desire). Listing 45 gives you those interfaces and classes to get started building your term structures.

Listing 18.45 Term, Value, Add and Mult types
import groovy.transform.*

interface Term {}

@Canonical
class Value implements Term {
 def content
}

@Canonical
class Add implements Term {
 def left, right
}

@Canonical
class Mult implements Term {
 def left, right
}

With a Java-like instantiation, to represent the expression a * (b + c), you’d need to write it down like that:

def term =
 new Mult(new Value('a'), new Add(new Value('b'), new Value('c')))

That’s quite a lot of new keywords! But if you apply the @Newify transformation, the expression becomes

easier to read:

@Newify([Value, Mult, Add])
def term2 =
 Mult(Value('a'), Add(Value('b'), Value('c')))

Well, the expression itself is very nice, but you pay the tax of the annotation of the local transformation.

But you are already familiar with CompilerConfiguration and its compilation customizer to transparently
inject local transformations to make their use invisible from the users’ perspective! I won’t let you do this one
as an exercise, as it’s important to have a look at how we can inject a local transformation that takes
parameters — so far, the ones we injected needn’t any. Listing 46 shows you how do that.

302

Licensed to Charles Wise <ctwise@gmail.com>

Listing 18.46 Injecting a local transformation that takes parameters
def config = new CompilerConfiguration()
config.addCompilationCustomizers(
 new ASTTransformationCustomizer(#1
 value: [Value, Mult, Add], Newify) #1
)
def shell = new GroovyShell(
 this.class.classLoader, new Binding(), config) #2

def term3 = shell.evaluate ''' #3
 Mult(#3
 Value('a'), #3
 Add(#3
 Value('b'), #3
 Value('c') #3
) #3
) #3
''' #3

assert term3.toString() ==
 'Mult(Value(a), Add(Value(b), Value(c)))'

In #1, we define an ASTTransformationCustomizer for the @Newify local transformation, and we

pass the parameters needed by the transformation in the form of a map or named parameters. @Newify has a
value as parameter, that needs a list of classes for values. When instantiating the GroovyShell, we need to
pass the compiler configuration, but also the class loader of the script (as I ran these examples in one single
compilation unit inside the Groovy console). Then in #3, we can evaluate our term expression without needing
to use the @Newify annotation explicitely.

Until now, all our DSLs used various runtime and compile-time meta-programming techniques of Groovy.
But all those mini-languages that we built were always designed within the boundaries of the syntax allowed
by Groovy. In a way, it’s nice because you’ve got the full power of a general-purpose dynamic language at
your fingertips, but on the other hand, you are also limited by what the Groovy syntax allows. In the next
section, we will discover a solution to allow some syntax adjustments to further customize your DSLs. Beware,
it comes at a price, though!

18.9 Beyond the Groovy syntax
Groovy offers many ways to customize the language, both at compile-time and at runtime: you can add
methods on the fly, add properties to number, do operator overloading to add operators to your own types,
change the lookup logic in closures, and more. All this happens within the confine of the Groovy grammar.

But what if, for instance, you wanted to create your own custom operators? Groovy only allows you to
overload a finite set of operators. You cannot create your own! It was a conscious design decision made by the
creators of the language, to refrain developers from imagining ASCII art operators that would seriously alter
the readability of your programs. But if for the purpose of a special DSL, you needed to invent a new operator?
Although you should be careful to avoid creating a read-only language, you can actually create some derivative
of the Groovy syntax yourself. Beware; this comes at a price, as your derived language won’t be understood
by IDEs, you would loose code-completion, and more. But we’re grown-ups, aren’t we? So let’s see what we
can do. But first, a little explanation on the compilation process.

The Groovy compiler uses the Antlr parser generator library to create a lexer and a parser for the syntax of
the Groovy language that are used through the compilation process. From the textual form of your programs,
Antlr generates a CST (Concrete Syntax Tree), from which the AST (Abstract Syntax Tree) is computed.

We already know there exists hooks, for instance, for acting on the AST for making various changes. This is
what AST Transformations do! But you can also plug yourself earlier in the process, before the CST is
generated. Here, we will be interested in looking at the text source before the CST is created. We can alter
that text source, before feeding the lexer.

303

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

The idea I’m hinting at here is that we can take some text entry (your own programs and business rules),
that may not comply with the Groovy grammar, make amendments to make it valid Groovy syntax, and then
feed the compiler with that modified source.

Let’s see that in action with a concrete example: we will work on the definition of a graph, with nodes
linked together by arrows. First, we create our program and DSL in a classical fashion (within the bounds of
the Groovy syntax), and then, we see how we can create a custom operator for it to make the code even more
readable.

We’d like to be able to define graphs, like Figure 2 Graph example, with the following syntax:

graph {
 from a to b
 from a to c
 from a to e
 from c to d
 from c to e
}

We have a graph{} method taking a closure as argument, and within of the closure body, we define the

arrows thanks to a command chain call (from(node1).to(node2)), and the nodes are actually defined as
they are used.

Figure 18.2 Graph example

To represent a graph, we need classes to represent nodes and arrows (the directed edge between our
nodes). Listing 47 defines the classes Node and Arrow.

Listing 18.47 Node and Arrow classes
import groovy.transform.*

@TupleConstructor
class Node {
 String name
 String toString() { name }
}

@TupleConstructor
class Arrow {
 Node from
 Node to
 String toString() { "$from -> $to"
}

304

Licensed to Charles Wise <ctwise@gmail.com>

Our Node and Arrow classes are just plain POGOs, with a tuple constructor and a custom string
representation. Nothing fancy so far. And we kept their implementations independent of the notion of graph.
The meaty bits will come with our Graph class, in Listing 48.

Listing 18.48 The Graph class
@ToString #1
class Graph {
 List<Node> nodes = [] #2
 List<Arrow> arrows = [] #2

 static Graph graph(Closure c) { #3
 def graph = new Graph() #4

 def definition = c.clone() #5
 definition.from = { Node fromNode -> #6
 [to: { Node toNode -> #6
 graph.arrows << new Arrow(fromNode, toNode)} #6
] #6
 } #6
 definition.delegate = [:].withDefault { key -> #7
 def n = new Node(key) #7
 graph.nodes << n #7
 return n #7
 } #7
 definition.resolveStrategy = Closure.DELEGATE_FIRST #8
 definition() #9

 return graph #10
 }
}

We create our Graph class annotated with to @ToString transformation, in #1, to have a nice

toString() representation that we will use later on for asserting our tree construction went fine. Our graph
has got two list properties, in #2, to contain all the nodes of the graph, and the arrows linking the nodes
between them. In #3, we create a static graph{} method (that will be statically imported in our graph
definition script) to build the structure of the graph. What are we doing in this method? We instantiate a
Graph object in #4. We clone the closure argument of the method in #5, as it’s usually better to be safe in
cases of the closure would be used in concurrent scenarios and have unwanted side-effects.

We add a from property closure in #6, which is used to support the from(node1).to(node2) notation
with command chains. This closure will appear as if it were a from() method available in the body of the
closure. This pseudo-method is responsible for creating the arrows, and adding them to the arrows list
property of the graph.

Then, in #7, we define a delegate for the closure so that all unbound variables, like a, b, c, are actually
transparently creating a Node instance, and add it to the nodes list property of the graph — note again the
usage of Map’s withDefault{}. And in #8, we set the resolve strategy of the closure to the delegate first, so
that unbound variables are resolved against the closure’s delegate.

Finally, we’re able to call the closure in #9, and return the graph that we have produced through the
definition closure, in #10.

With all that setup code ready, we are able to create a graph in Listing 49.

Listing 18.49 Creation of a graph
import static Graph.* #1

def g = graph { #2
 from a to b #3
 from a to c #3
 from a to e #3
 from c to d #3
 from c to e #3
}

305

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

assert g.toString() == #4
 'Graph([a, b, c, e, d], [a -> b, a -> c, a -> e, c -> d, c -> e])'

We import statically the static graph{} method of the Graph class in #1. We use that method in #2 to

define the structure of our graph, thanks to the declaration of all the direct edges between our nodes in #3.
And we can assert in #4 that the structure of our graph is the one we wanted to represent, by comparing the
toString() representation.

That’s nice, our example works. But there’s perhaps a downside… somewhat on purpose, obviously. The

definition of the arrows linking the nodes together is perhaps a bit verbose, and the scientists using our DSL
might want to have a more natural syntax, using, well, a real arrow character! Like the Unicode character
U+2794: , also called “HEAVY WIDE-HEADED RIGHTWARDS ARROW”. So instead of writing from a to b,
mathematicians could write a b.

But what happens if we use such a notation in our graph definition? The Groovy compiler will complain with
the following message:

Invalid variable name. Must start with a letter but was:

A variable or a method name must be a valid identifier, and identifiers start with a letter. Our arrow is not
considered to be a letter. So the code is not considered valid Groovy syntax, and the compiler rejects it.

BE CAREFUL

Our example text transformation is quite simple, but before jumping the gun and litter your code with cryptic
characters, bear in mind that supporting Unicode can be problematic and lead to additional problems. First of
all, how do your users actually enter that Unicode character with their keyboard? Are your DSL files properly
encoded in UTF-8 or UTF-16, so that you don’t see weird characters appear as the Unicode ones were not
recognized? So take this example transformation with a grain of salt, and more as a proof of concept that
you can do textual pre-processing before feeding Groovy with your DSLs.

We’re in trouble here. We would like our DSL to support some syntax that is foreign, according to the

Groovy grammar. But as we said in introduction, there’s a solution for that: we can hook in the compilation
process, and make a source code transformation to change it slightly so as to make it valid. So we would
transform that arrow notation, with the notation we used in our implementation above.

To do that, we’ll keep all our base classes exactly the same: Node, Arrow, and Graph. But we will create
some kind of source pre-processor. As often for customizing the configuration, CompilerConfiguration will
be our friend to set this up. We define a ParserPluginFactory class in Listing 50, that is used by the
Groovy compiler to plugin the Antlr machinery.

Listing 18.50 A custom ParserPluginFactory
class SourcePreProcessor extends ParserPluginFactory { #1
 ParserPlugin createParserPlugin() { #2
 new AntlrParserPlugin() { #3
 Reduction parseCST(SourceUnit sourceUnit, Reader reader) { #4
 def text = reader.text #5
 .replaceAll(/(\w+)\d+\s+(\w+)/, 'from $1 to $2') #6
 super.parseCST(sourceUnit, new StringReader(text)) #7
 }
 }
 }
}

In #1, we extend the base ParserPluginFactory abstract class, to create our own variant, the

SourcePreProcessessor class. And in #2, we implement the createParserPlugin() abstract method.

306

Licensed to Charles Wise <ctwise@gmail.com>

This method must return a ParserPlugin implementation. Only two methods are needed for implementing
that interface, but the sole existing implementation in the Groovy code base, AntlrParserPlugin, weighs in
at 3000 lines of code and does a lot of work to create the Concrete Syntax Tree and then transform it into the
initial Abstract Syntax Tree. So instead of reinventing two big weels, we follow the approach of simply
extending Groovy’s AntlrParserPlugin, and add our own bits where it makes sense, and call super to do
the rest of the work. Good developers are supposed to be lazy, aren’t they? So in #3, we create an
anonymous inner class extending that big class. We are particularly interested in the method that is going to
create the CST from the initial source text. This method, in #4, has got two parameters, the second of which is
a Reader over the source text!

Two steps will do the work. First of all, we read the content of the reader in #5, and replace all the
occurrences of the regular expression of an arrow surrounded by two node names, with a new string with the
from / to syntax, in #6. And for the heavy lifting, we’re going to call back to the super method, passing it a
new reader over our transformed string, in #7. That way, the Groovy compiler will actually parse the modified
source, which is now valid Groovy syntax, and not the initial one.

We’re not totally done yet, we need to configure and wire everything now. That’s what we’re going to do
next, in Listing 51.

Listing 18.51 Pluging and testing the pre-processor
def conf = new CompilerConfiguration() #1
conf.pluginFactory = new SourcePreProcessor() #2
conf.addCompilationCustomizers(#3
 new ImportCustomizer().addStaticImport(Graph.name, 'graph')) #3

def shell = new GroovyShell(this.class.classLoader, #5
 new Binding(), conf) #5

def g = shell.evaluate(""" #6
 graph { #4
 a b
 a c
 a e
 c d
 c e
 }
""")

assert g.toString() == #7
 'Graph([a, b, c, e, d], [a -> b, a -> c, a -> e, c -> d, c -> e])'

Let’s call our good old friend, CompilerConfiguration, to the rescue, in #1. We set the

pluginFactory property of our configuration instance to point at our SourcePreProcessor in #2. After
that, in #3, we add an import customizer for adding a static import for the graph{} method of the Graph
class, so that the end-user doesn’t have to do the static import himself in his script, in #4. We instantiate the
shell in #5, we call the evaluation method with our source with the nice Unicode arrows in #6, and then we
assert that the graph generated is correct in #7.

With this approach, we managed to take a graph definition which wasn’t conformant with the Groovy
grammar, turn it into proper Groovy syntax, and have the Groovy compiler parse that modified and compliant
source. However, let me remind you this comes at a price: the source is indeed not valid Groovy syntax, and
tools grokking Groovy code won’t understand that syntax. Your IDE will complain with red squiggles all over
the place in the editor, with compilation errors if you’d try to compile that class directly. Static analysis tools
such as CodeNarc won’t be able to do their job either. So be careful when you fire this gun! Perhaps the price
is too high to pay for the benefits of pleasing the eye of mathematicians. Also, perhaps you might have found
an existing operator that could have been overloaded? For example, the right shift operator >> would have
looked enough like an arrow? Perhaps a method was actually okay? Be sure to think about the various options,
and the cost / benefits, when designing the various aspects of the syntax of your DSL.

In the example we presented here, we had only a small modification to make, that a regular expression
could do. But be careful not to do too many alterations of the grammar, otherwise, you’ll really be

307

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

implementing your own language. Then, regular expressions won’t be enough, and you will need to create
your own lexer, parser, etc.

That said, to open up some perspectives, it can be interesting for cross-compilers that would compile other
languages’ code, like JavaScript, to Groovy code — although the other way might be more interesting to make
Groovy code run in the browser as JavaScript. Another example of usage can be for a new template engine
that would spice up its syntax with Groovy fragments to have the full power of a general-purpose dynamic
language.

In the case you need changes that a simple regular expression can’t fix, you can take the approach of
generating the Groovy AST yourself, by providing a full-blown implementation of the ParserPlugin
interface, but remember that this might be quite a lot of work to do.

All the techniques that we learned until now are about empowering developers to create nicely crafted
DSLs, and end-users to code their business rules with a more concise and readable language, than with a plain
programming language. But as the saying goes, with power comes great responsibilities! On one hand, as a
developer of the DSL, you could trust your users to “do no harm”, but on the other hand, you could protect
yourself from mistakes or intentional misbehavior, by securing your DSLs. That’s the purpose of the next
section.

18.10 Securing your DSLs
The nice aspect of an embedded or internal DSL is that you have all the underlying language at your disposal
for coding your business rules: using branching constructs, loop constructs, the wealth of the JDK APIs and
third-party libraries, and so on. But sometimes, certain DSLs are really reduced in scope, and shouldn’t use
anything beyond the area this DSL is supposed to be covering. Furthermore, there are situations where
malicious usage of the DSL, the underlying language or the APIs could wreck havoc in your running
application, or the overall system, and open up breaches of security.

Since we are on the Java platform, an obvious solution is to use a Java security manager. You can grant
permissions or prevent access to certain methods (System.exit(0) anyone?), to system properties, to the
file system, and many more things. There’s already ample enough documentation on this topic elsewhere, and
that’s not the goal of this chapter to cover aspects of Java itself. But be sure to remember this facility when
you try to secure your DSL. Also think of the cost of a security manager, as the security checks are happening
at runtime, this may lead to longer execution times for your business rules. This might not be acceptable if
your code needs to execute as fast as possible.

18.10.1 Introducing SecureASTCustomizer
In the previous sections, we had the opportunity to use compiler customizers for injecting imports or AST
transformations. But there’s more! You can even actually create your own customizer by extending the
CompilationCustomizer class, but here, we’ll be investigating another existing customizer:
SecureASTCustomizer.

Just like the other customizers, this one should be set on the CompilerConfiguration object. It sports
several setters to tell if the scripts and classes are allowed to:

 define a package name,

 define a method,

 define a closure.

And there is a white list / black list mechanism to say if the scripts and classes can use:

 imports: simple imports, static imports, star imports, static star imports,

 the various types of: statements, expressions, tokens, constant types, and receivers.

To get our feet wet, let’s dive in with a concrete use case. When you offer an extension point in your

application, you expose an API (better, a DSL!) that users can use to interact with your software. If users
should really only use those classes from that API, you can forbid them to access any other class, thanks to
our secure customizer. In that case, the “whitelist” approach is interesting, as you can specify you only want to

308

Licensed to Charles Wise <ctwise@gmail.com>

allow the usage of classes coming from a certain package. Progressively, you can open up other utility classes
users may need. With the “blacklist” approach, you allow everything, except some classes. For example, your
end-users shouldn’t have access to the file system — note this is a case that is covered by security managers
as well. Listing 52 shows how you can prevent access to classes from the java.io package.

Listing 18.52 Prevent access to java.io classes
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*

def secure = new SecureASTCustomizer()
secure.starImportsBlacklist = ['java.io.*'] #1
secure.indirectImportCheckEnabled = true #2

def config = new CompilerConfiguration()
config.addCompilationCustomizers(secure) #3

def shell = new GroovyShell(config)

shell.evaluate ''' #4
 new File('.') #4
''' #4

In #1, you specify the list of star imports that are forbidden. And in #2, we also enable the indirect import

check as someone may be using fully qualified class names, instead of an import. We add the customizer to
the compiler configuration object. Then, when you evaluate the script in #4, you get an error message like the
following:

java.lang.SecurityException: Indirect import checks prevents usage of expression
 at secure1.run(secure1.groovy:13)
Caused by: java.lang.SecurityException: Importing [java.io.File] is not allowed
 ... 1 more

The error message tells us the import of the file class is not allowed. We didn’t import it, but Groovy has an

implicit import for java.io classes, and the indirect import checks helped us catch this case. It’s usually a
good practice to use the indirect check flag, especially in the cases where people use fully qualified names.

This first example was a bit trivial, but the samples offered by the Groovy project provide an interesting

case study: the arithmetic shell.

18.10.2 The ArithmeticShell
You can use Groovy as an arithmetic expression evaluator. But if you do so, what would prevent users from
doing things like System.exit(0) in your formulas? The arithmetic shell uses the secure customizer to only
allow arithmetic expressions, and forbid anything else, be it using closures, creating classes, importing other
classes than java.lang.Math, etc. Listing 53 is a reformatted excerpt of the ArithmeticShell class.

Listing 18.53 Configuration of the ArithmeticShell secure customizer

def secure = new SecureASTCustomizer()

secure.with {

 closuresAllowed = false #1

 methodDefinitionAllowed = false #1

 importsWhitelist = [] #2

 staticImportsWhitelist = [] #2

 staticStarImportsWhitelist = ['java.lang.Math'] #2

 tokensWhitelist = [#3

309

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

 PLUS, MINUS, MULTIPLY, DIVIDE, MOD, POWER, #3

 PLUS_PLUS, MINUS_MINUS, #3

 COMPARE_EQUAL, COMPARE_NOT_EQUAL, #3

 COMPARE_LESS_THAN, COMPARE_LESS_THAN_EQUAL, #3

 COMPARE_GREATER_THAN, COMPARE_GREATER_THAN_EQUAL, #3

]

 constantTypesClassesWhiteList = [#4

 Integer, Float, Long, Double, BigDecimal, #4

 Integer.TYPE, Long.TYPE, Float.TYPE, Double.TYPE #4

]

 receiversClassesWhiteList = [#5

 Math, Integer, Float, Double, Long, BigDecimal #5

]

 statementsWhitelist = [#6

 BlockStatement, ExpressionStatement #6

]

 expressionsWhitelist = [#7

 BinaryExpression, ConstantExpression,

 MethodCallExpression, StaticMethodCallExpression,

 ArgumentListExpression, PropertyExpression,

 UnaryMinusExpression, UnaryPlusExpression,

 PrefixExpression, PostfixExpression,

 TernaryExpression, ElvisOperatorExpression,

 BooleanExpression, ClassExpression

]

}

Allowing arithmetic expressions only is not such an easy task, when you have to somehow “dumb down” a

full-blown programming language to just allow such expressions. To commence, things like using or defining
closures, and defining methods (forbidden in #1) has nothing to do with arithmetic expressions. In #2, the
white list mechanism is used to really only allow the static star import of all the Math static methods, which
provides methods like sine, cosine and friends. In #3, the tokens recognized by the Groovy lexer are filtered to
only allow the ones that could make up math expressions, like all the arithmetic operators, increment /
decrement operators, and comparison operators. Numbers literals (the various *.TYPE elements) and the
usage of the various Number classes are allowed in #4. The receiver classes, in #5, are classes that can be
used and that can receive method calls. In #6, block statements and expression statements are allowed since
an expression is wrapped in an expression statement, whose part of a block statement, which is the body of
your script (your formula is the body of the run() method of Script). And to finish, a list of expressions that
are white listed, but they are too numerous to detail them all.

That was quite a ride! When you really want to restrict very precisely what users can do with the language,

crafting the right rules of exclusions and inclusions can be a long task.
As an exercise in hacking, you could have a go at trying to find a workaround to do things that shouldn’t be

allowed by this secured arithmetic shell. Often, remember that hackers are more malicious that you can be,
and they can find back doors easily. They could put your system down by doing as simple as running an
infinite loop doing nothing but consuming precious CPU cycles. How can you stop this?

310

Licensed to Charles Wise <ctwise@gmail.com>

18.10.3 Stopping the execution of your programs
Your application provides an extension point with a nice DSL that your users can use. For example, imagine a
wiki engine that would allow authors to make their pages dynamic with some Groovy scripting inside the wiki
markup of the pages. What if a malicious or not very careful user creates an infinite loop, what can you do to
prevent this? Neither security managers not a secure customizer can help there much. But Groovy provides
three interesting AST transformations that you can apply to the sources of your scripts so that you can stop
their execution when a thread is called to be interrupted, after an elapsed period of time, or after some custom
condition is met (for instance when too much of resource is used, etc.).

Chapter 9 on AST Transformations actually already covers the @ThreadInterrupt, @TimedInterrupt
and @ConditionalInterrupt local transformations, so we won’t go into much details about their usage. I’ll
just remind you how to make local transforms transparent to the users. As those transformations are local,
users would need to put those annotations themselves in their scripts. To continue our idea of a scriptable
wiki, they would need to litter their scriptlets without those annotations.

REMEMBER

Before going further, remember that such transformations can only be applicable on scripts and classes that
are going to be compiled. You cannot apply them after the compilation has already happened — for example
if you wanted to post-process classes from a JAR file, etc.

In previous sections, we have already learned this technique, but we can apply it again here, by looking at
how we inject the @TimedInterrupt in an infinite looping script.

import groovy.transform.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*

def config = new CompilerConfiguration() #2
config.addCompilationCustomizers(#2
 new ASTTransformationCustomizer(value: 5, TimedInterrupt) #2
)
def shell = new GroovyShell(config)
shell.evaluate '''
 for (i in 1..1000) { #1
 sleep 1000 #1
}
'''

A script like #1 would loop a thousand times, sleeping one second at each iteration, totaling more than 16

minutes of execution time. That can be a bit long for code that’s really not doing anything useful! Thus in #2,
we define and configure an ASTTransformationCustomizer for the @TimedInterrupt transformation,
that will wait for 5 seconds before the script is interrupted. As usual, this customizer is specified on the
CompilerConfiguration that we pass in the constructor of the GroovyShell.

Now what happens when you execute that program? You get a TimeoutException after 5 seconds:

java.util.concurrent.TimeoutException: Execution timed out after 5 units. Start time: Sun
Aug 21 01:09:44 CEST 2011

We saw how to filter the AST with the secure customizers, or how to stop the execution of long running or

resource consuming business rules, but some malicious code could try to cheat with your software by using
some meta-programming tricks. Let’s see what you can do to prevent this to happen.

18.10.4 Preventing cheating with meta-programming
A customer I worked with didn’t want to use security managers to forbid calls to System.exit(0) in their
business rules, as security managers would almost double the runtime execution speed of those rules. They
ended up hooking into the Groovy compiler to filter the AST to check for method call expressions that would

311

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

happen on the java.lang.System class, with a method name of exit. They did that before the compilation
customizers even existed. We’ll replicate with customizers what they did. Interestingly, we will also learn how
to create our own customizer beyond the three we have already learned about.

Listing 54 creates a custom customizer for System.exit().

Listing 18.54 Failing compilation on System.exit()
import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*
import org.codehaus.groovy.classgen.*
import org.codehaus.groovy.syntax.*
import static org.codehaus.groovy.control.CompilePhase.*

def config = new CompilerConfiguration()
def filter = new CompilationCustomizer(CANONICALIZATION) { #1
 void call(SourceUnit src, GeneratorContext ctxt, ClassNode cn) { #2
 new ClassCodeVisitorSupport() { #3
 void visitMethodCallExpression(MethodCallExpression call) { #4
 if (call.objectExpression.text == 'java.lang.System' && #5
 call.method.text == 'exit') { #5
 src.addError(new SyntaxException(#6
 'System.exit() forbidden', #6
 call.lineNumber, call.columnNumber)) #6
 }
 super.visitMethodCallExpression(call)
 }
 SourceUnit getSourceUnit() { src }
 }.visitClass(cn)
 }
}
config.addCompilationCustomizers(filter)

def shell = new GroovyShell(config)
shell.parse '''
 System.exit(0)
'''

To create your own customizer, you just need to extend CompilationCustomizer, like we do in #1 by

creating an anonymous inner class. You must then implement the call() abstract method, in #2. This
method has the ClassNode of the script or class to be introspected as argument, for finding the offending
method call. To do that, we’re creating a ClassCodeVisitorSupport object in #3 that will visit all the
method call expressions in #4. For each such call, we’ll check if the receiver type is java.lang.System and
if the method name is exit, in #5. If this is the case, in #6, we add a compilation error that will fail the
compilation of the script or class — we’ll come back in the next section on error reporting.

When compilation fails, you get a message like the following:

System.exit() forbidden at line: 2, column: 5

It’s a bit more verbose than using a security manager, but it hasn’t got any performance cost, which is

good. So you might think “job done”! But are we really done with it here? We indeed fail the compilation when
someone explicitly and literally writes System.exit() in the source code. Fine, and that’s something along
those lines that my customer did. But when I did the code review, I quickly noticed this wouldn’t really cover
all the cases — a case that the security manager would have caught though. As you start to know Groovy
pretty well now, you might find out how to call System.exit(0) bypassing our new customizer.

If you try our customizer on the following code, the compilation will work, and running the code your
program will exit:

shell.parse '''
 def clazz = 'java.lang.System' as Class
 def method = 'e' + 'x' + 'i' + 't'

312

Licensed to Charles Wise <ctwise@gmail.com>

 def params = [0]
 clazz."${method}"(*params)
'''

The last line is an offending call to System.exit() that our customizer couldn’t spot, since the values of

the class, method name and parameters could not really be figured out until runtime, until the execution of the
code itself.

So apart from using a security manager, what could we do? In this case, you could add some additional
checks in your code checking the method call expressions to disallow those whose method expression is a
GStringExpression:

if (call.method instanceof GStringExpression) {
 source.addError(new SyntaxException('GString method names forbidden',
 call.lineNumber, call.columnNumber))
}

Then the compilation will fail as expected even in that odd forged case. But it comes at the price of

disallowing GString method calls, which may have been useful in your DSL in some context. As usual, there’s
no free lunch! Also, clever Groovy users can forge some innovative method calls by abusing other Groovy
constructs. Securing your scripts and classes is not that trivial, but it also depends on how much secure it
needs to be in the first place.

With a similar approach, you would want to prevent DSL users to do any meta-programming in the

business rules they author. For example, to filter access to the metaclass to alter the behavior of certain
classes, you might add the following checks in your customizer to prevent metaClass property access as well
as GString property access (that could forge a metaClass property name):

void visitPropertyExpression(PropertyExpression expr) {
 if (expr.property.text == 'metaClass') {
 src.addError(new SyntaxException('Accessing metaClass forbidden',
 expr.lineNumber, expr.columnNumber))
 }
 if (expr.property instanceof GStringExpression) {
 src.addError(new SyntaxException('GString access forbidden',
 expr.lineNumber, expr.columnNumber))
 }
 super.visitPropertyExpression(expr)
}

For meta-programming alterations that would use categories, you could add checks in the method call

expression visit method the following check:

if (call.objectExpression.text == 'this' && call.method.text == 'use') {
 src.addError(new SyntaxException('use(category){} forbidden',
 call.lineNumber, call.columnNumber))
}

Securing DSLs is an important aspect of their design, but another often overlooked aspect is the testing

and error reporting phases, which are key to the quality and success of your endeavor. The next section
proposes to look into this topic a bit more.

18.11 Testing and error reporting
As software developers, we often test the nominal cases first, to check that we properly implemented a
feature. But we tend to think of the edge cases as an afterthought. Make sure to put the emphasis on testing
various cases, especially including errors like typos a user could make!

There aren’t particular techniques for testing Domain-Specific Language implementations per se, except
perhaps the TransformHelper testing utility class that you used in Chapter 9, but we’ll focus our discussion

313

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

on making our DSLs more robust, in order to make the life of our users better, and see how we can make
those edge cases give better and more meaningful error messages.

For our journey, we’ll work on a SQL-like query language, with verbs and words like select, from, and

where. We want to be able to issue queries like this:

query {
 select all from users
 where lastname == 'Guillaume'
}

In Listing 55 we scaffold our DSL.

Listing 18.55 Query language
class Query {
 static query(Closure c) { #1
 def q = c.clone() #2
 q.resolveStrategy = Closure.DELEGATE_FIRST #2
 q.delegate = new Query() #2
 q() #2
 }

 def getProperty(String name) { name } #3

 Query select(column) { this } #4
 Query from(table) { this } #4
 Query where(condition) { this } #4
}

Our Query class features a query method that takes a closure as argument, in #1. We’ll use a static import

of that method later on (that we can inject with the approaches seen in earlier in this chapter). In #2, we
specify the closure resolve strategy to have the Query instance to receive all the method calls and property
lookups first. The parameters to our various verbs are looked up through the getProperty() method which
just return strings for now in #3 — we’re not building the full blown DSL! Finally, all our verbs are methods
returning this, in #4, so as to be able to chain method calls with command chain expressions.

Now what happens when you execute a query where you make a typo in the verbs? For example:

query { selct all }

In the Groovy Swing console, you’d see an error like the following:

groovy.lang.MissingMethodException: No signature of method: Query.selct() is applicable
for argument types: (java.lang.String) values: [all]
 Possible solutions: select(java.lang.Object), split(groovy.lang.Closure),
getAt(java.lang.String), sleep(long), each(groovy.lang.Closure), wait()
 at errorreporting$_run_closure2.doCall(errorreporting.groovy:23)
 at errorreporting$_run_closure2.doCall(errorreporting.groovy)
 at Query.query(errorreporting.groovy:6)
 at Query$query.callStatic(Unknown Source)
 at errorreporting.run(errorreporting.groovy:23)

Highlighted in bold, you see that a MissingMethodException is thrown. The selct() method doesn’t

exist, and Groovy even suggests possible alternatives, like the right select() method. You also notice the
line information where the problem occurred, although the class / method parts of the stacktrace is perhaps a
bit obscure.

Should you want to provide your own exception and message, you could add a methodMissing() method
to your Query class, so that query methods which are mistyped would go through that trap:

def methodMissing(String name, args) {

314

Licensed to Charles Wise <ctwise@gmail.com>

 throw new SyntaxException(
 "No query verb '$name', only select/from/where allowed"
)
}

This method uses your own custom syntax exception:

import groovy.transform.*

@InheritConstructors
class SyntaxException extends Exception {}

When you run your query, you’ll get the following trace:

SyntaxException: No query verb 'selct', only select/from/where allowed
 at Query.methodMissing(errorreporting2.groovy:18)
 at Query.invokeMethod(errorreporting2.groovy)
 at errorreporting2$_run_closure2.doCall(errorreporting2.groovy:35)
 at errorreporting2$_run_closure2.doCall(errorreporting2.groovy)
 at Query.query(errorreporting2.groovy:12)
 at Query$query.callStatic(Unknown Source)
 at errorreporting2.run(errorreporting2.groovy:35)

With this approach, you get your own custom exception, with an even more explicit message, rather than

the ones provided by Groovy itself. You’ll notice however that the exception is coming directly from the
methodMissing() method, and not from the place that issued the call, which happens only a couple
stacktrace elements later.

The stacktraces shown here are actually already filtered in the Groovy Swing console to only show relevant
elements of your own programs, and the full stacktrace outputted in your shell is much longer. You could still
filter out some more by removing the stacktrace elements that hides away the right method call site by
changing the methodMissing() implementation like this:

def methodMissing(String name, args) {
 def se = new SyntaxException(
 "No query verb '$name', only select/from/where allowed"
)
 se.stackTrace = se.stackTrace.findAll { StackTraceElement ste ->
 ste.className != 'Query' &&
 !(ste.methodName in ['invokeMethod', 'methodMissing'])
 }
 throw se
}

We rewrite the stacktrace elements array of the exception, by removing the offending elements we don’t

want the user to see, so as to only see where the problematic DSL usage is situated. Then the filtered trace is
more obvious and shows the relevant line first:

SyntaxException: No query verb 'selct', only select/from/where allowed
 at errorreporting3$_run_closure2.doCall(errorreporting3.groovy:41)
 at errorreporting3$_run_closure2.doCall(errorreporting3.groovy)
 at Query$query.callStatic(Unknown Source)
 at errorreporting3.run(errorreporting3.groovy:40)

Whether you let Groovy throw its method missing error and suggestion fixes, or if you choose to use your
own explicit custom exception possibly with a filtered stacktrace, there’s one common downside to both
approaches: the exception happens at runtime, and not at compile-time!

Usually, developers coming from a statically typed language prefer catching errors as early as possible, and
compilation would be the perfect moment. Similarly, business users using your DSL would appreciate that you
offer them a tool (through mere compilation) letting them know they made a mistake, a typo, early on, rather
than when the business rules are deployed in the production environment. For generating compile-time errors,

315

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

nothing’s better than an AST transformation or a compilation customizer! Using a customizer, you could get
out with Listing 56.

Listing 18.56 Check query method names usage
new CompilationCustomizer(SEMANTIC_ANALYSIS) {
 void call(SourceUnit src, GeneratorContext ctxt, ClassNode cn) {
 new ClassCodeVisitorSupport() {
 boolean inQueryClosure = false

 void visitStaticMethodCallExpression(#1
 StaticMethodCallExpression call) { #1
 if (call.method == 'query' && call.ownerType.name == 'Query') #1
 inQueryClosure = true
 super.visitStaticMethodCallExpression(call)
 if (inQueryClosure)
 inQueryClosure = false
 }

 void visitMethodCallExpression(MethodCallExpression call) {
 def methName = call.method.text
 if (
 inQueryClosure && #2
 call.objectExpression.text == 'this' && #2
 !(methName in ['select', 'from', 'where'])) { #2
 src.addError(new SyntaxException(#3
 "No query verb ${methName}, only select/from/where", #3
 call.lineNumber, call.columnNumber)) #3
 }
 super.visitMethodCallExpression(call)
 }

 SourceUnit getSourceUnit() { src }
 }.visitClass(cn)
 }
}

With the static import of the Query.query{} method, we check that we’re in the context of such a call, by

implementing the visitStaticMethodCallExpression() method, in #1, keeping a boolean flag up-to-
date. And in #2, we check that all method call within that context have the correct spelling.

What’s more important here is we’ll have a closer look at #3, where we add the error message. We’re
calling the addError() method on the SourceUnit. When you use a customizer or an AST transformation,
that’s the method to use if you want to create a compilation error. This method takes either a
SyntaxException as argument with whose constructor you can give an error message, but also the position
of where the error is supposed to happen. There you can reuse the current AST node’s line and column
information, so as to have the compiler deliver nice error message with proper location.

The SourceUnit class also provides an addException() method which let you pass an exception as
argument, but I would argue this method is less interesting as it’s not generating the usual syntax errors IDEs
would expect, nor does it give a change to properly specify position information. So I’d avoid using this
version.

For more control over the error reporting from the SourceUnit when you’re using a customizer or
transformation, you can retrieve its error collector with the getErrorCollector() method, and then call
more fine-grained methods than the two provided directly, as a shortcut, on SourceUnit. You’ll be able, for
example, to say if the error you’re creating should fail the compilation right away, or continue to find other
potential errors.

WHEN TO USE A TRANSFORM VERSUS A CUSTOMIZER

For compilation errors, you might wonder when you should use an AST transformation or if you’d rather
prefer a compilation customizer, as transforms and customizer offer pretty much the same approach —
introspecting the AST. The usual consultant’s answer is… it depends! If depends on the techniques you used

316

Licensed to Charles Wise <ctwise@gmail.com>

to implement your DSL, as well as on the integration strategy you’ve chosen to compile and execute your
business rules. If you are already using a transform for implementing your DSL or parts of it, you should
seize your chance to also add proper compilation errors there. If you are integrating your business rules by
using Groovy’s shell, classloader, scripting engine, etc, then you are able to define a compiler configuration
object to configure the compilation, and thus add your customizers at that point. But if you are just using
global or local transformations without a particular integration mechanism (ie. your code is pre-compiled, not
compiled on the fly), your sole option will be to use an AST transformation.

We saw the case where the DSL users make a typo in a method name, but we can also have a quick look at
what happens if he uses wrong arguments for the methods forming the verbs of the DSL. More concretely,
what happens if a user passes a string instead of a date arguments?

To try that for real, let’s come back to our initial Query class from the beginning. We’ll need a new verb for
our experiment: an after() action to check that some database result is after a certain date. We just need to
add that method to our class:

Query after(Date d) { this }

This time, this method takes a Date instance. What happens if we pass a string instead of a date, for

example a string representing a date, like '2011/08/22'? With neither a method missing trap, nor an AST
transformation checking for mistyped verbs, you’d get an exception like the following one:

groovy.lang.MissingMethodException: No signature of method: Query.after() is applicable
for argument types: (java.lang.String) values: [2011/08/22]
Possible solutions: after(java.util.Date), ...

The message is as informative as before, so you could go away with it, even if it’s not your custom

exception showing up here.
If you had put in place a missing method trap, the error you’d get would be a bit more misleading though:

SyntaxException: No query verb 'after', only select/from/where/after allowed

Since the method with the proper signature wasn’t found, it goes through our trap, and our error message

is indeed misleading as the user typed after in his query, but the message seems to indicate after doesn’t
exist? So you could improve the error message to make it clearer than a verb is not just only the name of that
verb, but also the type of arguments that it takes. You could also investigate using our earlier customizer to
add proper checks for types, but sometimes, the Groovy AST doesn’t always have enough type information at
compile-time to figure out if there’s an error or not. But for now, we’re going to consider an alternative taking
advantage of multimethods.

If you have overloaded methods taking different arguments, Groovy will always try to call at runtime the
most appropriate method according to the runtime types of the arguments. In a nutshell, that’s what we call
multimethods. The idea is to play on that specific aspect of the multiple dispatch logic to lead your DSL to give
better error messages.

In our case, we have an after(Date) method, but we can add an after(Object) method:

Query after(Object d) {
 throw new SyntaxException(
 "The after method takes a Date as argument, " +
 "not ${d} of type ${d.class.name}")
}

Which yields a nicer error message:

SyntaxException: The after method takes a Date as argument, not 2011/08/22 of type
java.lang.String
 at Query.after(errorreporting5.groovy:25)

317

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

By overloading your DSL methods with ones taking a mere object type, if the user makes a mistake in
terms of type, he will get a more precise and meaningful error message, as the multiple dispatch will route the
call to that trap method, rather than letting the Groovy runtime not finding a matching method to call.

18.12 Summary
The main purpose of Domain-Specific Languages is to bridge the communication gap that leads to
misunderstanding the needs of the end users, software bugs, delays in delivery, and inadequacy with the real
requirements. To bridge this gap, we have learned in this chapter how to combine many features and
techniques together to build your own DSLs.

We covered a lot of ground: Groovy’s flexible syntax and command chains, static imports, constant and
method injection, custom control structures, closure delegation strategy, AST transformations, compilation
customizers, integration approaches, security concerns, and error reporting. Often, building a DSL in Groovy is
a clever fashion of complying with the various call conventions to actually pimp an existing library so as to turn
it into an easy to use DSL from Groovy.

By cleverly mixing these techniques, our business rules achieve a high level readability, more conciseness,
without necessarily verging into ASCII art. The form of the DSL matters, and we need to keep in mind that a
form or another might be more approachable for our end-users. That’s why we need to work as a team,
involving users early in the process, and work iteratively towards crafting the right language that everybody
will understand.

As a parting thought, remember that your role as a knowledgeable Groovy developer and barman mixing
ingredients for a nice DSL cocktail, that over-engineering your beverage might add too much complexity,
increase the cost, and might sometimes go beyond what your end-users need.

318

Licensed to Charles Wise <ctwise@gmail.com>

19
The Groovy Ecosystem

"I can't imagine why anyone would need X" is a statement about your imagination, not X.

Dan Piponi, via Twitter

Groovy is a rich and flexible language, and every day Groovy programmers are finding new, novel, and
exciting ways to bend Groovy to their needs. The Groovy Ecosystem refers to all of the projects built around
Groovy; projects that solve a particular problem for a particular group of people, and projects that are
essential to being a productive Groovy programmer.

This chapter starts by examining projects that make using Groovy as a scripting language and automation
tool easier: Grapes for managing dependencies within scripts, Scriptom for working with Windows components,
GroovyServ for making scripts run fast, and Gradle for project and task automation.

Groovy is a good choice to use as a system scripting language. Groovy scripts are easily executed from the
command line and can automate repetitive tasks. Groovy is far less verbose than Java, can easily spawn new
threads and processes, and has many convenience methods for interacting with the file-system. But the
biggest advantage of scripting with Groovy is that you have access to every library you use in development.
Need a script to access a SOAP based web service? Then you can use the same library from your development
project within your script. Need to download and manipulate web pages? You can use XmlParser and the
TagSoup Java library. Any Java library is available to Groovy, and that means it's available within a script.

After scripting, we'll look at two interesting projects meant to bring a higher level of quality for larger
Groovy projects: CodeNarc for static analysis of Groovy code and GContracts for Design by Contract™ within
Groovy. Then we'll look at three popular application development platforms tailor-made around Groovy: Grails
for web application development, Griffon for desktop development, and Gaelyk for Google App Engine
applications. Finally we'll explore the new frontier of Groovy++, a project bringing static, compile-time type
checking and major speed improvements to Groovy.

Buckle up and hold on - the whirlwind tour is about to start.

19.1 Groovy Grapes for Self-Contained Scripts
A common usage of scripts is working with other teams, like the quality assurance or operations team. Perhaps
there is a hard to reproduce defect and you need someone to execute a script on a remote machine. It is easy
to email them a script, but if the script has a dependency on several jar files, then how do you easily package
all that up into something executable? How do you get libraries onto the classpath correctly? This is the
problem Grapes was invented to solve.

Grapes lets you add maven dependencies to your classpath from within a .groovy file. The script can then
be executed without downloading the dependencies and constructing a lengthy command line. For example,
consider a script that uses the TagSoup library to read data out of poorly formatted HTML files. Listing 19.1
gives an example of this, printing all the links in a person’s twitter stream.

319

Licensed to Charles Wise <ctwise@gmail.com>

Listing 19.1: Using Grapes in the parseTwitter.groovy Script.
@Grab(group='org.ccil.cowan.tagsoup', module='tagsoup', version='1.2')
import org.ccil.cowan.tagsoup.Parser

def parser = new XmlParser(new Parser())
def html = parser.parse("http://twitter.com/hamletdrc")

html.body.'**'.a.@href.grep(~/http.*status.*/)each {
 println it
}

This script declares a dependency on TagSoup version 1.2 using the @Grab annotation. To execute this script,
simply invoke it with the command groovy parseTwitter.groovy and you will see a set of URLs printed to
the console.

Clearly the script is importing and invoking objects from the TagSoup library, but where did this
dependency come from and how was it resolved? The answer is that the Grapes module system is aware of the
@Grab annotation. Before a script is executed, Groovy reads the @Grab annotations and resolves the
parameters as Maven dependencies. Those dependencies are downloaded, resolved, and added to the
classpath of the script. Only once all of the dependencies are resolved and in-scope does the script execution
begin. There is no need to ever email another jar file to someone or construct a long classpath statement from
the command line just so they can run your script. Grapes has you covered.

UNDER THE HOOD

Groovy uses Ivy to download the declared dependencies into your Grape cache, which is located in the
.groovy/grape directory of your User Home directory. You can change this directory by passing a JVM
parameter to groovy named grape.root. For example, passing “-Dgrape.root=/home/.m2/repository”
configures Grapes to use your local Maven repository for the cache.

Many companies maintain their own internal Maven repository for their own propriety software or because they
do not want developers downloading files from the Internet. You can tell Grapes about your own repositories
using the @GrabResolver annotation. For example, if TagSoup was located in your own repository hosted at
http://myrepo.my-company.com, then you would add the @GrabResolver annotation to your script, like so:

@GrabResolver(name='myrepo', root='http://myrepo.my-company.com/')
@Grab('org.ccil.cowan.tagsoup:tagsoup:1.2')
import org.ccil.cowan.tagsoup.Parser

These two annotations give you pretty much everything you need for working with Grapes. Also, notice how
we specified the Maven dependency using the short form that separates the common parameters using a
colon. There is a lot more customization available as well. Grapes is controlled by the
./groovy/grapeConfig.xml file in your user home directory. You can edit this file to permanently add Grape
resolvers, change the local repository directory, and configure network proxies. Dependencies can also be
manually installed, removed, and listed using the Grapes command line interface.

Grapes is becoming more popular and is a simple way to manage dependencies. It puts the abundance of
Java libraries directly in the hands of the Groovy programmer. Tooling is becoming more frequent as well.
IntelliJ IDEA has explicit support for Grapes and can automatically configure your project structure, and the
website MvnRepository (http://mvnrepository.com), which allows you to search for dependencies, displays the
correct @Grab usage for any library you find through their site. Grapes is an enabling technology that's fueling
Groovy adoption, and it's an important fundamental to understand when getting ready to work with the
Groovy ecosystem.

That's all you need to know about Grapes to get started, and bear in mind that it makes life easier when

working with the libraries in the rest of this chapter. Next up we'll see how Scriptom makes COM and ActiveX
scripting easier.

320

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
http://myrepo.my-company.com/
http://maven.restlet.org/
http://mvnrepository.com/

19.2 Scriptom for Windows Automation
Scriptom’s name stems from a mix of the word scripting and the acronym COM, Microsoft’s component object
model. Scriptom allows you to manipulate COM and ActiveX objects as simply as if you were using Visual Basic
or JavaScript. Combining Scriptom and Groovy means that you can take advantage of the Java world and its
libraries, and at the same time control applications such as Microsoft Word or Excel from Groovy.

Scriptom is an add-on that you can install if you are running Windows. It ships with Groovy's Windows
installer, or you can download and install it manually. Scriptom is composed of standard Java classes and
native DLLs for both 32-bit and 64-bit architectures. The native code does the heavy lifting needed for COM
integration and the Groovy and Java classes provide a dynamic DSL for the components. To test the
installation, let’s write our first ActiveX Groovy script:

import org.codehaus.groovy.scriptom.*
def wshell = new ActiveXObject('WScript.Shell')
wshell.popup('Scriptom is Groovy!')

If everything is installed correctly then running the code displays a short message in a native dialog box, as
seen in figure 19.1. You run this code just like any other Groovy script: there’s no need for classpath changes
or anything else.

Figure 19.1: A Native Message.

The Scriptom module uses Jacob (Java COM Bridge), an open source Java/COM bridge that allows you to call
COM automation components from Java. Jacob offers a generic API that can be used to access any native
object. Scriptom builds on top of Jacob API to provide a more intuitive syntax, similar to the kind that VB
programmers are used to. For instance, you can set and read properties and invoke methods using the
standard Groovy syntax. For example, Listing 19.2 shows how to instantiate an instance of Internet Explorer,
set some properties, and then invoke the Navigate method to display a page.

Listing 19.2: Working with ActiveX Objects.
def explorer = new ActiveXObject('InternetExplorer.Application')
explorer.Visible = true
explorer.AddressBar = true
explorer.Navigate('http://groovy.codehaus.org')

Most Microsoft applications can be automated with Scriptom using a COM interface. Access, Excel, FrontPage,
Notepad, and the all the other members of the Microsoft Office suite can be manipulated with Scriptom. In
addition to applications, several utilities available on the Windows platform let you interact with the operating
system in a simple fashion. This is handy when your automation tasks include activities such as reading and
writing keys in the registry, sending keystrokes to running applications, or popping up file dialogs, which is
shown in Listing 19.3.

Listing 19.3: Working with ActiveX Objects.
def PARENT = 0
def OPTS = 0
def sh = new ActiveXObject('Shell.Application')
def folder = sh.BrowseForFolder(PARENT, 'Choose a folder', OPTS)
println "Chosen folder: ${folder.Items().Item().Path.value}"

With the Shell.Application, you can call the BrowseForFolder method, which shows a file-chooser widget to
allow you to select a directory. The PARENT and OPTS values are the parent window (where 0 means there is no
parent) and the option flags to use, respectively. On the last line, you can see that the method returns an

321

Licensed to Charles Wise <ctwise@gmail.com>

http://groovy.codehaus.org/

object representing a file selection. On this object, you can call the Items method to retrieve the selected files
and Item to select the chosen one. This item has a property called Path to retrieve the path of the chosen file.
Finally, value is a Groovy property that lets you unmarshal the value of the Path.

You might be wondering how you can know which methods and properties are available on a given native
object or application. Unfortunately, you will have to dive into the documentation of the application you are
driving and see what is available through its exposed APIs. For instance, for Microsoft applications, the best
source of information is the Microsoft Developer Network (MSDN) website: http://msdn.microsoft.com/library/.

The ability to script running applications is one side of the story, but there’s also the other side: Scriptom
can receive events when the person in front of the computer clicks buttons, types in text, or executes
shortcuts. Also, Scriptom can receive and react to application events, such as reaching the end of a media
stream in Windows Media Player. Registering for events is not reasonably straightforward, and the Scriptom
website lists the full instructions on how to do so.

Groovy and Scriptom are a powerful combination to bridge two worlds: the Java world with its many free
libraries and server-side applications, and Microsoft’s platform and its end-user-rich native applications.
Scriptom allows you to interact almost intuitively with the host environment to create complex automation
tasks and control multiple applications and external Java libraries at the same time.

19.3 GroovyServ for Quick Startup
We've already seen how Grapes and Scriptom make Groovy an excellent choice for a scripting language.
However, there is one challenge of the JVM we have not yet addressed: startup time. The JVM takes a
relatively long time to startup. You can use the time command along with Groovy from the command line to
write a small one-liner to display the current time, along with how long the command took to execute (Listing
19.4).

Listing 19.4: Timing Plain Old Groovy.
$ time groovy -e "println new Date()"
Thu Jun 02 13:37:15 CEST 2011

real 0m0.631s
user 0m0.700s
sys 0m0.130s

There are two things to notice about the output: 1) The one-liner does indeed print out the current date and
time, and 2) the elapsed user-space time to execute this was 0.7 seconds. Compare this with how quickly the
same Python script executes on the same machine (Listing 19.5).

Listing 19.5: Timing Python.
$ time python -c 'import datetime;print str(datetime.datetime.now()) '
2011-06-02 13:36:46.542847

real 0m0.024s
user 0m0.030s
sys 0m0.000s

The Python version takes 0.3 seconds, which is considerably faster. Critics of the JVM point to these startup
times and claim that JVM languages are not fit for scripting because of these excesses. Luckily, there is a
Groovy project called GrooyServ that fixes this situation. GroovyServ replaces the groovy client application
with its own client called “groovyclient”. It has the same API and command line parameters, and you can see
from the output that its speed is comparable to Python's (Listing 19.6).

Listing 19.6: Timing GroovyServ.
time groovyclient -e "println new Date()"
Thu Jun 02 13:46:58 CEST 2011

real 0m0.036s
user 0m0.020s
sys 0m0.000s

322

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
http://msdn.microsoft.com/library/

Why so much faster? groovyclient is only half of the GroovyServ project, the other half is groovyserver. The
groovyserver application starts up a JVM as a TCP/IP server and waits for groovyclient applications to connect.
When a client connects then the existing JVM is reused to execute the script, which is much faster than
starting up a new JVM process. In practice, you only need to know about groovyclient because it automatically
starts the server the first time it is needed. So the very first time you use groovyclient the request takes
longer, but all subsequent usages are very fast.

GroovyServ is partially native application, not a pure Java application, and it's available for Windows, Mac,
and Ubuntu Linux. GroovyServ properly tracks the current working directory, executing your scripts out of the
directory from which they were called, which is why a native application is required. GroovyServ should
function just like the groovy command even though it is a TCP/IP server. The System.in, out, and err are all
properly streamed to the client, and calls to System.exit() are sent to the client as well. Environment and
classpath variables are also properly propagated from script instance to script instance.

Since GroovyServ behaves the same way as normal groovy, some people create an alias to GroovyServ
that replaces their normal groovy command. For Mac and Linux users, add the following line to your profile:

alias groovy=groovyclient

Windows users can use the doskey command to create aliases:

doskey groovy=groovyclient $*

There are some limitations you should understand before going so far as to replace the groovy command.

Every script does execute in its own GroovyClassLoader, but the JVM and ContextClassLoader are shared.
This means that things like System.getProperties() are shared between scripts and metaprogramming
changes to classes in one script may affect another. For example, adding a new method to java.lang.String
makes that new method visible to all future scripts. You can only clear the classloader memory by restarting or
killing groovyserver. To do this simply call “groovyserver -r” to restart or “groovyserver -k” to kill it.

Despite these limitations, GroovyServ goes a long way towards overcoming the startup time problems of
the JVM. Future versions of Java might one day reduce startup times to a tolerable level, but until then
GroovyServ is good enough and usable enough to be a simple solution to the problem. The next technology
we'll look at is Gradle, which can help you with all sorts of automation and deployment concerns.

19.4 Gradle for Project Automation
So far we've seen several approaches for making Groovy a more effective scripting and task automation
language. But clearly, Gradle is the must have application for project automation on the Groovy platform.
Gradle is a project build system designed to allow simple project to have simple, convention based build, while
still supporting the most complex builds for those that need it. Gradle's motto is, “make the simple things easy
and the complex things possible.”

The build script for Gradle builds is a Groovy-based Domain Specific Language (DSL), which allows you to
write builds in either a declarative or imperative manner, as well as just writing plain old Groovy code
whenever you need it. Gradle integrates easily with Maven repositories for dependency management, supports
multi-project and multi-artifact builds, has a rich plugin system, and is based around a real object-oriented
domain model for projects. The easiest way to see the power of Gradle is with some examples. Listing 19.7
builds a full Groovy project, integrating with Maven repositories for finding dependencies.

Listing 19.7: Groovy Build Script (build.gradle).
apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy 'org.codehaus.groovy:groovy:1.8.0'
 testCompile 'junit:junit:4.8.2'

323

Licensed to Charles Wise <ctwise@gmail.com>

}

This is the entire contents of a typical build.gradle file. You can run it from the command line by simply typing
gradle build. This script applies the Groovy plugin, declares Maven Central as a dependency repository,
and then configures the versions for Groovy and JUnit. With this build you get all the standard build targets
like clean, build, check (run the unit tests), and assemble (build the jar files), along with several more.
The build conventions are the same as in Maven: put the production source code in the /src/main/groovy
directory, test source in the src/test/groovy directory, and any resources in the /src/main/resources
directory.

If you are going to build a jar file, then it's sensible to set a version number and include a manifest in the
.jar file. Gradle allows you to specify this declaratively within your build file. You simply need to add the
content of Listing 19.8.

Listing 19.8: Building a jar file
version = '1.0'
jar {
 baseName="mySample"
 manifest {
 attributes 'Implementation-Title': 'My Sample',
 'Implementation-Version': version
 }
}

You can build the jar file from the command line by typing gradle assemble, and the build will produce a
file named mySample-1.0.jar. Inside the jar is the correct MANIFEST.MF file. If you need to build a .war file
then use the war plugin and the .war file will be generated for you.

Typical modern builds, especially in the enterprise, don't just test and assemble jar files, but they also
upload them to a repository so that others can use the new code. Gradle includes a standard
uploadArchives task for this, and you should configure the task to know where to copy the new files. In
Listing 19.9 we publish to a local directory, but it’s easy to publish to a remote location or several locations at
once.

Listing 19.9: Publishing a jar file
uploadArchives {
 repositories {
 flatDir(dirs: file('my_repository'))
 }
}

After running gradle uploadArchives you'll see that mySample-1.0.jar was copied to the
my_repository directory.

No whirlwind tour of Gradle is complete without mentioning the Gradle Wrapper. Gradle knows how to
download and install itself on client machines so that there is no need for users to ever install Gradle once you
have written your build file. This is perfect for Continuous Integration servers because there is nothing to
install or configure on the remote machines. It’s also convenient for open source projects where many users
build the software infrequently and don't want long setup times. Perhaps more importantly than the
convenience factor, using the Gradle wrapper ensures a consistent environment for everyone on your team.
The wrapper guarantees that all developers are using the same version of Gradle without having to install
multiple versions yourself. To enable the Gradle Wrapper for your build, you need to add the wrapper task to
your script, run the task once, and then check the results into version control. The task is fairly short and only
changes when you want to upgrade Gradle:

task wrapper(type: Wrapper) {
 gradleVersion = '0.9.2'
}

Run the wrapper once using the gradle wrapper command. This creates several files on disk that need to
be checked in: gradle-wrapper.jar, gradle-wrapper.properties, and the gradlew.bat and gradle shell scripts.

324

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

Now any user can run the wrapper for any build task by typing gradlew instead of gradle. The wrapper will
download and install Gradle, and then run any targets the user has invoked.

There are many Gradle features that can't be covered in this short space, and the topic deserves its own
book. Fortunately the online and free documentation is excellent, and includes a lengthy user guide, several
cookbooks and tutorial-style documents, and more. There are many features to explore, such as multi-project
and multi-artifact builds, the Gradle Daemon (to increase performance), parallel unit test execution, multiple
language integration, and dozens of plugins. If you need an automated Groovy build then Gradle is one of the
best products to consider.

That's the end of the scripting and automation technologies. In the next section, we change gears and take
a look at a static analysis tool that can help your Groovy code stay maintainable and of high quality.

19.5 CodeNarc for Static Code Analysis
The CodeNarc project analyzes Groovy code and warns you of possible defects, bad practices, dead code, or
just poor Groovy style. It's a flexible system based around rules that find violations in your code, and it
generates reports so you can fix problems either before checking code into version control or before the
release. Consider the following innocent looking Groovy script, and then we’ll see what CodeNarc thinks of it:

Map map = [a: 1, b: 2, "$c": 3, 'b': 4];

CodeNarc finds four violations in this one small example. Try to find them yourself before reading on.

Ready for the answers?

 Duplicate Map Key – The map literal includes the key 'b' twice. The value set in a Map must be unique,
so the resulting Map instance only contains three elements instead of the four specified.

 GString as Map Key – The element “$c” is a GString, which should never be used as Map keys. The
hashcode of a GString is unstable, so you may not be able to find this element again!

 Unnecessary Semi-colon – The line ends in a semi-colon, which is unnecessary in Groovy.

 Unused Variable – The variable map is never used after being created.

This small example shows a good range of the issue types CodeNarc can catch. A duplicate map entry and an
unused variable are examples of dead, or meaningless, pieces code. They're probably not bugs, but they could
be masking a subtle problem where the code isn't exactly doing what you think it should. The GString as map
key is almost always a bug and should never be used in code.
 The unnecessary semi-colon is a style issue. Semi-colons appear frequently with new developers used to
working with Java code. The rules about style issues, like this one, are used to help you convert to writing
more Groovy code and relying less on Java idioms and practices.
 Let's see a more advanced example that highlights the power and intelligence of CodeNarc. Listing 19.10
shows a closure that doubles all the values of a map.

Listing 19.10: Doubling Map Values.
def doubleMapValues = { map ->
 if (map == null) { return null }
 if (!map) { return [] }
 return map.values().collect { it * it }
}
assert [1, 4, 9] == doubleMapValues([a: 1, b: 2, c: 3])

CodeNarc produces two violations for the doubleMapValues closure. One is a simple style issue and the
other is a more subtle error.

 Unnecessary Return Keyword – The last line of the method includes the return keyword, which is
unnecessary in Groovy.

 Return null Instead of Empty Collection – If passed null the closure returns null. This means the user of
the API has to perform null checks on the method result. It is a better practice to return an empty list
when there is no result rather than a null.

325

Licensed to Charles Wise <ctwise@gmail.com>

What makes this an interesting example is that the doubleMapValues closure does not specify a return type,
yet CodeNarc was smart enough to infer that the closure does return a collection and the closure could also
return null. CodeNarc analyzes the return paths of dynamically typed methods and closures and attempts to
infer their type.

There are over 200 rules in CodeNarc and the list is constantly growing. The rules are grouped into
different rulesets, or categories, such as basic, design, concurrency, security, exceptions, and others. There
are also framework-specific rules, such as rules targeted at Grails or the Spock Framework. One of the most
interesting categories is the concurrency ruleset. Concurrency is easy to get wrong, and there are many bad
practices that can be found automatically. While the Groovy language provides some nice shortcuts but it is
always good to understand the fundamentals. Consider the concurrency related example in Listing 19.11.

Listing 19.11: Using @Synchronized.
class Person {
 List addresses

 @groovy.transform.Synchronized
 void setAddresses(List addresses) {
 this.addresses.clear()
 this.addresses.addAll(addresses)
 }
}

The violation generated for this code is “Inconsistent Property Synchronization”. The method setAddresses
is synchronized, but the method getAddresses is not. Remember, Groovy generates a getter and a setter for
each property, and this code has a synchronized setter but the hidden getter is not synchronized. The problem
is subtle and clearly needs correcting. And while you’re creating the getter, remember to return a copy of the
internal List so the code remains thread-safe.

CodeNarc can be run in a variety of ways. There is a command line runner that is simple to get working for
small projects, and there are also Maven, Gradle, and Ant plugins so you can run CodeNarc as part of your
regular build process. Also, Grails and Griffon users have a CodeNarc plugin that automatically runs against
the codebase. But the simplest way to get CodeNarc up and running is to run it as a unit test from a
GroovyTestCase. All of these methods are fully documented on the CodeNarc website at
http://codenarc.sourceforge.net/. CodeNarc's output is either text, XML, or HTML. You can use the default
HTML reports or define your own style sheets. Configuring CodeNarc, choosing which rules to run, and
changing rule properties can all be done via Groovy markup, XML, or a plain text properties file, and again the
CodeNarc website contains complete documentation. If you receive false positives or simply want to ignore
some violations you're always free to apply the standard java.lang.SuppressWarnings annotation on
classes or methods.

CodeNarc is a mature and positive addition to the Groovy ecosystem. It can be used by teams to ensure
high code quality and consistency, and used by single developers to help migrate to the Groovy way of coding.
CodeNarc is like a good pair programming partner, making recommendations when needed and being quiet
when not. Since it's so easy to add to Groovy projects, why not give it a try?

The next project we'll review is also focused on code quality. The GContracts project allows you to follow an
interesting design approach that encourages you to think about object interactions and contracts.

19.6 GContracts for Improved Design
The GContracts project brings the concepts of Design by Contract™ to the Groovy language. Design by
Contract (DbC) is a software design approach in which specify how components interact with each other. The
unique part of DbC is that the specifications, or contracts, are defined as source code within the program,
rather than simply in documentation. Creating classes, fields, and a public API is one way to specify a contract
within Groovy. DbC extends your design capabilities by allowing you to specify class invariants, method
preconditions, and method postconditions. Listing 19.12 shows these contracts applied to a kettle object. For
those unfamiliar, a kettle heats water, and you can either add water to a kettle or pour water out of a kettle.

Listing 19.12: Using GContracts' @Invariant.

326

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
http://codenarc.sourceforge.net/

@Grab('org.gcontracts:gcontracts-core:1.2.3')
import org.gcontracts.annotations.*

@Invariant({ waterVolume >= 0; waterVolume <= maxVolume })
class Kettle {
 int waterVolume = 0
 int maxVolume = 1000

 // ...
}

The example starts by grabbing the latest version of GContracts from Maven Central using the @Grab
annotation, and declaring the Kettle class with two properties: waterVolume (the current amount of water in
the kettle) and maxVolume (how much the kettle can hold). The interesting part of Kettle is the @Invariant
annotation. This specifies logic that must always hold true for the object. It must be true after the constructor
is called or after any method is invoked. Here the invariant states the water volume cannot be negative and
the water volume cannot be more than the maximum volume of the kettle. @Invariant is an extension of the
type system, and you can define how your type behaves using whatever Groovy code you like. If the invariant
is ever violated then an exception is thrown from the object. There should be no way for a programmer to end
up with an object whose invariant is violated. Beyond @Invariant, GContracts also provides @Requires and
@Ensures annotations, which can be applied to methods (Listing 19.13).

Listing 19.13: Using GContracts' @Requires and @Ensures Annotations.
@Requires({ amount > 0 })
@Ensures({ waterVolume == maxVolume || waterVolume > old.waterVolume })
void addWater(int amount) {
 waterVolume = Math.min(maxVolume, amount + waterVolume)
}

The addWater method from the listing adds water to the kettle, making sure not to overflow the container.
The @Requires code is a statement about what must be true before this method is called: the method
parameter (amount) must be greater than zero. Violating the @Requires precondition produces an exception.
The @Ensures code is a statement about what must be true after this method has been called: the water
volume must be at the maximum level (waterVolume == maxVolume) or the volume must be greater than
whatever the volume was at the beginning of the method call (waterVolume > old.waterVolume).
 You may be wondering where old comes from in the expression old.waterVolume. The old variable is
a snapshot, or copy, of the object's state before the method call. You also have access to the return value of
the method using the result variable, as seen in listing 19.14.

Listing 19.14: Using GContracts' result Value.
@Requires({ desiredAmount > 0 })
@Ensures({ result >= 0;
 result == 0
 ? waterVolume == old.waterVolume
 : waterVolume < old.waterVolume
})
int pour(int desiredAmount) {
 int amountPoured = (desiredAmount <= waterVolume
 ? desiredAmount
 : waterVolume)
 waterVolume = waterVolume - amountPoured
 amountPoured
}

The pour method attempts to pour water from the kettle, returning the amount poured (amountPoured) to
the user as an int. You can see in the @Ensures code that the result will always by zero or greater (result
>= 0) and the final waterVolume of the kettle will be less than or equal to the original waterVolume. This
@Ensures code is a combination of two Groovy statements separated by a semi-colon. You can put as much
code as you'd like within the annotation parameters, either chaining all the expressions together with &&, ||,
and parentheses, or by separating them with semi-colons. Any valid Groovy code is a valid contract
expression.

327

Licensed to Charles Wise <ctwise@gmail.com>

Contracts can be inherited from parent types. If you specify a contract on an interface or parent class, then
all implementations and subclasses inherit that contract. You can also finely control when to apply the
contracts. The JVM has several assertion enabling and disabling mechanisms built in, and GContracts honors
those settings. Passing -da to the JVM disables all assertions and -ea enables all assertions. Also, you can
enable and disable assertions based on package name. Lastly, any contracts you write for objects appear in
the generated Groovydoc for that object.

Design by Contract™ is a well-respected design approach that is often envied by the Java community. At
one point, adding DbC was the highest voted issue in Sun's Java issue tracker. GContracts brings the core DbC
features to Groovy, and Groovy's flexibility allows you to write contracts in a clean and code-centric way.
GContracts is definitely a project to check out.

Next up is the jewel in the crown of Groovy: Grails. If you write web applications then you owe it to
yourself to discover Grails.

19.7 Grails for Web Development
So far we've looked at a few libraries and applications that make working in Groovy a more productive
experience. Now we're going to look at a few application development platforms, starting with Grails, that
make writing and deploying full applications a breeze.

Grails is a platform for writing Groovy web applications, and at its core is a Model-View-Controller (MVC)
design based on Spring, database persistence on top of Hibernate, view templating with SiteMesh, lots of
project and deployment automation with Ant and Gant, and a heavy dose of meta programming. The
underlying technology is mature and stable enough for the needs of any enterprise environment, and the use
of Groovy as a language within all tiers of the MVC make it a pleasure to work with. Seeing Grails in action is
the best way to appreciate it.

Getting a web application up and running requires running a few command line statements and editing one
or two files. Grails handles almost all the hard work for you. After installing Grails, you create an application
using the create-app command, as shown in Listing 19.15. For a quick prototype, we'll create a simple
contacts manager application that lets you add, edit, and delete contacts from a list.

Listing 19.15: Creating a Grails application.
$ grails create-app contacts
Welcome to Grails 1.3.7 - http://grails.org/
Licensed under Apache Standard License 2.0
...
Created Grails Application at /home/hdarcy/contacts
cd contacts
contacts $

This script creates a new application template for you, and configures your environment with reasonable
defaults, such as an in-memory database for development and an acceptable looking set of CSS style-sheets.
At this point, you could run the application successfully, but there would not be much to see without defining
any models, views, or controllers. Creating these is a simple step and again done from the command line, as
shown in Listing 19.16.

Listing 19.16: Creating a domain object and a controller.
contacts $ grails create-domain-class contacts.Person
...
Created DomainClass for Person
Created Tests for Person
contacts $ grails create-controller contacts.Person
...
Created Controller for Person
Created Tests for Person
contacts $

As you can see from the output, not only were classes created, but also unit tests. All these files are on disk,
and in order to see a meaningful contacts application we'll need to give the Person domain class a few

328

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

properties and constraints, and also tell the controller to provide the standard create, read, update, and delete
actions for the Person object. Listing 19.17 shows the updated Person class.

Listing 19.17:The /grails-app/domain/contacts.Person.groovy domain object.
package contacts

class Person {
 String name
 String email

 static constraints = {
 name(blank: false)
 email(email: true)
 }
}

The application, when run, reads the properties from the object and displays a default user interface based on
the class. The constraints DSL is a way to specify validations for your properties. In this case, a name is
required, and the email field must be in a format for an email address. There are many more options for
constraints and you can also customize them yourself. The last step before running the app is to tell the
controller to provide the default scaffolding, as shown in Listing 19.18.

Listing 19.18: The /grails-app/controller/PersonController.groovy scaffolding.
package contacts

class PersonController {
 def scaffold = Person
}

With this in place, we can run the app (using the grails run-app command) and get a reasonable user
interface for a Person. You can view all the people, add new people, edit an existing person, and delete a
person. The web page displays an error if any of the domain constraints are violated, making sure your data is
always consistent. Figure 19.2 shows the Person list and the detail view for a single person, all of which Grails
generated for us.

Figure 19.2: Generated list and detail view.

329

Licensed to Charles Wise <ctwise@gmail.com>

There is much more you can do with Grails, such as define custom view pages, override the default controller
behavior, or declare complex relationships between domain classes. But one of the most powerful features of
Grails is its database interface. To interact with the database you use the Groovy Object Relational Mapping
(GORM) interface. In short, Grails automatically provides methods on your domain objects for working with the
database. For instance, each domain object has a save() method that persists the object to the database,
and the domain classes have a dynamic query API built into them. You can use the Grails console (run with
grails console) or the Grails shell (run with grails shell) to try queries interactively. Listing 19.19
shows GORM in action.

Listing 19.19: Accessing a database with GORM
import contacts
new Person(name: 'Dierk', email: 'dierk@canoo.com').save() //|#1
new Person(name: 'Hamlet', email: 'hamlet@canoo.com').save() //|#1

def people = Person.findAllByEmailLike('%canoo%') //#2
assert people.size() == 4
def person = Person.findByEmailLikeAndNameLike('%canoo%', 'Ham%') //#3
assert person instanceof Person

#1 Create Persons
#2 Find Multiple Persons
#3 Find One Person

The listing starts in #1 by creating two Person objects and persisting to the database (or at least the Hibernate
cache) using the save() method provided by Grails. But the real magic is in the dynamic finders on the
Person class. The findAllByEmailLike at #2 and findByEmailLikeAndNameLike method at #3 are
dynamically created at runtime. You can use any of the properties from your domain class to invoke a finder
method like this, and many other comparators are supported, such as between, lessThan and notEqual.
The full DSL is one of the most powerful features of Grails.

We've only covered the basics of working with Grails at the command line. There are many more
commands available, and they can be listed with the grails help command. Some important commands are
grails test-app (which runs all the tests), grails war (which creates a .war file suitable for
deployment), grails create-service (which creates a service, allowing you to modularize and decompose
your application), and most importantly grails install-plugin.

Internally, Grails is based on a plugin architecture. GORM itself is a plugin, for example, and it can be
replaced with a non-relational database like Gemfire or Hadoop if you like. There are over 600 plugins
available to be downloaded and installed, and the number is sure to grow even larger in the future.

Certain plugins are essential for a non-trivial application, such as the Spring Security Core plugin (install-
plugin spring-security-core) which provides your application with role based security for controller actions
and URLs. The Quartz plugin (install-plugin quartz) provides job scheduling so you can run regular tasks.
The Searchable plugin (install-plugin searchable) adds easy search integration from the user interface for
your domain classes, and the Mail plugin (install-plugin mail) lets your app send mail to users or
administrators. There are many, many more to choose from.

Grails is the premier web application platform within the Groovy community, and is growing in usage as
more developers see the productivity gains and make the switch. If you're writing web applications then Grails
is a must-know platform. This section is only the smallest taste of the power of Grails, and many topics were
skipped entirely. If you're interested to know more, then we strongly suggest you pick up one of the many
books devoted solely to Grails, such as Grails in Action from Manning Publications.

Grails is a great framework, but not everybody develops web applications. If you like Grails but write
desktop applications, then Griffon is the framework for you. We'll look at that next.

19.8 Griffon for Desktop Applications
Griffon is an application development platform for desktop applications, and the goal of Griffon is to bring all
the benefits of Grails to desktop developers. Griffon started life as a fork of the Grails codebase, so many of
the conventions and features are exactly the same between the two platforms. Today Griffon is definitely its
own beast, is evolving in parallel with Grails, with its own distinct and active community.

330

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571
mailto:'dierk@canoo.com
mailto:'hamlet@canoo.com

The core concepts behind Griffon are MVC groups, services, events, and plugins. Applications are divided
into several model-view-controller groups, and MVC groups can themselves be composed of other MVC groups.
We'll make one ourselves to see how it works. Services are a way to move shared functionality into a
component, similar to how they are used in Grails. The Griffon events system allows you to send and receive
events between components, both synchronously and asynchronously. Events can be application lifecycle
events, like “starting up” and “shutting down”, or you can define your own in-application events. Finally,
plugins are a way to bundle and deploy reusable functionality.

To demonstrate the power of Griffon, we'll create an email client that allows you to send emails through a
Gmail account. The main window lets you type in some typical email fields, and pressing Send sends the email
through a Gmail account. Figure 19.3 shows the finished application.

Figure 19.3: A simple Griffon application.

To get started, you create a Griffon app in the same was as a Grails app, using the create-app command.
To get started we'll also install two plugins: MigLayout for easier form layout and Mail for SMTP mail
integration. Listing 19.20 shows these commands.

Listing 19.20: Creating a Griffon App and Installing Plugins.
$ griffon create-app mailer
...
$ cd mailer
...
mailer $ griffon install-plugin mail
...
mailer $ griffon install-plugin miglayout
...
mailer $

At this point we have a basic “Hello World”-style desktop application with a single model, view and controller.
We'll write the controller code first that sends emails. Controllers have public closures that are invoked from
the user interface. The controller has an automatic reference to both the view and the model, and by default
controller actions are executed on a separate thread, off of the UI thread. Listing 19.21 shows the code that
sends an email using the Mail plugin.

Listing 19.21: Sending email in /griffon-app/controllers/mailer/MailerController.groovy.
package mailer

class MailerController {

 def model

331

Licensed to Charles Wise <ctwise@gmail.com>

 def action = {
 sendMail(transport: 'smtps', auth: true,
 mailhost: 'smtp.gmail.com',
 user: model.yourEmail,
 from: model.yourEmail,
 password: model.yourPassword,
 to: model.to,
 subject: model.subject,
 text: model.text)
 }
}

The sendMail method is provided automatically by the plugin, and the rest of the parameters are mostly
moving data from our data model to the service call. The model does not yet have all of these properties, and
we need to add them next. A Griffon model is not a domain model, but is an application model. An application
model allows the view and controller to exchange data, whereas a domain model is a way to describe the
concepts and entities in your system. For example, an application model might have a field called “enabled” or
“busy”, while a domain model is more concerned with being a higher level description of the system. Listing
19.22 shows our application model.

Listing 19.22: The application model in /griffon-app/model/mailer/MailerModel.groovy.
package mailer

import groovy.beans.Bindable

class MailerModel {
 @Bindable String yourEmail
 @Bindable String yourPassword
 @Bindable String to
 @Bindable String subject
 @Bindable String text
}

The @Bindable annotation exists so that properties can be automatically bound to widgets. When a widget
value (like a text box) changes then the bound domain object is automatically updated. There is no need to
manually write any PropertyChangeListener code: Griffon handles it all for you.

The last piece of the puzzle is the view (Listing 19.23). The view layer is a DSL for Swing components. You
can declaratively specify the layout of the form and supply constraints. In this case we're using MigLayout to
achieve proper alignment of components.

Listing 19.23: The view in /griffon-app/views/mailer/MailerView.groovy.
package mailer

import net.miginfocom.swing.*

application(title: 'mailer', pack: true) {

 migLayout(layoutConstraints:'wrap 2', columnConstraints:'[left][fill]')

 label('Your Email:')
 textField(text:bind(target:model, 'yourEmail')) //#1
 label('Your Password:')
 passwordField(text:bind(target:model, 'yourPassword')) //#1
 label('To:')
 textField(text:bind(target:model, 'to')) //#1
 label('Subject:')
 textField(text:bind(target:model, 'subject')) //#1
 textArea(text:bind(target:model, 'text'), rows: 6, columns: 30, //#1
 constraints: 'span, grow, wrap')
 button(text: 'Send', actionPerformed: controller.action,
 constraints: 'span, right') //#2

 }
#1 Property Binding
#2 Button to Controller Wiring

332

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

The property binding for the widgets is within the bind method calls at the #1 annotations, and wiring a
button to a controller action is as simple as adding the actionPerformed: controller.action
parameter to the button at #2. The user interface for our mailer is displayed when you launch it with the
griffon run-app command.

Griffon automates much of the application life-cycle, especially around deployments and packaging. Griffon
has built-in support for generating Java Web Start (jnlp) applications, applets, and stand-alone apps.
Additionally, the Installer plugin can be used to create native installers for a variety of platforms, such as
Windows, Mac, and various flavors of Linux. Griffon also handles the dirty work of signing jar files; your
application can be securely signed after placing your credentials in the correct configuration files. You can still
use Griffon even if you want to commit to writing Java code. Many of the artifacts, such as the controllers and
services can still be written in plain old Java.

Desktop developers should take a long look at using Griffon for their next project. Griffon provides a strong
design by basing applications on MVC groups, and plugins and services allow applications to naturally
decompose into small, reusable pieces. The short-term benefits of using the many plugins and project
automation scripts are obvious, but Griffon apps have a long-term advantage as well. The Griffon Way is a
blueprint for well-factored and maintainable long-term desktop apps.

The next project we'll look at is Gaelyk, a framework for building lightweight web applications on top of
Google App Engine. Gaelyk is a good choice for simpler web applications that benefit from a cloud datastore
and free, easy deployments.

19.9 Gaelyk for Groovy in the Cloud
Gaelyk is a lightweight yet powerful framework designed for running Groovlets and Groovy Templates Pages in
the cloud using Google App Engine. With Gaelyk you'll have access to all the GAE services like the data store,
task queue, and Jabber API, and you'll also benefit from the power of using Groovy as a templating engine to
generate your web site. Whether you need to generate HTML for a user interface or JSON for an ajax server,
Gaelyk has you covered.

To demonstrate Gaelyk and GAE, we'll build a simple hello-world style HTML site that integrates with
Google authentication, shown in Figure 19.4. Once you have the basics of security, routing, and Gaelyk's take
on MVC, then you should have an easy time moving on to harder tasks like working with the datastore.

Figure 19.4: A simple Gaelyk application.

There is a little installation work to do before getting up and running with GAE and Gaelyk. The first step is
to download and install the Google App Engine for Java SDK; you should check the Gaelyk website to see
which version is supported by Gaelyk. After that you'll need to register with App Engine and create an
application. You register at and select an app name at http://appengine.google.com/. Our sample app is
named “my-welcome-app”. The last part of the setup is to download and unzip the Gaelyk template project
from the Gaelyk website.

Now that everything is installed, we can run the application locally to make sure that everything is working
correctly. Gaelyk and GAE come with many helpful scripts that automate running and deploying apps. The
following code snippet shows how to build and run the app locally:

$ groovy build.groovy

333

Licensed to Charles Wise <ctwise@gmail.com>

http://appengine.google.com/

$ dev_appserver.sh
...
INFO: The server is running at http://localhost:8080/

At this point you can open your browser and see the standard welcome page of a Gaelyk app. With the
installation verified, it's time to configure the application to use our ID and enable security. The app ID is
defined in the file appengine-web.xml. Open this file with a text editor and write your app ID into the
<application> tag, like so:

<application>my-welcome-app</application>
<version>1</version>

Also notice the version number. Over time, you'll want to increase this number each time you make a
deployment or release. GAE lets you run several versions of your app at once, so managing the version
number lets you test new versions in the cloud while your users continue to use the stable release.

Now let's update the web.xml to enable security. App Engine uses a web.xml file, which is the standard
way to define servlets, filters, and security constraints within a Java application server. By default, a Gaelyk
site is public and open to anyone. We'll want to enable security so that users are required to be logged in
through Google. Open the web.xml file and copy in the security description from listing 19.24.

Listing 19.24: Enabling security in war/WEB-INF/web.xml.
<security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

The GAE website has more information about the security constraints, but for now this is all we need. Anyone
visiting our web page will need to be signed into Google first, and GAE handles the redirects and authentication
for us.

At last we're ready to start coding some application logic. Gaelyk is based on a model-view-controller
pattern that separates the user interface logic into .gtpl template files and business logic into Groovy based
controllers. The key is in URL routing. As a URL as accessed, Gaelyk internally redirects that request to your
controller, which performs logic and then renders a template view. In our simple app we're going to route all
traffic to the “/” URL to the “welcome.groovy” controller. That controller will access the currently logged in user
information and then forward the information to the view template. The view template just needs to print out a
welcome message.

First step: edit the routes.groovy table to forward requests to our controller by adding the following line:
get "/", forward: "/welcome.groovy"

This configures the container so that any HTTP GET request is forwarded to welcome.groovy. The next step
is, of course, to define the welcome controller. The controller is where you would normally access the data
store, start tasks, or perform other complex logic. Our controller is quite simple; it just exposes the current
user in the request and renders the default view, which is done with two lines of code:

request.currentUser = user
forward 'index.gtpl'

The last piece of the puzzle is editing the index.gtpl view. This is a Groovy Template page, and by default
the text is markup. You tag syntax is similar to Java Server Page (JSP) syntax, and you can include scripts
using the <% %> or the ${} notation:

<% include '/WEB-INF/includes/header.gtpl' %>
<p>Welcome ${request.currentUser.nickname}</p>
<% include '/WEB-INF/includes/footer.gtpl' %>

That's the basics of Gaelyk. We can build and test locally using the groovy build.groovy and
dev_appserver.sh war commands. Google even provides mock account authentication for testing. When
you're satisfied that everything is working locally then it's time to deploy to the cloud. Run the command
appcfg.sh update war to push the deployment to GAE. You'll be prompted for your Google credentials, and
then after a short wait you'll be able to access your application using the public App Engine URL.

334

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

This tutorial presents the bare minimum functionality of Gaelyk, but there is a lot more. Anything you can
do with GAE is accessible with Gaelyk: the data store, task queue, Jabber, image and file services, and more.
GAE is a great way to get apps up and running in the cloud, and Gaelyk is the best way to use Groovy to do
so. The community is active and more Gaelyk apps are being deployed all the time. Now is a great time to give
it a whirl.

The last library we'll look at is Groovy++, which bring static typing and speed improvements to the Groovy

language. It's an ambitious project that you can use today to get both performance gains and better compile
time checking of your Groovy code.

19.10 Groovy++ for Safety and Performance
The last stop on the Groovy ecosystem tour is the ambitious Groovy++ project. The aim of this project is to
bring static, compile-time type checking to Groovy, which can improve performance and provide early error
checking in the compiler, while leaving the flexible syntax and key features of Groovy the way they are.

One of the periodic criticisms of Groovy is that it's slow when compared with other languages using micro-
benchmarks. It is slower when compared to statically typed JVM languages like Java and Scala. But it's also
sometimes slower compared to other dynamic languages like JRuby and Python. There are several ways to
address this complaint. First, the bottleneck of a slow system is often database access rather than application
code. Even if Groovy is slow, it doesn't make sense to optimize Groovy out of your system if it isn’t the real
pain point of your overall system performance. Second, if application code really is your slowest point, then
you can always rewrite those components in Java. But for the Groovy++ authors this was not a good enough
response. They wanted to use the Groovy syntax, especially closures, but have the generated .class files be as
fast as Java. They wanted to write Groovy code which would transformed into optimized bytecode by the time
it was seen by the JVM. Currently, the project achieves some impressive results. Consider the code in Listing
19.25, which uses Groovy++ to sum a whole bunch of numbers.

Listing 19.25: Summing Numbers in Groovy++.
@Typed //#1
package example

@Grab('org.mbte.groovypp:groovypp-all:0.4.248_1.8.0') //#2
@Grab('org.mbte.groovypp:groovypp:0.4.248_1.8.0')
import groovy.lang.Grab

long result = 0
for (long x = 0; x < 100000000; x++) {
 result = result + x
}

assert result == 4999999950000000L

#1 Static Typing Annotation
#2 Groovy++ Imports

This example runs in less than 0.5 seconds on my machine. It's not very Groovy code (it looks a lot like Java),
and it took a while to come up with something so de-optimized, but it serves as a good example because there
is very little dynamic about it. A compiler should be able to optimize this to be very fast. If you comment out
the @Typed annotation at #1, then this becomes plain old Groovy code and is no longer Groovy++. Under
Groovy this example takes almost 8 seconds to complete – about 16 times as long as the Groovy++ version.
Impressive results, and close to the 0.2 seconds achieved with plain old Java. With Groovy++ you get many
speed improvements but are still free to continue using closures, categories, and the Groovy GDK methods
that you've come to rely on.

Performance is just one of the many aspects of Groovy++. The project also attempts to bring static type
inference to the compiler. The code in Listing 19.26 shows code that compiles, runs, and executes with no
problems in Groovy.

335

Licensed to Charles Wise <ctwise@gmail.com>

Listing 19.26: Groovy and Groovy++ Type Inference.
def str = "A string"
println str.toLowerCase()
str = 5 // reassigning a string variable to be an int!
println str

This example prints “a string” and “5” due to Groovy's type coercion of Integers to Strings. In Groovy++
this code fails to compile, because the variable “y” is known to be a String but an integer is being assigned to
it on line 3. Groovy++ is a statically typed language, and it does not have the same dynamic type coercion
that Groovy has. This brings safety to your program, but you sacrifice some flexibility.

Static typing is not an all-or-nothing choice in Groovy++. If you annotate a package, class, or method with
@Typed, then that unit is compiled by Groovy++. Also, if you give a file the .gpp file extension then the entire
file is statically compiled. But Groovy and Groovy++ interact with each other nicely. You can use Groovy++ in
the files you need and plain old Groovy when you want a more dynamic system. In fact, you can even mix and
match the typing within the same file, as in Listing 19.27.

Listing 19.27: Groovy and Groovy++ Type Inference.
@Typed //#1
class MyClass {

 int getHtmlSize() {
 String html = buildDynamicHtml()
 html.length()
 }

 @Typed(TypePolicy.DYNAMIC) //|#2
 def buildDynamicHtml() { //|#2
 def writer = new StringWriter()
 new groovy.xml.MarkupBuilder(writer).root { //#3
 child()
 child()
 }
 writer.toString()
 }
}

assert 38 == new MyClass().htmlSize

#1 Static Typing Annotation
#2 Dynamically Typed Method
#3 Dynamic Method Call

MyClass is annotated with @Typed at #1, so by default the entire thing is compiled as Groovy++. Type
inference is active and the compile fails if you try to invoke dynamic features. However, the
buildDynamicHtml method at #2 is marked as @Typed(TypePolicy.DYNAMIC), so within that method
you are free to use any dynamic feature you want, such as an XML MarkupBuilder. Without the “mixed
mode” annotation, this code fails to compile because there is no method on MarkupBuilder called root() at
#3. Clearly dynamic and static code can easily live side by side.

There is a lot to Groovy++ beyond what you've seen here. It enables tail recursion, and also extension
methods, which allow you to add dynamic methods to statically compiled classes. The project is often a bit of a
playground for many new Groovy ideas because static typing allows a lot of features to be implemented that
would be impossible in plain old Groovy. Some of the ideas in Groovy++ may one day make it back to core
Groovy, but certainly not all of them will.

The main point of Groovy++ is speed, optimized bytecode, and compile-time type safety. At this point in
time the project achieves these goals. If you want to continue using Groovy, but are having performance
issues, then Groovy++ is certainly a library worth considering. However, remember that performance
optimizations should only be put into place once you have measured and profiled your application and
determined the real bottleneck. In real world Groovy usage, many developers find that Groovy is not the cause
of a performance problem.

336

Licensed to Charles Wise <ctwise@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=571

19.11 Summary
Thus concludes our whirlwind tour of the Groovy Ecosystem: those projects that are not exactly part of Groovy
itself but are essential for being a productive Groovy programmer.

If you're using Groovy as a scripting and automation language then consider mastering Grapes, Scriptom,
GroovyServ, and Gradle. Grapes is a great way to easily manage script dependencies and makes sharing easy.
Scriptom provides a good way to automate Windows specific work. For frequent scripters, GroovyServ can
speed up the startup time a noticeable amount. And Gradle is an import technology for not only building your
Groovy and Java projects, but also for project automation in general.

On the surface, CodeNarc and GContracts are different technologies. CodeNarc is focused on finding and
preventing bugs in your code and helping with the enforcement of coding standard. GContracts brings Design
by Contract™ to Groovy, allowing you to design objects and interactions based on the expected contract of
those objects. But the two technologies are similar in that both are focused on improving the overall quality of
a system written in Groovy.

For web application developers, Grails is an important technology to master because it uses Groovy in
several unique ways in order to make web apps fast to write, easy to maintain, and a joy to work on. And
Griffon does the same for desktop applications. For cloud developers, Gaelyk is a good platform for running
Groovy on Google App Engine. You can get up, running, and deployed quickly with minimum investment.

Lastly, Groovy++ is an exotic experiment with big ambitions and already big successes. This project shows
just how malleable Groovy is: a new language extension was written on top of it. Groovy++ shows that when
it comes to the limitations of Groovy, the true limit is not enforced by the technology but rather by your
imagination. The tools presented in this chapter are useful, but there is still plenty of room for innovation in
the Groovy ecosystem. So go ahead and try something new, whether it's one of these technologies or one of
your own inventions.

337

	Groovy in Action 2nd Edition MEAP v11
	Copyright
	Table of Contents
	Chapter 1: Your way to Groovy
	1.1 The Groovy story
	1.1.1 What is Groovy?
	1.1.2 Playing nicely with Java: seamless integration
	1.1.3 Power in your code: a feature-rich language
	1.1.4 Community-driven but corporate-backed

	1.2 What Groovy can do for you
	1.2.1 Groovy for Java professionals
	1.2.2 Groovy for script programmers
	1.2.3 Groovy for pragmatic programmers, extremos, and agilists

	1.3 Running Groovy
	1.3.1 Using groovysh for a welcome message
	1.3.2 Using groovyConsole
	1.3.3 Using groovy

	1.4 Compiling and running Groovy
	1.4.1 Compiling Groovy with groovyc
	1.4.2 Running a compiled Groovy script with Java

	1.5 Groovy IDE and editor support
	1.5.1 IntelliJ IDEA plug-in
	1.5.2 NetBeans IDE plug-in
	1.5.3 Eclipse plug-in
	1.5.4 Groovy support in other editors

	1.6 Summary

	Chapter 2: Overture: The Groovy basics
	2.1 General code appearance
	2.1.1 Commenting Groovy code
	2.1.2 Comparing Groovy and Java
 syntax
	2.1.3 Beauty through brevity

	2.2 Probing the language with
 assertions
	2.3 Groovy at a glance
	2.3.1 Declaring classes
	2.3.2 Using scripts
	2.3.3 GroovyBeans
	2.3.4 Annotations for AST
 Transformations
	2.3.5 Handling text
	2.3.6 Numbers are objects
	2.3.7 Using lists, maps, and ranges
	2.3.8 Code as objects: closures
	2.3.9 Groovy control structures

	2.4 Groovy's place in the Java
 environment
	2.4.1 My class is your class
	2.4.2 GDK: the Groovy library
	2.4.3 The Groovy lifecycle

	2.5 Summary

	Chapter 3: The simple Groovy datatypes
	3.1 Objects, objects everywhere
	3.1.1 Java's type system--primitives and references
	3.1.2 Groovy's answer--everything's an object
	3.1.3 Interoperating with Java--automatic boxing and unboxing
	3.1.4 No intermediate unboxing

	3.2 The concept of optional typing
	3.2.1 Assigning types
	3.2.2 Groovy is type-safe at runtime
	3.2.3 Let the casting work for you
	3.2.4 The case for optional typing

	3.3 Overriding operators
	3.3.1 Overview of overridable operators
	3.3.2 Overridden operators in action
	3.3.3 Making coercion work for you

	3.4 Working with strings
	3.4.1 Varieties of string literals
	3.4.2 Working with GStrings
	3.4.3 From Java to Groovy

	3.5 Working with regular expressions
	3.5.1 Specifying patterns in string literals
	3.5.2 Applying patterns
	3.5.3 Patterns in action
	3.5.4 Patterns and performance
	3.5.5 Patterns for classification

	3.6 Working with numbers
	3.6.1 Coercion with numeric operators
	3.6.2 GDK methods for numbers

	3.7 Summary

	Chapter 4: The collective Groovy datatypes
	4.1 Working with ranges
	4.1.1 Specifying ranges
	4.1.2 Ranges are objects
	4.1.3 Ranges in action

	4.2 Working with lists
	4.2.1 Specifying lists
	4.2.2 Using list operators
	4.2.3 Using list methods
	4.2.4 Lists in action

	4.3 Working with maps
	4.3.1 Specifying maps
	4.3.2 Using map operators
	4.3.3 Maps in action

	4.4 Notes on Groovy collections
	4.4.1 Understanding concurrent modification
	4.4.2 Distinguishing between copy and modify semantics

	4.5 Summary

	Chapter 5: Working with closures
	5.1 A gentle introduction to closures
	5.2 The case for closures
	5.2.1 Using iterators
	5.2.2 Handling resources

	5.3 Declaring closures
	5.3.1 The simple declaration
	5.3.2 Using assignments for declaration
	5.3.3 Referring to methods as closures
	5.3.4 Comparing the available options

	5.4 Using closures
	5.4.1 Calling a closure
	5.4.2 More closure methods

	5.5 Understanding scoping
	5.5.1 The simple variable scope
	5.5.2 The general closure scope
	5.5.3 Scoping at work: the classic accumulator test

	5.6 Returning from closures
	5.7 Support for design patterns
	5.7.1 Relationship to the Visitor pattern
	5.7.2 Relationship to the Builder pattern
	5.7.3 Relationship to other patterns

	5.8 Summary

	Chapter 6: Groovy control structures
	6.1 The Groovy truth
	6.1.1 Evaluating boolean tests
	6.1.2 Assignments within boolean tests

	6.2 Conditional execution structures
	6.2.1 The humble if statement
	6.2.2 The conditional ?: operator
	6.2.3 The switch statement
	6.2.4 Sanity checking with assertions

	6.3 Looping
	6.3.1 Looping with while
	6.3.2 Looping with for

	6.4 Exiting blocks and methods
	6.4.1 Normal termination: return/break/continue
	6.4.2 Exceptions: throw/try-catch-finally

	6.5 Summary

	Chapter 8: Dynamic Programming with Groovy
	8.1 What is dynamic programming?
	8.2 The Meta-Object-Protocol
	8.3 Customizing the MOP with hook methods
	8.3.1 Customizing methodMissing
	8.3.2 Customizing propertyMissing
	8.3.3 Using closures for dynamic hooks
	8.3.4 Customizing GroovyObject methods

	8.4 Modifying behavior through the meta class
	8.4.1 MetaClass knows it all
	8.4.2 How to find the meta class and invoke methods
	8.4.3 Setting other meta classes
	8.4.4 Expanding the meta class
	8.4.5 Temporary MOP modifications using category classes
	8.4.6 Merging classes with Mixins

	8.5 Real-world dynamic programming in action
	8.5.1 Calculating with metrics
	8.5.2 Replacing constructors with factory methods
	8.5.3 Fooling IDEs for fun and profit
	8.5.4 Undoing meta class modifications
	8.5.5 The intercept/cache/invoke pattern

	8.6 Summary

	Chapter 9: Compile-Time Metaprogramming and AST Transformations
	9.1 A Brief History
	9.2 Making Groovy Cleaner and Leaner
	9.2.1 Code Generation Transformations
	9.2.2 Class Design Annotations
	9.2.3 Logging Improvements
	9.2.4 Declarative Concurrency
	9.2.5 Easier Cloning and Externalizing
	9.2.6 Safer Scripting
	9.2.7 And More Transformations

	9.3 AST by Example: Local Transformations
	9.4 AST by Example: Global Transformations
	9.5 Exploring AST
	9.5.1 Tools of the Trade

	9.6 AST by Example: Creating ASTs
	9.6.1 By Hand
	9.6.2 AstBuilder.buildFromSpec
	9.6.3 AstBuilder.buildFromString
	9.6.4 AstBuilder.buildFromCode

	9.7 Testing AST Transformations
	9.8 Limitations
	9.9 Next Steps
	9.10 Summary

	Chapter 17: Concurrent Groovy with GPars
	17.1 Concurrency for the rest of us
	17.1.1 Concurrent != parallel
	17.1.2 Introducing new concepts

	17.2 Concurrent collection processing
	17.2.1 Transparently concurrent collections
	17.2.2 Available fork/join methods

	17.3 Becoming more efficient with map/filter/reduce
	17.4 DataFlow for implicit task coordination
	17.4.1 Reproducible deadlocks
	17.4.2 Dataflow on sequential datatypes
	17.4.3 Final thoughts on dataflow

	17.5 Actors for explicit task coordination
	17.5.1 Using the strengths of Groovy

	17.6 Agents for delegated task coordination
	17.7 Concurrency in Action
	 17.8 Summary

	Chapter 18: Domain-Specific Languages
	18.1 Groovy’s flexible nature
	18.1.1 Back on parentheses omission

	18.2 Variable, constant and method injection
	18.2.1 Injecting constants through the binding
	18.2.2 Adding imports and static imports automatically
	18.2.3 Injecting methods into a script
	18.2.4 Adding closures to the binding

	18.3 Adding properties to numbers
	18.4 Leveraging named-arguments
	18.5 Command chains
	18.6 Your own control structures
	18.7 Context switching with closures
	18.8 Another technique for builders
	18.9 Beyond the Groovy syntax
	18.10 Securing your DSLs
	18.10.1 Introducing SecureASTCustomizer
	18.10.2 The ArithmeticShell
	18.10.3 Stopping the execution of your programs
	18.10.4 Preventing cheating with meta-programming

	18.11 Testing and error reporting
	18.12 Summary

	Chapter 19: The Groovy Ecosystem
	19.1 Groovy Grapes for Self-Contained Scripts
	19.2 Scriptom for Windows Automation
	19.3 GroovyServ for Quick Startup
	19.4 Gradle for Project Automation
	19.5 CodeNarc for Static Code Analysis
	19.6 GContracts for Improved Design
	19.7 Grails for Web Development
	19.8 Griffon for Desktop Applications
	19.9 Gaelyk for Groovy in the Cloud
	19.10 Groovy++ for Safety and Performance
	19.11 Summary

