Lactation Physiology Mammary Gland

Slides courtesy of Dr. H.D. Tyler, Iowa State University

References: Dr. M. A. Barnes, Virginia Tech and Dairy Cattle Science. 4^{th} Ed. 2005.

The mammary gland nourishes the neonate

- Exocrine gland; common to all mammals
- Function: nourish the neonate
 - Food source: fat, protein, sugar (CHO), vitamins, minerals, water
 - Protection:

_____(first Ab protection; absorbed via intestinal tract

The mammary gland is part the reproductive system

- The mammary gland is loosely considered part of the reproductive system:
 - Serves a "reproductive function"; nourishment of the neonate = survival of species.
 - Relies on same endocrine (hormonal) support for development and function.

Example: gonadal steroids, prolactin, etc.

Endocrine Glands Affect Mammary Function

Mammary Gland Structure

- Udder consists of four separate glands
 - A teat hangs from each quarter
 - Bottom of teat closed by sphincter muscle known as _____
 - Can have extra nonfunctional teats
 - Called _
 - Removed when calf is young
- Conformation of teats
 - Each teat has one streak canal
 - Sphincter in each teat should be tight enough to prevent leakage

Mammary Gland Structure

- □ Support system = **Stroma** (connective tissue)
- Glandular; secreting tissue =
 - Alveoli-
 - *Duct system* lined by epithelial cells
 - Lobules & lobes- clusters of alveolar tissue supported by connective tissue

Separate Mammary Glands-Quarters

Mammary Gland Structure/Suspension

- □ Intermammary groove separates left and right halves of the udder
- □ Udder can weigh anywhere from 7 to 165 pounds
 - May support up to 80 pounds of milk
 - Rear quarters secrete 60% of the milk
 - Udder continues to grow in size until cow is 6 years of age
- □ 3 major supporting structures
 - Skin
 - _____ligament
 - _____ligament

Mammary Gland Suspension

- Skin
 - Minor role in support
- Median suspensory ligament
 - Connects udder to abdominal wall
 - Elastic tissue which responds to weight of milk in udder
- Lateral suspensory ligament
 - Inflexible
 - Surround the outer wall of udder
 - Attached to prepubic and subpubic tendons

Internal Anatomy

Streak canal

Functions to keep milk in udder and bacteria out of udder

■ Teat cistern

- Duct in teat with capacity of 30-45 milliliters
- Separated from streak canal by folds of tissue called

Gland cistern

- Separated from teat cistern by the cricoid fold
- Holds up to 400 milliliters of milk
 - Collecting area for the mammary ducts
- From this branches the mammary ducts

Mammary Gland Support

Fig 29-4. A dissected mammary gland showing the gland cistern, teat cistern and streak canal (Courtesy of Mark Kirkpatrick)

Alveoli and Duct System

- □ Alveoli is the basic milk producing unit
- Each cubic inch of udder tissue contains 1 million alveoli
- Each alveoli surrounded by network of capillaries and ---
 - Contraction of myoepithelial cell stimulates milk ejection
- Groups of alveoli empty into a duct forming a unit called a lobule
 - Several lobules create a lobe
 - □ Ducts of lobe empty into a galatophore, which empties into the gland cistern

Alveolar Products

■ Alveolus:

- basic secretory unit; lined by epithelial cells which synthesize and/or secrete:
 - □ *lipid* _____(FFA)
 - protein _____
 - lactose disaccharide; major CHO; osmoreactive molecule (draws water)
 - □ minerals & vitamins Ca, P, K; Vits. A, B,
 - C, D
 - water

Alveolar Structure

Alveolar components & function:

- epithelial cells milk synthesis & secretion
- lumen collect milk components & water
- myoepithelial cells -_
- basement membrane selective transfer
- terminal duct milk transport out of alveoli
- capillary system supply milk precursors and deliver hormones

Mammary Cell Function

Alveolar milk component synthesis:

- RER > lipid, caseins
- Golgi apparatus > lactose (also packages lactose, caseins, minerals, water)

		FAT DROPLET
PROTEIN MCD		
MLK PROTO N VACUOLI	(10)	PLASMA MEMBRANE
	10 m Cale	0
LYSOSOME	O 100 1300	. 0
GOLD APPRING	8	25 SMOOTH DISCORLASE
WITTOHONOROW-	18 .	MITOLUM
	8 B288	TELEGRO THE PAGE
	· 7329/328	END PROTONES
NUCLEU	MC4271	DEGRAGING
	0 000	# PETCLIM
	(B) Chile	SCURLE CYTOPLAS
	A C. M.	
	Application of	MYCEPTHELW. CO.
CONNECTIVE -	_	CAPILLMRY

Circulation

- One gallon of milk requires _____gallons of blood being passed through udder
- Blood enters the udder through external
- Blood exiting udder from veins at the base of udder blood can travel through two routes
 - Via external pudic veins
 - Via _____veins

Lymphatic System

■ Lymph is clear, colorless

- contains less protein than blood plasma
- contains high [] of
- contains few RBC's
- carries glucose, salts, fat (chylomicra from intestine)
- carrier of fibrinogen (clotting protein)

Lymphatic System

- □ Helps regulate proper fluid balance within udder and combat infection
- □ Fluid drained from tissue only travels away from
- Lymph travels from udder to the thoracic duct and empties into blood system
- Flow rates of lymph depend on physiological status of the cow

Lymph Capillaries in the Tissue Spaces Lymph capillary Arteriole Tissue spaces Lymph atic vessel

Lymphatic System- Edema

□ Edema:

- low pressure, passive system fed by a high pressure vascular system!
 - this situation results in pooling of interstitial fluid if evacuation of lymph is impaired

Example: tissue trauma; increased mammary blood flow at parturition

Alleviating Mammary Edema

- Preparturient milking may be helpful
 - store colostrum from healthy cows to feed calves
- pressure _____to reduce mammary
- $\hfill\Box$ Diuretics, corticoids to reduce swelling
- Mammary massage, icing
 –work fluid towards supramammary lymph nodes
- Don't feed too much, too early before calving