# Group Analysis: Hands-On

#### Gang Chen SSCC/NIMH/NIH/HHS



# Make sure you have the files!

- Under directory group\_analysis\_hands\_on/
  - Slides: GroupAna\_HO.pdf
  - Data: AFNI\_data6/GroupAna\_cases/
  - In case you don't have the data wget http://afni.nimh.nih.gov/pub/dist/edu/data/AFNI\_data6.tgz
- Require R installation
  - Google R, and then download proper binaries
  - Install a few R packages: install.packages('afex')
    - afex
    - phia
    - snow
    - nlme
    - lme4
    - contrast

# **Preview: choosing programs**

- Program list
  - 3dttest++, 3dMEMA, 3dANOVAx, 3dMVM, 3dLME
  - 3ttest, 3dRegAna, GroupAna almost retired
  - Voxel-wise approach
  - ROI analysis not discussed: R, Matlab, Excel, SAS, SPSS
  - uber\_ttest.py: for 3ttest++ and 3dMEMA only
  - Other programs: scripting (too hard? Rick Reynolds!) gen\_group\_command.py
  - Typical mistakes
    - $_{\odot}$  Extra spaces after the continuation character <code>BACKSLASHES</code> (\)

○ file\_tool -test -infile ...

o Typos

• Model specifications, misuses of options, ...

# **Preview: choosing programs**

- Data layout should not always be the only focus
  - Experiment design: number of explanatory variables (factors and quantitative variables), levels of a categorical variable
  - Balance: equal number of subjects across groups?
  - Missing data: throw out those subjects, or keep the partial data?
  - List all the tests you would like to get out of the group analysis
- If computation cost is of concern
  - Super fast programs: 3dttest++, 3dANOVAx, 3dttest, 3dRegAna
  - Super slow programs: 3dMEMA, 3dMVM, 3dLME, GroupAna
- Special features of 3dMEMA
  - Weights subjects based on reliability
  - Models and identifies outliers at voxel level
  - Handles missing data at voxel level (e.g. ECoG data)
  - Cross-subjects variability measures ( $\tau^2$ , H,  $I^2$ , ICC) and group comparisons in  $\tau^2$

#### Road Map: Choosing a program?

#### Starting with HDR estimated via shape-fixed method (SFM)

- One  $\beta$  per condition per subject
- It could be significantly underpowered

#### 

- Data structure
- Ultimate goal: list all the tests you want to perform
  - Possible to avoid a big model
  - Use a piecemeal approach with 3dttest++ or 3dMEMA

#### ♦ Most analyses can be done with 3dMVM and 3dLME

- Computationally inefficient
- Last resort: not recommended if alternatives available

#### Road Map: Student's t-tests

 $\diamond$  Not for *F*-tests except for ones with 1 DF for numerator

All factors are of two levels, e.g., 2 x 2, or 2 x 2 x 2

♦ Scenarios

- One-, two-sample, paired
- Multiple regression: one group + one or more quantitative variables
- ANCOVA: two groups + one or more quantitative variables
- ANOVA through dummy coding: all factors (between- or within-subject) are of two levels
- AN(C)OVA: multiple between-subjects factors + one or more quantitative variables
- One group against a whole brain constant: 3dttest -base1 C
- One group against a voxel-wise constant: 3dttest -base1\_dset

#### Road Map: Between-subjects ANOVA

One-way between-subjects ANOVA

- o 3dANOVA
- Two groups: 3dttest++, 3dMEMA (OK with > 2 groups too)
- Two-way between-subjects ANOVA
  - 3dANOVA2 -type 1
  - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- Three-way between-subjects ANOVA
  - 3dANOVA3 -type 1
  - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- N-way between-subjects ANOVA
  - o 3dMVM

#### Road Map: With-subject ANOVA

One-way within-subject ANOVA

- 3dANOVA2 -type 3
- Two conditions: 3dttest++, 3dMEMA
- Two-way within-subject ANOVA
  - 3dANOVA3 -type 4
  - 2 x 2 design: 3dttest++, 3dMEMA
- N-way within-subject ANOVA
  - o 3dMVM

### Road Map: Mixed-type ANOVA and others

One between- and one within-subject factor

- 3dANOVA3 -type 5 (requiring equal # subjects across groups)
- 3dMVM (especially unequal # subjects across groups)
- 2 x 2 design: 3dttest++, 3dMEMA

#### Other scenarios

- Multi-way ANOVA: 3dMVM
- Multi-way ANCOVA (between-subjects covariates only): 3dMVM
- HDR estimated with multiple basis functions: 3dMVM
- Missing data: 3dLME
- Within-subject covariates: 3dLME
- Subjects genetically related: 3dLME
- Trend analysis: 3dLME

# **Preview: learning by 7 examples**

- BOLD responses estimated with one basis function
  - 1 group, 3 conditions with missing data
  - 3 groups, 1 numeric variable (between-subjects)
  - ANOVA
  - ANCOVA
  - Within-subject covariate
- BOLD responses estimated with multiple basis functions
  - 1 group
  - 2 groups

# **Case 1: three conditions**

- Run command line
  - tcsh -x LME.txt
  - tcsh –x LMEtable.txt
- MEG data
  - 3 conditions: Baseline, Ket, Placebo
  - 17 subject with missing data: 11 with full data
- Analysis approaches
  - One-way within-subject ANOVA
    - Worst: wasting 6 subjects
  - 3 pairwise comparisons with *t*-test
    - Better: partially wasting
  - LME
    - Best: all data fully utilized
    - Overall F-stat plus 3 pairwise contrasts

| Subj | Baseline | Ket | Placebo |
|------|----------|-----|---------|
| S101 | 1        | 1   | 0       |
| S102 | 1        | 1   | 1       |
| S105 | 1        | 1   | 1       |
| S107 | 1        | 1   | 1       |
| S108 | 1        | 1   | 1       |
| S109 | 1        | 1   | 1       |
| S110 | 1        | 1   | 1       |
| S111 | 1        | 1   | 0       |
| S112 | 0        | 1   | 1       |
| S113 | 1        | 1   | 1       |
| S115 | 0        | 1   | 1       |
| S116 | 1        | 1   | 0       |
| S118 | 1        | 1   | 1       |
| S120 | 1        | 1   | 1       |
| S121 | 1        | 1   | 0       |
| S122 | 1        | 1   | 1       |
| S123 | 1        | 1   | 1       |

### **Case 1: three conditions**

- Put the data table in a separate text file
  - Unix issue ("Arg list too long): the whole command line beyond the system allows
  - Same dataset can be used for different models
    - Not all columns have to be used
- Navigate the output dataset

### **Case 2: three groups**

- Data information
  - COMT (catechol-O-methyl transferase) gene with a Val/Met (valine-tomethionine) polymorphism for schizophrenia
  - 3 genotypic groups: Val/Val (12), Val/Met (10), Met/Met (9)
  - 1 effect estimate from each subject
- What program?
  - Almost everybody immediately jumps to this question!
- Tests of interest?
  - Individual group effects: A, B, and C
  - Pairwise group comparisons: A-B, A-C, and B-C: Two-sample *t*-test
  - Any difference across all three groups? Omnibus *F*-test
- What program?
  - One- or two-sample t-test: 3dttest++, 3dMEMA
  - One-way between-subjects ANOVA: 3dANOVA, 3dMVM

#### **Case 2: three groups**

- One-way between-subjects ANOVA
  - Each subject has only one response value!
  - GLM, not really a random-effects model:

$$\hat{\beta}_{i(j)} = \alpha_0 + \alpha_1 * x_{1i(j)} + \alpha_2 * x_{2i(j)} + \epsilon_{i(j)}$$

- Coding for subjects: with one group (A) as base (reference) for dummy coding (0s and 1s),  $\alpha_0 = A$ ,  $\alpha_1 = B A$ , and  $\alpha_1 = C A$ .
- 3dANOVA
  - Don't directly solve GLM
  - Compute sums of squares: computationally efficient!
- Alternatives: 3dttest++, 3dMEMA

# Case 3: multi-way ANOVA

- Data information
  - 1 subject-grouping variable (Group): young (15) and older (14)
  - 3 within-subject factors:
    - $\circ$  task 2 levels: Perception and Production
    - $\circ$  Syllable 2 levels: Simple and Complex
    - $\circ$  Sequence 2 levels: Simple and Complex
- Tests of interest?
  - Comparisons under various combinations
  - Interactions among the 4 factors
- What program?
  - 3dttest++, 3dMEMA, 3dMVM

#### **Case 4: Within-subject covariate**

- Data information
  - 1 within-subject variable: Condition (2 levels: house, face)
  - 1 quantitative (within-subjects) variable: RT (mean RT not significantly different across conditions)
- Tests of interest?
  - Main effects, interactions, various contrasts
- Model
- What program? 3dLME

$$\hat{\beta}_{ij} = \alpha_1 * x_{1j} + \ldots + \alpha_k * x_{kj} + \delta_i + \epsilon_{ij}$$

# **Case 5: one group with multiple basis functions**

- Data information
  - 15 subjects
  - One effect of interest modeled with 8 basis (TENT) functions
- Tests of interest?
  - Any overall response at a voxel (brain region)?
- Model  $\hat{\beta}_{ij} = \alpha_1 * x_{1j} + \dots + \alpha_k * x_{kj} + \delta_i + \epsilon_{ij}$ 
  - No intercept
  - Test of interest:  $\alpha_1 = \ldots = \alpha_k = 0$
  - Residuals  $\boldsymbol{\varepsilon}_{ij}$  are most likely serially correlated
- What program? 3dLME

# **Case 6: two groups with multiple basis**

# **functions**

- Data information
  - 15 subjects
  - One effect of interest modeled with 8 basis (TENT) functions
- Tests of interest?
  - Any overall response at a voxel (brain region)?
- Model
  - No intercept
  - Test of interest:
  - Residuals  $\boldsymbol{\varepsilon}_{ij}$  are most likely serially correlated
- What program? 3dANOVA3 –type 5, 3dMVM

# Case 7: ANCOVA

- Data information
  - 2 subject-grouping variables
    - $\circ$  Group (2 levels): control () and ssd ()
    - Gender (2 levels): males () and females ()
  - 1 within-subject variable: Condition (4 levels: visWord, visPSW, visCStr, audWord, audPSW)
  - 1 quantitative (between-subjects) variable: Age (mean age not significantly different across groups)
- Tests of interest?
  - Main effects, interactions, various contrasts
- Model  $\hat{\beta}_{ij} = \alpha_1 * x_{1j} + \ldots + \alpha_k * x_{kj} + \delta_i + \epsilon_{ij}$
- What program? 3dMVM, 3dLME

# **Overview: learning by 11 examples**

- BOLD responses estimated with one basis function
  - 3 groups
  - 2 conditions
  - 2 conditions with missing data
  - 3 groups + 2 genders
  - 3 groups + 2 conditions
  - 3 groups + 2 genders + 1 numeric variable (between-subjects)
  - 3 groups + 2 conditions + 1 numeric variable (between-subjects)
  - 3 groups + 2 conditions + 2 numeric variables (1 within-subject and 1 between-subjects)
- BOLD responses estimated with multiple basis functions
  - 1 group
  - 2 groups
  - 2 groups + 2 conditions