
Chapter 4

Group theory

Group theory will be presented in this chapter as a tool for spectroscopy. Indeed group theory

makes it possible to

• construct and classify molecular orbitals,

• classify electronic, vibrational, rotational and nuclear spin wave functions,

• predict which states are allowed,

• predict physical properties (existence of electric dipole moment, optical activity etc.),

• predict selection rules (electric dipole transitions, configuration interaction. etc.)

However, group theory does not make any quantitative predictions. The interest of group

theory lies in simplifying some problems like those mentioned above that arise in molecular

spectroscopy.

4.1 Symmetry operations

4.1.1 Definition of a group

A group G is a set of elements A, B, C, ... connected by a combination rule (written as a

product, for example A ·B) which has the following properties:

1. the closure: for all elements A and B of the group G, A ·B = C is also an element of

the group G.

2. the associativity: the combination rule must be associative, i. e. A·(B ·C) = (A·B)·C.

3. the identity: there must be an element, the identity E (also called unit), such that

E ·R = R · E = R for all elements R of the group.

4. the inverses: each element R must have an inverse R−1 which is also a group element

such that R ·R−1 = R−1 ·R = E.
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102 CHAPTER 4. GROUP THEORY

In group theory, the elements considered are symmetry operations. For a given molecular

system described by the Hamiltonian Ĥ, there is a set of symmetry operations Ôi which

commute with Ĥ:

[
Ôi, Ĥ

]
= 0. (4.1)

Ĥ and Ôi thus have a common set of eigenfunctions and the eigenvalues of Ôi can be used

as labels for the eigenfunctions (see Lecture Physical Chemistry III). This set of operations

defines (with the multiplication operation) a symmetry group. In molecular physics and

molecular spectroscopy two types of groups are particularly important, the point groups and

the permutation-inversion groups.

4.1.2 Point group operations and point group symmetry

The point groups adequately describe molecules that can be considered as rigid on the

timescale of the spectroscopic experiment, which means molecules that have a unique equi-

librium configuration with no observable tunneling between two or more equivalent configu-

rations.

The symmetry operations of the point groups are:

• the identity E which leaves all coordinates unchanged.

• the proper rotation Cn by an angle of 2π/n in the positive trigonometric sense (i. e.

counter-clockwise). The symmetry axis with highest n is chosen as principal axis. If

a molecule has a unique Cn axis with highest n, the molecule has a permanent dipole

moment that lies along this axis (e. g. H2O, NCl3 in Figure 4.1). If a molecule has

several Cn axes with highest n, the molecule has no permanent dipole moment (e. g.

CH4).

Figure 4.1: C2 rotation of H2O and C3 rotation of NCl3.

• the reflection through a plane σ; the reflections are classified into two categories:

PCV - Spectroscopy of atoms and molecules



4.1. SYMMETRY OPERATIONS 103

– the reflections through a vertical plane, i. e. a plane which contains the symmetry

axis z are noted σv,

– the reflections through an horizontal plane, i. e. a plane perpendicular to the

symmetry axis z are noted σh.

• the inversion i of all coordinates through the inversion center.

• the improper rotation Sn or rotation-reflection which consists in a rotation by an

angle of 2π/n around the z axis followed by a reflection through the plane perpendicular

to the rotational axis. Figure 4.2 shows the S4 improper rotation of allene as an example.

Figure 4.2: Decomposition of the improper rotation S4 of allene.

A molecule having an improper operation as symmetry operation, i. e. a reflection, an im-

proper rotation or an inversion, cannot be optically active and is therefore achiral.

4.1.3 Permutation-inversion operations and CNPI groups

As mentioned already, the point groups are well suited to describe rigid molecules. However,

for floppy systems, especially clusters with tunneling splitting as shown in Figure 4.3, or when

the transition between two states does not hold the same symmetry, another, more general

definition is required.

Figure 4.3: Tunneling process in (HF)2.

To circumvent this problem, the complete nuclear permutation inversion (CNPI) groups have
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104 CHAPTER 4. GROUP THEORY

been developed, originally by Christopher Longuet-Higgins and Jon T. Hougen (see Bunker

and Jensen, Molecular Symmetry and Spectroscopy, 1998). Their concept relies on the fact

that the symmetry operations, i. e. the permutation-inversion operations leave Ĥ unchanged.

The symmetry operations of the CNPI groups are:

• the permuation (ij) of the coordinates of two identical nuclei i and j which denotes

the exchange of the nucleus i with the nucleus j (see Figure 4.4 for examples),

• the cyclic permutation (ijk) of the coordinates of three identical nuclei i, j, and k,

i. e. the nucleus i will be replaced by the nucleus j, j by k and k by i (see Figure 4.4

for example),

Figure 4.4: Examples of (i j) and (i j k) permutations.

• all possible circular permutations of n identical nuclei (for example, the (1 2 3 4 5 6)

permutation in benzene),

• the inversion E∗ of all coordinates of all particles through the center of the lab-fixed

frame,

• the permutation followed by an inversion (ij)∗ = E∗ · (ij) of all coordinates of all
particles

• the cyclic permutation followed by an inversion (ijk)∗ of all coordinates of all

particles,

• all possible circular permutations followed by an inversion of all coordinates of n iden-

tical nuclei.
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4.2. IMPORTANT CONCEPTS IN A GROUP 105

The permutation operations only affect identical nuclei, therefore the molecular Hamiltonian

is left unchanged upon these operations. Moreover the molecular Hamiltonian depends on

distances rather than positions, hence the inversion operation also leaves Ĥ unchanged.

The CNPI groups represent a more general description that can also be applied to rigid

molecules. Indeed each point group is isomorphous to a CNPI group although the symmetry

operations are not identical (for example, the inversion i of a point group symmetry is not

the same as the inversion of a permutation inversion group E∗).

———————————————————

Example: the point group C3v is isomorphous to S3 = {E, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}, which

means that there is a one to one correspondence between the two sets of operations.

———————————————————

However, one disadvantage of the CNPI groups is their size which can become very large. For

example, the CNPI for CH4 contains 48 symmetry operations, and that of benzene 1036800!

In the case of non-rigid systems, this problem is usually solved by using a subgroup, i. e. a

subset of the group which forms a group under the same combination rule. These subgroups

are called molecular symmetry (MS) groups.

In the case of rigid molecules, most of the time the point groups are used. In the following,

we will consider rigid molecules only and restrict ourselves to point group symmetry, but all

concepts can be extended to the CNPI and MS groups.

4.2 Important concepts in a group

4.2.1 Order, conjugated elements and classes

The order of a group is equal to the number of elements in the group. The discrete

(or finite) groups have a finite order (for example C2v is a group of fourth order), while

continuous groups have infinite orders (C∞v for example).

Let us consider two operations Ôi and Ôj that leave Ĥ unchanged when applied individually.

Hence, they must also leave Ĥ unchanged when applied in succession. The notation Ôi · Ôj

means that Ôj acts first, and Ôi second. In other words, Ôi ·Ôj must be a symmetry operation

Ôk if Ôi and Ôj are symmetry operations, which is a corollary of the closure property of a

group. Very often it is useful to build the so-called multiplication table which summarizes

all possible Ôi · Ôj combinations.

———————————————————
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106 CHAPTER 4. GROUP THEORY

Example: the C2v group of H2O

The symmetry operations are E, Cz
2 , σ

xz and σyz. From Figure 4.5 one can verify that the successive

application of any two operations of the C2v point group is equivalent to the application of a third

group operation. For instance: σxz · σyz = Cz
2 , σ

xz · σxz = E, Cz
2 · σxz = σyz, etc.

Figure 4.5: C2v group operations and their effect on a water molecule. The dot indicates

schematically the coordinates (x, y, z) of an electron.

The multiplication table of the C2v point group with four symmetry operations (E, Cz
2 , σ

xz, σyz) is

thus a 4×4 table.

1st operation (right)

C2v E Cz
2 σxz σyz

2nd operation (left)

E E Cz
2 σxz σyz

Cz
2 Cz

2 E σyz σxz

σxz σxz σyz E Cz
2

σyz σyz σxz Cz
2 E

Table 4.1: Multiplication table of the C2v point group.

———————————————————

A group G is said abelian or commutative when all operations commute:

Ôi · Ôj = Ôj · Ôi . (4.2)
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4.2. IMPORTANT CONCEPTS IN A GROUP 107

For example, the C2v group is abelian (see Table 4.1). However, not all groups are Abelian.

An example of a non-abelian group is the point group C3v.

———————————————————

Example: CH3Cl in the C3v group

The symmetry operations are E, C3, C
2
3 , σ

a, σb, σc, hence the group is of order 6. With the help of

Figure 4.6, one can derive the multiplication table of the C3v point group. One sees that the group is

not Abelian because not all operations commute (e. g., C3 · σa = σc and σa ·C3 = σb). Moreover, not

all operations are their own inverse (e. g., C3 · C3 �= E).

Figure 4.6: The operations of the C3v point group with the example of the CH3Cl molecule

represented as a Newmann projection (adapted from F. Merkt and M. Quack in Handbook of

high-resolution spectroscopy, 2011).
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108 CHAPTER 4. GROUP THEORY

1st operation (right)

C3v E C3 C2
3 σa σb σc

2nd operation (left)

E E C3 C2
3 σa σb σc

C3 C3 C2
3 E σc σa σb

C2
3 C2

3 E C3 σb σc σa

σa σa σb σc E C3 C2
3

σb σb σc σa C2
3 E C3

σc σc σa σb C3 C2
3 E

Table 4.2: Multiplication table of the C3v point group.

———————————————————

If Ôi, Ôj , and Ôk are all group elements and if they obey the relation

Ôk · Ôi · Ô−1k = Ôj , (4.3)

then Ôi and Ôj are called conjugated elements. All conjugated elements in a group form

a class.

———————————————————

Example: Elements of the point group C3v that belong to the same class as C3

We consider C3 = Ôi and apply each operation Ôk of C3v according to Equation (4.3) with the help

of the multiplication table in order to find the conjugated elements of C3.

Ôi Ôk Ô−1
k Ôk · Ôi · Ô−1

k = Ôj Ôi Ôk Ô−1
k Ôk · Ôi · Ô−1

k = Ôj

C3 E E E · C3 · E = C3 C2
3 E E E · C2

3 · E = C2
3

C3 C3 C2
3 C3 · C3 · C2

3 = C3 C2
3 C3 C2

3 C3 · C2
3 · C2

3 = C2
3

C3 C2
3 C3 C2

3 · C3 · C3 = C3 C2
3 C2

3 C3 C2
3 · C2

3 · C3 = C2
3

C3 σa σa σa · C3 · σa︸ ︷︷ ︸
σc

= C2
3 C2

3 σa σa σa · C2
3 · σa︸ ︷︷ ︸
σb

= C3

C3 σb σb σb · C3 · σb︸ ︷︷ ︸
σa

= C2
3 C2

3 σb σb σb · C2
3 · σb︸ ︷︷ ︸
σc

= C2
3

C3 σc σc σc · C3 · σc︸ ︷︷ ︸
σb

= C2
3 C2

3 σc σc σc · C2
3 · σc︸ ︷︷ ︸
σa

= C2
3

C3 and C2
3 are conjugated; they are elements of the same class of order 2.

Similarly, one can show that σa, σb and σc form a class of order 3.

———————————————————

The order k of an element Ôi is the smallest integer k ≥ 1 with Ôk
i = E. This property
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4.2. IMPORTANT CONCEPTS IN A GROUP 109

exists for finite groups only.

With this definition, one can easily find that a rotation Cn is of order n and a reflection σ is

of order 2. All elements of a class have the same order.

4.2.2 Representations and character table

Up to now, we have described each symmetry operation Ô of a group with respect to one

specific molecule. Now, we would like to get a more general picture and represent each

operation of the group with a n×nmatrixB, n being the dimensionality of the representation.

This matrix represents how the vectors or functions chosen as basis set (of dimension n)

transform upon the application of Ô. Therefore, the matrix B depends on the coordinate

system, i. e. the vectors chosen to describe the system. Given a coordinate system ẽ, the

matrix representation B(ẽ) of the operation Ô fulfils

�y = B(ẽ)�x. (4.4)

With a new coordinate system ẽ′ = Sẽ, the transformation is �y′ = S�y, and �x′ = S�x.

Therefore

�y′ = S�y = SB(ẽ)�x = SB(ẽ)S−1�x′ = B(ẽ′)�x′ (4.5)

The matrix B(ẽ′) = SB(ẽ)S−1 forms a new, equivalent representation of the operation Ô.

The trace of a matrix remains unchanged upon an unitary coordinate transformation. Thus

Tr(B(ẽ′)) = Tr(B(ẽ)). (4.6)

The trace of a matrix representing an operation is also called the character of the opera-

tion χ. An interesting property is that all elements of a class have the same character.

———————————————————

Example : one-dimensional representation (n = 1) of C2v

Case 1: one can use the functions Ψ1 = x, Ψ2 = y, or Ψ3 = z.

Ψ1 = x : E x = x Ψ2 = y : E y = y Ψ3 = z : E z = z

Cz
2 x = −x Cz

2 y = −y Cz
2 z = z

σxz x = x σxz y = −y σxz z = z

σyz x = −x σyz y = y σyz z = z
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110 CHAPTER 4. GROUP THEORY

Therefore x, y, and z correspond to the following representations designated by Γ:

C2v E Cz
2 σxz σyz

Γ(z) 1 1 1 1

Γ(x) 1 −1 1 −1

Γ(y) 1 −1 −1 1

Case 2: instead of using x, y, or z, more complicated functions can be used to generate a one-

dimensional representation, such as x2, y2, z2, xy, xz or yz as listed in the fourth column of the

character table. For example, one takes the functions Ψ4 = x2 and Ψ5 = xy:

Ψ4 = x2 : E x2 = (E x)(E x) = x2 Ψ5 = xy : E xy = (E x)(E y) = xy

Cz
2 x

2 = (Cz
2 x)(C

z
2 x) = x2 Cz

2 xy = (Cz
2 x)(C

z
2 y) = xy

σxz x2 = (σxz x)(σxz x) = x2 σxz xy = (σxz x)(σxz y) = −xy

σyz x2 = (σyz x)(σyz x) = x2 σyz xy = (σyz x)(σyz y) = −xy

It is easy to verify that χ(xy) = χ(x) × χ(y), a result that can be written as a direct product. To

evaluate a direct product, one multiplies the characters of each class of elements pairwise and

obtains as direct product a representation of the group:

Γ(xy) = Γ(x) ⊗ Γ(y) = (1 -1 1 -1) ⊗ (1 -1 -1 1) = (1 1 -1 -1).

Case 3: one can also look at the transformation properties of rotations and for example take Ψ6 = Rz

as illustrated in Figure 4.7.

Figure 4.7: The Rz rotation of water.

Ψ6 = Rz: ERz = Rz

Cz
2 Rz = Rz

σxz Rz = −Rz Direction of rotation reversed.

σyz Rz = −Rz Direction of rotation reversed.

Rz transforms as follows:

C2v E Cz
2 σxz σyz

Γ(Rz) 1 1 −1 −1

———————————————————
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4.2. IMPORTANT CONCEPTS IN A GROUP 111

Representations of higher dimensionality can be obtained by looking at the transformation

properties of two or more functions. Indeed, to construct an n-dimensional representation of

a group, one takes n linear independent functions or vectors Ψi, i = 1, ..., n spanning a given

n-dimensional space. Applying the group operations on Ψi leads to a transformed function

which is a linear combination of the original functions:

ÔΨi =
n∑

j=1

bji(Ô)Ψj . (4.7)

———————————————————

Example: two dimensional representation
(
x
y

)
of the C2v group

E

⎛
⎜⎝ x

y

⎞
⎟⎠ =

⎛
⎜⎝ x

y

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠
⎛
⎜⎝ x

y

⎞
⎟⎠ , with χ

(xy)
E = 2

Cz
2

⎛
⎜⎝ x

y

⎞
⎟⎠ =

⎛
⎜⎝ −x

−y

⎞
⎟⎠ =

⎛
⎜⎝ −1 0

0 −1

⎞
⎟⎠
⎛
⎜⎝ x

y

⎞
⎟⎠ , with χ

(xy)
Cz

2
= −2

σxz

⎛
⎜⎝ x

y

⎞
⎟⎠ =

⎛
⎜⎝ x

−y

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 −1

⎞
⎟⎠
⎛
⎜⎝ x

y

⎞
⎟⎠ , with χ

(xy)
σxz = 0

σyz

⎛
⎜⎝ x

y

⎞
⎟⎠ =

⎛
⎜⎝ −x

y

⎞
⎟⎠ =

⎛
⎜⎝ −1 0

0 1

⎞
⎟⎠
⎛
⎜⎝ x

y

⎞
⎟⎠ , with χ

(xy)
σyz = 0

The two-dimensional representation of
(
x
y

)
has thus the following characters:

C2v E Cz
2 σxz σyz

2× 2 Matrix

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎛
⎜⎝ −1 0

0 −1

⎞
⎟⎠

⎛
⎜⎝ 1 0

0 −1

⎞
⎟⎠

⎛
⎜⎝ −1 0

0 1

⎞
⎟⎠

Γ(
x
y) 2 −2 0 0

———————————————————

If the matrices of all elements of a representation of a group can be simultaneously brought

into block-diagonal form by a given coordinate transformation, the representation is said to

be reducible, if not, it is irreducible.

The character table of a group lists all irreducible representations and gives for each rep-

resentation the character of each class of elements.
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G C1 = E C2 . . . Cn Tx Ty Tz Rx Ry Rz

Γ
(1)
irr χ(1)(C1) χ(1)(C2) . . . χ(1)(Cn)

Γ
(2)
irr χ(2)(C1) χ(2)(C2)

...
...

...

Γ
(n)
irr χ(n)(C1) χ(n)(C2) . . . χ(n)(Cn)

In a character table, Γ(n) designates the n-th irreducible representation, Ci the i-th class of

elements and χ(n)(Cj) the character of the elements of class j in the n-th representation.

There are as many irreducible representations as classes. Next to the characters of the el-

ements of the different classes, the character table also gives in the last columns how the

translations Tx, Ty and Tz and the rotations Rx, Ry and Rz transform.

———————————————————

Example: The character table of the C2v group

C2v E Cz
2 σxz σyz

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 xy Rz

B1 1 −1 1 −1 x xz Ry

B2 1 −1 −1 1 y yz Rx

x, y, and z correspond to the irreducible representations B1, B2, and A1, respectively as indicated in

the third column of the character table. Rz transforms as A2 as indicated in the fifth column of the

character table. One can verify that Rx and Ry transform as B2 and B1, respectively.

The Γ(
x
y) representation is not an irreducible representation of C2v because it is of dimension 2, and

C2v has one-dimensional irreducible representations only. Γ(
x
y) is reducible, i. e., it corresponds to a

linear combination of irreducible representations: Γ(
x
y) = B1 ⊕ B2.

———————————————————

Character tables exist for all groups. Many groups have a finite number of representations,

but groups with an infinite number of representations also exist such as D∞h and C∞v.

Important remark: The character of the unity operation (E) is always equal to the dimension

of the representation.
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4.2.3 Reduction of reducible representations

There is a systematic mathematical procedure to perform the reduction of representations.

All representations in a character table form a set of orthogonal vectors that span the complete

space: ∑
Ô

χ(i)(Ô)× χ(j)(Ô) = hδij , (4.8)

where h represents the order of the group and Ô runs over all the elements of the group. (Note

that some classes of non-Abelian groups contain more than one element!). Any reducible

representation can thus be expressed as a linear combination of irreducible representations

Γred =
∑
k

credk Γ(k), (4.9)

where Γ(k) represents an irreducible representation. The expansion coefficients credk can be

determined using the reduction formula Equation (4.10):

credk =
1

h

∑
Ô

χred(Ô)× χk(Ô) (4.10)

———————————————————

Example : two-dimensional representation spanned by 1s atomic orbitals
(
1s(1)
1s(2)

)
centred on the H

atoms of a water molecule H2O in the C2v group (see Figure 4.8)

Figure 4.8: 1s atomic orbitals on the H atoms of H2O.

E

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠
⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ thus χE = 2

Cz
2

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1s(2)

1s(1)

⎞
⎟⎠ =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠
⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ thus χCz

2
= 0

σxz

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1s(2)

1s(1)

⎞
⎟⎠ =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠
⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ thus χσxz = 0

σyz

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠
⎛
⎜⎝ 1s(1)

1s(2)

⎞
⎟⎠ thus χσyz = 2
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C2v E Cz
2 σxz σyz

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 1 −1

B2 1 −1 −1 1

2× 2 Matrix

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎛
⎜⎝ −1 0

0 −1

⎞
⎟⎠

⎛
⎜⎝ 1 0

0 −1

⎞
⎟⎠

⎛
⎜⎝ −1 0

0 1

⎞
⎟⎠

Γ(1s) 2 0 0 2

Reduction of Γ(1s) = (2 0 0 2) :

c
(1s)
A1

=
1

4
(2× 1 + 0× 1 + 0× 1 + 2× 1) = 1

c
(1s)
A2

=
1

4
(2× 1 + 0× 1 + 0× (−1) + 2× (−1)) = 0

c
(1s)
B1

=
1

4
(2× 1 + 0× (−1) + 0× 1 + 2× (−1)) = 0

c
(1s)
B2

=
1

4
(2× 1 + 0× (−1) + 0× (−1) + 2× 1) = 1

⇒ Γ(1s) = A1 ⊕ B2.

This means that one can therefore construct one linear combination of the two 1s(H) orbitals of H2O

with A1 symmetry (totally symmetric) and one with B2 symmetry as will be shown in the following.

———————————————————

4.3 Useful applications of group theory

4.3.1 Determination of symmetrized linear combinations of atomic orbitals

To find the symmetrized linear combination of atomic orbitals (LCAO), one uses so-called

projectors P̂ . The projector associated with the irreducible representation Γ is defined by

P̂Γ =
1

h

∑
Ô

χ(Γ)(Ô)× Ô . (4.11)

The application of P̂Γ onto the atomic orbitals provides a LCAO of symmetry Γ.
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———————————————————

Example : symmetrized LCAOs of the two 1s orbitals on the H atoms of H2O.

P̂A1 1s(1) =
1

4
[1× E 1s(1) + 1× Cz

2 1s(1) + 1× σxz 1s(1) + 1× σyz 1s(1)]

=
1

4
[1s(1) + 1s(2) + 1s(2) + 1s(1)] =

1

2
[1s(1) + 1s(2)]

P̂A2 1s(1) =
1

4
[1× E 1s(1) + 1× Cz

2 1s(1)− 1× σxz 1s(1)− 1× σyz 1s(1)]

=
1

4
[1s(1) + 1s(2)− 1s(2)− 1s(1)] = 0

As expected, no A2 linear combination can be formed from the 1s(H) functions. Similarly one finds

P̂B1 1s(1) = 0 , and

P̂B2 1s(1) =
1

2
[1s(1)− 1s(2)] .

The two LCAOs of symmetry A1 and B2 can be represented schematically in Figure 4.9.

Figure 4.9: Linear combinations of atomic orbital 1s(H) of H2O of symmetry A1 and B2.

The symmetrized LCAOs can then be used to determine the chemical bonds that can be formed with

the p orbitals on the O atom. First, one must determine the transformation properties of the p orbitals

on the O atom depicted schematically in Figure 4.10.

O

HH

O

HH HH

p
z

O

p
y p

x

x y

z

Figure 4.10: p orbitals on the O atom.

The px, py, and pz orbitals of the O atoms transform like x, y, and z, respectively as indicated in

Section 4.2.2. Hence: Γ(px) = B1, Γ
(py) = B2, and Γ(pz) = A1 as indicated in the third column of the

character table.

Only orbitals of the same symmetry can be combined to form bonding or antibonding molecular
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orbitals. The five symmetrized orbitals listed above can be used to form five molecular orbitals

according to the following diagram (Figure 4.11) which does not take the 1s and 2s orbitals on the

oxygen into account because only valence electrons are considered for the formation of chemical bonds.

Figure 4.11: Valence molecular orbitals of H2O built from symmetrized H(1s) “ligand” or-

bitals and the 2p atomic orbitals of O. The labels of the molecular orbitals refer to their

symmetry in lower case letters.

From the electronic configuration of each atom, there are six valence electrons (O ... (2p)4, H (1s)1)

to place in the Molecular Orbitals (MOs) following Pauli’s Aufbau-principle gives the ground state

configuration: ...(b2)
2(a1)

2(b1)
2 with an overall symmetry A1. Because four of the six electrons are

in bonding orbitals and two in a non bonding px orbital, one expects two chemical bonds in H2O.

The energetical ordering of the two bonding MO of B2 and A1 symmetry depends on the HOH angle

α defined in Figure 4.12. Whereas the a1 orbital becomes nonbonding at α = 180◦, the b2 orbital

remains bonding at α = 180◦ but becomes antibonding at small angles.

Figure 4.12: Bond angle α.

———————————————————
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4.3.2 Symmetry of normal modes

We consider the 3N -dimensional reducible representation Γ3N spanned by the set of 3N

Cartesian coordinates of the N atoms in a molecule and reduce it into irreducible repre-

sentations of the corresponding group. The molecule can also be characterized by its 3N

displacement coordinates i. e. the translations (t), rotations (r) and vibrations (v). There-

fore:

Γ3N = Γt ⊕ Γr ⊕ Γv (4.12)

The representation of the vibrational modes Γv can be deduced from Γ3N subtracting the

representations Γt and Γr as indicated in the character table.

———————————————————

Example: The vibrational modes of H2O

The total representation is 3 × 3 = 9-dimensional. All irreducible representations of C2v are one-

dimensional, and only three vibrational modes (3N -6) exist in H2O. The symmetry of these modes will

be obtained by eliminating the six irreducible representations corresponding to the three translational

and the three rotational degrees of freedom of the molecule.

Figure 4.13: Coordinates used to derive the Γ9 representation of H2O in the C2v group.

In the basis set (or representation) Γ9 = {x1, y1, ..., z3}, the C2v symmetry operations are represented

by 9× 9 matrices.
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The matrix representing the identity E is given by:

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

x3

y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

x3

y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

x3

y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the character is χ(Γ9)(E) = 9 (in agreement with the dimension of the representation).

The matrix representing the rotation Cz
2 is given by:

Cz
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

x3

y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2

−y2

z2

−x1

−y1

z1

−x3

−y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

x3

y3

z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the character is χ(Γ9)(C2) = −1.

From the construction of these two matrices we notice that only atoms that are not exchanged by

the symmetry operations can contribute to the character; therefore in the following, we consider the

atoms that are “invariant” by the operation Ô only to determine χ(Γ9)(Ô).

The reflection σxz exchanges the two H atoms so that only the O atom needs to be considered:

σxzx3 = x3; σxzy3 = −y3; σxzz3 = z3 ⇒ χ(Γ9)(σxz) = 1.

The reflection σyz does not exchange any atom. For each atom, the x coordinate is inverted and the

y and z coordinates are preserved:

σxzxi = −xi; σxzyi = yi; σxzzi = zi

⇒ χ(Γ9)(σyz) = −1 + 1 + 1− 1 + 1 + 1− 1 + 1 + 1 = 3
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The reducible 9-dimensional representation is therefore:

C2v E Cz
2 σxz σyz

A1 1 1 1 1 = Γz

A2 1 1 -1 -1 = ΓRz

B1 1 -1 1 -1 = Γx = ΓRy

B2 1 -1 -1 1 = Γy = ΓRx

Γ9 9 -1 1 3

The Γ9 representation can then be reduced using the reduction formula of Equation (4.10)):

cA1
=

1

4
(9− 1 + 1 + 3) = 3

cA2 =
1

4
(9− 1− 1− 3) = 1

cB1
=

1

4
(9 + 1 + 1− 3) = 2

cB2
=

1

4
(9 + 1− 1 + 3) = 3

Γ9 = 3A1 ⊕A2 ⊕ 2B1 ⊕ 3B2.

From these nine irreducible representations, three correspond to translations (Γx = B1, Γ
y = B2,

Γz = A1) and three correspond to rotations (ΓRx = B2, Γ
Ry = B1, Γ

Rz = A2). The remaining three,

namely 2A1 ⊕ B2, correspond to the three vibrational modes of H2O (3N − 6 = 3, because H2O is a

nonlinear molecule). To determine these modes one can use the projection formula of Equation (4.11).

Let us consider the vibrational mode of symmetry B2 as an example. In practice it is convenient to

first treat the x, y and z displacements separately and then to combine the x, y, and z motions.

For the x-dimension:

P̂B2 x1 =
1

4
(1Ex1 − 1Cz

2x1 − 1σxzx1 + 1σyzx1)

=
1

4
(x1 + x2 − x2 − x1) = 0.

The B2 mode does not involve x-coordinates.

For the y- and z-dimensions:

P̂B2 y1 =
1

4
(1Ey1 − 1Cz

2y1 − 1σxzy1 + 1σyzy1)

=
1

4
(y1 + y2 + y2 + y1) =

1

2
(y1 + y2) .

P̂B2 z1 =
1

4
(1Ez1 − 1Cz

2z1 − 1σxzz1 + 1σyzz1)

=
1

4
(z1 − z2 − z2 + z1) =

1

2
(z1 − z2) .

The B2 mode involves both y and z coordinates. Drawing the displacement vectors one obtains a

vectorial representation of the motion of the H atoms in the B2 mode. The motion of the O atom
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can be estimated in a same way or reconstructed by ensuring that the center of mass of the molecule

remains stationary.

Figure 4.14: Determination of the nuclear motion of the B2 mode of water.

The mode can be easily identified as the asymmetric stretching mode.

———————————————————

4.3.3 Symmetry of vibrational levels

The nomenclature to label the vibrational states of a polyatomic molecule is

νv11 , νv22 , · · · , νv3N−6

3N−6 (4.13)

where νi designate the mode and vi the corresponding vibrational quantum number. Usually

only the modes νi for which vi �= 0 are indicated. The notation

(v1, v2, · · · , v3N−6) (4.14)

is also often used. For the ordering of the modes, the totally symmetric modes come first

in order of descending frequency, then the modes corresponding to the second irreducible

representation in the character table in order of descending frequency, etc.

To find the overall symmetry of the vibrational wavefunction one must build the direct

product

Γvib = (Γν1)
v1 ⊗ (Γν2)

v2 ⊗ · · · ⊗ (Γν3N−6)
v3N−6 . (4.15)

———————————————————

Example: The three vibrational modes of H2O ν1 is the O-H symmetric stretching mode (ν̃1=3585 cm−1)

of symmetry A1, ν2 is the H-O-H bending mode (ν̃2=1885 cm−1) of symmetry A1 and ν3 is the O-H

asymmetric stretching mode (ν̃3=3506 cm−1).

We consider the state with v1 = 2, v2 = 1, v3 = 3. In the first notation, this will correspond to :
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12 21 33. In the second notation, it will correspond to (2 1 3). The symmetry of this vibrational state

is:

Γvib(H2O, 12 21 33) = A1 ⊗A1︸ ︷︷ ︸
ν1

⊗ A1︸︷︷︸
ν2

⊗B2 ⊗ B2 ⊗ B2︸ ︷︷ ︸
ν3

= B2.

———————————————————

4.3.4 Symmetry of electronic states and labels of configurations

Just as in the case of vibrational wave functions, the overall symmetry of an electronic

wavefunction is obtained from the direct product

Γel = (Γ1)
n1 ⊗ (Γ2)

n2 ⊗ · · · ⊗ (Γm)nm , (4.16)

where Γi is the irreducible representation of orbital i and ni is the occupation number of

orbital i in the considered configuration. As totally filled subshells are always totally sym-

metric they do not influence the overall symmetry and can be omitted in equation 4.16.

———————————————————

Example: Electronic ground state configuration of H2O and H2O
+:

H2O: ...︸︷︷︸
A1

(b2)
2(a1)

2(b1)
2 (see Figure 4.11)

Γel = B2 ⊗ B2︸ ︷︷ ︸
(b2)2

⊗A1 ⊗A1︸ ︷︷ ︸
(a1)2

⊗B1 ⊗ B1︸ ︷︷ ︸
(b1)2

= A1

Therefore the electronic ground state is labelled X̃ 1A1

H2O
+: ...︸︷︷︸

A1

(b2)
2(a1)

2(b1)
1

Γel = B2 ⊗ B2︸ ︷︷ ︸
(b2)2

⊗A1 ⊗A1︸ ︷︷ ︸
(a1)2

⊗ B1︸︷︷︸
(b1)1

= B1

Therefore the electronic ground is labelled X̃
+ 2B1

———————————————————

Example: Electronic ground state configuration of the borane molecule BH3 in the D3h point group.

Figure 4.15: BH3 molecule with its coordinate system.
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We follow the same procedure as for H2O in section 4.3.1, retain the 2s and 2p orbitals on the B atom

and the 1s orbitals on the H atoms. First, symmetrized “ligand” orbitals are constructed from the H

1s orbitals; then these are combined with the orbitals of the B atom to form bonding and antibonding

orbitals. For the ligand orbitals, a 3D-representation is spanned by the three 1s atomic orbitals on

the H atom.

D3h E 2C3 3C2 σh 2S3 3σv

A′1 1 1 1 1 1 1

A′2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x, y

A′′1 1 1 1 −1 −1 −1

A′′2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx, Ry

Γ3D 3 0 1 3 0 1

This representation can be reduced using the reduction formula of Equation (4.10):

cA′
1

=
1

12
[3× 1× 1 + 0× 2× 1 + 1× 3× 1 + 3× 1× 1 + 0× 1× 1 + 1× 3× 1] = 1

cA′
2

=
1

12
[3× 1× 1 + 0 + 1× 3× (−1) + 3× 1× 1 + 0 + 1× 3× (−1)] = 0

cE′ =
1

12
[3× 1× 2 + 0 + 1× 3× 0 + 3× 1× 2 + 0 + 1× 3× 0] = 1

Γ3D = A′1 ⊕ E′.

Figure 4.16 shows the ligand orbital of A′1 symmetry found by intuition. The ligand orbitals of E′

symmetry are found by using the projection formula of Equation (4.11):

P̂E′
1s(1) =

1

12

[
2× E 1s(1)− 1× C3 1s(1)− 1× C2

3 1s(1) + 2× σh 1s(1)− 1× S3 1s(1)− 1× S2
3 1s(1)

]
=

1

12
[2× 1s(1)− 1s(2)− 1s(3) + 2× 1s(1)− 1s(2)− 1s(3)]

=
1

3

[
1s(1)− 1

2
[1s(2) + 1s(3)]

]
.

To find the second orbital of E′ symmetry, we can the projector P̂E′
to the the 1s(2) and 1s(3)

orbitals; we find two further molecular orbitals 1
3 [1s(2) - 1

2 [1s(1) + 1s(3)]] and 1
3 [1s(3) - 1

2 [1s(1) +

1s(2)]]. The three orbitals are linearly dependent. One can use linear algebra to eliminate one of these

three orbitals and to find an orthogonal set of two orbitals of E′ symmetry (see Figure 4.16) using the

Gram-Schmidt orthogonalization procedure.

PCV - Spectroscopy of atoms and molecules



4.3. USEFUL APPLICATIONS OF GROUP THEORY 123

Figure 4.16: Ligand orbitals of BH3.

The molecular orbitals are finally found by determining the symmetry of the 2s and 2p orbitals of

the central B atom and combining the orbitals of the same symmetry into bonding and antibonding

orbitals (see Figure 4.17).

2s(C): A′1 ↔ A′1 ligand orbital

px(C), py(C): E
′ ↔ E′ ligand orbital

2pz(C): A
′′
2

The 2pz orbital of A′′2 symmetry must remain nonbonding because there are no ligand orbitals of A′′2

symmetry.

Figure 4.17: Valence molecular orbitals of BH3.

The electronic configuration of BH3 (in total eight electrons) is therefore:

(1a′1)
2(2a′1)

2(1e′)4︸ ︷︷ ︸
A′

1

(1a′′2)
0,

where the 1a′1 orbital is the 1s orbital on the B atom. Therefore, the ground state is X̃ 1A′1.

———————————————————
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Example: The case of a linear molecule.

As all homonuclear diatomic molecules, O2 belongs to the point group D∞h. The character table and

direct product tables of D∞h are given in Tables 4.3 and 4.4, respectively.

D∞h E 2Cϕ∞ . . . ∞σv i 2Sϕ∞ . . . ∞C2

Σ+
g 1 1 . . . 1 1 1 . . . 1 x2 + y2, z2

Σ−g 1 1 . . . −1 1 1 . . . −1 Rz

Πg 2 2 cosϕ . . . 0 2 −2 cosϕ . . . 0 Rx, Ry xz, yz

Δg 2 2 cos 2ϕ . . . 0 2 2 cos 2ϕ . . . 0 x2 − y2, xy

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ+
u 1 1 . . . 1 −1 −1 . . . −1 z

Σ−u 1 1 . . . −1 −1 −1 . . . 1

Πu 2 2 cosϕ . . . 0 −2 2 cosϕ . . . 0 x, y

Δu 2 2 cos 2ϕ . . . 0 −2 −2 cos 2ϕ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.3: Character table of the D∞h point group.

⊗ Σ+ Σ− Π Δ Φ . . .

Σ+ Σ+ Σ− Π Δ Φ . . .

Σ− Σ+ Π Δ Φ . . .

Π Σ+ ⊕ Σ− ⊕Δ Π⊕ Φ Δ⊕ Γ⊕ . . .

Δ Σ+ ⊕ Σ− ⊕ Γ Π⊕H . . .

Φ Σ+ ⊕ Σ− ⊕ I . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4.4: Direct product table of the point groups C∞v and D∞h. For D∞h, the “gerade” (g)

or “ungerade” (u) character is determined as follows: g⊗g = u⊗u = g and g⊗u = u⊗g = u.
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Referring back to Figure 3.10 we can derive the molecular orbitals of O2 and determine the most

stable electronic configuration to be

(1σg)
2(1σ∗u)

2(2σg)
2(2σ∗u)

2(3σg)
2(1πu)

4︸ ︷︷ ︸
Σ+

g

(1π∗g)
2(3σ∗u)

0.

All fully occupied orbitals contribute the totally symmetric representation Σ+
g to the electronic sym-

metry. The irreducible representations of the electronic states resulting from the above configuration

can be determined from the direct product

Πg ⊗Πg = Σg ⊕
[
Σ−g
]⊕Δg.

Σ−g appears in square brackets because it is the anti-symmetric part of the direct product, whereas

Σg ⊕Δg is the symmetric part. Since the total electron wave function must be antisymmetric under

exchange of two electrons, the anti-symmetric spatial part combines with the symmetric spin part

giving rise to the 3Σ−g state, whereas the symmetric spatial part combines with the anti-symmetric

spin part giving 1Σ+
g and 1Δg states.

———————————————————

4.3.5 Generalized Pauli principle and allowed states

The simplistic expression of the Pauli principle states that two electrons can not occupy the

same spin-orbital. In Section 2.1, we have seen that the wavefunction describing fermions

(particle with half integer spin) must be antisymmetric with respect to the permutation of

two particles, while the wavefunction describing bosons (particle with integer spin) must be

symmetric.

The generalized form of the Pauli principle states that the total wavefunction describing a

molecular system must transform under the group operations Ôj as the irreducible represen-

tation whose characters χirr(Ôj) are given by

χirr(Ôj) =

NF∏
i

(−1)Pi(Ôj) (4.17)

where NF is the number of types of identical fermions in the system. Pi(Ôj) is the so-called

parity of the permutation of the i-th kind of fermions.

If the operation Ôj applies on bosons, then χirr(Ôj) = +1.

If the operation Ôj applies on fermions, the parity is “even” (respectively “odd”) if Ôj can

be written as an even (resp. odd) number of permutations (nm). Therefore, χirr(Ôj) = +1

if the permutation of fermions has an even parity and χirr(Ôj) = −1 if the permutation of
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fermions has an odd parity.

———————————————————

Example: the two fermions H+ in H2O

The (1 2) permutation has an odd parity. Hence χirr(1 2) = −1. In the C2v group, the operation that

corresponds to the permutation (1 2) is Cz
2 . Two irreducible representations exhibit χirr(Cz

2 ) = −1:

B1 and B2.

The total wavefunction of water must transform as B1 or B2. In the Born-Oppenheimer approxima-

tion, the total wavefunction can be written in the product form Ψtot = Φel Φvib Φrot Φns Φes and its

symmetry can be determined by the direct product

Γtot = Γel ⊗ Γvib ⊗ Γrot ⊗ Γns ⊗ Γes .

Since Γel = A1 and Γvib = A1 in the vibrational and electronic ground state, it imposes Γrot ⊗ Γns =

B1/2. This shows that not all combinations of rotational levels and nuclear spins are allowed.

———————————————————

Example: CO2 in the D∞h

In that case, all operations Ôj apply on bosons only, hence χirr(Ôj) = +1. The total wavefunction

Φel Φvib Φrot should transform as Σ+
g .

The vibronic (vibrational-electronic) ground state: Γel=Σ+
g and Γvib=Σ+

g .

The rotational wavefunction must transform as Σ+
g .

It can be shown that for the CO2 molecule in a rigid rotor approximation, the even values of J are

associated with rotational wavefunctions of Σ+
g symmetry, while the odd values of J are associated

with rotational wavefunctions of Σ+
u symmetry. Therefore only half of the rotational levels, with even

values of J (J = 0, 2, 4...) are allowed in the electronic vibrational ground state.

The antisymmetric CO stretching ν3 vibrational state: by applying the protocol described in Sec-

tion 4.3.2, one can find that Γν3
=Σ+

u . In that case, the rotational wavefunction must transform as

Σ+
u . Therefore only half of the rotational levels, with odd values of J (J = 1, 3, 5...) are allowed in the

ν3 vibrational state.

Rovibrational transitions (0 0 1)←(0 0 0) fulfil ΔJ = ±1, which in the spectrum gives rise to a P and

an R branches. But every other line is absent compared to the spectrum of CO shown in Figure 3.11

because of the missing states.

It can be shown that for an electronic transition to an electronic state of Π symmetry, this does not

hold and all J values are allowed.

———————————————————
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4.3.6 Selection rules with group theory

In the dipole approximation, the interaction between molecules and electromagnetic radiation

is assumed to only come from the interaction

V̂ = −�̂μlab · �E. (4.18)

�μlab is used here to distinguish the dipole moment of the molecule in the laboratory-fixed

frame from �μ, which is the dipole moment in the molecule-fixed frame as illustrated in Fig-

ure 4.18 in the case of the CH3Cl molecule.

Figure 4.18: Relationship between the expression of the dipole moment �μ = (μx, μy, μz), ex-

pressed in the molecule-fixed reference frame (x, y, z), and that �μlab = (μX , μY , μZ) expressed

in the space-fixed (X,Y, Z) reference frame for CH3Cl; the permanent dipole-moment vector

�μ lies along the z axis of the molecule-fixed reference frame.

The polarization vector �E of the radiation is defined in the laboratory-fixed frame (X,Y, Z),

whereas the components of �μ are defined in the molecule-fixed frame (x, y, z) as follows:

μξ =
N∑
i=1

qiξi

with ξ = x, y, z and qi is the charge of particle i. The space-fixed components μX , μX , and

μZ of �μlab vary as the molecule rotates while the molecule-fixed components μx, μy, and μz

remain the same.
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For a linearly polarized light �E = (0, 0, E) ,

V̂ = −μ̂ZE. (4.19)

As the intensity of an electric dipole transition between an initial state Ψi and a final state

Ψf is proportional to 〈Ψf |V̂ |Ψi〉, the selection rule can be written as follows:

〈Ψf |μ̂Z |Ψi〉 �= 0. (4.20)

The wavefunctionsΨi andΨf are expressed in the molecule-fixed frame (x, y, z); for simplicity,

the selection rules are usually expressed in terms of μx, μy, and μz instead of μX , μY , and

μZ . Therefore one needs to express μX , μY , and μZ as functions of μx, μy, and μz i. e. the

transformation from the space-fixed frame to the molecule-fixed frame.

The relative orientation of the space-fixed and molecule-fixed coordinate systems is given by

the three Euler angles (ϕ, θ, χ) defined by three successive rotations depicted in Figure 4.19:

1. the rotation around Z by ϕ which generates the coordinate system (x′, y′, z′) in grey in

Figure 4.19

2. the rotation around y′ by θ which generates the coordinate system (x′′, y′′, z′′) in red in

Figure 4.19

3. the rotation around z′′ by χ which generates the coordinate system (x, y, z) in black in

Figure 4.19.

The transformation 1 can be written as follows:⎛
⎜⎜⎜⎜⎜⎝

x′

y′

z′

⎞
⎟⎟⎟⎟⎟⎠ = RZ(ϕ)

⎛
⎜⎜⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎠ (4.21)

The transformation 2 can be written as follows:⎛
⎜⎜⎜⎜⎜⎝

x′′

y′′

z′′

⎞
⎟⎟⎟⎟⎟⎠ = Ry′(θ)

⎛
⎜⎜⎜⎜⎜⎝

x′

y′

z′

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x′

y′

z′

⎞
⎟⎟⎟⎟⎟⎠ (4.22)

The transformation 3 can be written as follows:⎛
⎜⎜⎜⎜⎜⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎠ = Rz′′(χ)

⎛
⎜⎜⎜⎜⎜⎝

x′′

y′′

z′′

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

cosχ sinχ 0

−sinχ cosχ 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x′′

y′′

z′′

⎞
⎟⎟⎟⎟⎟⎠ (4.23)
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Figure 4.19: Euler angles θ, φ, χ defining the relative orientation of the space-fixed reference

frame (X,Y, Z) in blue and the molecule-fixed reference frame (x, y, z) in black. Starting from

the space-fixed reference frame, the molecule-fixed reference frame is obtained by 1) rotation

by an angle ϕ around the Z axis, leading to the intermediate (x′, y′, z′ in grey) frame; 2)

rotation by an angle θ around the y′ axis, leading to the second intermediate (x′′, y′′, z′′ in

red) frame; and 3) rotation by an angle χ around the z′′ axis.

Using these three equations, the laboratory- and molecule-fixed frames can be linked by the

following transformation:⎡
⎢⎢⎢⎢⎣

x

y

z

⎤
⎥⎥⎥⎥⎦ = Rz′′(χ)Ry′(θ)RZ(ϕ)

⎡
⎢⎢⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎥⎥⎦ (4.24)

=

⎡
⎢⎢⎢⎢⎣

cosϕ cos θ cosχ− sinϕ sinχ sinϕ cos θ cosχ+ cosϕ sinχ −sin θ cosχ

−cosϕ cos θ sinχ− sinϕ cosχ −sinϕ cos θ sinχ+ cosϕ cosχ sin θ sinχ

cosϕ sin θ sinϕ sin θ cos θ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎥⎥⎦
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or its inverse⎡
⎢⎢⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosϕ cos θ cosχ− sinϕ sinχ −cosϕ cos θ sinχ− sinϕ cosχ cosϕ sin θ

sinϕ cos θ cosχ+ cosϕ sinχ −sinϕ cos θ sinχ+ cosϕ cosχ sinϕ sin θ

−sin θ cosχ sin θ sinχ cos θ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

⎤
⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎣

x

y

z

⎤
⎥⎥⎥⎥⎦ , (4.25)

where λ is the direction cosine matrix. λ can thus be used to express the components of a vector in

the laboratory-fixed frame as a function of the components of the same vector in the molecule-fixed

frame, and especially μZ as a function of μx, μy, and μz:

μZ = λZxμx + λZyμy + λZzμz. (4.26)

In the Born-Oppenheimer approximation, the molecular wavefunctions Ψf and Ψi are expressed in the

product form

Ψf = φ′el φ
′
vib φ′rot φ

′
nspin φ′espin , and (4.27)

Ψi = φ′′el φ
′′
vib φ′′rot φ

′′
nspin φ′′espin . (4.28)

The transition moment 〈Ψf |μ̂Z |Ψi〉 can now be written as follows:

〈φ′el φ′vib φ′rot φ
′
nspin φ′espin|

∑
α

λZα μ̂α|φ′′el φ′′vib φ′′rot φ
′′
nspin φ′′espin〉. (4.29)

Equations (4.20) and (4.29) lead to the selection rules for an electric dipole transition.

Spin conservation upon electric dipole transition

The φnspin functions depend on the nuclear spin variables only, and the φespin functions depend on

the electron spin variables only. Their integration in Equation (4.29) can thus be separated:

〈φ′espin|φ′′espin〉〈φ′nspin|φ′′nspin〉〈φ′el φ′vib φ′rot|
∑
α

λZα μ̂α|φ′′el φ′′vib φ′′rot〉. (4.30)

Because electron- and nuclear-spin functions are orthogonal, Equation (4.30) vanishes (transition

forbidden) unless φ′espin = φ′′espin and φ′nspin = φ′′nspin, which bring the selection rules:

• ΔS = 0 interdiction of intercombination

• ΔI = 0 nuclear-spin conservation rule
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Angular momentum selection rules

The remaining rovibronic (rotational-vibrational-electronic) transition moment in Equation (4.30)

〈φ′el φ′vib φ′rot|
∑

α λZα μα|φ′′el φ′′vib φ′′rot〉 can be further simplified.

A rotation of the molecule in space leads to a change of the Euler angles, and the rotational wave-

functions φrot(ϕ, θ, χ) are expressed in the space-fixed frame as a function of these angles, while the

functions φel, φvib and μα do not depend on the Euler angles: φel(qi, Q), φvib(Q), μα(qi, Q). The

direction cosine elements λZα and φrot only depend on ϕ, θ, χ and the integration can be further

separated in an integral over angular variables and an integral over electronic coordinates and normal

modes: ∑
α

〈φ′rot|λZα|φ′′rot〉〈φ′elφ′vib|μ̂α|φ′′elφ′′vib〉. (4.31)

The integral 〈φ′rot|λZα|φ′′rot〉 leads to angular momentum selection rules:

• ΔJ = 0,±1; 0 �↔ 0 angular momentum conservation (see also Chapter 2)

The projection quantum number M of J on the Z axis leads to further selection rules:

• if the polarization is along the Z axis, then ΔM = 0

• if the polarization is along the X or Y axis, then ΔM = ±1

Finally,

• if the dipole moment lies on the z axis, the transition is said parallel and ΔΛ = 0 for diatomic

molecules

• if the dipole moment lies on the x or y axis, the transition is said perpendicular and ΔΛ = ±1

for diatomic molecules

Further selection rules

The integral 〈φ′el φ′vib|μ̂α|φ′′el φ′′vib〉 of Equation (4.31) represents a selection rule for transitions between

electronic and vibrational levels. Depending of the type of transitions investigated, its evaluation can

be simplified using the vanishing integral theorem and group theory: this theorem states that the

product 〈Ψ2|Ô|Ψ1〉 vanishes if the product of the symmetry representation of Ψ∗2 , Ô and Ψ1 does not

contain the totally symmetric irreducible representation Γ
(sym)
irr of the group, i. e.

〈Ψ2|Ô|Ψ1〉 �= 0 ⇒ Γ(Ψ∗2)⊗ Γ(Ô)⊗ Γ(Ψ1) ⊃ Γ
(sym)
irr (4.32)

This theorem will be used in three cases in the following.

Rotational spectroscopy: φ′el = φ′′el, φ
′
vib = φ′′vib

The integral 〈φ′el φ′vib|μ̂α|φ′′el φ′′vib〉 of Equation (4.31) represents the expectation value of μ̂α. Tran-

sitions are only allowed for molecules with a permanent dipole moment. The angular momentum

selection rules are as above.
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Vibrational spectroscopy: φ′el = φ′′el, φ
′
vib �= φ′′vib

Since, in the BO approximation, only φel and μα depend on electron coordinates qi, the integration

over qi can be done first:

〈φ′vib(Q)| 〈φ′el(Q, qi)|μ̂α(Q, qi)|φ′′el(Q, qi)〉qi︸ ︷︷ ︸
μ̂el,α(Q)

|φ′′vib(Q)〉Q = 〈φ′vib(Q)|μ̂el,α(Q)|φ′′vib(Q)〉. (4.33)

Whether Equation (4.33) vanishes or not, can be determined using the vanishing integral theorem.

Therefore the transition is allowed if

Γ′vib ⊗ Γα ⊗ Γ′′vib ⊃ Γ
(sym)
irr , (4.34)

where Γα (α = x, y, z) transforms as the components of a vector and thus as α.

———————————————————

Example: the case of H2O

The vibrational ground state φ′′vib = (0,0,0) has the symmetry Γ′′vib = A1

The components of the dipole moment have the symmetries Γμx
= B1, Γμy

= B2, and Γμz
= A1.

The vibrational state φ′vib = (1,0,0) has the symmetry Γ′vib = A1.

Γ′vib ⊗ Γα ⊗ Γ′′vib = A1 ⊗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊗ A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The allowed vibrational transition originates from the z component of the transition dipole moment.

The vibrational φ′vib = (0,0,1) has the symmetry Γ′vib = B2.

B2 ⊗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊗ A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A2

A1

B2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The allowed vibrational transition originates here from the y component of the transition dipole

moment. The component of the permanent dipole moment along the y axis is zero in H2O. Nevertheless

a transition can be observed. The condition for a vibrational transition to be observable is that a

change of the dipole moment must occur when exciting the vibration. This is obviously the case when

the antisymmetric stretching mode is excited in H2O.

One can show that transitions to all vibrational levels are allowed by symmetry in H2O. However,

overtones are weaker than fundamental excitations as discussed in the case of diatomic molecules in

Section 3.5.1.

———————————————————
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Electronic spectroscopy: φ′el �= φ′′el
The left hand side of Equation (4.33) can be written as

〈φ′vib(Q)| 〈φ′el(Q, qi)|μ̂α(Q, qi)|φ′′el(Q, qi)〉qi︸ ︷︷ ︸
μfi
el,α

|φ′′vib(Q)〉Q, (4.35)

where the inner integral represents an electronic transition moment μfi
el,α obtained by inte-

gration over the electronic coordinates.

A transition is electronically allowed when μfi
el,α �= 0, which is fulfilled if

Γ′el ⊗ Γα ⊗ Γ′′el ⊃ Γ
(sym)
irr . (4.36)

———————————————————

Example: the case of H2O

The electronic ground state is X̃ 1A1

Γ′el ⊗ Γα ⊗ Γ′′el =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊗ A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1

A1

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Electric dipole transitions to electronic states of B1, B2 and A1 symmetry are electronically allowed

and transitions to electronic states of A2 symmetry are electronically forbidden in H2O.

———————————————————

If one assumes that the transition moment function μfi
el,α(Q) varies slowly with Q, then

μfi
el,α(Q) can be described by a Taylor series and one can in good approximation neglect

higher terms:

μfi
el,α(Q) =

(
μfi
el,α

)
eq

+

3N−6∑
j

(
∂μfi

el,α

∂Qj

)
eq

Qj + ... (4.37)

In electronically allowed transitions the first term in Equation (4.37) is often the dominant

one and the transition moment (Equation (4.35)) becomes:

〈φ′vib(Q)|φ′′vib(Q)〉
(
μfi
el,α

)
eq
. (4.38)

The intensity of a transition is proportional to the square of the transition moment and thus,

I ∝ ∣∣〈φ′vib(Q)|φ′′vib(Q)〉∣∣2 . (4.39)

|〈φ′vib(Q)|φ′′vib(Q)〉|2 is called a Franck-Condon factor and represents the square of the

overlap of the vibrational wavefunctions. Equation (4.39) implies the vibrational selection

rule for electronically allowed transitions:

Γ′vib ⊗ Γ′′vib ⊃ Γ
(sym)
irr . (4.40)
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———————————————————

Example: H2O X̃ 1A1(0, 0, 0) → H2O C̃ 1B1

Γ′′vib = A1 ⇒ Γ′vib
!
= A1

Only the symmetric stretching mode ν1 and the bending mode ν2 can be excited. The asymmetric

stretching mode ν3 of B2 symmetry can only be excited if v3 is even.

———————————————————

Electronically forbidden transitions can become weakly allowed if the electronic and vibra-

tional degrees of freedom cannot be separated as in Equation (4.35). The condition for them

to be weakly observable is that

Γ′vib ⊗ Γ′el︸ ︷︷ ︸
Γ′
ev

⊗Γα ⊗ Γ′′vib ⊗ Γ′′el︸ ︷︷ ︸
Γ′′
ev

⊃ A1. (4.41)

———————————————————

Example:

Transitions from H2O X̃ 1A1 (0,0,0) to electronically excited states of A2 symmetry (electronically

forbidden) may become weakly allowed (vibronically allowed) if a non totally symmetric mode is ex-

cited.

X̃ 1A1 (0,0,0): Γ′′el = A1, Γ
′′
vib = A1, Γ

′′
ev = A1 ⊗ A1 = A1

A2 (0,0,1): Γ′el = A2, Γ
′
vib = B2, Γ

′
ev = A2 ⊗ B2 = B1

Γ′ev ⊗ Γα ⊗ Γ′′ev = B1 ⊗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1

B2

A1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊗ A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1

A2

B1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The vibronically allowed transition originates from μx.

———————————————————
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