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Paper 3, Section I
1E Groups

Let G and H be finite groups and g ∈ G.

Define the order of g.

Show that if φ : G→ H is a homomorphism then the order of φ(g) divides the order
of g.

Show that if φ is surjective and H has an element of order m then G has an element
of order m.

How many homomorphisms C9 → S4 are there?

Paper 3, Section I
2E Groups

What does it mean to say a group is abelian? What does it mean to say a group is
cyclic?

Show that every cyclic group is abelian. Show that not every abelian group is cyclic.

Recall that the proper subgroups of a group G are the subgroups of G not equal to
G. If every proper subgroup of a group G is cyclic then must G be abelian? Justify your
answer.

Paper 3, Section II
5E Groups

What does it mean for a group G to act on a set X. Given such an action and
x ∈ X define the orbit and stabiliser of x. State and prove the orbit–stabiliser theorem
for a finite group.

State and prove Cauchy’s theorem.

Suppose that G is a group of order 33. By considering the conjugation action of a
subgroup of G on G, show that G must be cyclic.

Part IA, Paper 1 [TURN OVER]
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Paper 3, Section II
6E Groups

What is a Möbius transformation?

Show carefully that if (z1, z2, z3) and (w1, w2, w3) are two ordered subsets of the
extended complex plane Ĉ, each consisting of three distinct points, then there is a unique
Möbius transformation f such that f(zi) = wi for i = 1, 2, 3. [You may assume that the
Möbius transformations form a group under composition.]

Define the cross-ratio [z1, z2, z3, z4] of four distinct points z1, z2, z3, z4 ∈ Ĉ. Show
that a bijection f : Ĉ → Ĉ is a Möbius transformation if and only if f preserves the
cross-ratio of any four distinct points in Ĉ; that is, if and only if

[z1, z2, z3, z4] = [f(z1), f(z2), f(z3), f(z4)]

for any four distinct points z1, z2, z3, z4 in Ĉ.

Are there complex numbers a and b such that the map that sends z to az̄ + b for
z ∈ C and fixes ∞ is Möbius? Justify your answer. [Here z̄ denotes the complex conjugate
of z.]

Paper 3, Section II
7E Groups

Suppose G is a group. What does it mean to say that a subset K of G is a normal
subgroup of G? For N a normal subgroup of G explain how to define the quotient group
G/N . Briefly explain why G/N is a group.

Define the kernel and the image of a group homomorphism. Show that a subset K of
G is a normal subgroup of G if and only if there is a group H and a group homomorphism
θ : G→ H such that K is the kernel of θ. Show moreover that in this case the image of θ
is a subgroup of H and G/K is isomorphic to the image of θ.

By defining a suitable group homomorphism from (R,+) to (C\{0}, ·), show that
R/Z is isomorphic to the subgroup of (C\{0}, ·) consisting of complex numbers of modulus
1. What characterises the elements of the image of Q/Z under this isomorphism?

Part IA, Paper 1
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Paper 3, Section II
8E Groups

Show that the set S(N) of invertible functions τ : N → N is a group under
composition. Show that the subset Sfin(N) of invertible functions τ : N → N such that
there is some n > 1 with τ(m) = m for all m > n is a subgroup of S(N).

A cycle is a non-identity element σ of Sfin(N) such that for every m,n ∈ N either
σ(m) = m or σ(n) = n or there is an integer a such that σa(m) = n. Show that if σ is a
cycle and n ∈ N such that σ(n) 6= n then the order of σ is the least positive integer l such
that σl(n) = n. Show in particular that the order of σ is always finite.

Show that every element τ of Sfin(N) can be written as a product of cycles σ1 · · ·σk
such that for every 1 6 i < j 6 k and every n ∈ N either σi(n) = n or σj(n) = n (or
both). Show moreover that σiσj = σjσi for all 1 6 i < j 6 k. What is the relationship
between the order of τ and the orders of σ1, . . . , σk? Justify your answer.

Part IA, Paper 1 [TURN OVER]
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Paper 3, Section I

1D Groups
Let G be a finite group and denote the centre of G by Z(G). Prove that if the

quotient group G/Z(G) is cyclic then G is abelian. Does there exist a group H such that

(i) |H/Z(H)| = 7 ?

(ii) |H/Z(H)| = 6 ?

Justify your answers.

Paper 3, Section I

2D Groups
Let g and h be elements of a group G. What does it mean to say g and h are

conjugate in G? Prove that if two elements in a group are conjugate then they have the
same order.

Define the Möbius group M. Prove that if g, h ∈ M are conjugate they have the
same number of fixed points. Quoting clearly any results you use, show that any nontrivial
element of M of finite order has precisely 2 fixed points.

Part IA, 2021 List of Questions
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Paper 3, Section II

5D Groups
(a) Let x be an element of a finite group G. Define the order of x and the order of

G. State and prove Lagrange’s theorem. Deduce that the order of x divides the order of G.

(b) If G is a group of order n, and d is a divisor of n where d < n, is it always true
that G must contain an element of order d? Justify your answer.

(c) Denote the cyclic group of order m by Cm.

(i) Prove that if m and n are coprime then the direct product Cm×Cn is cyclic.

(ii) Show that if a finite group G has all non-identity elements of order 2, then
G is isomorphic to C2×· · ·×C2. [The direct product theorem may be used
without proof.]

(d) Let G be a finite group and H a subgroup of G.

(i) Let x be an element of order d in G. If r is the least positive integer such
that xr ∈ H, show that r divides d.

(ii) Suppose further that H has index n. If x ∈ G, show that xk ∈ H for some
k such that 0 < k 6 n. Is it always the case that the least positive such k
is a factor of n? Justify your answer.

Paper 3, Section II

6D Groups
(a) Let G be a finite group acting on a set X. For x ∈ X, define the orbit Orb(x)

and the stabiliser Stab(x) of x. Show that Stab(x) is a subgroup of G. State and prove
the orbit-stabiliser theorem.

(b) Let n > k > 1 be integers. Let G = Sn, the symmetric group of degree n,
and X be the set of all ordered k-tuples (x1, . . . , xk) with xi ∈ {1, 2, . . . , n}. Then G acts
on X, where the action is defined by σ(x1, . . . , xk) = (σ(x1), . . . , σ(xk)) for σ ∈ Sn and
(x1, . . . , xk) ∈ X. For x = (1, 2, . . . , k) ∈ X, determine Orb(x) and Stab(x) and verify
that the orbit-stabiliser theorem holds in this case.

(c) We say that G acts doubly transitively on X if, whenever (x1, x2) and (y1, y2) are
elements of X ×X with x1 6= x2 and y1 6= y2, there exists some g ∈ G such that gx1 = y1
and gx2 = y2.

Assume that G is a finite group that acts doubly transitively on X, and let x ∈ X.
Show that if H is a subgroup of G that properly contains Stab(x) (that is, Stab(x) ⊆ H
but Stab(x) 6= H) then the action of H on X is transitive. Deduce that H = G.

Part IA, 2021 List of Questions [TURN OVER]
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Paper 3, Section II

7D Groups
Let G be a finite group of order n. Show that G is isomorphic to a subgroup H

of Sn, the symmetric group of degree n. Furthermore show that this isomorphism can be
chosen so that any nontrivial element of H has no fixed points.

Suppose n is even. Prove that G contains an element of order 2.

What does it mean for an element of Sm to be odd? Suppose H is a subgroup of
Sm for some m, and H contains an odd element. Prove that precisely half of the elements
of H are odd.

Now suppose n = 4k + 2 for some positive integer k. Prove that G is not simple.
[Hint: Consider the sign of an element of order 2.]

Can a nonabelian group of even order be simple?

Part IA, 2021 List of Questions
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Paper 3, Section II

8D Groups
(a) Let A be an abelian group (not necessarily finite). We define the generalised

dihedral group to be the set of pairs

D(A) = {(a, ε) : a ∈ A, ε = ±1} ,

with multiplication given by

(a, ε)(b, η) = (abε, εη) .

The identity is (e, 1) and the inverse of (a, ε) is (a−ε, ε). You may assume that this
multiplication defines a group operation on D(A).

(i) Identify A with the set of all pairs in which ε = +1. Show that A is a
subgroup of D(A). By considering the index of A in D(A), or otherwise,
show that A is a normal subgroup of D(A).

(ii) Show that every element of D(A) not in A has order 2. Show that D(A) is
abelian if and only if a2 = e for all a ∈ A. If D(A) is non-abelian, what is
the centre of D(A)? Justify your answer.

(b) Let O(2) denote the group of 2× 2 orthogonal matrices. Show that all elements
of O(2) have determinant 1 or −1. Show that every element of SO(2) is a rotation. Let

J =

(
1 0
0 −1

)
. Show that O(2) decomposes as a union SO(2) ∪ SO(2)J .

[You may assume standard properties of determinants.]

(c) Let B be the (abelian) group {z ∈ C : |z| = 1}, with multiplication of
complex numbers as the group operation. Write down, without proof, isomorphisms
SO(2)∼= B ∼= R/Z where R denotes the additive group of real numbers and Z the subgroup
of integers. Deduce that O(2)∼= D(B), the generalised dihedral group defined in part (a).

Part IA, 2021 List of Questions [TURN OVER]

2021



7

Paper 2, Section I

1E Groups
What does it mean for an element of the symmetric group Sn to be a transposition

or a cycle?

Let n > 4. How many permutations σ of {1, 2, . . . , n} are there such that

(i) σ(1) = 2?

(ii) σ(k) is even for each even number k?

(iii) σ is a 4-cycle?

(iv) σ can be written as the product of two transpositions?

You should indicate in each case how you have derived your formula.

Paper 2, Section II

5E Groups
Suppose that f is a Möbius transformation acting on the extended complex plane.

Show that a Möbius transformation with at least three fixed points is the identity. Deduce
that every Möbius transformation except the identity has one or two fixed points.

Which of the following statements are true and which are false? Justify your
answers, quoting standard facts if required.

(i) If f has exactly one fixed point then it is conjugate to z 7→ z + 1.

(ii) Every Möbius transformation that fixes ∞ may be expressed as a composition
of maps of the form z 7→ z + a and z 7→ λz (where a and λ are complex numbers).

(iii) Every Möbius transformation that fixes 0 may be expressed as a composition
of maps of the form z 7→ µz and z 7→ 1/z (where µ is a complex number).

(iv) The operation of complex conjugation defined by z 7→ z̄ is a Möbius transform-
ation.

Part IA, 2020 List of Questions [TURN OVER]
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Paper 2, Section II

6E Groups
(a) Let G be a finite group acting on a finite set X. For any subset T of G, we define

the fixed point set as XT = {x ∈ X : ∀g ∈ T, g · x = x}. Write Xg for X{g} (g ∈ G). Let
G \X be the set of G-orbits in X. In what follows you may assume the orbit–stabiliser
theorem.

Prove that
|X| = |XG|+

∑

x

|G|/|Gx|,

where the sum is taken over a set of representatives for the orbits containing more than
one element.

By considering the set Z = {(g, x) ∈ G × X : g · x = x}, or otherwise, show also
that

|G \X| = 1

|G|
∑

g∈G
|Xg|.

(b) Let V be the set of vertices of a regular pentagon and let the dihedral group D10

act on V . Consider the set Xn of functions F : V → Zn (the integers mod n). Assume
that D10 and its rotation subgroup C5 act on Xn by the rule

(g · F )(v) = F (g−1 · v),

where g ∈ D10, F ∈ Xn and v ∈ V . It is given that |Xn| = n5. We define a necklace to be
a C5-orbit in Xn and a bracelet to be a D10-orbit in Xn.

Find the number of necklaces and bracelets for any n.

Part IA, 2020 List of Questions

2020
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Paper 3, Section I

1D Groups
Prove that two elements of Sn are conjugate if and only if they have the same cycle

type.

Describe a condition on the centraliser (in Sn) of a permutation σ ∈ An that ensures
the conjugacy class of σ in An is the same as the conjugacy class of σ in Sn. Justify your
answer.

How many distinct conjugacy classes are there in A5?

Paper 3, Section I

2D Groups
What is the orthogonal group O(n)? What is the special orthogonal group SO(n)?

Show that every element of SO(3) has an eigenvector with eigenvalue 1.

Is it true that every element of O(3) is either a rotation or a reflection? Justify your
answer.

Paper 3, Section II

5D Groups
Let H and K be subgroups of a group G satisfying the following two properties.

(i) All elements of G can be written in the form hk for some h ∈ H and some k ∈ K.

(ii) H ∩K = {e}.
Prove that H and K are normal subgroups of G if and only if all elements of H commute
with all elements of K.

State and prove Cauchy’s Theorem.

Let p and q be distinct primes. Prove that an abelian group of order pq is isomorphic
to Cp × Cq. Is it true that all abelian groups of order p2 are isomorphic to Cp × Cp?

Part IA, 2019 List of Questions

2019
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Paper 3, Section II

6D Groups
State and prove Lagrange’s Theorem.

Hence show that if G is a finite group and g ∈ G then the order of g divides the
order of G.

How many elements are there of order 3 in the following groups? Justify your
answers.

(a) C3 × C9, where Cn denotes the cyclic group of order n.

(b) D2n the dihedral group of order 2n.

(c) S7 the symmetric group of degree 7.

(d) A7 the alternating group of degree 7.

Paper 3, Section II

7D Groups
State and prove the first isomorphism theorem. [You may assume that kernels of

homomorphisms are normal subgroups and images are subgroups.]

Let G be a group with subgroup H and normal subgroup N . Prove that
NH = {nh : n ∈ N,h ∈ H} is a subgroup of G and N ∩H is a normal subgroup of H.
Further, show that N is a normal subgroup of NH.

Prove that H
N∩H is isomorphic to NH

N .

If K and H are both normal subgroups of G must KH be a normal subgroup of G?

If K and H are subgroups of G, but not normal subgroups, must KH be a subgroup
of G?

Justify your answers.

Part IA, 2019 List of Questions [TURN OVER
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Paper 3, Section II

8D Groups
Let M be the group of Möbius transformations of C ∪ {∞} and let SL2(C) be the

group of all 2× 2 complex matrices of determinant 1.

Show that the map θ : SL2(C) → M given by

θ

(
a b
c d

)
(z) =

az + b

cz + d

is a surjective homomorphism. Find its kernel.

Show that any T ∈ M not equal to the identity is conjugate to a Möbius map S
where either Sz = µz with µ 6= 0, 1 or Sz = z + 1. [You may use results about matrices
in SL2(C) as long as they are clearly stated.]

Show that any non-identity Möbius map has one or two fixed points. Also show
that if T is a Möbius map with just one fixed point z0 then T nz → z0 as n → ∞ for any
z ∈ C ∪ {∞}. [You may assume that Möbius maps are continuous.]

Part IA, 2019 List of Questions
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Paper 3, Section I

1D Groups
Find the order and the sign of the permutation (13)(2457)(815) ∈ S8.

How many elements of S6 have order 6? And how many have order 3?

What is the greatest order of any element of A9?

Paper 3, Section I

2D Groups
Prove that every member of O(3) is a product of at most three reflections.

Is every member of O(3) a product of at most two reflections? Justify your answer.

Paper 3, Section II

5D Groups
Define the sign of a permutation σ ∈ Sn. You should show that it is well-defined,

and also that it is multiplicative (in other words, that it gives a homomorphism from Sn

to {±1}).
Show also that (for n > 2) this is the only surjective homomorphism from Sn to

{±1}.

Paper 3, Section II

6D Groups
Let g be an element of a group G. We define a map g∗ from G to G by sending x

to gxg−1. Show that g∗ is an automorphism of G (that is, an isomorphism from G to G).

Now let A denote the group of automorphisms of G (with the group operation being
composition), and define a map θ from G to A by setting θ(g) = g∗. Show that θ is a
homomorphism. What is the kernel of θ?

Prove that the image of θ is a normal subgroup of A.

Show that if G is cyclic then A is abelian. If G is abelian, must A be abelian?
Justify your answer.

Part IA, 2018 List of Questions [TURN OVER
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Paper 3, Section II

7D Groups
Define the quotient group G/H, where H is a normal subgroup of a group G. You

should check that your definition is well-defined. Explain why, for G finite, the greatest
order of any element of G/H is at most the greatest order of any element of G.

Show that a subgroup H of a group G is normal if and only if there is a
homomorphism from G to some group whose kernel is H.

A group is called metacyclic if it has a cyclic normal subgroup H such that G/H is
cyclic. Show that every dihedral group is metacyclic.

Which groups of order 8 are metacyclic? Is A4 metacyclic? For which n 6 5 is Sn

metacyclic?

Paper 3, Section II

8D Groups
State and prove the Direct Product Theorem.

Is the group O(3) isomorphic to SO(3)× C2? Is O(2) isomorphic to SO(2)× C2?

Let U(2) denote the group of all invertible 2×2 complex matrices A with AA
T
= I,

and let SU(2) be the subgroup of U(2) consisting of those matrices with determinant 1.

Determine the centre of U(2).

Write down a surjective homomorphism from U(2) to the group T of all unit-length
complex numbers whose kernel is SU(2). Is U(2) isomorphic to SU(2) × T ?

Part IA, 2018 List of Questions

2018
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Paper 3, Section I

1E Groups
Let w1, w2, w3 be distinct elements of C∪{∞}. Write down the Möbius map f that

sends w1, w2, w3 to ∞, 0, 1, respectively. [Hint: You need to consider four cases.]

Now let w4 be another element of C ∪ {∞} distinct from w1, w2, w3. Define the
cross-ratio [w1, w2, w3, w4] in terms of f .

Prove that there is a circle or line through w1, w2, w3 and w4 if and only if the
cross-ratio [w1, w2, w3, w4] is real.

[You may assume without proof that Möbius maps map circles and lines to circles
and lines and also that there is a unique circle or line through any three distinct points of
C ∪ {∞}.]

Paper 3, Section I

2E Groups
What does it mean to say that H is a normal subgroup of the group G? For a

normal subgroup H of G define the quotient group G/H. [You do not need to verify that
G/H is a group.]

State the Isomorphism Theorem.

Let

G =

{(
a b
0 d

) ∣∣∣ a, b, d ∈ R, ad 6= 0

}

be the group of 2× 2 invertible upper-triangular real matrices. By considering a suitable
homomorphism, show that the subset

H =

{(
1 b
0 1

) ∣∣∣ b ∈ R
}

of G is a normal subgroup of G and identify the quotient G/H.

Part IA, 2017 List of Questions

2017
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Paper 3, Section II

5E Groups
Let N be a normal subgroup of a finite group G of prime index p = |G : N |.
By considering a suitable homomorphism, show that if H is a subgroup of G that

is not contained in N , then H ∩N is a normal subgroup of H of index p.

Let C be a conjugacy class of G that is contained in N . Prove that C is either a
conjugacy class in N or is the disjoint union of p conjugacy classes in N .

[You may use standard theorems without proof.]

Paper 3, Section II

6E Groups
State Lagrange’s theorem. Show that the order of an element x in a finite group G

is finite and divides the order of G.

State Cauchy’s theorem.

List all groups of order 8 up to isomorphism. Carefully justify that the groups on
your list are pairwise non-isomorphic and that any group of order 8 is isomorphic to one
on your list. [You may use without proof the Direct Product Theorem and the description
of standard groups in terms of generators satisfying certain relations.]

Part IA, 2017 List of Questions [TURN OVER

2017
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Paper 3, Section II

7E Groups

(a) Let G be a finite group acting on a finite set X. State the Orbit-Stabiliser theorem.
[Define the terms used.] Prove that

∑

x∈X
|Stab(x)| = n|G| ,

where n is the number of distinct orbits of X under the action of G.

Let S = {(g, x) ∈ G×X : g · x = x}, and for g ∈ G, let Fix(g) = {x ∈ X : g · x = x}.
Show that

|S| =
∑

x∈X
|Stab(x)| =

∑

g∈G
|Fix(g)| ,

and deduce that

n =
1

|G|
∑

g∈G
|Fix(g)| . (∗)

(b) Let H be the group of rotational symmetries of the cube. Show that H has 24
elements. [If your proof involves calculating stabilisers, then you must carefully verify
such calculations.]

Using (∗), find the number of distinct ways of colouring the faces of the cube red,
green and blue, where two colourings are distinct if one cannot be obtained from the
other by a rotation of the cube. [A colouring need not use all three colours.]

Paper 3, Section II

8E Groups
Prove that every element of the symmetric group Sn is a product of transpositions.

[You may assume without proof that every permutation is the product of disjoint cycles.]

(a) Define the sign of a permutation in Sn, and prove that it is well defined. Define the
alternating group An.

(b) Show that Sn is generated by the set {(1 2), (1 2 3 . . . n)}.
Given 1 6 k < n, prove that the set {(1 1+k), (1 2 3 . . . n)} generates Sn if and only
if k and n are coprime.

Part IA, 2017 List of Questions

2017
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Paper 3, Section I

1D Groups
Let G be a group, and let H be a subgroup of G. Show that the following are

equivalent.

(i) a−1b−1ab ∈ H for all a, b ∈ G.

(ii) H is a normal subgroup of G and G/H is abelian.

Hence find all abelian quotient groups of the dihedral group D10 of order 10.

Paper 3, Section I

2D Groups
State and prove Lagrange’s theorem.

Let p be an odd prime number, and let G be a finite group of order 2p which has a
normal subgroup of order 2. Show that G is a cyclic group.

Paper 3, Section II

5D Groups
For each of the following, either give an example or show that none exists.

(i) A non-abelian group in which every non-trivial element has order 2.

(ii) A non-abelian group in which every non-trivial element has order 3.

(iii) An element of S9 of order 18.

(iv) An element of S9 of order 20.

(v) A finite group which is not isomorphic to a subgroup of an alternating group.

Part IA, 2016 List of Questions [TURN OVER
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Paper 3, Section II

6D Groups
Define the sign, sgn(σ), of a permutation σ ∈ Sn and prove that it is well defined.

Show that the function sgn : Sn → {1,−1} is a homomorphism.

Show that there is an injective homomorphism ψ : GL2(Z/2Z) → S4 such that
sgn ◦ ψ is non-trivial.

Show that there is an injective homomorphism φ : Sn → GLn(R) such that
det(φ(σ)) = sgn(σ).

Paper 3, Section II

7D Groups
State and prove the orbit-stabiliser theorem.

Let p be a prime number, and G be a finite group of order pn with n > 1. If N is a
non-trivial normal subgroup of G, show that N ∩ Z(G) contains a non-trivial element.

If H is a proper subgroup of G, show that there is a g ∈ G\H such that g−1Hg = H.

[You may use Lagrange’s theorem, provided you state it clearly.]

Paper 3, Section II

8D Groups
Define the Möbius group M and its action on the Riemann sphere C∞. [You are not

required to verify the group axioms.] Show that there is a surjective group homomorphism
φ : SL2(C) → M, and find the kernel of φ.

Show that if a non-trivial element of M has finite order, then it fixes precisely
two points in C∞. Hence show that any finite abelian subgroup of M is either cyclic or
isomorphic to C2 × C2.

[You may use standard properties of the Möbius group, provided that you state
them clearly.]

Part IA, 2016 List of Questions

2016
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Paper 3, Section I

1D Groups
Say that a group is dihedral if it has two generators x and y, such that x has order

n (greater than or equal to 2 and possibly infinite), y has order 2, and yxy−1 = x−1. In
particular the groups C2 and C2 × C2 are regarded as dihedral groups. Prove that:

(i) any dihedral group can be generated by two elements of order 2;

(ii) any group generated by two elements of order 2 is dihedral; and

(iii) any non-trivial quotient group of a dihedral group is dihedral.

Paper 3, Section I

2D Groups
How many cyclic subgroups (including the trivial subgroup) does S5 contain?

Exhibit two isomorphic subgroups of S5 which are not conjugate.

Paper 3, Section II

5D Groups
What does it mean for a group G to act on a set X? For x ∈ X, what is meant by

the orbit Orb(x) to which x belongs, and by the stabiliser Gx of x? Show that Gx is a
subgroup of G. Prove that, if G is finite, then |G| = |Gx| · |Orb(x)|.
(a) Prove that the symmetric group Sn acts on the set P (n) of all polynomials in

n variables x1, . . . , xn, if we define σ · f to be the polynomial given by

(σ · f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

for f ∈ P (n) and σ ∈ Sn. Find the orbit of f = x1x2 + x3x4 ∈ P (4) under S4. Find
also the order of the stabiliser of f .

(b) Let r, n be fixed positive integers such that r 6 n. Let Br be the set of all subsets
of size r of the set {1, 2, . . . , n}. Show that Sn acts on Br by defining σ · U to be
the set {σ(u) : u ∈ U}, for any U ∈ Br and σ ∈ Sn. Prove that Sn is transitive in
its action on Br. Find also the size of the stabiliser of U ∈ Br.

Part IA, 2015 List of Questions [TURN OVER
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Paper 3, Section II

6D Groups
Let G,H be groups and let ϕ : G → H be a function. What does it mean to say that

ϕ is a homomorphism with kernel K? Show that if K = {e, ξ} has order 2 then x−1ξx = ξ
for each x ∈ G. [If you use any general results about kernels of homomorphisms, then you
should prove them.]

Which of the following four statements are true, and which are false? Justify your
answers.

(a) There is a homomorphism from the orthogonal group O(3) to a group of order 2
with kernel the special orthogonal group SO(3).

(b) There is a homomorphism from the symmetry group S3 of an equilateral triangle
to a group of order 2 with kernel of order 3.

(c) There is a homomorphism from O(3) to SO(3) with kernel of order 2.

(d) There is a homomorphism from S3 to a group of order 3 with kernel of order 2.

Paper 3, Section II

7D Groups
(a) State and prove Lagrange’s theorem.

(b) Let G be a group and let H,K be fixed subgroups of G. For each g ∈ G, any set of
the form HgK = {hgk : h ∈ H, k ∈ K} is called an (H,K) double coset, or simply
a double coset if H and K are understood. Prove that every element of G lies in
some (H,K) double coset, and that any two (H,K) double cosets either coincide
or are disjoint.

Let G be a finite group. Which of the following three statements are true, and which
are false? Justify your answers.

(i) The size of a double coset divides the order of G.

(ii) Different double cosets for the same pair of subgroups have the same size.

(iii) The number of double cosets divides the order of G.
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Paper 3, Section II

8D Groups
(a) Let G be a non-trivial group and let Z(G) = {h ∈ G : gh = hg for all g ∈ G}. Show

that Z(G) is a normal subgroup of G. If the order of G is a power of a prime, show
that Z(G) is non-trivial.

(b) The Heisenberg group H is the set of all 3× 3 matrices of the form



1 x y
0 1 z
0 0 1


 ,

with x, y, z ∈ R. Show that H is a subgroup of the group of non-singular real
matrices under matrix multiplication.

Find Z(H) and show that H/Z(H) is isomorphic to R2 under vector addition.

(c) For p prime, the modular Heisenberg group Hp is defined as in (b), except that x, y
and z now lie in the field of p elements. Write down |Hp|. Find both Z(Hp) and
Hp/Z(Hp) in terms of generators and relations.
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Paper 3, Section I

1D Groups

Let G = Q be the rational numbers, with addition as the group operation. Let x, y

be non-zero elements of G, and let N 6 G be the subgroup they generate. Show that N

is isomorphic to Z.

Find non-zero elements x, y ∈ R which generate a subgroup that is not isomorphic

to Z.

Paper 3, Section I

2D Groups

Let G be a group, and suppose the centre of G is trivial. If p divides |G|, show that

G has a non-trivial conjugacy class whose order is prime to p.

Paper 3, Section II

5D Groups
Let Sn be the group of permutations of {1, . . . , n}, and suppose n is even, n > 4.

Let g = (1 2) ∈ Sn, and h = (1 2)(3 4) . . . (n−1 n) ∈ Sn.

(i) Compute the centraliser of g, and the orders of the centraliser of g and of the
centraliser of h.

(ii) Now let n = 6. Let G be the group of all symmetries of the cube, and X the set
of faces of the cube. Show that the action of G on X makes G isomorphic to the
centraliser of h in S6. [Hint: Show that −1 ∈ G permutes the faces of the cube
according to h.]

Show that G is also isomorphic to the centraliser of g in S6.
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Paper 3, Section II

6D Groups
Let p be a prime number. Let G be a group such that every non-identity element

of G has order p.

(i) Show that if |G| is finite, then |G| = pn for some n. [You must prove any theorems
that you use.]

(ii) Show that if H 6 G, and x 6∈ H, then 〈x〉 ∩H = {1}.
Hence show that if G is abelian, and |G| is finite, then G ≃ Cp × · · · × Cp.

(iii) Let G be the set of all 3× 3 matrices of the form



1 a x
0 1 b
0 0 1


 ,

where a, b, x ∈ Fp and Fp is the field of integers modulo p. Show that every non-
identity element of G has order p if and only if p > 2. [You may assume that G is
a subgroup of the group of all 3× 3 invertible matrices.]

Paper 3, Section II

7D Groups
Let p be a prime number, and G = GL2(Fp), the group of 2× 2 invertible matrices

with entries in the field Fp of integers modulo p.

The group G acts on X = Fp ∪ {∞} by Möbius transformations,

(
a b
c d

)
· z =

az + b

cz + d
.

(i) Show that given any distinct x, y, z ∈ X there exists g ∈ G such that g · 0 = x,
g · 1 = y and g · ∞ = z. How many such g are there?

(ii) G acts on X ×X ×X by g · (x, y, z) = (g · x, g · y, g · z). Describe the orbits, and for
each orbit, determine its stabiliser, and the orders of the orbit and stabiliser.
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Paper 3, Section II

8D Groups
(a) Let G be a group, and N a subgroup of G. Define what it means for N to be normal

in G, and show that if N is normal then G/N naturally has the structure of a group.

(b) For each of (i)–(iii) below, give an example of a non-trivial finite group G and
non-trivial normal subgroup N 6 G satisfying the stated properties.

(i) G/N ×N ≃ G.

(ii) There is no group homomorphism G/N → G such that the composite
G/N → G → G/N is the identity.

(iii) There is a group homomorphism i : G/N → G such that the composite
G/N → G → G/N is the identity, but the map

G/N ×N → G, (gN, n) 7→ i(gN)n

is not a group homomorphism.

Show also that for any N 6 G satisfying (iii), this map is always a bijection.
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Paper 3, Section I

1D Groups
State Lagrange’s Theorem.

Let G be a finite group, and H and K two subgroups of G such that

(i) the orders of H and K are coprime;

(ii) every element of G may be written as a product hk, with h ∈ H and k ∈ K;

(iii) both H and K are normal subgroups of G.

Prove that G is isomorphic to H ×K.

Paper 3, Section I

2D Groups
Define what it means for a group to be cyclic, and for a group to be abelian. Show

that every cyclic group is abelian, and give an example to show that the converse is false.

Show that a group homomorphism from the cyclic group Cn of order n to a group
G determines, and is determined by, an element g of G such that gn = 1.

Hence list all group homomorphisms from C4 to the symmetric group S4.

Paper 3, Section II

5D Groups

(a) Let G be a finite group. Show that there exists an injective homomorphism
G → Sym(X) to a symmetric group, for some set X.

(b) Let H be the full group of symmetries of the cube, and X the set of edges of the
cube.

Show that H acts transitively on X, and determine the stabiliser of an element of
X. Hence determine the order of H.

Show that the action of H on X defines an injective homomorphism H → Sym(X)
to the group of permutations of X, and determine the number of cosets of H in
Sym(X).

Is H a normal subgroup of Sym(X)? Prove your answer.
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Paper 3, Section II

6D Groups

(a) Let p be a prime, and let G = SL2(p) be the group of 2× 2 matrices of determinant
1 with entries in the field Fp of integers mod p.

(i) Define the action of G on X = Fp ∪ {∞} by Möbius transformations. [You need
not show that it is a group action.]

State the orbit-stabiliser theorem.

Determine the orbit of ∞ and the stabiliser of ∞. Hence compute the order of
SL2(p).

(ii) Let

A =

(
1 1
0 1

)
, B =

(
1 3
0 1

)
.

Show that A is conjugate to B in G if p = 11, but not if p = 5.

(b) Let G be the set of all 3× 3 matrices of the form




1 a x
0 1 b
0 0 1




where a, b, x ∈ R. Show that G is a subgroup of the group of all invertible real
matrices.

Let H be the subset of G given by matrices with a = 0. Show that H is a normal
subgroup, and that the quotient group G/H is isomorphic to R.
Determine the centre Z(G) of G, and identify the quotient group G/Z(G).
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Paper 3, Section II

7D Groups

(a) Let G be the dihedral group of order 4n, the symmetry group of a regular polygon
with 2n sides.

Determine all elements of order 2 in G. For each element of order 2, determine its
conjugacy class and the smallest normal subgroup containing it.

(b) Let G be a finite group.

(i) Prove that if H and K are subgroups of G, then K ∪H is a subgroup if and only
if H ⊆ K or K ⊆ H.

(ii) Let H be a proper subgroup of G, and write G \H for the elements of G not in
H. Let K be the subgroup of G generated by G \H.

Show that K = G.

Paper 3, Section II

8D Groups
Let p be a prime number.

Prove that every group whose order is a power of p has a non-trivial centre.

Show that every group of order p2 is abelian, and that there are precisely two of
them, up to isomorphism.
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Paper 3, Section I

1E Groups
State Lagrange’s Theorem. Deduce that if G is a finite group of order n, then the

order of every element of G is a divisor of n.

Let G be a group such that, for every g ∈ G, g2 = e. Show that G is abelian. Give
an example of a non-abelian group in which every element g satisfies g4 = e.

Paper 3, Section I

2E Groups
What is a cycle in the symmetric group Sn? Show that a cycle of length p and a

cycle of length q in Sn are conjugate if and only if p = q.

Suppose that p is odd. Show that any two p-cycles in Ap+2 are conjugate. Are any
two 3-cycles in A4 conjugate? Justify your answer.

Paper 3, Section II

5E Groups
(i) State and prove the Orbit-Stabilizer Theorem.

Show that if G is a finite group of order n, then G is isomorphic to a subgroup of
the symmetric group Sn.

(ii) Let G be a group acting on a set X with a single orbit, and let H be the stabilizer
of some element of X. Show that the homomorphism G → Sym(X) given by the action
is injective if and only if the intersection of all the conjugates of H equals {e}.

(iii) Let Q8 denote the quaternion group of order 8. Show that for every n < 8, Q8

is not isomorphic to a subgroup of Sn.
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Paper 3, Section II

6E Groups
Let G be SL2(R), the groups of real 2 × 2 matrices of determinant 1, acting on

C ∪ {∞} by Möbius transformations.

For each of the points 0, i, −i, compute its stabilizer and its orbit under the action
of G. Show that G has exactly 3 orbits in all.

Compute the orbit of i under the subgroup

H =

{(
a b
0 d

) ∣∣∣ a, b, d ∈ R, ad = 1

}
⊂ G .

Deduce that every element g of G may be expressed in the form g = hk where h ∈ H and
for some θ ∈ R,

k =

(
cos θ − sin θ
sin θ cos θ

)
.

How many ways are there of writing g in this form?
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Paper 3, Section II

7E Groups
Let Fp be the set of (residue classes of) integers mod p, and let

G =

{(
a b
c d

)
: a, b, c, d ∈ Fp, ad− bc 6= 0

}

Show that G is a group under multiplication. [You may assume throughout this question
that multiplication of matrices is associative.]

Let X be the set of 2-dimensional column vectors with entries in Fp. Show that the
mapping G×X → X given by

((
a b
c d

)
,

(
x
y

))
7→

(
ax+ by
cx+ dy

)

is a group action.

Let g ∈ G be an element of order p. Use the orbit-stabilizer theorem to show that
there exist x, y ∈ Fp, not both zero, with

g

(
x
y

)
=

(
x
y

)
.

Deduce that g is conjugate in G to the matrix

(
1 1
0 1

)
.
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Paper 3, Section II

8E Groups
Let p be a prime number, and a an integer with 1 6 a 6 p − 1. Let G be the

Cartesian product

G = { (x, u) | x ∈ {0, 1, . . . , p− 2}, u ∈ {0, 1, . . . , p − 1} }

Show that the binary operation

(x, u) ∗ (y, v) = (z, w)

where

z ≡ x+ y (mod p− 1)

w ≡ ayu+ v (mod p)

makes G into a group. Show that G is abelian if and only if a = 1.

Let H and K be the subsets

H = { (x, 0) | x ∈ {0, 1, . . . , p − 2} }, K = { (0, u) | u ∈ {0, 1, . . . , p− 1} }

of G. Show that K is a normal subgroup of G, and that H is a subgroup which is normal
if and only if a = 1.

Find a homomorphism from G to another group whose kernel is K.

Part IA, 2012 List of Questions [TURN OVER

2012



12

Paper 3, Section I

1D Groups

(a) Let G be the group of symmetries of the cube, and consider the action of G

on the set of edges of the cube. Determine the stabilizer of an edge and its orbit. Hence

compute the order of G.

(b) The symmetric group Sn acts on the set X = {1, . . . , n}, and hence acts on

X ×X by g(x, y) = (gx, gy). Determine the orbits of Sn on X ×X.

Paper 3, Section I

2D Groups

State and prove Lagrange’s Theorem.

Show that the dihedral group of order 2n has a subgroup of order k for every k

dividing 2n.

Paper 3, Section II

5D Groups

(a) Let G be a finite group, and let g ∈ G. Define the order of g and show it is

finite. Show that if g is conjugate to h, then g and h have the same order.

(b) Show that every g ∈ Sn can be written as a product of disjoint cycles. For

g ∈ Sn, describe the order of g in terms of the cycle decomposition of g.

(c) Define the alternating group An. What is the condition on the cycle decompo-

sition of g ∈ Sn that characterises when g ∈ An?

(d) Show that, for every n, An+2 has a subgroup isomorphic to Sn.
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Paper 3, Section II

6D Groups

(a) Let

SL2(Z) =

{(
a b
c d

) ∣∣ ad− bc = 1, a, b, c, d ∈ Z

}
,

and, for a prime p, let

SL2(Fp) =

{(
a b
c d

) ∣∣ ad− bc = 1, a, b, c, d ∈ Fp

}
,

where Fp consists of the elements 0, 1, . . . , p− 1, with addition and multiplication mod p.

Show that SL2(Z) and SL2(Fp) are groups under matrix multiplication.

[You may assume that matrix multiplication is associative, and that the determinant of a
product equals the product of the determinants.]

By defining a suitable homomorphism from SL2(Z) → SL2(F5), show that

{(
1 + 5a 5b
5c 1 + 5d

)
∈ SL2(Z)

∣∣ a, b, c, d ∈ Z

}

is a normal subgroup of SL2(Z).

(b) Define the group GL2(F5), and show that it has order 480. By defining a suitable
homomorphism from GL2(F5) to another group, which should be specified, show that the
order of SL2(F5) is 120.

Find a subgroup of GL2(F5) of index 2.

Paper 3, Section II

7D Groups

(a) State the orbit–stabilizer theorem.

Let a group G act on itself by conjugation. Define the centre Z(G) of G, and show

that Z(G) consists of the orbits of size 1. Show that Z(G) is a normal subgroup of G.

(b) Now let |G| = pn, where p is a prime and n > 1. Show that if G acts on a set

X, and Y is an orbit of this action, then either |Y | = 1 or p divides |Y |.
Show that |Z(G)| > 1.

By considering the set of elements of G that commute with a fixed element x not

in Z(G), show that Z(G) cannot have order pn−1.
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Paper 3, Section II

8D Groups

(a) Let G be a finite group and let H be a subgroup of G. Show that if |G| = 2|H|
then H is normal in G.

Show that the dihedral group D2n of order 2n has a normal subgroup different from

both D2n and {e}.
For each integer k > 3, give an example of a finite group G, and a subgroup H, such

that |G| = k|H| and H is not normal in G.

(b) Show that A5 is a simple group.
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Paper 3, Section I

1D Groups

Write down the matrix representing the following transformations of R3 :

(i) clockwise rotation of 45◦ around the x axis,

(ii) reflection in the plane x = y ,

(iii) the result of first doing (i) and then (ii).

Paper 3, Section I

2D Groups

Express the element (123)(234) in S5 as a product of disjoint cycles. Show that it

is in A 5 . Write down the elements of its conjugacy class in A 5 .

Paper 3, Section II

5D Groups

(i) State the orbit-stabilizer theorem.

Let G be the group of rotations of the cube, X the set of faces. Identify the stabilizer of

a face, and hence compute the order of G.

Describe the orbits of G on the set X ×X of pairs of faces.

(ii) Define what it means for a subgroup N of G to be normal. Show that G has a

normal subgroup of order 4.

Paper 3, Section II

6D Groups

State Lagrange’s theorem. Let p be a prime number. Prove that every group of

order p is cyclic. Prove that every abelian group of order p2 is isomorphic to either Cp×Cp

or Cp2 .

Show that D12, the dihedral group of order 12, is not isomorphic to the alternating

group A 4.
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Paper 3, Section II

7D Groups

Let G be a group, X a set on which G acts transitively, B the stabilizer of a point
x ∈ X .

Show that if g ∈ G stabilizes the point y ∈ X , then there exists an h ∈ G with
hgh−1 ∈ B.

LetG = SL 2(C), acting on C∪{∞} by Möbius transformations. Compute B = G∞,
the stabilizer of ∞ . Given

g =

(
a b
c d

)
∈ G

compute the set of fixed points
{
x ∈ C ∪ {∞}

∣∣∣ gx = x
}
.

Show that every element of G is conjugate to an element of B.

Paper 3, Section II

8D Groups

Let G be a finite group, X the set of proper subgroups of G. Show that conjugation

defines an action of G on X.

Let B be a proper subgroup of G. Show that the orbit of G on X containing B has

size at most the index |G : B|. Show that there exists a g ∈ G which is not conjugate to

an element of B.
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Paper 3, Section I

1D Groups

Show that every orthogonal 2×2 matrix R is the product of at most two reflections

in lines through the origin.

Every isometry of the Euclidean plane R2 can be written as the composition of

an orthogonal matrix and a translation. Deduce from this that every isometry of the

Euclidean plane R2 is a product of reflections.

Give an example of an isometry of R2 that is not the product of fewer than three

reflections. Justify your answer.

Paper 3, Section I

2D Groups

State and prove Lagrange’s theorem. Give an example to show that an integer k

may divide the order of a group G without there being a subgroup of order k.

Paper 3, Section II

5D Groups

State and prove the orbit–stabilizer theorem.

Let G be the group of all symmetries of a regular octahedron, including both

orientation-preserving and orientation-reversing symmetries. How many symmetries are

there in the group G? Let D be the set of straight lines that join a vertex of the octahedron

to the opposite vertex. How many lines are there in the set D? Identify the stabilizer in

G of one of the lines in D.

Paper 3, Section II

6D Groups

Let S(X) denote the group of permutations of a finite set X. Show that every

permutation σ ∈ S(X) can be written as a product of disjoint cycles. Explain briefly

why two permutations in S(X) are conjugate if and only if, when they are written as

the product of disjoint cycles, they have the same number of cycles of length n for each

possible value of n.

Let ℓ(σ) denote the number of disjoint cycles, including 1-cycles, required when σ

is written as a product of disjoint cycles. Let τ be a transposition in S(X) and σ any

permutation in S(X). Prove that ℓ(τσ) = ℓ(σ)± 1.
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Paper 3, Section II

7D Groups

Define the cross-ratio [a0, a1, a2, z] of four points a0, a1, a2, z in C ∪ {∞}, with

a0, a1, a2 distinct.

Let a0, a1, a2 be three distinct points. Show that, for every value w ∈ C ∪ {∞},
there is a unique point z ∈ C ∪ {∞} with [a0, a1, a2, z] = w. Let S be the set of points z

for which the cross-ratio [a0, a1, a2, z] is in R ∪ {∞}. Show that S is either a circle or else

a straight line together with ∞.

A map J : C ∪ {∞} → C ∪ {∞} satisfies

[a0, a1, a2, J(z)] = [a0, a1, a2, z]

for each value of z. Show that this gives a well-defined map J with J2 equal to the identity.

When the three points a0, a1, a2 all lie on the real line, show that J must be the

conjugation map J : z 7→ z. Deduce from this that, for any three distinct points a0, a1, a2,

the map J depends only on the circle (or straight line) through a0, a1, a2 and not on their

particular values.

Paper 3, Section II

8D Groups

What does it mean to say that a subgroup K of a group G is normal?

Let φ : G → H be a group homomorphism. Is the kernel of φ always a subgroup

of G? Is it always a normal subgroup? Is the image of φ always a subgroup of H? Is it

always a normal subgroup? Justify your answers.

Let SL(2,Z) denote the set of 2 × 2 matrices

(
a b

c d

)
with a, b, c, d ∈ Z and

ad − bc = 1. Show that SL(2,Z) is a group under matrix multiplication. Similarly,

when Z2 denotes the integers modulo 2, let SL(2,Z2) denote the set of 2 × 2 matrices(
a b

c d

)
with a, b, c, d ∈ Z2 and ad − bc = 1. Show that SL(2,Z2) is also a group under

matrix multiplication.

Let f : Z → Z2 send each integer to its residue modulo 2. Show that

φ : SL(2,Z) → SL(2,Z2) ;

(
a b

c d

)
7→

(
f(a) f(b)

f(c) f(d)

)

is a group homomorphism. Show that the image of φ is isomorphic to a permutation

group.
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3/I/1E Groups

Define the signature ε(σ) of a permutation σ ∈ Sn , and show that the map
ε : Sn → {−1, 1} is a homomorphism.

Define the alternating group An , and prove that it is a subgroup of Sn. Is An a
normal subgroup of Sn? Justify your answer.

3/I/2E Groups

What is the orthogonal group O(n)? What is the special orthogonal group SO(n)?

Show that every element of the special orthogonal group SO(3) has an eigenvector
with eigenvalue 1. Is this also true for every element of the orthogonal group O(3)? Justify
your answer.

3/II/5E Groups

For a normal subgroup H of a group G , explain carefully how to make the set of
(left) cosets of H into a group.

For a subgroup H of a group G , show that the following are equivalent:

(i) H is a normal subgroup of G ;

(ii) there exist a group K and a homomorphism θ : G → K such that H is the
kernel of θ .

Let G be a finite group that has a proper subgroup H of index n (in other words,
|H| = |G|/n). Show that if |G| > n! then G cannot be simple. [Hint: Let G act on the
set of left cosets of H by left multiplication.]
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3/II/6E Groups

Prove that two elements of Sn are conjugate if and only if they have the same cycle
type.

Describe (without proof) a necessary and sufficient condition for a permutation
σ ∈ An to have the same conjugacy class in An as it has in Sn .

For which σ ∈ Sn is σ conjugate (in Sn) to σ 2 ?

For every σ ∈ A5 , show that σ is conjugate to σ−1 (in A5). Exhibit a positive
integer n and a σ ∈ An such that σ is not conjugate to σ−1 (in An).

3/II/7E Groups

Show that every Möbius map may be expressed as a composition of maps of the
form z 7→ z + a, z 7→ λz and z 7→ 1/z (where a and λ are complex numbers).

Which of the following statements are true and which are false? Justify your
answers.

(i) Every Möbius map that fixes ∞ may be expressed as a composition of maps of
the form z 7→ z + a and z 7→ λz (where a and λ are complex numbers).

(ii) Every Möbius map that fixes 0 may be expressed as a composition of maps of
the form z 7→ λz and z 7→ 1/z (where λ is a complex number).

(iii) Every Möbius map may be expressed as a composition of maps of the form
z 7→ z + a and z 7→ 1/z (where a is a complex number).

3/II/8E Groups

State and prove the orbit–stabilizer theorem. Deduce that if x is an element of a
finite group G then the order of x divides the order of G .

Prove Cauchy’s theorem, that if p is a prime dividing the order of a finite group G
then G contains an element of order p .

For which positive integers n does there exist a group of order n in which every
element (apart from the identity) has order 2?

Give an example of an infinite group in which every element (apart from the
identity) has order 2.
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