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ABSTRACT

When a self-gravitating spherical gas cloud collapses or accretes onto a central
mass, the inner region of the cloud develops a density profile ρ ∝ r−3/2 and the velocity
approaches free-fall. We show that in this region, nonspherical perturbations grow with
decreasing radius. In the linear regime, the tangential velocity perturbation increases as
r−1, while the Lagrangian density perturbation, ∆ρ/ρ, grows as r−1/2. Faster growth
occurs if the central collapsed object maintains a finite multiple moment, in which case
∆ρ/ρ increases as r−l, where l specifies the angular degree of the perturbation. These
scaling relations are different from those obtained for the collapse of a homogeneous
cloud. Our numerical calculations indicate that nonspherical perturbations are damped
in the subsonic region, and that they grow and approach the asymptotic scalings in the
supersonic region. The implications of our results to asymmetric supernova collapse
and to black hole accretion are briefly discussed.

Subject headings: hydrodynamics – accretion – supernovae

1. Introduction

Gravitational instability is responsible for a wide range of structures in the observable
universe. Much effort has been devoted to structure formation in cosmological models, and it is
well-established that the Hubble expansion slows the growth of perturbations (e.g., Peebles 1980).
In this paper we are interested in the behavior of nonspherical perturbations in the background of
spherical collapse or accretion.
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Hunter (1962) studied the collapse of a homogeneous, pressureless, dust cloud, and showed
that in the linear regime, perturbations of arbitrary shape and scale grow asymptotically as
δρ/ρ ∝ (t0 − t)−1 ∝ R−3/2, where t = t0 denotes the time of complete collapse, and R is the
cloud radius. It was thought that this instability might be responsible for the fragmentation of
collapsing protostellar clouds. Lin, Mestel and Shu (1965) studied the collapse of a homogeneous
ellipsoidal cloud of dust, and showed that its ellipticity increases until a sheet or pancake forms.
Homogeneity plays a key role in both examples. However, the presence of a slight initial central
concentration significantly alters the evolution of a cloud. Since the dynamical time, (Gρ)−1/2,
is shortest in the central region, a cuspy density and velocity profile develops. As a result,
one may question the applicability of the Hunter and Lin-Mestel-Shu instabilities to realistic
astrophysical situations. Goodman & Binney (1983) have already commented on problems with
the Lin-Mestel-Shu instability for inhomogeneous clouds. In this paper, we show that perturbation
growth is slowed by the central mass concentration in an inhomogeneous collapse.

A related problem concerns the stability of spherical accretion flow. Bondi (1952) found a
class of solutions describing steady-state accretion onto a compact object from a homogeneous
medium. There is a unique transonic “critical” flow, for which the mass flux is maximum; the
other subcritical solutions describe subsonic flows. Bondi speculated that nature would prefer the
critical flow (see Shu 1992 for a discussion) and underlined the importance of a linear stability
analysis. After several attempts by a number of authors, the correct analysis was achieved by
Garlick (1979) and Moncrief (1980), who showed that both the critical and subcritical flows are
globally stable. However, this does not mean that perturbations can not grow spatially. Indeed,
we show in this paper that nonspherical perturbations carried by fluid elements are amplified in
the supersonic region of the critical flow (see also Goldreich, Lai & Sahrling 1996; Kovalenko &
Eremin 1998).

The present study originated from our attempts to understand the origin of asymmetric
supernova (Goldreich, Lai & Sahrling 1996; hereafter GLS). A large body of evidence suggests
that Type II supernovae are globally asymmetric, and that neutron stars receive kick velocities
of order a few hundred to a thousand km s−1 at birth (see, e.g., GLS, Cordes & Chernoff 1998,
and references therein). The origin of the kick is unknown. A class of mechanisms relies on local
hydrodynamical instabilities in the collapsed stellar core (e.g., Burrows et al. 1995; Janka &
Müller 1994, 1996; Herant et al. 1994) that lead to asymmetric matter ejection and/or asymmetric
neutrino emission; but numerical simulations indicate these instabilities are not adequate to
account for kick velocities >∼ 100 km s−1 (Burrows & Hayes 1996; Janka 1998). Global asymmetric
perturbations of presupernova cores may be required to produce the observed kicks (GLS; Burrows
& Hayes 1996). GLS suggested that overstable g-modes driven by shell nuclear burning might
provide seed perturbations which could be amplified during core collapse.1

1See Lai & Qian (1998) and Arras & Lai (1999) for discussion/review on alternative mechanisms which rely on

asymmetric neutrino transport induced by strong magnetic fields.
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Hints regarding perturbation growth during collapse are obtained by considering the collapse
of finite-mass fluid shells onto central point masses. In the context of core-collapse supernova,
one might imagine that the spherical shell mimics the outer supersonic region, while the central
mass represents the homologous core. A large number of growing modes can be identified (GLS;
Appendix B). In particular, the dominant dipole mode grows according to ∆R(θ, t)/R(t) ∝ (t0−t)s,
with s < 0, where R is the mean radius of the shell and ∆R is the perturbation. For a core-shell
mass of order unity, the power-law index s ' −1, corresponding to ∆R/R ∝ R−3/2.

The thin-shell model is too simplistic to be applicable to real presupernova collapse. One
approach is to determine the stability of the self-similar collapse solution (Goldreich & Weber
1980; Yahil 1983). An analysis by Goldreich & Weber (1980) shows that the inner homologous core
is stable against nonradial perturbations. This is not surprising given the significant role played by
pressure in the subsonic collapse. Pressure is less important in the supersonically collapsing region,
making it more susceptible to large scale instability. A stability analysis of Yahil’s self-similar
solution, which extends the Goldreich-Weber solution to include a supersonically collapsing outer
core, does not reveal any unstable global mode before the proto-neutron star forms (Lai 2000).
However, it is perhaps more illuminating to treat the initial-value problem, and determine how
initial perturbations evolve as the collapse proceeds. We carry out such an analysis in this paper.

The rest of the paper is organized as follows. The basic perturbation equations are
summarized in §2, and in §3 we derive the asymptotic scaling relations for the perturbations in
the regime where the collapse/accretion flow is supersonic. In §4 we present a numerical study of
the evolution of perturbations during collapse; this numerical study not only confirms the analytic
asymptotic relations, but also explores the regime where pressure is important. We discuss the
implications of our results in §5.

2. Basic Equations

We consider barotropic fluid obeying the equation of state p = Kργ , where γ is the adiabatic
index and K is a constant. The unperturbed flow is spherically symmetric, with velocity in the
radial direction. The Eulerian perturbations of density, ρ, and velocity, v, can be decomposed into
different angular modes, each of which has the form

δρ(r, t) = δρ(r, t)Ylm(θ, φ), (1)

δv(r, t) = δvr(r, t)Ylm(θ, φ) r̂ + δv⊥(r, t)∇̂⊥Ylm(θ, φ) + ∇̂⊥ × [δvrot(r, t)Ylm(θ, φ)r̂] , (2)

where

∇̂⊥ ≡ θ̂
∂

∂θ
+

φ̂

sin θ
∂

∂φ
, (3)

and r̂, θ̂, φ̂ are unit vectors in spherical coordinates. The perturbations of pressure, p, and
gravitational potential, ψ, have the same angular dependence as δρ(r, t). The perturbed mass
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continuity equation reads

dδρ

dt
+ (∇ · v)δρ +

1
r2

(
r2ρδvr

)′ − l(l + 1)
ρδv⊥
r

= 0, (4)

where ρ, v = v r̂ denote the unperturbed spherical flow variables, prime stands for ∂/∂r, and
d/dt = ∂/∂t + v · ∇ is the total time derivative. The perturbed radial Euler equation can be
written as

dδvr

dt
+ v′δvr = −

(
δp

ρ

)′
− (δψ)′ , (5)

and the tangential Euler equation reduces to

dδv⊥
dt

+
v

r
δv⊥ = −1

r

(
δp

ρ

)
− 1
r
δψ, (6)

d

dt
(rδvrot) = 0. (7)

The perturbed Poisson equation is

1
r2

[
r2(δψ)′

]′ − l(l + 1)
r2

δψ = 4πGδρ. (8)

The vorticity perturbation reads

∇× δv = −δvT

r
r̂ × ∇̂⊥Ylm +

l(l + 1)
r

δvrotYlm r̂ +
1
r
(rδvrot)′ ∇̂⊥Ylm, (9)

where
δvT ≡ δvr − δu′, (10)

with
δu(r, t) ≡ rδv⊥(r, t). (11)

Thus δvrot and δvT are related to the vorticity of the perturbed flow. Equation (6) is transformed
to

dδu

dt
= −δp

ρ
− δψ, (12)

with the aid of equation (11). Combining equations (5) and (12), we find

d

dt
δvT = −v′δvT (13)

Equations (7) and (13) express the conservation of circulation in a barotropic fluid.2 The
former also reflects the conservation of angular momentum; following a fluid element, δvrot ∝ 1/r.
Since, as we shall prove shortly, v ∝ r−1/2 as r → 0, equation (13) implies the asymptotic relation

2For homogeneous collapse or expansion, as in an expanding universe, we have v = (Ṙ/R)r, where R is the scale

factor. Equation (13) then becomes the familiar d(RδvT )/dt = 0.
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δvT ∝ r1/2. We shall focus on irrotational flows from here on. We neglect δvrot because it is
decoupled from the density perturbation, and δvT because it decays inward. The continuity
equation (4) for irrotational flow simplifies to

dδρ

dt
+ (∇ · v)δρ +

1
r2

(
r2ρδu′

)′ − l(l + 1)
ρδu

r2
= 0. (14)

Note that the Poisson equation (8) has the following integral solution:

δψ(r, t) = − 4πG
2l + 1

[
1
rl+1

Ql(r, t) + rlSl(r, t)
]
, (15)

where
Ql(r, t) =

∫ r

0
xl+2δρ(x, t) dx, Sl(r, t) =

∫ ∞

r
x1−lδρ(x, t) dx. (16)

Equations (12), (14), and (15) determine the perturbed flow. This particular form of the
perturbation equations is convenient for implementation as a Lagrangian numerical code (see §4).

3. Asymptotic Analysis

Consider a cloud in hydrostatic equilibrium with an initial density profile that decreases
outward. As its pressure is depleted, the cloud starts to collapse. Since the dynamical time,
(Gρ)−1/2, decreases outward, cuspy density and velocity profiles will be established after the core
has collapsed. By contrast, a uniform density dust cloud collapses homologously, and remains
uniform as the collapse proceeds. We now study the behavior of the flow and its perturbations in
the asymptotic regime where the gas pressure is negligible compared to gravity.

3.1. Unperturbed Spherical Flow

Consider how the velocity, vm, and density, ρm, of a fluid shell with enclosed mass m change
as the shell collapses from its initial radius rm0 to a smaller radius rm. The pressure is negligible
in the supersonic region, so for rm � rm0, we have

vm ' −
(

2Gm
rm

)1/2

∝ −r−1/2
m . (17)

Then from the continuity equation, we obtain

ρm ∝ r−3/2
m . (18)

Note that these relations do not require the mass of the collapsed object to be fixed. Indeed, with
mc(t) the mass of the collapsed core at time t, we have

v(r, t) ' −
[
2Gmc(t)

r

]1/2

∝ r−1/2, ρ(r, t) ' − ṁc(t)
4πr2v(r, t)

∝ r−3/2, (19)
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where ṁc is the mass accretion rate onto the core.3 When the accretion time, mc/ṁc, is
much longer than the dynamical time of the flow, equation (19) describes the inner region of a
steady-state Bondi flow. In a dynamical collapse, when the accreted mass becomes much larger
than the original core mass, dimensional analysis implies mc(t) = K3/2G−(3γ−1)/2t4−3γm̄c, where
m̄c is a dimensionless number, and t is measured from the moment when the center collapses.
For γ = 1, this reduces to the familiar mc = m̄c(c3s/G)t (see Shu 1977). Equation (19) describes
the central region of Shu’s expansion-wave solution (Shu 1977), and the post-collapse extension
of the Larson-Penston solution (Larson 1969; Penston 1969; Hunter 1977) in the context of star
formation, as well as Yahil’s post-collapse solution in the context of core-collapse supernova (Yahil
1983).

Note that the above asymptotic scaling solution assumes supersonic flow for r → 0, i.e.,
v � cs ∝ ρ(γ−1)/2 ∝ r−3(γ−1)/4. This requires γ < 5/3. The special case of γ = 5/3 is considered
in Appendix A.

3.2. Perturbations

We investigate asymptotic power-law solutions to equations (12), (14) and (15). Let δρ ∝ ra

and δu ∝ rb. The Poisson equation has a general solution of the form δψ ∼ Qc/r
l+1 + r2δρ, where

the first term arises from a central multipole moment, Qc, and the second term is due to the
density perturbation outside the the central core. In most astrophysical situations, Qc is zero or
close to zero; possible exceptions are discussed separately in §3.3. For example, in accretion onto
a star, the supersonic flow may be stopped by a standing shock near the stellar surface. Inside the
shock, any inhomogeneity carried in by the gas will be smeared out on a local dynamical timescale.
In accretion onto a Schwarzschild black hole, the event horizon defines the inner boundary of the
supersonic flow, and the no-hair theorem ensures that mass multipole moments are not retained
by the black hole. Thus we have δψ ∝ ra+2.

In the asymptotic regime, d/dt→ v(∂/∂r), so equations (12) and (14) reduce to:

bvδu

r
+ γKργ−2δρ+ δψ = 0, (20)(

a+
3
2

)
vδρ

r
+

[
b

(
b− 1

2

)
− l(l + 1)

]
ρδu

r2
= 0. (21)

Equation (21) implies b = a + 2 for a 6= −3/2. Equation (20) has the scaling form
O(brb−3/2) + O(Kra−3(γ−2)/2) + O(ra+2) = 0, from which we see immediately that b = 0 and
a = −2 (for γ < 5/3). To obtain the scaling behavior for δvr = δu′, we need a higher order

3If the central region of a pressureless cloud is non-singular to begin with, then at the moment when the center

reaches infinite density, the central density and velocity profiles are ρ ∝ r−12/7 and v ∝ r−1/7 (Penston 1969).

However, after the core has formed, the profiles are given by equation (19).
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correction for δu. Let δu = δu0 + δu1r
b1 , where δu0 and δu1 are constants independent of r. For

K = 0 (the pressureless case) or γ < 2/3 so that δp/ρ < δψ asymptotically, equation (12) gives
O(b1vδu1r

b1−1) ∼ O(ra+2). We then have b1 = a+ 7/2 = 3/2. For K 6= 0 and γ > 2/3, equation
(12) reduces to O(b1vδu1r

b1−1) +O(ra−3(γ−2)/2) = 0, which gives b1 = (5− 3γ)/2. To summarize,
the asymptotic scaling relations for the perturbations are:

δu ∼ δu0 + δu1r
b1 , (22)

δvr ∝ rb1−1, δv⊥ ∝ r−1, (23)

δρ ∼ −2l(l + 1)
ρδu

rv
∝ r−2, (24)

where

b1 =
{

3/2 for K = 0 or γ < 2/3,
(5− 3γ)/2 for K 6= 0 and γ ≥ 2/3.

(25)

Note that the above results apply for γ < 5/3. The special case of γ = 5/3 Bondi accretion is
discussed in Appendix A.

3.3. Physical Interpretation

Equations (22)-(24) describe the Eulerian perturbations. To derive scaling relations for the
Lagrangian displacement, ξ(r, t) = ξr(r, t)Ylmr̂ + ξ⊥(r, t)∇̂⊥Ylm, and for the Lagrangian density
perturbation, ∆ρ, we note that ∆v = δv + (ξ · ∇)v = dξ/dt = (∂ξ/∂t) + (v · ∇)ξ, which yields

δvr =
∂ξr
∂t

+ vξ′r − v′ξr, (26)

δv⊥ =
∂ξ⊥
∂t

+ vξ′⊥ −
v

r
ξ⊥. (27)

In the asymptotic regime, we find using equation (23) that

ξr ∝ rb1+1/2, ξ⊥ ∝ r1/2. (28)

The Lagrangian density and velocity perturbations are

∆ρ
ρ
∼ ∆v⊥

v
∝ r−1/2,

∆vr

v
∝ rb1−1/2. (29)

The scaling relations (28) and (29) can also be derived directly from Lagrangian perturbation
theory.

Equations (22)-(24) and (29) are the main results of this paper.4 They can be understood
from the following simple consideration: The time that a fluid element spends near radius r, of

4This result was discussed without derivation in GLS. Similar results were also obtained by Kovalenko & Eremin

(1998) in the context of Bondi accretion.
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order tr = dt/d ln r ∝ r3/2, decreases rapidly as r decreases. Unless the specific torque, (δψ+δp/ρ),
increases inward sufficiently rapidly to compensate for the decreased time, the specific angular
momentum, δu, of the fluid element will be independent of r at small radii. Thus ∆v⊥ ∝ r−1.
This leads to a tangential displacement ξ⊥ ∼ trδv⊥ ∝ r1/2, which induces a density perturbation
∆ρ/ρ ∼ ξ⊥/r ∝ r−1/2.

Equation (29) indicates that the fractional density and tangential velocity perturbations grow
in supersonic collapse/accretion. The radial velocity perturbation, however, can be affected by
pressure even in the regime where the pressure has negligible effect on the unperturbed flow. We
see that ∆vr grows with decreasing r when γ > 1, and ∆vr/v grows only when γ > 4/3 (but recall
that the scaling relations apply only for γ < 5/3).

3.4. Special Cases: Possibility of Faster Growth

Now consider a hypothetical situation in which the inner boundary of the flow is a “sticky
sphere”: Once a fluid element enters the sphere, it gets stuck on the spot where it enters. In this
case, a finite multipole moment, Qc, will accumulate at the center (see eq. [16]). In the region
where Qc dominates the gravitational perturbation, we have δψ ∼ Qc/r

l+1 � r2δρ. It is easy
to show from equations (20)-(21) that the perturbations have the following scaling behavior (for
γ < 5/3):

δu ' 2
2l − 1

r

v
δψ ∝ r1/2−l, (30)

δρ ' −3
2
ρδu

rv
∝ r−l−3/2, (31)

δψ ' −
(

4πG
2l + 1

)
Qc

rl+1
∝ r−l−1. (32)

These scalings depend on l. Even for l = 1, the growth is faster than the case discussed in §3.2
and §3.3. These scalings can be understood as follows: The central multipole moment exerts a
torque ∝ r−l−1 and a radial force ∝ r−l−2 on a fluid element. The angular momentum grows
as trδψ ∝ r−l+1/2, and the radial velocity perturbation grows as δvr ∝ r−l−1/2. Thus we have
δvr/v ∼ δv⊥/v ∝ r−l. The Lagrangian displacement is ξr ∼ ξ⊥ ∼ trδv ∝ r−l+1, and the resulting
density perturbation is ∆ρ/ρ ∼ ξ/r ∝ r−l.

As we have argued in §3.2, it is unlikely the scaling relations derived in this section will apply
in general situations since it is hard to imagine that the central core can retain its multipole
moments for a time much longer than the dynamical time of the flow at the inner boundary. There
are two possible exceptions:

(i) For l = 1 modes: The core has an extra degree of freedom, i.e., it can have linear motion in
response to flow perturbations. This gives rise to a net central dipole moment and the possibility
of faster growth of dipolar perturbations. Let mc be the core mass and Zc be the position (along
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the z-axis) of its center-of-mass relative to the the origin of coordinates. The displaced core
induces a potential perturbation δψ ' −(GmcZc/r

2) cos θ. From equations (30)-(32), the flow
perturbations are given by

δρ

ρ
' 3Zc

2r
cos θ,

δvr

v
' Zc

2r
cos θ,

δv⊥
v
' Zc

r
sin θ, (33)

where we have used v ' −(2Gmc/r)1/2. However, the asymptotic perturbations given by equation
(33) simply represent a spherical flow centered at Zc. Thus it is not surprising that the sum of the
gravitational force exerted on the core plus the rate at which momentum flows across a surface
surrounding it sum to zero.

(ii) For l = 2 modes: Suppose the central core consists of a rotating star, or a star with
a massive circumstellar disk. This could result from an early phase of accretion/collapse with
significant angular momentum. Subsequent spherical accretion, with no net angular momentum,
will be affected by the central quadrupole.

4. Numerical Calculations of Linear Perturbation Growth

The asymptotic scaling relations derived in §3 apply only in the supersonic regime. To
determine the behavior of perturbations under general conditions, we numerically follow the
collapse of a self-gravitating cloud and evolve the nonspherical perturbation carried by each
fluid element. Because of the large disparity in the timescales involved in the central region
and the outer region, it is essential for the code to have a wide dynamical range. Previous
multidimensional simulations of Bondi accretion (e.g., Ruffert 1994) did not achieve high enough
resolution in the central region to reveal the growth of perturbation. We restrict our calculations
to the linear regime. Thus perturbations associated with different Ylm evolve independently, and
our calculations involve only one spatial dimension.

We have constructed a one-dimensional Lagrangian finite-difference code. The unperturbed
flow variables (r, v, ρ) are followed with a standard scheme (Bowers & Wilson 1991), and the
Eulerian perturbations (δρ, δu, δψ) are evolved using equations (12), (14) and (15). The flow is
covered by a uniform mass grid. The quantities r, v, δu, δψ are zone-edge-centered, while ρ, δρ
are zone-centered. A staggered leapfrog integration scheme is adopted to ensure second-order
accuracy in time.

4.1. Pressureless Collapse

To calibrate our code and check the asymptotic scaling relations of §3, we study the collapse
of a centrally concentrated dust cloud. Figure 1 shows an example of such a collapse calculation.
The cloud, of total mass m = 1 and radius r = 1, is initially at rest with density profile ρ ∝ r−1;
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i.e. the radius of a mass shell with enclosed mass m is rm = m1/2. We initialize an l = 2
perturbation with δρ/ρ = 1 in arbitrary units and δu = 0. The Poisson equation is solved to
give the potential perturbation, δψ. We impose an inner boundary at rc = 10−3: Once a mass
shell enters this boundary, it is removed from the simulation domain, and its perturbations are
immediately smeared out; i.e., the central quadrupole moment, Qc, is maintained at zero. The
profiles ρ ∝ r−3/2 and v ∝ r−1/2 for the unperturbed flow are established near the center as the
collapse proceeds. Figure 1 depicts the evolution of the perturbation carried by three different
mass shells. We see that as the mass shells collapse to small radii, the analytic asymptotic scalings
δu → constant and δρ/ρ ∝ r−1/2 are achieved. Calculations with other initial conditions confirm
that these scalings are generic features of perturbation growth in the absence of central multipole
moments.

We have also studied the case where the central multipole moment, Qc, is nonzero, and
confirmed the steeper scalings derived in §3.4.

4.2. Collapse with Finite Pressure

Next we study the collapse of clouds having finite pressure. For definiteness, we choose the
initial cloud to be a γ = 4/3 spherical polytrope in hydrostatic equilibrium. The collapse is
initiated by reducing γ to 1.3, and by reducing K by 10%. Either one of these reductions alone is
adequate to induce the collapse. This mimics Type II supernova collapse, where a white dwarf core
of a massive star collapses to a neutron star. However, to focus on the growth of perturbations
during the collapse, we do not include a shock in our calculation. We define an inner boundary
at rc = 0.005; the original cloud radius is r = 1 and its mass m = 1. When the central density
becomes greater than 106, corresponding to a few times nuclear density if the initial cloud has
mass and radius typical of a Chandrasekhar mass white dwarf, we cut out the flow inside rc from
the computational domain. This enables us to follow the collapse and accretion of the rest of the
cloud.

Figure 2 shows the unperturbed density and velocity of several different mass shells as
functions of their Lagrangian radii. The inner region collapses homologously; the Mach numbers
of individual shells remain below unity outside rc. The outer region of the flow goes through a
transonic point, and eventually attains the free-fall asymptotics, with v ∝ r−1/2 and ρ ∝ r−3/2.
Inspecting the flow profiles at different time slices (not shown), we confirm that our numerical
results agree with the self-similar solution (Yahil 1983) in the regime where it applies.

Figure 3 and Figure 4 show two examples of the evolution of l = 2 perturbations during the
collapse depicted in Fig. 2. In Fig. 3, the initial perturbation is chosen to be δρ/ρ = 1 and δu = 0,
while in Fig. 4, the initial perturbation corresponds to the eigenfunctions of the first g-mode of a
γ = 4/3 polytrope, with adiabatic index γ1 = 5/3. This value of γ1 is used only for setting up the
initial perturbations; after the collapse starts, the adiabatic index is set to γ = 1.3. We see that
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the perturbations carried by the inner mass shells (m = 0.2, 0.6), which never become supersonic,
vary in an oscillatory manner with no increase in amplitude. This is consistent with the result of
Goldreich & Weber (1980) that the homologous inner core of a collapsing γ = 4/3 polytrope is
stable against non-radial perturbations. However, the outer region of the cloud (m >∼ 0.85) attains
a high Mach number and eventually approaches free-fall. We see from Figs. 3 and 4 that the
density perturbation grows in this outer region, and that the asymptotic scaling relations derived
in §3.2 are recovered.

5. Discussion

Nonspherical perturbations are amplified during the supersonic collapse or accretion of a
centrally concentrated gas cloud. We have derived asymptotic scaling relations for their growth.
These general results have implications for several different astrophysical problems which we now
discuss.

In spherical accretion onto a black hole, we expect the radiative efficiency to increase as a
result of nonradial perturbations in the flow. In the asymptotic regime, the tangential velocity
perturbation scales as δv⊥ ∝ r−1, and the corresponding Mach number scales as δv⊥/cs ∝ r(3γ−7)/4.
For γ < 5/3, the Mach number grows faster than r−1/2. Similarly, the Mach number associated
with the radial velocity perturbation (see eq. [23] for γ > 2/3) scales as δvr/cs ∝ r−3(γ−1)/4.
One might expect the formation of shocks which lead to thermalization of the flow and high
radiative efficiency (see Chang & Ostriker 1985 for previous discussion on the formation of shocks
in spherical flows). This point has also been noted recently by Kovalenko & Eremin (1998), who
derived similar scaling relations for Bondi accretion.

In the context of core-collapse supernovae, our results indicate that perturbations in the
homologous inner core do not grow, but those in the outer core, involving ∼ 15% of the core mass,
and in the envelope are amplified. Since δρ/ρ scales as r−1/2, we expect that the amplification
factor is at most 10 for r decreasing from 1500 km to 15 km. It is possible that dipole perturbations
obey the r−1 scaling (see §3.4), in which case the amplification factor could be larger. Interestingly,
if overstable g-modes driven by shell nuclear burning are responsible for the seed of presupernova
perturbations (see GLS), it is exactly at the outer core where the perturbation amplitude is
expected to be the largest. The asymmetric density perturbation may lead to asymmetric shock
propagation and breakout, which then give rise to asymmetry in the explosion and a kick to the
neutron star (e.g., Burrows & Hayes 1996).

Finally, we note that our analysis has neglected rotation (i.e., the flow does not have a net
angular momentum). In the perturbative regime, rotation (around the z-axis) is represented by
the last term of equation (2) with m = 0, i.e., δvrot = −δvrot(r, t)(∂Yl0/∂θ) φ̂. As shown in §2,
this rotational perturbation is decoupled from the density perturbation. Therefore, provided the
rotational velocity is small in comparison to the radial velocity, i.e., |δvT | � |v|, we expect our
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scaling relations for the growth of perturbations to be valid.
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A. Perturbation of Bondi Accretion for γ = 5/3

The Bondi solution for γ = 5/3 is special because the flow remains subsonic for r > 0. We
can think of the sonic point as being located at r = 0 (in Newtonian theory). For r � GM/c2∞,
where M is the central mass and c∞ is the sound speed at infinity, the flow velocity and density
are given by

|v| ' cs '
(
GM

2r

)1/2

, (A1)

ρ ' ρ∞
(
GM

2c2∞

)3/2

r−3/2. (A2)

Although these have the same scalings as equations (17) and (18), the asymptotic behavior of the
perturbations is quite different. Indeed, for γ = 5/3, eqs. (20) and (21) yield

δρ ∝ rl−1/2, δu ∝ rl+3/2, δψ ∝ rl. (A3)

Thus all perturbations decrease as r decreases in keeping with the subsonic nature of the
unperturbed flow. If a central multipole moment is present (see §3.4), the following asymptotics
become dominant:

δρ ∝ r−l−3/2, δu ∝ r−l+1/2, δψ ∝ r−l−1. (A4)

B. Perturbations in Collapsing Spherical Shells

Consider a spherical fluid shell of mass Ms falling from infinity onto a central point mass Mc.
The shell radius, R0(t), evolves in time according to

d2R0

dt2
= −GM

R2
0

, with M = Mc +
Ms

2
, (B1)

which gives

R0(t) =
(

9GM
2

)1/3

(−t)2/3, (B2)
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where we have set t = 0 at the point of complete collapse. The surface density and radial velocity
are given by

Σ0(t) =
Ms

4πR2
0

∝ (−t)−4/3, V0(t) =
dR0

dt
∝ (−t)−1/3. (B3)

B.1. Perturbation Equations

The dynamical variables for a perturbed shell are its surface density Σ(θ, t), radius R(θ, t),
radial velocity Vr(θ, t) = Ṙ, where dot indicates ∂/∂t, and tangential velocity V⊥(θ, t). We assume
spherical coordinates and axisymmetry so that there is no φ-dependence. The core mass, Mc,
is free to move. We use Zc(t) to denote its displacement from the coordinate origin. Note that
Σ, Vr, V⊥ are rigorously defined from the three-dimensional fluid variables via

Σ ≡ 1
R2

∫ R+

R−
ρ r2dr, Vr ≡ 1

ΣR2

∫ R+

R−
ρ r2vrdr, V⊥ ≡ 1

ΣR2

∫ R+

R−
ρ r2v⊥dr, (B4)

where the integration runs through the thickness of the shell. Using these definitions and the
standard hydrodynamical equations, we derive the continuity and Euler equations for the shell:

∂Σ
∂t

= −2Ṙ
R

Σ− Σ∇⊥ ·V⊥, (B5)

∂Vr

∂t
= R̈ = −1

2

[(
∂Φ
∂r

)
R+

+
(
∂Φ
∂r

)
R−

]
, (B6)

∂V⊥
∂t

= − ṘV⊥
R

− 1
2

[
(∇⊥Φ)R+ + (∇⊥Φ)R−

]
, (B7)

where we have assumed that the nonspherical perturbation is small. Note that here
∇⊥ ≡ (1/R)∇̂⊥ = (1/R)

[
θ̂(∂/∂θ) + (φ̂/ sin θ)(∂/∂φ)

]
= (1/R)θ̂(∂/∂θ). The gravitational

potential Φ = Φc + Φs includes contributions from the core, Φc, as given by

Φc(r, t) = − GMc

|r− Zcẑ| = −GMc

∑
l

Z l
c

rl+1

(
4π

2l + 1

)1/2

Yl0(θ, φ), (B8)

for R > Zc. The potential produced by the shell satisfies

∇2Φs(r, t) = 4πGΣ(θ, t)δ[r −R(θ, t)]. (B9)

Finally we need the equation of motion for the core mass:

Z̈c = −
(
∂Φs

∂r

)
r=Zc,θ=0

. (B10)

Consider linear perturbation modes associated with spherical harmonics Yl0:

R(θ, t) = R0(t) [1 + al(t)Yl0] , (B11)

V⊥(θ, t) = Ṙ0(t) bl(t)∇̂⊥Yl0, (B12)

Σ(θ, t) = Σ0(t) [1 + cl(t)Yl0] . (B13)
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Solving equation (B9), the shell potential to linear order in al, cl is

Φs(r, t) = −GMs

r
− 1

2l + 1

(
GMs

R0

) (
R0

r

)l+1 [
cl + (l + 2)al

]
Yl0, (B14)

for r > R(θ, t) (outside the shell), and

Φs(r, t) = −GMs

R0
− 1

2l + 1

(
GMs

R0

) (
r

R0

)l [
cl − (l − 1)al

]
Yl0, (B15)

for r < R(θ, t) (inside the shell). Using the unperturbed solution (eqs. [B2] and [B3]), the
perturbation equations (B5)-(B7) for the shell reduce to

2tȧl + tċl − 2
3
l(l + 1)bl = 0, (B16)

9t2äl + 12tȧl − 2al = −4Mc

M
δl1zc +

4Mc

M
al − 2Ms

(2l + 1)M

[
l(l − 1)al +

1
2
cl

]
, (B17)

3tḃl + bl =
Mc

M
δl1zc +

Ms

(2l + 1)M

(
cl +

3
2
al

)
, (B18)

where δl1 is Kronecker delta, and

zc ≡
(

4π
3

)1/2(Zc

R0

)
. (B19)

The equation of motion for the core mass, equation (B10), becomes

9t2z̈c + 12tżc − 2zc =
2Ms

3M
c1. (B20)

Setting
al, bl, cl, zc ∝ (−t)s, (B21)

equations (B16)-(B20) reduce to a set of algebraic equations from which the eigenvalue, s, and the
corresponding eigenmode can be determined. We discuss these eigenmodes below.

B.2. l = 1 Modes

There are six roots for s. Two of these, s = 1/3, −2/3, are trivial modes which do not involve
any surface density perturbation (c1 = 0), and for which the core experiences no acceleration
(Z̈c = 0). These correspond to the collapse of a uniform shell onto a displaced core; for
∆R = R−R0 ∝ (−t), ∆R/R0 ∝ (−t)1/3, and for ∆R = constant, ∆R/R0 ∝ (−t)−2/3.

Two of the remaining four roots correspond to stable modes (s > 0). The two unstable modes
are shown in Fig. 5. Both lead to the growth of the separation between the center of mass of the
shell and the position of the core: (i) “Bending” Mode: the surface density perturbation grows
because one side of the shell collapses faster than the other, and the geometric center of the shell
moves in opposition to the motion of the central mass; when Ms → 0, the mode has s = −1
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and (a1, b1, c1) = (1, 0,−2); (ii) “Jeans” Mode: the surface density perturbation grows due to the
internal tangential flow in the shell, while the shell’s geometric center suffers little displacement
with respect to the position of the central mass; when Ms → 0, the mode has s = −1/3 and
(a1, b1, c1) = (0, 1,−4). The “bending” mode grows more rapidly, with s ranging from −1 for
Ms → 0 to s = −(

√
17 + 1)/6 = −0.854 for Mc → 0.

B.3. l = 2 Modes

For l = 2, the core mass experiences no acceleration. There are two types of unstable modes
as shown in Fig. 6: (i) “Bending” Mode: the north pole and south pole of the shell collapse faster
and have higher density than the equator, leading to a quadrupolar density perturbation; (ii)
“Jeans” Mode: the density perturbation is mainly due to tangential fluid motion within the shell.
The “bending” mode is the more rapidly growing mode, with s in the range between −1 and
−0.85;

B.4. Large-l Limit

Our results for general l will not be presented here. But it is of interest to consider the l� 1
limit.

(i) “Bending” Mode: The dispersion relation of bending waves on a pressureless, nonrotating
surface is ω2 = 2πGΣ0|k|, with |k| ' l/R0. This gives

ω = ±sl

t
, with sl ≡ 1

3

(
lMs

M

)1/2

. (B22)

The wave evolves as exp(i
∫
ω dt) = (−t)±isl . To obtain the amplitude evolution, we use the

conservation of wave action (energy per unit mass divided by frequency) ∝ ω|∆R|2, which gives
|∆R| ∝ (−t)1/2, and |∆R|/R0 ∝ (−t)−1/6. Thus

∆R
R0

∝ (−t)s, s = −1
6
± isl. (B23)

This agrees with our numerical results.

(ii) “Jeans” Mode: The dispersion relation of density wave is ω2 = −2πGΣ0|k|, which gives
ω = ±isl/t. Similar to (i), we find

∆R
R0

∝ (−t)−1/6 exp(i
∫
ω dt) ∼ (−t)s, s = −1

6
± sl. (B24)

This also agrees with our numerical results.
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B.5. Effect of Internal Pressure

We can include the effect of fluid pressure by adding a term −(1/Σ)∇⊥(ΣC2
s ) to the tangential

Euler equation (B7); the radial equation (B6) is not affected by pressure. For definiteness, we
parametrize the shell-averaged sound speed, Cs, by

Cs = β

(
GM

R0

)1/2

, (B25)

where β is a constant. This amounts to adding a term −β2cl to the right-hand-side of equation
(B18).

Figures 5 and 6 show the effect of pressure on the eigenvalues of the l = 1 and l = 2 modes,
respectively. We see that pressure always tends to stablize the modes. However, for Ms/Mc less
than a few, the “bending” mode is only slightly affected.

In the large-l limit, the “bending” mode is unaffected by the pressure, thus equation (B23)
still applies. For the “Jeans” mode, the dispersion relation is ω2 = k2C2

s − 2πGΣ0|k|, which gives

ω2 =
(

2β2l2 − lMs

M

)
1

9t2
. (B26)

For l�Ms/(2β2M), we have ω ' ±(
√

2/3)βl/t. Using similar precedure as in §B.4, we obtain

∆R
R0

∝ (−t)s, with s ' −1
6
± i

√
2

3
βl. (B27)
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Fig. 1.— Evolution of an l = 2 perturbation during the collapse of a centrally concentrated dust
sphere. The velocity potential perturbation, δu, in the upper panel, and the fractional density
perturbation, δρ/ρ, in the lower panel, are plotted against the Lagrangian radius, rm(t), for three
different mass shells: m = 0.2 (solid lines), m = 0.6 (short-dashed lines), and m = 0.9 (long-dashed
lines). The dotted line in the lower panel shows the asymptotic scaling relation as derived in §3.2.
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Fig. 2.— Evolution of the unperturbed flow during the collapse of a pressure-depleted γ = 4/3
polytrope. The adiabatic index is reduced to γ = 1.3 after the collapse starts. The density and
velocity are plotted against the Lagrangian radius, rm(t), for of three different mass shells: m = 0.2
(solid lines), m = 0.6 (short-dashed lines), and m = 0.9 (long-dashed lines). The dotted lines
show the asymptotic scaling relations. Note that ρ ∝ r−2/(2−γ) applies to the outer region of the
self-similar flow (Yahil 1983), while ρ ∝ r−3/2 and v ∝ r−1/2 apply to the inner region of the
post-collapse flow.
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Fig. 3.— Evolution of the l = 2 perturbation during the collapse of a pressure-depleted γ = 4/3
polytrope. The unperturbed flow is depicted in Fig. 2. The velocity potential perturbation, δu,
in the upper panel, and the fractional density perturbation, δρ/ρ, in the lower panel, are plotted
against the Lagrangian radius, rm(t), for three different mass shells: m = 0.2 (solid lines), m = 0.6
(short-dashed lines) and m = 0.9 (long-dashed lines). The initial perturbation is chosen to be
δρ/ρ = 1 and δu = 0. The dotted line shows the asymptotic scaling derived in §3.2.
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Fig. 4.— Same as Fig. 3, except that the initial perturbation is chosen to correspond to the g1
mode of a γ = 4/3 polytrope with adiabatic index γ1 = 5/3.



– 22 –

Fig. 5.— Perturbation modes (l = 1) in a collapsing shell. The solid curves are for zero pressure
(β = 0); the lower curve corresponds to the “bending” mode, and the upper to the “Jeans” mode.
The dotted and dashed curves include pressure with β = 0.5 and β =

√
0.5, respectively. Note that

when s is complex, only its real part is plotted.
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Fig. 6.— Perturbation modes (l = 2) in a collapsing shell. The solid curves are for zero pressure
(β = 0); the lower curve corresponds to the “bending” mode, and the upper corresponds to the
“Jeans” mode. The dashed curves include pressure with β =

√
0.5. Note that except for the

lower-left branch, the dashed curves depict only the real part of s.


