\qquad

Angles Vocabulary

Congruent angles - two or more angles with the same measure.
Complementary Angles- two angles whose sum is 90°.

Ex. 1

Ex. 2

Supplementary Angles - two angles whose sum is 180°.

$$
\text { Ex. } 3
$$

Vertical angle - Two angles that share a common vertex and their sides form two pairs of opposite rays. Vertical angles are congruent.

\qquad

Transversal Notes

- A transversal is a line that intersects a system of two or more lines at different points.
- Two lines are parallel if they do not intersect.
- Perpendicular lines are two lines that intersect at a right angle.

Corresponding Angles Postulate:

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

$$
\begin{array}{ll}
\angle —=\angle- & \angle —=\angle \\
\angle —=\angle- & \angle —=\angle-
\end{array}
$$

Alternate Interior Angles Theorem:

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

$$
\begin{aligned}
& \angle _=\angle- \\
& \angle —=\angle —
\end{aligned}
$$

Consecutive Interior Angles Theorem:

(Same Side Interior Angles)
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

$$
\begin{aligned}
& \angle _+\angle _= \\
& \angle —+\angle=
\end{aligned}
$$

Perpendicular Transversal Theorem:

If a transversal is perpendicular to one of the two parallel lines, then it is perpendicular to the other.

Ex. 1 Identify the angles as corresponding, al interior, alternate exterior, consecutive inte consecutive exterior. 1. $\angle 3$ and $\angle 7$ \qquad 2. $\angle 4$ and $\angle 10$ 3. $\angle 5$ and $\angle 8$ \qquad 4. $\angle 8$ and $\angle 6$ \qquad 5. $\angle 9$ and $\angle 5$ \qquad 6. $\angle 5$ and $\angle 7$ \qquad	
Ex. 2	Ex. 3
Ex. 4	Ex. 5
Ex. 6	Ex. 7
Ex. 8	Ex. 9

\qquad Block: \qquad

Triangle Notes

- Triangle Sum Theorem- the sum of the angle measures of a triangle is 180 degrees.
- A scalene triangle has no congruent sides.

Ex. 1

Ex. 2

- An isosceles triangle has two congruent angles and two congruent sides.

Ex. 3

Ex. 4

- An equilateral triangle has three congruent sides.
- An equiangular triangle has three congruent angles.
- If a triangle is equilateral then it is also equiangular and vice versa.

Ex. 5

Ex. 6

- Exterior Angle Theorem - the measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

$$
\angle A+\angle B=\angle D
$$

Ex. 8

Side-Side-Side
If three corresponding sides are
congruent in two triangles, then the
triangles are congruent.

Name the additional information that is sufficient to prove that the triangles are congruent by the given criteria.

Additional information: \qquad \cong
10. $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$ by SAS

Additional information: \qquad \cong
11. $\triangle \mathrm{DEF} \cong \Delta \mathrm{JIH}$ by ASA

$$
\angle \mathrm{D} \cong \angle \mathrm{~J}, \mathrm{DE} \cong \mathrm{JI}, ?
$$

Additional information: \qquad \cong

- Reflexive property: any quantity is equal to itself.
- Midpoint: a point that divides a segment into two congruent segments.
- Bisect: divide into two equal parts
- If two or more triangles are proven congruent, then all of their corresponding parts are congruent.
- CPCTC: corresponding parts of corresponding triangles are congruent

