

GSI – More Than 40 Years of Scientific and Technical Expertise

Reference laboratory for nuclear physics in Europe,
 one of the top laboratories in the world

Major GSI Discoveries

- New chemical elements
- Hundreds of new isotopes
- New decay modes

Major GSI Discoveries

Forefront Technologies

 Applications in accelerator science, detector instrumentation, materials research, radiation biology, therapy

Forefront Technologies

 Technological advancements in high-performance & scientific computing, Big Data, Green IT

FAIR – World-Wide Unique Accelerator Facility

A Talent Factory

- A unique capability to attract and create talent and know-how.
- •Training and education of the next generation of scientists, engineers and computing experts from all over the world:
 - Graduate Schools with currently more than 300 doctoral students from all over the world
 - International Postdoc Programs
 - Multiple training programs for students
 - Bilateral Agreements with several countries for exchange of scientists and education of young researchers and engineers, e.g.
 French German Cooperation Agreement DSM-CEA/IN2P3 – GSI/FAIR

FAIR – The Facility

FAIR – The Facility

FAIR

- ... accelerates particle beams from (anti)protons up to uranium ions with
 - very high intensities
 - up to a factor of ~100 increase for primary
 Uranium beams (~5 x 10¹¹ U²⁸⁺ ions /s),
 - up to a factor of ~10.000 increase for secondary rare isotope beams
 - high pulse power (up to ~ 50 kJ / 50 ns)
 - suite of storage cooler rings equipped with stochastic and electron cooling for brilliant beam quality
- ... develops and exploits innovative particle separation and detection methods, as well as novel computing techniques
- ... to perform forefront experiments towards the production and investigation of

New Extreme States of Matter.

Four Scientific Collaborations

- Atomic Physics and Fundamental Symmetries,
- Plasma Physics,

APPA

- Materials Research,
- Radiation Biology,
- Cancer Therapy with Ion Beams / Space Res.

CBM

Dense and Hot Nuclear Matter

NUSTAR

 Nuclear Structure far off stability,
 Physics of Explosive Nucleosynthesis (r process)

PANDA

 Hadron Structure & Dynamics with cooled antiproton beams

FAIR: International Cooperation

- Realization and operation in international cooperation
- Nine international shareholders
- Participation of 3.000 scientists from all continents

Challenges and Priorities in the Forthcoming Years

- Build FAIR and develop GSI for FAIR - in time and to budget
- Making FAIR a success requires:
 - a strong host laboratory with worldclass facilities and a leading role in the international scientific arena
 - a vibrant scientific community, in particular young researchers, performing a first-class intermediate research program
 - a modern campus with appropriate infrastructure for the employees and the international users

Important Achievements in 2015/2016

- After critical project review successful restart in 2015 and 2016
- Comprehensive civil construction plan:
 - by 2022
- Full integrated planning for construction and commissioning of the entire project:
 - of the full FAIR facility by 2025.
- Work is going on: <u>Groundbreaking for Synchrotron</u> <u>tunnel on 4 July 2017!</u>

Integrated Project Time Schedule – Level 1: FAIR Buildings, Accelerators & Experiments

Integrated Project Time Schedule – Level 1: FAIR Buildings, Accelerators & Experiments

Procurement of FAIR components is in full swing ...

Accelerator and detector contributions from many different partner institutions

The experiments advance!

From fundamental to applied research – Atomic physics, Plasma Physics, Application APPA

Atomic & Fundamental Physics

Interplay between Relativity, Correlation, and QED in the Non-Perturbative Regime

$\alpha Z \approx 1$

- Radiative corrections in the non-perturbative regime
- Correlated multi-body dynamics for atoms and ions
- Precision determination of fundamental constants
- Influence of atomic structure on nuclear decay properties

21

Ion Beam Facilities / Trapping & Storage

Worldwide Unique

Stored and Cooled

Highly-Charged Ions (e.g. U⁹²⁺) and Exotic Nuclei From Rest to Relativistic Energies (up to 4.9 GeV/u)

Recent "precision highlight" from SPARC@ESR: Precision determination of HFS in H- and Li-like Bismuth ions

- Measurement of hyperfine splittings in hydrogen-like <u>and</u> lithium-like bismuth ²⁰⁹Bi^{82+,80+} allows to disentangle QED and nuclear effects.
- New ESR measurement has improved the precision by more than one order of magnitude.
- New experimental result (blue) shows a 7-σ discrepancy compared to the theoretical QED prediction (red).

FAIR will offer exciting new possibilities for research in High-Energy Density Science

Unique properties of heavy-ion driven plasmas

- large volumes (mm³)
- · uniform conditions
- -> thermal equilibrium
- any target material
- rep. rate, reproducibility

Protons as dense matter probe

- Long range (~m) of relativistic protons
- High-resolution imaging of small angle deflection →accurate density meas.
- Ultra-intense proton pulses allow for short (~10ns) time exposure

- FAIR will produce the worlds largest volumes of uniform HED matter (x100 increase in specific energy deposition over GSI)
- FAIR will host the worlds highest resolution proton microscope

24

Research topics at FAIR

Biophysics

Materials Research

- Space radiation biophysics
- Biological effects of very high energetic ions
- Shielding measures: new materials
- Particle therapy: "theranostics" (use of high energetic proton beams for simultaneous diagnostics and therapy)

- Ion-matter interaction at highest energies and highest charge states
- Materials behavior under extreme conditions (high flux irradiations)
- Irradiations under multiple extremes (high pressure, temperature, dose)
- Radiation hardness of accelerator and spacecraft components

25

APPA – Detector Development

Targets

3D solid-state detectors

High-resolution spectrometers

Particle detectors

Particle spectrometers

High pressure cell

Traps

X-ray optics, channel-cut crystals

Laser systems

Compressed Baryonic Matter

Exploring the phase diagram of "nuclear" matter

At very high temperature:

- ➤ N of baryons ≈ N of antibaryons Situation similar to early universe
- ➤ L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- > ALICE, ATLAS, CMS at LHC STAR, PHENIX at RHIC

Exploring the phase diagram of "nuclear" matter

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

- N of baryons >> N of antibaryons Densities like in neutron star cores
- ➤ L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- Competing Experiments: BES at RHIC, NA61 at CERN SPS, NICA at JINR

"Rare" Messengers from the dense fireball: CBM at FAIR

Yield:

1 particle in 1 million collisions

UrQMD transport calculation Au+Au 10.7 A GeV

CBM: Focus on SIS100 beam energies

Physics program: Exploring QCD matter at neutron star core

densities (> 5 ρ_0)

nuclear matter equation of state

search for phase transition, phase coexistence, exotic phases

- onset of Chiral symmetry restoration
- hypernuclei, strange matter

- New physics insights by "pushing" interactions rates up to 10 MHz
- optimized for precision measurements of rare probes (hyperons, hypernuclei, dileptons, charm)

CBM detector and DAQ tests at CERN SPS

- > Successfull operation of detectors and of the DAQ system
- > Events successfully reconstructed from free-streaming data
- > Data quality allows for investigation of detector performance

Synthesis of the chemical elements

Synthesis of the chemical elements

"Pushing" our understanding of the origin of the chemical elements: Where and how were the heavy elements made in the universe?

NUSTAR - Origin of elements in the universe

NUSTAR - Origin of elements in the universe

"Nucleosynthesis sites" in the universe

High SIS100 energies + SFRS: superior charge separation and beam quality

Physics goals / highlights of the NUSTAR program

- Understanding the 3rd r-process peak by means of comprehensive measurements of masses, lifetimes, neutron branchings, dipole strength, and level structure along the N=126 isotones;
- Equation of State (EoS) of asymmetric matter by means of measuring the dipole polarizability and neutron-skin thicknesses of tin isotopes with N larger than 82 (in combination with the results of the first highlight);
- Exotic hypernuclei with very large N/Z asymmetry.

NUSTAR – Detectors Development

O-TPC

Backward-angle neutron detector

Ion Catcher → LEB-MATS/LASPEC

GADAST prototype measurements at S2

Full integrated S2 fiber tracker

Science Case

- PANDA physics program now focused on:
 - Strangeness: High statistics sample of unexplored territory hyperon $(\Lambda*, \Sigma*, \Xi*, \Omega*)$ spectroscopy
 - Charm(-like):
 X,Y,Z-factory, high statistics allow new approach to
 lineshapes, transitions, nature of the states
 Heavy-light mesons unexplored high spin states, lineshape
 - Nucleon Structure: highest rates at lower q² for G_F, G_M, TDA, WACS, TMD
 - Hypernuclei and nuclear targets:
 Hyperon-potential in nuclei, excited states of ΛΛ-hypernuclei

Strategy of PANDA

- After intense discussion with the scientific community, there is
 - a focusing of the first key experiments
 - a definition of the start setup
 - a proposal for intermediate experiments/activities
- And in addition:
 - Development of dedicated analysis methods at ELSA, MAMI, BESIII, Jlab, COMPASS to ensure a quick start of PANDA.
 - Application of modern PANDA technologies at present and future facilities, e.g. Trackers, Cherenkov (DIRC), EMC, Photon readout, Readout electronics

PANDA - Detector Progress

Detector Layout

4600 straws in 21-27 layers, of which 8 layers skewed at ~3° Tube made of 27 μ m thin Al-mylar, Ø=1cm R_{in} = 150 mm, R_{out} = 420 mm, I=1500 mm Self-supporting straw double layers at ~1 bar overpressure (Ar/CO₂) Readout with ASIC+TDC or FADC

Material Budget

Max. 26 layers, 0.05 % X/X₀ perlayer

Total 1.3% X/X₀
Project Status

3000 Straws produced Readout prototypes and beam tests Ageing tests: up to 1.2 C/cm²

Straw Tube Tracker

Crystals

1st lot of crystals delivered New producer Crytur

Test production in 2016 (~100pc)

APD/Preamp/VPTT

Screening of 30000 APDs ongoing ASIC preamp design finalized VPTT (Forward) characterized

Assembly

Forward-EMC full completion 'til 2018

Backward-EMC prototype-tests successful

Barrel-EMC: alveoles produced, 1st slice in construction

EM Calorimeter

PANDA – Detector Development

Research at GSI continues ...

- 2016: 3 months of beam time
- Technically induced shut-down in 2017
- 2018: restart of the intensity-upgraded UNILAC/SIS18 facility including storage ring ESR and the newly installed Cryring
- 2018 till start of commissioning of SIS100 synchroton about 3 months of beam time per year
 - → FAIR Phase 0 program

Highlights from 2016 Beam Time at GSI

- pushing experimental techniques and instrumentation

Successful commissioning of the Cryring@ESR

Successful proof-of-concept of nuclear astrophysics studies in storage rings using the 124Xe (p,γ) nucleosynthesis reaction

si position

Successful test of novel APPA / SPARC instrumentation

- Tests of CVD diamond detector
 - In vacuum operation without cooling
 - Rate capability up to 10⁷ MIPs/s/mm2
 - Timing resolution (sigma) 90ps
 - Radiation hard material CVD diamond

Intermediate Research Program FAIR Phase 0

Goals

- Forefront research by employing and testing new FAIR detectors
- Exploiting upgraded GSI accelerator facilities
 - ongoing upgrade of SIS18 completed by mid 2018
 - Make use of the Cryring
- Education of young scientists
- Maintain and extend skills and expertise
- Serve national and international user community

FAIR Phase 0 – scientific opportunities

APPA	Facility	Research Activity
SPARC SPARC BIOMAT WDM/HEDgeHOB WDM/HEDgeHOB	ESR-HITRAP- CRYRING M Branch, Z0/ A HHT/PRIOR PHELIX	Strong field QED, atomic collisions, fundamental symmetries, border to nuclear physics Biophysics, heavy ion therapy, Material Science Equation-of-state studies; phase transitions in matter Laser plasma interaction and acceleration
СВМ		
CBM/HADES miniCBM	HADES@SIS18 miniCBM@SIS18	Di-lepton production in pion-induced and HI reactions Test of subsystem plus data acquisition of CBM
NUSTAR		
NUSTAR NUSTAR NUSTAR NUSTAR NUSTAR	FRS FRS-ESR HISPEC/DESPEC R3B@SIS18 SHIP, TASCA	Separator-/spectrometer expt.'s with exotic nuclei Nuclear physics with exotic beams in storage rings In-beam and stopped-beam spectroscopy experiments Reactions with relativistic radioactive beams Physics and chemistry of SHE
PANDA		
PANDA	HADES	Hyperon Dalitz decays with HADES (use of PANDA F-TRK)

Preparatory steps taken

- Beam time plan for 2018 adopted by GSI
 Management Board; draft beam time plan for 2019 in preparation
- List of main possible beam parameters defined
- International Program Advisory Committee is established (Chair: Sydney Gales)
- 1st 'Call for Proposals' for beam time slot 2018/19

General Plan for Accelerator Operations 2018

In 2018, about three months of user beam time for experiments and tests exploiting novel instrumentation that has been developed for FAIR

Status Feb. 2017

1st Call for Proposals

- First 'Call for Proposals' has been announced in April 2017 for beam time in 2018 and 2019 (see G-PAC's webpage www.gsi.de/g-pac or https://www.gsi.de/fileadmin/GFwiss/Call_for_Proposals_2018-19_deadline_prolonged.pdf)
- Deadline of submission of proposals: 19. June 2017
 - → Incoming proposals overbook the "opportunities" by a factor of two to three.
- Meeting of G-PAC on 19.-21. September 2017
- Beam time in second half of 2018 and in 2019.
- Next 'Call for Proposals' and G-PAC meeting planned in 2018 for beam time in 2019 – to allow for few up-to-date developments

FAIR Construction Field

FAIR 2025

