
Guaranteed-Quality Mesh Generation

for Curved Surfaces *

L. Paul Chew

Department of Computer Science

Cornell University

Ithaca, NY 14853

ABSTRACT

For several commonly-used solution techniques for partial

dhlerential equations, the first step is to divide the prob-
lem region into simply-shaped elements, creating a mesh.
We present a technique for creating high-quality triangular
meshes for regions on curved surfaces. This technique is an
extension of previous methods we developed for regions in
the plane. For both flat and curved surfaces, the resulting

meshes are guaranteed to exhibit the following properties:
(1) internal and external boundaries are respected, (2) ele-

ment shapes are guaranteed - all elements are triangles with
angles between 30 and 120 degrees (with the exception of

badly shaped elements that may be required by the speci-
fied boundary), and (3) element density can decontrolled,
producing small elementsin “interesting” areas andlargeel-
ements elsewhere, An additional contribution of this paper

is the development of a practical generalization of Delaunay
triangulation to curved surfaces,

1 INTRODUCTION

This paper includes three main contributions to the subject
of mesh generation:

1. We show that a relatively simple mesh generating tech-
nique, based on earlier work by the author [Che89], can
be used to create meshes in which (1) region bound-
aries are respected (including internal boundaries) and

(2) all triangles are guaranteed to be both well-shaped

and ruell-sized. Well-shaped triangles have angles that
are between 30 and 120 degrees (smaller angles may

appear if small angles appear as part of the boundary).
Well-sized is defined by the user and can mean virtu-

ally anything as long w it can be achieved by shrinking
the triangles. Typically, a triangle might be considered
well-sized if its estimated error is small based on the
user’s intuition or on an earlier, presumably-cruder,

numerical solution.

*This work was supported by the Advanced Research Projects
Agency of the Department of Defense under ONR Contract Noo014

92-J-1989, and by ONR Contract NOO014-92-J-1839, NSF Contract

IRI-9006137, and AFOSR Contract AFOSR-91-0328.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial sdvantage, the ACM copyright notice and the

title of the publication and its dfIte appear, and notioe is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fea

and/or specific permission.

9th Annual Computational Geometry,5/93/CA, USA

W 1993 ACM 0-89791 -583 -619310005 /0274 . ..$1 .!50

2.

3.

We extend this meshing technique to curved surfaces.
Just as in the 2D meshing technique, triangles in the

meshes produced by the curved-surface technique are
guaranteed to respect boundaries and to be both well-

shaped and well-sized. For curved surfaces, a user is

likely to want welLsized to include the criterion that a
triangle is a good approximation to the corresponding
surface.

We develop a practical definition of Delaunay trian-

gulation for curved surfaces. Both the 2D and the
curved-surface techniques are baaed on Delaunay tri-
angulations.

There is a large literature on the subject of mesh gen-
eration with most of the material emanating from the ap
placations community. One good information source for the
interested reader is the recent survey by Bern and Eppstein
[BE92]; th~ paper aleo includes a very good bibliography.

See [BEG90, MS92, MV92, Rup92] for recent work related
to our results.

We assume the reader is familiar with Delaunay trian-

gulations and with the incremental algorithm for produc-

ing them. We use a variation of the Delaunay triangulation

called the constrained Delaunay triangulation (CDT). Bssi-
cally, the CDT, like the Delaunay triangulation, can be buflt
by edge-fllpping, but for the CDT there are certain edges
that cannot be filpped. The CDT is useful for mesh gener-

ation since it respects boundaries as well as having many of
the properties of the Delaunay triangulation. The necessary

background material is contained in, for instance, [BE92].

We develop the 2D meshing algorithm and prove some
of its properties in Section 2. In Section 3 we describe the
curved-surface Delaunay triangulation, which is used in Sec-

tion 4 to create an algorithm for meshing regions on curved

surfaces. The final section discuss practical improvements
to the algorithms and some conclusions.

2 MESHING IN THE PLANE

We azsume that our region-to-be-meshed has boundaries
that consist of line segments (curved boundaries can be han-

dled as well, but complicate the presentation). We use an
implementation of CDT that supports the following opera-
tions:

● Build: given an initial set of sources (edges and ver-

tices), build the CDT for this set.

● Insert: insert the given vertex
date the CDT accordingly.

into the CDT and up

274

Figure 1: A mesh created using a size function to control element density.

●

●

b

Delete: delete the given vertex from the CDT and up-

date the CDT accordingly. (Note: endpoints of source-
edges are never deleted.)

Split: given a source-edge, split it in half by adding a
new vertex and replacing the source edge by two new

edges. In addition, we assume that Split has an option
where the given source edge can be split into thirds

instead of halves.

Travek Given a source vertex s (Part of the CDT)
and a destination vertex d (not necessarily part of
the CDT), determine if s and d can “see” each c,ther
(i.e., determine if the segment from s to d intersects a

source-edge at a non-endpoint). This is implemented

by walking across the CDT from triangle to triangle.

The following information is returned:

– If .s and d can see each other then return the tri-

angle of the CDT that contains d;

– Otherwise return the source-edge that blocks s
from “seeing” d (i.e., the first source edge that is
intersected on the way from s toward d).

During the meshing algorithm, triangles are gradec~ ac-

cording to two criteria: shape and size.

Definition 1 A triangle is well-shaped if all its anglesare
greater than or equal to 30 degrees. A triangle is well-sized

if it satisfies a user-supplied grading function. This function
can use any user- choaev criteria at ail as long as there exists

a value 6 > 0 such that any well-shaped triangle that fits
within a circle of radius 8 would satisfy the grading function.

For example, the user could specify a size function over

the entire problem region; a triangle is well-sized if its cir-

cumradius is less than or equal to the value of the size func-

tion evaluated at the circumventer. Figure 1 shows an exam-
ple of a mesh generated using such a size function. This kind

of function works as long as there is lower bound 8>0 on the
sizes that can appear within the problem region. The user

may want to use a size function derived from. an error anal-
ysis of an earlier, presumably cruder, numerical solution to
the problem. Another possible user-choice for well-sized tri-
angles is to leave interior triangles completely unconstrained,

but to require triangles with boundary edges to have bound-
ary edges smaller than a chosen constant.

There are two kinds of vertices: (1) reqpired vertices:

those that are part of the boundary or those that are specifi-

cally chosen by the user, and (2) circumventer vertices: addi-
tional vertices that are introduced during the meshing algo-

rithm. During the meshing process it is sometimes necessary
to eliminate vertices. Note that only circumventer vertices

can be eliminated; the other vertices must be retained.

To show that the following algorithm does not keep mesh-
ing forever, making smaller and smaller triangles, we show

that no edge introduced ‘by the algorithm will have length
less than h, where h is defined as the minimum among (1)

the smallest line-of-sight clistance between two nonintersect-

ing sources (vertices or edges) in the initial set of sources
(note that objects on opposite sides of a source edge cannot

“see” each other aud are thus infinitely far apart), (2) one

half the length of the smallest source edge that appears in
the initial set of sources, and (3) the value $ associated with

the user-supplied size grading function (by definition, 6 is
such that any well-shaped triangle that fits within a circle

275

of radius 6 is also a well-sized triangle). The quantity h is
used in the algorithm only in step 6.

To simplify our presentation, we assume that our initial
problem region contains no angles that are less than 60 de-
grees. In fact, angles down to 30 degrees can be handled
without significant modification to the algorithm. Angles

less than 30 degrees can be removed from the problem re-

gion and triangulated in a postprocessing step; this type of

“lopping off” technique is used in [BEG90, MS92, Rup92]

ALGORITHM A

1.

2.

3.

4.

5.

6.

Build the CDT for the initial set of sources (edges and
vertices).

Grade any triangles that are currently ungraded. A
triangle passes only if it is both (1) well-shaped: its
smallest angle is greater than 30 degrees, and (2) well-

sized: it satisfies a user-defined grading function as
described in Definition 1.

If all triangles pass then Halt. Otherwise choose the
largest triangle that fails (call it A) and determine its

circumventer (call it c).

Travel across the CDT from any vertex of A toward
c until we either run into a source-edge or find the
triangle containing c.

If we found the triangle containing c then Insert c into
the CDT. Go to step 2.

If we ran into a source-edge then Split the edge and up-
date the CDT. This is always a one-half split unless the

length of the edge is between 2fih and 4h, in which
case we use a one-third split. Let / be the length of
the new edges and consider the one or two new ver-
tices produced by the Split operation. Delete each

circumventer-vertex of the CDT that is closer than 1
(line-of-sight distance: an intervening source edge im-

plies infinite distance) to a new vertex. Go to step
2.

In step 3, “largest triangle” means the triangle with the

largest circumcircle. We could actually choose any failing tri-

angle rather than the largest and the algorithm will produce

a reasonable mesh. It might even take a bit less time, since

choosing the largest requires maintaining a priority queue of
some sort. However, experience has shown that the resulting

mesh is more pleasing to the eye if larger triangles are done
first. It would be useful to discover how well “pleasing to
the eye” correlates with “better for finite element analysis.”

It does not matter which triangle vertex we start at in

Step 4, since the circumventer we are looking for is the center
of an empty circle. (Note: by definition, each triangle of the

CDT has a circumcircle that is emptg in the sense that no

other vertices can be “seen” from the interior of the triangle.)

Thus, during the Travel operation, we cross only edges whose

endpoints are outside the circumcircle.
The one-third Split in Step 6 is used to significantly sim-

plify the proof of Lemma 2. A more complicated proof can
be used to show that such one-third splits are actually un-
necessary (although some smaller edges might be produced).
Also in Step 6, nearby vertices are deleted in order to avoid
introducing new edges that are short. This too is important
in the proof of Lemma 2.

Lemma 2 At Step ,2 of A/gorithm A, no two vertices ever
have line-of-sight distance less than h.

small region
/

Figure 2: When e has length less than fib, the triangle’s
vertex must lie within this small region.

Proo~: The proof is by induction. Certainly the lemma
holds initially. We assume the lemma holds at cycle i and
show that the lemma must continue to hold for the next
cycle. We need to check steps 5 and 6, the only steps where
new vertices are int reduced, to see that the lemma continues

to hold.

In Step 5, the circumventer of a failing triangle A is in-
serted into the CDT. Note that by definition of the CDT,

A’s circumcircle must be empty; thus, the new vertex is no
closer to any other vertex than the radius of this circumcir-
cle. We claim that this radius is greater than or equal to h.
To see thw, note that triangle A must have failed during the
grading process. There are 2 ways for a triangle to fail:

1.

2.

Triangle A has a small angle. By simple geometry, a
small angle has a small side opposite it; in fact, an

angle is less than 30 degrees if the opposite side has
length less than the circumcircle radius. Thus, when

there is a small angle, the radius is larger than the

length of some edge that already exists in the CDT,

which by the induction hypothesis has length greater

than or equal to h.

Triamzle A is not well-sized accordirm to the user’s

size-g~ading function. To produce an-edge of length
less than h, the radius of A’s circumcircle must be
less than h. But when the circumcircle is less than h,
A is automatically well-sized due to the definition of
well-sized and the way h was chosen.

In Step 6, a source-edge is split into either two or three

pieces and nearby vertices are eliminated. A source edge e
is split only when there is a triangle on one side of e with

the triangle’s circumventer on the other side of e. Assume

that splitting e produces new edges that are too small. Let
d be the length of e. Length d must be between h (by the
induction hypothesis) and 2h. We claim that if d is less than

fih then no splitting can occur.

Too see th~, observe that, with e so short, the locations
of the vertices of triangle A, the triangle that caused the
split, are very constrained. The endpoints of e are possible
vertices of A. Any other vertex (or vertices) of A must

(1) lie in a region within or on the circle that has e. as its
diameter (this must be true to make the circumventer fall on

the correct side of e) and (2) must lie outside circles of radius
h about each endpoint of e by the induction hypothesis.

276

The resulting small region (see Figure 2) is too small to fit

more than single vertex; more vertices in the region would

contradict the induction hypothesis. Thus, the vertices of A
are the endpoints of e plus an additional vertex u that lies

within the small region described above. This small region is
so small, in fact, that all the possible triangles that use v and

the endpoints of e are well-shaped and have circumcircles

with radius less than h; thus, by the definition of well-sized,

the triangles are also welI-sized. Any such triangle would
pass in our grading step and could not possibly lead to edge

split ting.
At this point, we have shown that our source-edge e, that

is assumed to split into edges that are too small, must have
length between fih and 2h. We refer to an edge with length

in this range as a bad edge. We claim that bad edges can

never occur. To see this, we first note that, by the way h

was defined, we initially start with all edges having length

greater than or equal to 2h. Thus, a bad edge appears only

if it is the result of an earlier Split operation, either a ‘half-
split or a third-split. To be the result of a half-split, the
unsplit edge must have had length between 2fih and 4h,
but edges with length in this range are never split in halfi
such edges are split into thirds, producing edges with lengths
in the range 1.1547h and ~h (outside the bad range and still
of length greater than h). To be the result of a third-split,

the unsplit edge must have had length between 3fih and

6h, but edges with lengths in this range are never split into

thirds. Thus, bad edges never occur, so new source-edges

can never have length less than h.
We still need to show that the new splitting-vertex is not

too close to other vertices ofour mesh. This is taken care of
by the the elimination of nearby vertices that is done in. the

remainder of step 6. Our definition of h and our restriction
that no angles less than 60 degrees occur in our original
region ensure that required vertices cannot be too close. ❑

This lemma is just what we need to show that Algorithm
A halts. Note that each cycle of the algorithm introduces ei-
ther a new vertex along the boundary (which may eliminate
some vertices in the interior) or a new vertex in the interior.

The boundary has finite length and adjacent vertices on the
boundary can be no closer than h, so points are added to

the boundarv at most a finite number of times. The interior.
of the region has finite area and, since vertices are no closer
than h, there are only finitely many vertices that can be fit
into the interior of the region. Thus, we have the following

theorem.

Theorem 3 Algorithm A halts.

Since Algorithm A halts, all the triangles of the mesh it
produces must be triangles that pass during the grading step.

Thus meshes produced by Algorithm A have the following
properties:

● Boundaries and vertices specified by the user are re-
spected. Triangles do not cross boundaries. IJser-

specified vertices are never eliminated.

● All triangles have angles greater than 30 degrees.

(Smaller angles are required if we allow boundary an-
gles less than 30 degrees.)

● The user can control triangle size. Any kind of size

criterion can be chosen as long as it can be achi,eved
by making triangles smaller.

It would be nice if we could show an additional de-
sirable property: that the number of triangles produced

is, in some sense, optimal. For variable-density mesh-

ing, all of the optimality results of which we are aware

[BEG90, MS92, MV92, Rup92] prove their resulting mesh
optimal within a constant factor in the sense that the num-

ber of triangles they produce is within a constant fac-
tor of the number of triangles in the best possible mesh

that achieves the same triangle-quality. Unfortunately, the

constant-factors in the proofs are extremely IIarge; thus, the
optimality results are not very helpful in terms of choosing
which algorithm produces the smallest number of triangles

in practice. As in Ruppert’s work [Rup92], ,Algorithm A is
derived from the techniques presented in [Che89]; thus, an
optimality result for Algorithm A (or a slightly modified ver-
sion of Algorithm A) can probably be derivecl using some of

Ruppert’s techniques. In practice, it appears that Algorithm

A does not produce many more triangles than those neces-

sary to achieve the 30 degree bound and reach the user’s size
demands.

3 CIRCLES ON CURVED SURFACES

We wish to extend Algorithm A to deal with meshes on

curved surfaces. Algorithm A used two bazic ideaz to create
a mesh: (1) the mesh is a Delaunay triangulation and (2)
new vertices should be circumventers of Delaunay triangles.

To make these ideas work for curved surfaces we have to de-

termine reasonable definitions for a Detaunay triangulation

on a curved surface and for the circumventer of a trianzle

on a curved surface. Both of these things come down”to

determining what is meant by a circle on a curved surface.

One possible definition for a circle, perhaps the most
obvious such definition. is to use geodesic distance alorw the

surface. Under this plan, a circ~e about a given cen~er is
the set of points on the surface that are equidistant (taking
the shortest route along the surface) from th~e center. This
has two major disadvantages: (1) for most surfaces, it is very

dHficult to calculate geodesic distances and (2) odd behaviors
are possible (for inst ante, consider a circle-center on the side
of a very steep hill - the circle can reach all the way around

the hill, intersecting itself, without including the top of the
hill).

‘It does not seem possible to completely eliminate this

kind of odd behavior, but we can at least attack the first

difficulty by using a different definition of circle.

Definition 4 Given three vertices on a curusd surface, con-

sider the infinite set of spheres through the three vertices.

The centers of all the spheres lie on a single line. We choose
the sphere whose center is on the surface and define the cir-
cumcircle of the thee vertices to be the set ~Yfpoints where

this sphere intersects the surface.

This definition has some advantages:

● It is easy to determine if a given point on the surface

is inside or outside of a given circumcircle – we simply
calculate distances in 3-sDace. The oDeration Point-in-

Circumcircle is a fundamental oper~tion for building
Delaunay triangulations.

● A circumventer is always a point that is on the curved

surface. This property is important since the vertices
of a curved-surface mesh should lie up,on the surface
and, in our meshing algorithm, new vertices are always
circumventers.

● Finding a circumventer is basically equivalent to the

operation Intersect-.Line-with-Surface. This operation

277

triangle abc that has its center on our curved surface. Call

b

Figure 3: In a standard 2D Delaunay triangulation, circum-

circles are consistent.

is available for all reasonable surface representation
systems. (Unfortunately, this operation, although al-

ways available, is not necessarily an easy operation.

For instance, when a surface is represented by para-

metric patches, intersecting the surface with a line is
likely to require the use of an iterative method.)

This definition of circumcircle stiU has some ditliculties.
In particular, the line on which the sphere-centers lie may

intersect the surface more than once or it may not intersect
the surface at all. We claim that for triangulations that are

reasonable – reasonable in the sense that they are somewhat
close to approximating their curved surface – these difficul-

ties either do not occur or can be easily resolved. Thus, this
definition of circumcircle is useful if we have some way of

creating a relatively crude, initial triangulation. This can

be done by, for instance, intersecting the surface with a

small-enough grid, or, in the case of surfaces represented
by parametric patches, creating an initial triangulation by
triangulating in the parameter space.

At this point, we still need to show that the definition of
circumcircle that we have suggested is an appropriate def-

inition for building Delaunay triangulations. In particular,

we need to prove a property that usually remains unstated
for the regular 2D Delaunay triangulation: we need to show
that adjacent triangles have consistentcircumcircles. That
is, given edge bc with adj scent triangles abc and bed, we need
to show that d is within the circumcircle of abc iff a is within
the circumcircle of bed. In other words, we need to show that
when we check the empty-circle property for a prospective
Delaunay edge, we get the same answer regardless of which
side we start from.

As an example, consider the 2D version of this problem
(see Figure 3). Let C be the circumcircle of triangle abc

and suppose d is outside of C. Now move C toward d while
keeping b and c on its boundary (this will require that C

change size). By the time C touches d it is clear that a is
no longer within C; thus, the circumcircle of bcd does not
contain a and the two triangles have consistent circumcircles.

For our 3D version, we let S represent the sphere through

the s~here’s center p. Suppose d is outside of S. Now move

p, the center of S, along the surface toward d while keeping b
and con the boundary of S. Consider a plane through bc and
perpendicular to the motion of the center. This plane cuts
S into two pieces: on one side the sphere grows as the the
center moves; on the other side the sphere shrinks. We need

to ensure that (1) one side only shrinks and the other side
only grows and (2) a is always on the side of the cutting plane
where the sphere is shrinking. Both of these requirements

can be met if we constrain the surface so that it does not
bend too much in the region of our moving sphere. Thus,

we have the following lemma.

Lemma 5 Given a surface and given vertices a, b, c, and

d on the surface where triangles abc, bed, abd, and acd all
have well-defined circumventers, if the surface normals on

the portion of the surface that is within the union o,f the
circumcircles vary by less than ~ then the triangles have
consistent circumcircles.

Assuming we can start with an initial, relatively crude
triangulation with the property that the surface does not
bend too much near any pair of adjacent triangles, we can

build something that can reasonably be called a Delaunay
triangulation. Once we have a Delaunay triangulation, we

also have a CDT since, intuitively, a CDT is a Delaunay
triangulation in which certain edges cannot be flipped.

4 THE CURVED-SURFACE MESHING
ALGORITHM

Just as in Algorithm A, triangles are graded according to
two criteria: shape and size. Triangles are well-shaped if
angles are greater than or equal to 30 degrees. It is impor-

tant to note that our goal is to make meshes with triangles
that are well-shaped as triangles in 3-space; thus, angles are

measured in the plane of the triangle’s vertices. Triangles
are well-sized if they paas a user-defined grading function,

where the function is such that a small-enough, well-shaped
triangle is always well-sized (see definition 1). For curved-

surface meshing, it is expected that the user’s size-grading

function will take into account some measure of how well a
given triangle matches the curved surface. ThE type of cri-
terion is easily seen to satisfy Definition 1 as long as surface

curvature is bounded away from infinity.

ALGORITHM B: Meshing for a region on a curved sur-

face.

1.

2.

3.

4.

Build an initial crude triangulation with the property
that the surface normals in a region around each adja-
cent pair of triangles vary by less than ~. Use edge flips
to make the initial triangulation into a curved-surface
CDT. Some subdivision of triangles may be necessary.

Grade any triangles that are currently ungraded. A
triangle passes only if it is both well-shaped and well-
sized.

If all triangles pass then Halt. Otherwise choose the
largest triangle that fails (call it A) and determine its

surface-circumventer (call it c).

Travel across the CDT from any vertex of A toward
c (any path wiIl work as long as we stay within the
circumcircle of A) until we either run into a source-
edge or find the triangle containing c.

278

Figure 4: A curved surface mesh of a portion of a wing.

5. If we found the triangle containing c then Insert c into

the CDT. Go to step 2.

6. If we ran into a source-edge then Split the edge and

update the CDT. As in the 2D version of this algor-
ithm, edges with lengths within a particular range
can be split in thirds to simplify some proofs. In prac-
tice, splitting in half appears to always work. Note
that, since boundaries may be curved, splitting in lhalf

here means finding a point on the boundary (and on
the surface) that is equidistant from each endpoint.

Let 1 be the (straight-line) length of the new edges

and consider the one or two new vertices produced by
the Split operation. Delete each circumventer-vertex
of the CDT that is closer than 1 (line-of-sight distance:

an intervening source edge implies infinite distance) to
a new vertex. Go to step 2.

Asinthe 2Dcaae, ifthe algorithm halts then the result-
ing mesh consists entirely of triangles with desirable prop
erties. For our curved surface version these properties can
include that each triangle is a good approximation to the

surface. See Figure 4 for an example surface mesh.
To show the algorithm halts, we need to show that very-

short edges are not produced. In a sense, this is easier for
curved surface meshes than for flat meshes, since the circum-

venter of a triangle is closest to the triangle’s vertices for flat

circumventers (i.e., when the center of the sphere is in the

same plane as the vertices); a curved-surface circumventer
is usually farther away from the vertices. In the same way,

splitting a curved boundary produces a “midpoint” that is
farther from the endpoints than the midpoint of a straig,ht-
Iine boundary.

Boundary splitting can be a bit complicated, since the

new boundary may change the status of some nearby ver-
tices, moving them from inside the region to outside the re-

gion or vice versa. This is resolved by extending the surfa,ce-
normal requirement to boundary-normals (vectors that are

normal to the boundary and tangent to the surface). If the
normals along a boundary do not vary by more than ~ t)hen
any nearby vertices that change status are close enough that
they are eliminated later in the splitting step.

5 SOME PRACTICAL IMPROVEMENTS
AND CONCLUSIONS

Our meshing technique is heavily baaed on our ability to
maintain a Delaunay triangulation, flipping edges as neces-

sary to recover Delaunay properties after the insertion c}f a
vertex. This entails checking adjacent triangles to see if the

opposite vertex of one triangle is within the circumcircle of
the other. Even though we have created reasonable defini-
tions of circumcircle and circumventer, it is still nontrivial
to use these definitions in practice, since finding them may
require iterative techniques (e.g., Newton’s Method). Fortu-
nately, experiment has shown our meshing technique to be
extremely robust in the sense that, in practice, it appears
we can

Ask for better-shaped triangles. Angles between 35

and 100 degrees have caused no problems except in

pathological cases specifically constructed to cause d~f-

ficulties.

Use approximate Delaunay triangulations. Instead
of empty circumcircles, we can make-dc~ with nearly-
empty circumcircles - nearly-empty in the sense that
any vertices inside a nearly-empty circle are close to

the circle’s boundary.

Use approximate circumventers. If we use “centers”
that are within distance fR of the true centers, where
R is the circle’s radius and ~ is a fixedl fraction less
than 1, then we can modify the meshing /algorithm and
prove that all angles in the resulting mesh are greater

than arcsin ~. For ~ = 0.5 this is about 14.5 de-

grees. In practice, it appears that the angle bound of
30 degrees can be maintained even whem~ approximate

circumventers are used. The use of approximate cir-
cumventers is particularly effective at speeding up the

generation of meshes for curved surfaces.

We have developed 2D and curved-surface meshing tech-
niques and shown that these techniques create meshes with

the following properties:

Boundaries and vertices specified by the user are re-

spected. Triangles do not cross boundaries. User-
specified vertices are never eliminated.

All triangles have angles greater than 30 degrees.
(Smaller angles are required if we allow boundary an-
gles less than 30 degrees.) Note that a triangle’s angles
are always measured in the plane of the triangle.

‘I’he user can control triangle size. Any kind of size
criterion can be chosen as iong ss it ca~~ be achieved
by making triangles smaller. Typical size criteria are
based on error estimates (either intuitive or calculated)

and on surface curvature.

The curved-surface meshing aJgorithm is based on our de-
velopment of a curved-surface Delaunay triangulation. Such
a Delaunay triangulation is well-defined only if the given

279

surface is smooth (surface normals vary by less than .;) in
a region about each triangle. Fortunately, this restmction
is not a severe handicap – simple techniques can be used
to generate a crude triangulation that is sufficiently dense

for Delaunay operations (and our meshing technique) to be
valid. For examples that we have tried, the initial crude tri-

angulation typically consists of two to a few dozen triangles.

REFERENCES

[Rup92]

[BE92]

[BEG90]

[Che89]

[MV92]

[MS92]

J. Ruppert, A New and Simple Algorithm for
Quality .2-Dimensional Mesh Generation, Re-
port UCB/CSD 92/694, University of California,
Berkeley, 1992.

M. Bern and D. Eppstein, Mesh Generation and
Optimal Triangulation, Computing in Euclidean
Geometry, edited by F. K. Hwang and D.-Z. Du,
World Scientific, 1992, to appear. Also appears

as Tech Report CSL-92-1, Xerox PARC, March

1992.

M. Bern, D. Eppstein, and J. R. Gilbert, Prov-
ably Good Mesh Generation, Proceedings of the
31st IEEE Symposium on the Foundations of
Computer Science, 231-241, 1990. To appear in
JCSS.

L. P. Chew, Guaranteed-Quality Triangular

Meshes, Department of Computer Science Tech
Report TR 89-983, Cornell University, 1989.

S. A. Mitchell and S. A. Vavasis, Quality Mesh
Generation in Three Dimensions, Proceedings of

the Eighth Annual Symposium on Computational
Geometry, 212-221, ACM Press, 1992. Full ver-
sion in Department of Computer Science Tech

Report TR 92-1267, Cornell University, 1992.

E. A. Melissaratos and D. L. Souvaine, Coping

with Inconsistencies: A New Approach to Pro-
duce Quality Triangulations of Polygons with

Holes, Proceedings of the Eighth Annuai Sym-
posium on Computational Geometry, 202-211,

ACM Press, 1992.

280

