
Chapter 14

GUI and Event-Driven
Programming

CS 180
Prof. Sunil Prabhakar
Department of Computer Science
Purdue University

Objectives

 This week we will discuss GUI development
 Define a subclass of JFrame to implement a

customized frame window.
 Write event-driven programs
 Arrange GUI objects on a window using layout

managers and nested panels
 Write GUI application programs that use

 JButton, JLabel, ImageIcon, JTextField, JTextArea,
JCheckBox, JRadioButton, JComboBox, JList, and JSlider
objects from the javax.swing package

 menus
 mouse events

3

Graphical User Interface

 In Java, GUI-based programs are
implemented by using classes from the
javax.swing and java.awt packages.

 The Swing classes provide greater
compatibility across different operating
systems. They are fully implemented in
Java, and behave the same on different
operating systems.

4

Sample GUI Objects

 Various GUI objects from the javax.swing
package.

5

Subclassing JFrame

 To create a customized frame window, we
define a subclass of the JFrame class.

 The JFrame class contains rudimentary
functionalities to support features found in
any frame window.

6

Creating a Plain JFrame

import javax.swing.*;

class Ch7DefaultJFrame {

 public static void main(String[] args) {

 JFrame defaultJFrame;

 defaultJFrame = new JFrame();

 defaultJFrame.setVisible(true);

 }

}

7

Creating a Subclass of JFrame

 To define a subclass of another class, we declare
the subclass with the reserved word extends.

 Subclasses are able to access the methods and
some of the data members of super classes.

import javax.swing.*;

class Ch7JFrameSubclass1 extends JFrame {

 . . .

}

Customizing Ch14JFrameSubclass1

An instance of Ch14JFrameSubclass1 will
have the following default characteristics:
 The title is set to My First Subclass.
 The program terminates when the close box is clicked.
 The size of the frame is 300 pixels wide by 200 pixels

high.
 The frame is positioned at screen coordinate (150, 250).

These properties are set inside the default
constructor.

Source File: Ch14JFrameSubclass1.java

9

Displaying Ch14JFrameSubclass1
 Here's how a Ch14JFrameSubclass1 frame

window will appear on the screen.

10

Some GUI classes

 Containers
 GUI components that hold other GUI

components. E.g. frames, panels
 Frame

 A special container corresponding to a
window not contained in another window.
E.g. JFrame

 Jpanel
 An invisible container that can be nested.

 Japplet

11

Other GUI classes

 Graphics
 Allows drawing of circles, strings, etc.

 Font
 For selecting fonts for text

 Dimension, Point
 For representing sizes and locations

 Color
 For selecting colors of GUI components

 And many more …

12

Essentials of a GUI

 We begin with a frame or an applet.
 We will use JFrame as our starting point.
 We can change the properties of the frame by

calling several methods for it.
 We cannot add components to the Jframe

directly. We have to add them to its content
Pane.

 We can add (and remove) components from
this pane. These can be buttons, text fields,
labels, lists, scroll bars, …. , and other panes.

 We can also draw to the Graphics object of the

13

The Content Pane of a Frame
 The content pane is where we put GUI objects

such as buttons, labels, scroll bars, and others.
 We access the content pane by calling the

frame’s getContentPane method.

This gray area is the
content pane of this
frame.

14

Changing the Background Color
 Here's how we can change the background color

of a content pane to blue:
Container contentPane = getContentPane();

contentPane.setBackground(Color.BLUE);

Source File:
Ch14JFrameSubclass2
.java

15

Positioning GUI Objects on a Frame

There are two ways to place GUI objects on
the content pane of a frame:
Use a layout manager

 FlowLayout
 BorderLayout
 GridLayout

Use absolute positioning
 null layout manager
 Not used often (not as robust)

16

Placing a Button

 A JButton object is a GUI component that
represents a pushbutton.

 Here's an example of how we place a button with
FlowLayout.

contentPane.setLayout(

 new FlowLayout());

okButton

 = new JButton("OK");

cancelButton

 = new JButton("CANCEL");

contentPane.add(okButton);

contentPane.add(cancelButton);

17

Control flow with GUI

 So far we have been executing a single line of
control throughout the program.

 With GUI components, flow control is managed
by the UI components
 E.g. when a button gets pressed, where is the control?

What piece of code should get executed?
 In Java flow control with GUIs is handled using

events.
 Think of this as an infinite loop that is always

watching each GUI component.

18

Example

public static void main(String[] arg){

 Ch14JFrameSubclass1 myFrame;

 myFrame = new Ch14JFrameSubclass1();

 myFrame.setVisible(true);

}

 We simply create the frame object and make it visible.
 The program keeps on running until we close the window.
 What is the control flow?
 Essentially, the control is passed to a method that

watches the GUI, waiting for events to take place.
 For each event, it may invoke a method.

19

Event Handling

 An action involving a GUI object, such as clicking
a button, is called an event.

 The mechanism to process events is called event
handling.

 The event-handling model of Java is based on
the concept known as the delegation-based event
model.

 With this model, event handling is implemented
by two types of objects:
 event source objects
 event listener objects

20

Event Source Objects

 An event source is a GUI object where an event
occurs. We say an event source generates
events.

 Buttons, text boxes, list boxes, and menus are
common event sources in GUI-based
applications.

 Although possible, we do not, under normal
circumstances, define our own event sources
when writing GUI-based applications.

21

Event Listener Objects

 An event listener object is an object that
includes a method that gets executed in
response to the generated events.

 A listener must be associated, or
registered, to a source, so it can be
notified when the source generates
events.

22

Connecting Source and Listener

 :JButton :Handler

event source event listener

notify

register

A listener must be registered to a event source. Once
registered, it will get notified when the event source
generates events.

23

Registration and notification are specific to event
types

 Mouse listener handles mouse events
 Item listener handles item selection events
 and so forth

Among the different types of events, the action
event is the most common.
 Clicking on a button generates an action event
 Selecting a menu item generates an action event
 and so forth

Action events are generated by action event
sources and handled by action event listeners.

Event Types

24

Handling Action Events

 :JButton :ButtonHandler

action event
source

action event
listener

actionPerformed

addActionListener

JButton button = new JButton("OK");

ButtonHandler handler = new ButtonHandler();

button.addActionListener(handler);

25

Being a listener
 What does it mean to be a listener?
 Being a listener implies that a special

method of the listener object will be called
when an event occurs.

 There are restrictions on the type of method
(and parameters) that will be called for each
event type.

 How do we ensure that the correct type of
method has been defined. I.e. how do we
enforce the signature of methods in user-
defined classes?

 In Java we use interfaces for this purpose.

26

The Java Interface
 A Java interface includes only constants and

abstract methods.
 An abstract method has only the method

header, or prototype. There is no method
body. You cannot create an instance of a
Java interface.

 A Java interface specifies a behavior.
 A class implements an interface by providing

the method body to the abstract methods
stated in the interface.

 Any class can implement the interface.

27

ActionListener Interface
 When we call the addActionListener method of an

event source, we must pass an instance of a class
that implements the ActionListener interface.

 The ActionListener interface includes one method
named actionPerformed.

 A class that implements the ActionListener interface
must therefore provide the method body of
actionPerformed.

 Since actionPerformed is the method that will be
called when an action event is generated, this is the
place where we add code we want to be executed in
response to the generated events.

28

The ButtonHandler Class

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class ButtonHandler implements ActionListener {

 . . .

 public void actionPerformed(ActionEvent event) {

 JButton clickedButton = (JButton) event.getSource();

 JRootPane rootPane = clickedButton.getRootPane();

 Frame frame = (JFrame) rootPane.getParent();

 frame.setTitle("You clicked " + clickedButton.getText());

 }

}

29

Container as Event Listener
 Instead of defining a separate event listener such

as ButtonHandler, it is much more common to
have an object that contains the event sources be
a listener.
 Example: We make this frame a listener of the action

events of the buttons it contains.

event source

event listener

30

Ch14JButtonFrameHandler

. . .

class Ch14JButtonFrameHandler extends JFrame

 implements ActionListener {

 . . .

 public void actionPerformed(ActionEvent event) {

 JButton clickedButton
 = (JButton) event.getSource();

 String buttonText = clickedButton.getText();

 setTitle("You clicked " + buttonText);

 }

}

31

Handling Action Events

 :JButton :ButtonHandler

action event
source

action event
listener

actionPerformed (ActionEvent e)

addActionListener

 The corresponding method of the listener is
called when an action event takes place.

32

GUI Classes for Handling Text

 The Swing GUI classes JLabel,
JTextField, and JTextArea deal with text.

 A JLabel object displays uneditable text (or
image).

 A JTextField object allows the user to enter a
single line of text.

 A JTextArea object allows the user to enter
multiple lines of text. It can also be used for
displaying multiple lines of uneditable text.

33

JTextField

 We use a JTextField object to accept a single line
to text from a user. An action event is generated
when the user presses the ENTER key.

 The getText method of JTextField is used to
retrieve the text that the user entered.

JTextField input = new JTextField();

input.addActionListener(eventListener);

contentPane.add(input);

34

JLabel

 We use a JLabel object to display a label.
 A label can be a text or an image.
 When creating an image label, we pass

ImageIcon object instead of a string.

JLabel textLabel = new JLabel("Please enter your name");

contentPane.add(textLabel);

JLabel imgLabel = new JLabel(new ImageIcon("cat.gif"));

contentPane.add(imgLabel);

35

Ch14TextFrame2

JLabel
(with an image)

JLabel
(with a text)

JTextField

36

JTextArea
 We use a JTextArea object to display or allow the

user to enter multiple lines of text.
 The setText method assigns the text to a

JTextArea, replacing the current content.
 The append method appends the text to the

current text.

JTextArea textArea

 = new JTextArea();

. . .

textArea.setText("Hello\n");

textArea.append("the lost ");

textArea.append("world");

Hello
the lost world

JTextArea

37

Ch14TextFrame3

 The state of a Ch14TextFrame3 window
after six words are entered.

38

Adding Scroll Bars to JTextArea

 By default a JTextArea does not have any
scroll bars. To add scroll bars, we place a
JTextArea in a JScrollPane object.

JTextArea textArea = new JTextArea();

. . .

JScrollPane scrollText = new JScrollPane(textArea);

. . .

contentPane.add(scrollText);

39

Ch14TextFrame3 with Scroll Bars
 A sample Ch14TextFrame3 window when a

JScrollPane is used.

40

Layout Managers

 The layout manager determines how the GUI
components are added to the container (such as
the content pane of a frame)

 Among the many different layout managers, the
common ones are
 FlowLayout (see Ch14FlowLayoutSample.java)
 BorderLayout (see Ch14BorderLayoutSample.java)
 GridLayout (see Ch14GridLayoutSample.java)

41

FlowLayout

 In using this layout, GUI components are placed
in left-to-right order.
 When the component does not fit on the same line,

left-to-right placement continues on the next line.
 FlowLayout(int align, int hGap, int vGap);
 Align constants: FlowLayout.CENTER (RIGHT, LEFT).

 As a default, components on each line are
centered.

 When the frame containing the component is
resized, the placement of components is adjusted
accordingly.

42

FlowLayout Sample

 This shows
the placement
of five buttons
by using
FlowLayout.

43

BorderLayout

 This layout manager divides the container
into five regions: center, north, south,
east, and west.

 The north and south regions expand or
shrink in height only

 The east and west regions expand or
shrink in width only

 The center region expands or shrinks on
both height and width.

 Not all regions have to be occupied.

44

BorderLayout Sample

45

GridLayout

 This layout manager places GUI
components on equal-size N by M grids.

 Components are placed in top-to-bottom,
left-to-right order.

 The number of rows and columns remains
the same after the frame is resized, but the
width and height of each region will
change.

46

GridLayout Sample

47

Nesting Panels

 It is possible, but very difficult, to place all GUI
components on a single JPanel or other types
of containers.

 A better approach is to use multiple panels,
placing panels inside other panels.

 To illustrate this technique, we will create two
sample frames that contain nested panels.

 Ch14NestedPanels1.java provides the user
interface for playing Tic Tac Toe.

 Ch14NestedPanels2.java provides the user
interface for playing HiLo.

48

Other Common GUI Components

 JCheckBox
 see Ch14JCheckBoxSample1.java and

Ch14JCheckBoxSample2.java
 JRadioButton

 see Ch14JRadioButtonSample.java
 JComboBox

 see Ch14JComboBoxSample.java
 JList

 see Ch14JListSample.java
 JSlider

 see Ch14JSliderSample.java

49

Menus

 The javax.swing package contains three menu-
related classes: JMenuBar, JMenu, and
JMenuItem.

 JMenuBar is a bar where the menus are placed.
There is one menu bar per frame.

 JMenu (such as File or Edit) is a group of menu
choices. JMenuBar may include many JMenu
objects.

 JMenuItem (such as Copy, Cut, or Paste) is an
individual menu choice in a JMenu object.

 Only the JMenuItem objects generate events.

50

Menu Components
Edit View Help

JMenuBar Edit View HelpFile

JMenu

JMenuItem

separator

51

Sequence for Creating Menus

1. Create a JMenuBar object and attach it to
a frame.

2. Create a JMenu object.
3. Create JMenuItem objects and add them

to the JMenu object.
4. Attach the JMenu object to the JMenuBar

object.

52

Handling Mouse Events
 Mouse events include such user interactions as

 moving the mouse
 dragging the mouse (moving the mouse while the

mouse button is being pressed)
 clicking the mouse buttons.

 The MouseListener interface handles mouse button
events:
 mouseClicked, mouseEntered, mouseExited,

mousePressed, and mouseReleased
 The MouseMotionListener interface handles mouse

movement
 mouseDragged and mouseMoved.

 See Ch14TrackMouseFrame and Ch14SketchPad

