
GUI Scripting with Tcl/Tk

Despite the emergence of new graphical toolkits like GTK and Qt, the combination of Tcl/Tk is still the 

tool of choice for many script writers.

Although many Linux developers are only now discovering the combination of a 

scripting language and a Graphical User Interface (GUI) toolkit, this sort of 

development environment is not new. The largely unsung forerunner to projects like 

PyQt and pyGTK is Tcl/Tk, the first footprints of which can be traced back to before 

Linux was even created. Supported by an enthusiastic community, Tcl/Tk has been 

quietly and efficiently providing cross platform GUI scripting to Unix, Windows and 

Mac developers for many years.

The language itself is currently up to version 8.4.4.0, and the Tcl/Tk application 

development tool of choice, Visual Tcl, has recently been updated to version 1.6 after 

2 years of development. This article looks at the language, toolkit and Visual Tcl, and 

shows how they can be used to produce a neat solution to a real requirement.

An Overview of Tcl/Tk

Although somewhat trampled in the stampede script writers made towards Perl when 

a scripting language was required to drive the emerging Internet, Tcl is still a technical 

match for Perl, Python or any other comparable language. Often described as “the 

best kept secret of the Internet”, it is a free (in all the best senses of the word), full 

featured language driven by a byte code compiler which produces performance on a 

par with any of its peers. It is used in all the places other scripting languages are used: 

system administration, task automation, server back ends, and, as we shall shortly see, 

application development.

As a programming language, Tcl is exceptionally easy to learn. In contrast to the 

complicated feature sets and syntaxes of Python and Perl, Tcl is procedural in nature, 

and very straightforward. The entire syntax is described in exactly 11 rules, from 

which the whole language is built. Ironically, it’s this simplicity which sometimes 

confuses people who are new to Tcl, but, no, really, it is that simple! An experienced 

programmer can learn to read Tcl scripts in 10 minutes, and write them inside an hour. 

A beginner doesn’t take much longer.

Documentation is top rate, coming in the form of comprehensive, and very well 

written man pages. A complete HTML package of the documentation is also available. 



If man pages are a little intimidating for the new user, a decent selection of books 

exist for Tcl/Tk, the pick of which probably Brent Welch’s recently updated Practical 

Programming in Tcl and Tk from Prentice Hall PTR. Also worth a mention is the 

Tcler’s Wiki, which is one of the largest and best supported wikis anywhere on the 

Internet.

Tcl philosophy centers on one idea: it’s an extendable language. Most languages allow 

a developer to write functions and procedures, but Tcl goes much further than that. Tcl 

allows developers to extend the entire language with new commands and 

functionality, up to and including adding fundamental language structures such as 

object orientation. The Tk toolkit is actually just another optional extension to the Tcl 

language which happens to provide a whole set of Tcl commands to create, drive and 

control GUI widgets. Like dozens of other extensions, Tk has long been included in 

the Tcl core distribution and is now seen more as a part of the language than an 

extension of it.

The Project

In order to test drive the latest versions of Tcl/Tk and Visual Tcl, I needed a small 

project to develop. A personal requirement provided just the thing. Since getting a 

digital camera I've often wanted to quickly throw a couple of pictures onto a web page 

in order that friends and family can see them. A full blown web gallery generating 

application would be overkill; I just need the ability to select one or two image files, 

add a few lines of text, then have a single web page appear which I can upload to a 

web server. Figure 1 shows an example of the sort of page I would like to be able to 

quickly produce.



Figure 1: The task is to quickly produce simple web pages containing images and a small amount of  

text, like this one.

This sort of project is an ideal candidate for a GUI based script. It’s a fairly simple 

task which isn’t dependent on speed, but which will clearly benefit from having a 

graphical user interface. The function of the GUI is simple: present the user with an 

interface where they select some image files, viewing them if necessary, and collect a 

few lines of accompanying text. The script can then use a standard tool to produce the 

HTML page. In this case that tool is the XSLT processor from the libxml2 package 

found on just about every modern Linux system.

The rest of this article looks at how the combination of Tcl/Tk and Visual Tcl were 

used to rapidly develop this little application. Figure 2 shows the final script in action; 

the code can be downloaded from the link given at the end of this article.



Figure 2: The script running, with the image display window open.

Getting the Software

Most Linux distributions come with Tcl/Tk. However, I always install and use the 

latest version of ActiveTcl from ActiveState Inc. Apart from being right up to date and 

professionally presented, it provides a standard Tcl package with lots of useful 

extensions. If you know your users are using ActiveTcl, you know exactly which 

extensions they have on their machine, and can therefore guarantee your script will 

run. I encourage anyone who wants to run the project in this article to download and 

install ActiveTcl-8.4.4.0 or later, since that’s what I used for development. ActiveTcl 

comes with its own installer, and if you install it in, for example, /opt/ActiveTcl-

8.4.4.0, it won’t interfere with any existing Tcl/Tk installation. If you already have a 

Tcl/Tk package in /usr/bin, ensure you set an early entry in your user account’s PATH 

to point to the ActiveTcl bin directory.

Visual Tcl is available from Sourceforge, and also comes with its own installer. Many 

Linux distributions include it, but ensure you have the latest version.

Developing a Tcl/Tk Script

A common approach to Tcl/Tk scripting is to start by designing the GUI. This process 

allows the developer to think through all the features which the application requires, 

and produces a solid framework which those features can be built upon. When things 

start getting complicated this approach breaks down and something more formal like a 

“Model, View, Controller” pattern is required. But for small applications like my one, 

or for rapid prototyping, getting a GUI together is a good starting point. So I’ll start 

with Visual Tcl.



A Look at Visual Tcl

The days when developers would sit at a text editor manually arranging buttons, 

listboxes and other widgets by brain power alone are pretty much gone. This is the 

sort of job which should now be done with a graphical tool. Dragging and dropping 

widgets makes development much quicker, especially for beginners.

Visual Tcl provides exactly these sorts of facilities, and then some. In fact, it doesn’t 

seem too sure whether to behave like a cut down integrated development environment 

(IDE) or not. It occasionally offers a text editing window where the user can write the 

Tcl code which forms the actual application, rather than just limiting itself to dealing 

with the development of the GUI. On the other hand it doesn't offer a debugger or 

some other traditional IDE features, so it's difficult to justify calling it a real IDE.

I dealt with this confusion of personality by going into the configuration dialog for the 

application and switching off many of the “features” which just seemed to get in my 

way. See Figure 3.

Figure 3: Visual Tcl is highly configurable.

Instead I chose to write the bulk of the application logic in my favoured environment 

(XEmacs) and just used the output from Visual Tcl as a library which creates the GUI 

for my script. Credit goes to Visual Tcl for being flexible enough to be used in the 



way of my choosing. Listing 1 shows my “wrapper” script, which is the starting point 

for the application code itself.

#!/bin/sh
# the next line restarts using wish \
exec wish “$0” “$@”

#
# My own procedures and “pre-gui” code will go here
#

# Load and run the GUI code created by Visual Tcl
#
source gui.tcl

#
# Any “post-gui” code I need can go here
#

Listing 1: A simple wrapper to keep the Visual Tcl code (in gui.tcl) separate from the main script. The 

she-bang line weirdness is a very common way of starting a Tcl/Tk script.

Once I'd got to grips with the way I wanted to work with the tool, it didn't take too 

long to produce the output I wanted. Widgets are placed via a simple point and click 

interface, and a separate “Attribute Editor” window allows for the fine detail of 

widget behavior to be tweaked and fiddled with to the heart’s content. Tk widget 

layout devices are also easy to control when you understand them. Figure 4 shows the 

Visual Tcl development environment.



Figure 4: Visual Tcl appears rather cluttered even on a large screen. It’s not too hard to use though.

Visual Tcl produces executable Tcl/Tk code which is loaded and edited directly. The 

routines which load the Tcl/Tk code are surprisingly tolerant, which means the 

generated code can be independently edited and tuned by the developer before being 

returned to Visual Tcl for further work.

Visual Tcl's biggest problem is the dated nature of the toolkit behind it. Tcl/Tk only 

offers the basic building blocks of widgets. Things like comboboxes and notebooks 

aren't available in Tk. Fortunately there are a number of extensions to Tcl/Tk which 

provide these “mega widgets”, and Visual Tcl supports them all. The drawback with 

this is that, for the final script to run correctly, the target machine needs the mega 

widget extensions installed. For this project I made use of the “incr tcl” widget set, 

and the Tcl/Tk installed as part of most Linux distributions may not contain this. 

Hence my recommendation of the ActiveTcl Tcl/Tk distribution. In fact, my SUSE-

8.1 system does include “incr tcl” but strangely doesn’t include the extension required 

to load JPEG images – a rather glaring omission on the part of SUSE I’d have 

thought.

Anyone who has used a really slick GUI builder tool like Qt’s excellent designer will 

tell you that Visual Tcl needs more work. It's slow on my dual PIII-500 machine to the 



point of irritating, and has more than its share of usability issues and bugs, although 

these should be cleared up in the point-one release. The bottom line, though, is that 

Visual Tcl did the job I required of it. The script it generates is readable enough to be 

fine tuned by hand, and anything the code does can be overridden by more specific 

code in the main application. My GUI completed, I moved on to the application 

development side of the project.

Building the Application

The thing which still sets Tcl apart from more modern GUI scripting solutions is the 

way the Tk toolkit interacts with the Tcl code which does the work. Packages like 

GTK or Qt are low level libraries, written in C or C++. The script level bindings to 

them work well enough, but there’s always a big step down from the scripting 

language into the API of the GUI toolkit. The developer needs to really understand the 

widgets he’s working with, and must know how to configure and interrogate them 

using low level calls directly to the widgets themselves.

The relationship between Tcl and Tk is much more peer to peer. The GUI toolkit 

operates at the same level as the language driving it, which makes the combination 

very easy to work with.

Take, for example, the listbox widget which contains the list of images to put in the 

web page. In Visual Tcl an attribute of the listbox widget called the “listvar” is 

presented, and I set it to a variable called “::imageList”. “::imageList” is a list variable 

in my Tcl code, and Tcl/Tk ensures that its contents are always reflected in the listbox 

widget. If I add, move or delete an item in that list variable, the contents of the listbox 

widget are immediately and automatically updated to display its contents. The code 

which handles the image list doesn't access or interact with the GUI at all. It just 

keeps a single list variable in the correct state, safe in the knowledge that Tcl/Tk will 

do the rest. Figure 5 shows this relationship.



Figure 5: Setting the "listvar" attribute in Visual Tcl (left) ensures the generated code (middle) causes 

the onscreen widget (right) to respond immediately to any changes made in the named variable.

More direct access to the widgets is sometimes required. Under these circumstances, 

Visual Tcl makes use of aliasing. In Tcl/Tk, the name of a widget depends on where it 

is in the widget tree. That name will change as container widgets like frames are 

added and removed. To prevent the script writer having to keep track of the full names 

of the important widgets, Visual Tcl allows the user to specify an alias – that is a 

short, easily memorable name the widget is always known by. These short names can 

be looked up in a global associative array (also known as a hash or dictionary) so 

access to the widgets, wherever they might end up, is always easy. For example, I 

gave the “Introduction” text widget the alias “IntroText”, so to fetch the text currently 

in that widget, the code in Listing 2 can be used.

…
set introWidget $::widget(IntroText)
set text [$introWidget get 0.0 end]
…

Listing 2: Fetching the contents of an aliased widget



The ::widget array is provided automatically by the Visual Tcl generated code, so 

fetching the real name of the text widget is simple. Asking the widget to provide its 

current text, from line 0 character 0 to the end, is then easy.

The image display in the viewer window is actually just a label widget in the center of 

the dialog. Tk can load an image from disk and create a pixmap from it with one line 

of code. When the user selects a new image file, a pixmap is created from it and a 

single command is used to set the label widget to show that image. See Listing 3.

…
set loadedImage [image create photo –file $filename]
$::widget(ImageLabel) configure –image $loadedImage
…

Listing 3: The image is loaded from the disk, then the label widget is configured to show that image (Tk  

labels show images as well as text). The image appears on screen immediately.

In the actual script I store the loaded pixmaps in a cache. This makes switching from 

one image to another and back again much sharper.

When the user clicks the “Publish” button, a Tcl function is called which creates the 

web page. The workings of this code aren't especially relevant here; suffice to say that 

Tcl allows generation of an XML DOM using the TclXML extension, then allows the 

call out to the libxml2 XSLT processor which generates the HTML. Getting a 

specialist package to do the hard work is, of course, the ace up the script writer’s 

sleeve.

The Shortcomings of Tcl/Tk

While the Tcl/Tk script works nicely, it’s hard to ignore the obvious gulf in quality 

between the appearance of a Tcl/Tk based script and a more modern Qt or GTK based 

one. Qt and GTK based programs look much sharper than those using the Motif style 

of Tk widgets, plus they are themeable, whereas Tk isn’t. Also compare “built in” 

features such as the file selector dialog – Tk’s is no better than GTK’s, and both are 

totally embarrassed by Qt’s. Work continues in the Tcl community regarding these 

sorts of issues, but, as with many mature technologies, improvements are slow in 

coming for fear of breaking existing code.

Conclusion

Tcl/Tk is the oldest of the GUI enabled scripting languages in common use today, but 

it doesn’t enjoy the monopoly position it used to. Python, coupled to GTK or Qt, now 

provides a more contemporary solution to many of the problems Tcl/Tk used to be the 



natural choice for, and both Tcl/Tk and Visual Tcl have some ground to make up in 

terms of looks, features and desktop integration.

However, the simplicity of application development offered by the mature and 

superbly integrated combination of the Tcl language and the Tk toolkit is still second 

to none. If you have a simple scripting task which would benefit from a GUI, and 

where speed and cost of development are important, Tcl/Tk should still be near the 

very top of the list of contenders for the job.

References

Source to the script developed in this article:

http://

Tcl/Tk headquarters:

http://www.tcl.tk

The Tcler’s Wiki:

http://mini.net/tcl/

Tcl/Tk man pages, online and downloadable:

http://www.tcl.tk/man/

ActiveState Tcl website:

http://www.activestate.com/Products/ActiveTcl/

Visual Tcl:

http://vtcl.sourceforge.net

Incr Tcl

http://incrtcl.sourceforge.net/itcl/

The 11 rules of the Tcl syntax:

http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm

Practical Programming in Tcl and Tk (4th ed.), by Brent Welch. Prentice Hall PTR:

http://www.beedub.com/book/

XSLT for libxml2:

http://www.xmlsoft.org/XSLT.html

http://www.xmlsoft.org/XSLT.html
http://www.beedub.com/book/
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
http://incrtcl.sourceforge.net/itcl/
http://vtcl.sourceforge.net/
http://www.activestate.com/Products/ActiveTcl/
http://www.tcl.tk/man/
http://mini.net/tcl/
http://www.tcl.tk/

	GUI Scripting with Tcl/Tk
	An Overview of Tcl/Tk
	The Project
	Getting the Software
	Developing a Tcl/Tk Script
	A Look at Visual Tcl
	Building the Application
	The Shortcomings of Tcl/Tk
	Conclusion
	References

