Regression and Survival Analysis

Tyler Moore
Computer Science \& Engineering Department, SMU, Dallas, TX

Lecture 15-16

| Guide to exploring data | | |
| :--- | :--- | :--- | :--- | :--- |
| Type of Data | | SByEx |

Guide to analyzing data

- After visual exploration and any descriptive statistics, you may want to investigate relationships between variables more closely
- In particular, you can investigate how one or more explanatory (aka independent) variables influences response (aka dependent) variables

Statistical Method	Response Variable	Explanatory Variable
Odds ratios	Binary (case/control)	Categorical variables (1 at a time)
Linear regression	Numerical	One or more variables (numerical or categorical)
Logistic regression	Binary	One or more variables (numerical or categorical)
Survival analysis	Time to event	One or more variables (numerical or categorical)

Linear regression

- Suppose the values of a numerical variable Y depend on the values of another variable X.

$$
Y=c_{0}+c_{1} X+\epsilon
$$

- If that dependence is linear then we can use linear regression to estimate the best-fit values of the constants c_{0} and c_{1} that minimize the error values for all the values $y_{i} \in Y$.
- For more info see "R by Example" Ch. 7.1-7.3

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Twenty Ten

A Sticky Post

This post is sticky. It gets a special style and always resides at the top of the home page. Lorem ipsum dolor sit amet. Suspendisse bibendum nulla vitae eros lobortis ullamcorper. Aenean pretium hendrerit ipsum, vitae aliquet ligula commodo vitae nonummy est aliquet. Ut ultrices, nulla id fringilla condimentum, augue tellus vehicula nisi, volutpat tincidunt mi nisi quis liga. .ivamus in lectus nis.. Pellentesque viverra mauris eget lectus varius quam. Fusce lobortis,

Font size bigger \mid Reset Smaler
Search.

SAMPLE SITES JOOMLA.ORG

SS Joomla!

Open Source Conlent Management

品
About Joomla!

- Getting Slated
- Using Joomla!
- The Joomla! Project - The Joomla! Communty

This Site
Joomla!
Congratulations! You have a Joomlal site! Joomlal makes it easy to build a websief iust the way you want it and keep Congralulations You have a Joon
Joomlal is a fexible and powerful plafform, whether you are tuilding a small ste for yourself or a tuge site mith Joomlal is a fexible and powerfil plaftom, whether you re buiding a smal ste for yoursef or a huge site with
hundreds of thousands of visitors. Joomla is open source, vhich means you can make it work ust the way you want it hundred
to.

Beginners
Upgraders
Professionals

ล

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Suppose you hypothesize that the popularity of a CMS platform influences the number of exploits made available
- We can use linear regression to test for such a relationship

generatorType	CMSmarketShare	numExploits
blogger	3.5	10
concrete5	0.1	1
contao	0.2	1
datalife engine	1.5	3
discuz	1.3	8
drupal	7.2	12

- Code: http://lyle.smu.edu/~tylerm/courses/econsec/ code/exregress.R
- Data: http://lyle.smu.edu/~tylerm/courses/econsec/ data/eims.csv

Scatter plot

plot($\mathrm{y}=$ marExp\$numExploits, $\mathrm{x}=$ marExp\$numServers)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scatter plot (log-transformed)

plot ($\mathrm{y}=\mathrm{marExp} \$$ numExploits, $\mathrm{x}=\mathrm{marExp} \$$ numServers, $\log =$ ' xy ')

Linear regression

> reg <- lm(lgExploits ~ lgServers, data = marExp2)
> summary (reg)
Call:
lm (formula $=$ lgExploits \sim lgServers, data $=$ marExp2)
Residuals:
Min 1Q Median $3 Q \quad$ Max
$\begin{array}{llll}-2.9692-1.0655 & -0.6013 & 0.5555 & 5.4554\end{array}$
Coefficients:
(Intercept) Estimate Std. Error t value $\operatorname{Pr}(>|t|)$ $\begin{array}{llllll}\text { lgServers } & 0.6304 & 0.1681 & 3.750 & 0.000784^{* * *}\end{array}$

Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. $0.1 \quad 1$
Residual standard error: 2.091 on 29 degrees of freedom Multiple R-squared: 0.3266 , Adjusted R -squared: 0.3034
F-statistic: 14.07 on 1 and 29 DF , p-value: 0.0007842

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

plot ($\mathrm{y}=\operatorname{marExp} 2 \$ 1 \mathrm{gExploits}, \mathrm{x}=\operatorname{marExp} 2 \$ 1 \mathrm{gServers}$, xlab $=$ "lg(\# Servers per CMS)",
ylab $=$ "lg(\# exploits available per CMS)",
)
text ($\mathrm{x}=$ marExp2\$lgServers, $\mathrm{y}=$ marExp2\$lgExploits -0.3 , lab $=$ marExp2\$generatorType)
abline(reg\$coef)

Illicit online pharmacies

- What do illicit online pharmacies have to do with phishing?
- Both make use of a similar criminal supply chain
(1) Traffic: hijack web search results (or send email spam)
(2) Host: compromise a high-ranking server to redirect to pharmacy
(3) Hook: affiliate programs let criminals set up website front-ends to sell drugs
(1) Monetize: sell drugs ordered by consumers
(3) Cash out: no need to hire mules, just take credit cards!
- For more: http://lyle.smu.edu/~tylerm/usenix11.pdf

Case-control study: search-redirection attacks

Case-control study: search-redirection attacks

R code: http://lyle.smu.edu/~tylerm/courses/econsec/ code/pharmaOdds.R

Date	Search Engine	Search Temm	Pos. URL	Domain	Redif	TLD
2011.1 .03	co	20 mg mb		senfius	$\xrightarrow{\text { False }}$	
边 201111.003		${ }^{20}{ }^{20} \mathrm{mmgmambeien} \mathrm{ove}$				
	coicke	amien				
	$\begin{gathered} \text { coog } \\ \text { Googe } \end{gathered}$	20 mg ambien overdose		met	Fatse	
	$\substack{\text { Coobe } \\ \text { coseme }}$			comet	$\xrightarrow[\substack{\text { True } \\ \text { Fase }}]{\text { ate }}$	her
${ }_{\text {20, }}^{2011-1.103}$	$\substack{\text { Cooge } \\ \text { Cogice }}$	mbie overdose	(ex		Catee	com
${ }_{\text {a }}^{2011111.03}$	$\substack{\text { Ring } \\ \text { Bing }}$	${ }^{20} \mathrm{mg}$ ambeen vorerase		yenoo heathe	$\xrightarrow{\text { fate }}$	cos
11.03	${ }_{\substack{\text { bing } \\ \text { bing }}}^{\text {cen }}$	${ }^{2} \mathbf{2 0} \mathrm{mg}$ ambeen vorerose	Lut	ambers	$\xrightarrow{\text { Frese }}$ Tree	co
${ }_{\text {cole }}^{201111.03}$	$\underbrace{\text { bin }}_{\substack{\text { bing } \\ \text { Bing }}}$	${ }^{20} \mathrm{mg}$ ambeien overos	\% 5 htpp/hyw			
- 11.03	$\substack { \text { Bing } \\ \begin{subarray}{c}{\text { Bing }{ \text { Bing } \\ \begin{subarray} { c } { \text { Bing } } } \\{\text { ent }} \end{subarray}$			ain		(omb
		${ }^{20} \mathrm{mg}$ ambier overosose				
${ }_{\text {col }}^{2011.1 .1 .03}$		en or		$\underset{\substack{\text { Comms } \\ \text { ambier }}}{ }$	$\substack{\text { Fatese } \\ \text { fase }}$	Other

- After visual exploration and any descriptive statistics, you may want to investigate relationships between variables more closely
- In particular, you can investigate how one or more explanatory (aka independent) variables influences response (aka dependent) variables

Statistical Method	Response Variable	Explanatory Variable
Odds ratios	Binary (case/control)	Categorical variables (1 at a time)
Linear regression	Numerical	One or more variables (numerical or categorical)
Logistic regression	Binary	One or more variables (numerical or categorical)
Survival analysis	Time to event	One or more variables (numerical or categorical)

Odds ratios for case-control study

```
> library(epitools)
> pr.tldodds<-oddsratio(pr$tld,pr$redirects,verbose=T)
> pr.tldodds$measure
        odds ratio with 95% C.I.
Predictor estimate lower upper
    EDU 5.8390966 5.5363269 6.1591917
    .GOV 0.4311855 0.3064817 0.5882604
    .NET 0.5946029 0.5568593 0.6342355
    .ORG 2.8811488 2.7971838 2.9674615
    other 1.3437113 1.2809207 1.4090669
```

Odds ratios for case-control study
> pr.tldodds $\$$ p.value
two-sided
Predictor \quad midp.exact
.COM NA

A word on odds ratios

- Defining odds
- Suppose we have an event with two possible outcomes: success (S) and failure (\bar{S})
- The probability of each occurring happens with p_{s} and $p_{\bar{S}}=1-p_{s}$.
- The odds of the event are given by $\frac{p_{s}}{1-p_{s}}$
- Defining odds ratios
- Suppose now there are two events A and B, both of which can occur (with probabilities p_{A} and p_{B}).

$$
\begin{aligned}
\text { odd's ratio } & =\frac{\operatorname{odds}(A)}{\operatorname{odds}(B)} \\
& =\frac{\frac{p_{A}}{1-p_{A}}}{p_{B}} \\
& =\frac{p_{A} \times\left(1-p_{B}\right)}{\left(1-p_{A}\right) \times p_{B}}
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Adapted from
http://www.ats.ucla.edu/stat/stata/faq/oratio.htm
- Suppose that 7 of 10 male applicants to engineering school are admitted, compared to 4 of 10 female applicants
- $p_{\text {male acc. }}=0.7, p_{\text {male rej. }}=1-0.7=0.3$
- $p_{\text {female acc. }}=0.4, p_{\text {female rej. }}=1-0.4=0.6$
- $p_{\text {odds }(\text { male acc. })}=\frac{0.7}{0.3}=2.33$
- $p_{\text {odds(female acc.) }}=\frac{0.4}{0.6}=0.667$
- $O R=\frac{2.33}{0.667}=3.5$
- Hence, we can say that the odds of a male applicant being admitted are 3.5 times stronger than for a female applicant.

Back to the case-control study: how to interpret the odds ratios?

Notes

```
> library(epitools)
> pr.tldodds<-oddsratio(pr$tld,pr$redirects,verbose=T)
> pr.tldodds$measure
    odds ratio with 95% C.I.
Predictor estimate lower upper
    COM 1.0000000 NA NA NA
    .EDU 5.8390966 5.5363269 6.1591917
    .GOV 0.4311855 0.3064817 0.5882604
    .NET 0.5946029 0.5568593 0.6342355
    .ORG 2.8811488 2.7971838 2.9674615
    lother 1.3437113 1.2809207 1.4090669
```

Guide to analyzing data

- After visual exploration and any descriptive statistics, you may want to investigate relationships between variables more closely
- In particular, you can investigate how one or more explanatory (aka independent) variables influences response (aka dependent) variables

Statistical Method	Response Variable	Explanatory Variable
Odds ratios	Binary (case/control)	Categorical variables (1 at a time)
Linear regression	Numerical	One or more variables (numerical or categorical)
Logistic regression	Binary	One or more variables (numerical or categorical)
Survival analysis	Time to event	One or more variables (numerical or categorical)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Logistic regression

- Suppose we wanted to examine how a numerical variable (e.g., position in search results) affects a binary response variable (e.g., whether the URL redirects or not)
- We can't use the odds ratios from case-control studies because that requires a categorical variable
- Suppose that we'd also like to examine how both position in search results and TLD affect whether a URL redirects
- For these cases, we need a logistic regression

$$
\log \frac{p}{1-p}=c_{0}+c_{1} x_{1}+c_{2} x_{2}+\epsilon
$$

So for the example above considering position and TLD:

$$
\log \frac{p_{\text {redir }}}{1-p_{\text {redir }}}=c_{0}+c_{1} \text { Position }_{1}+c_{2} \text { TLD }_{2}+\epsilon
$$

Logistic regression in action

- Code: http://lyle.smu.edu/~tylerm/courses/econsec/ code/pharmaLogit.R
> pr.logit <- glm(redirects ~ tld, data=pr, family=binomial(link = "logit")) > summary (pr.logit)

Call:
glm(formula $=$ redirects \sim tld, family $=$ binomial(link $=$ "logit"),
data $=\mathrm{pr}$)
Deviance Residuals:
Min 1Q Median 3Q Max
$\begin{array}{rrrrr}-1.1476 & -0.5442 & -0.5442 & -0.5442 & 2.3438\end{array}$
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $-1.835165 \quad 0.008626-212.75<0.0000000000000002^{* *}$ tld.EDU $1.764595 \quad 0.027159 \quad 64.97<0.0000000000000002$ ***
 tld.NET $-0.519996 \quad 0.033165-15.68<0.0000000000000002$ *** tld.ORG $1.058195 \quad 0.015079 \quad 70.18<0.0000000000000002$ *** tldother $0.295390 \quad 0.024323 \quad 12.14<0.0000000000000002^{* * *}$

Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. $0.1 \quad 1$
(Dispersion parameter for binomial family taken to be 1)
Logistic regression in action (ctd.)

Notes

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 165287 on 175794 degrees of freedom Residual deviance: 156797 on 175789 degrees of freedom AIC: 156809

Number of Fisher Scoring iterations: 4
> NagelkerkeR2(pr.logit)
[1] 175795
\$R2
[1] 0.07736148

Obtaining the odds ratios

Recall the logistic regression equation

$$
\log \frac{p}{1-p}=c_{0}+c_{1} x_{1}+c_{2} x_{2}+\epsilon
$$

Exponentiate coefficients to get interpretable odds ratios

(Intercept)	tld.EDU	U tld.GOV	tld.NET	tld.ORG	tldother
-1.8351654	1.7645946	-0.8451420	-0.5199959	1.0581945	0.2953898
> \#get odds ratios for the coefficients plus 95% CI $>\exp (c b i n d(O R=\operatorname{coef}(p r . l o g i t)$, confint(pr.logit)))					
Waiting for profiling to be done...					
OR 2.5 \% 97.5					
(Intercept)	0.15958710	0.15690620 .16	23025		
tld.EDU	5.83920495	5.53644316 .15	84001		
tld.GOV	0.42949640	0.30537960 .58	58515		
tld.NET	0.59452300	0.55681180 .63	41472		
tld.ORG	2.88116452	2.79722462 .96	75454		
tldother	1.34365011	1.28085991 .40	0019		

Notes

\qquad
\qquad
\qquad
\qquad
$-1.8351654 \quad 1.7645946-0.8451420-0.5199959 \quad 1.0581945 \quad 0.295389$
> \#get odds ratios for the coefficients plus 95\% CI
$>\exp (c b i n d(0 R=\operatorname{coef}(p r . \operatorname{logit})$, confint(pr.logit)))
Waiting for profiling to be done...
OR $2.5 \% \quad 97.5 \%$
(Intercept) 0.15958710 .15690620 .1623025
tld.EDU 5.83920495 .53644316 .1584001
tld.NET $\quad 0.59452300 .55681180 .6341472$
$\begin{array}{lllll}\text { tld.ORG } & 2.8811645 & 2.7972246 & 2.9675454 \\ \text { tldother } & 1.3436501 & 1.2808599 & 1.4090019\end{array}$

Logistic regression \#2: TLD and search result position

> pr.logit2 <- glm(redirects ~ tld + resultPosition, data=pr, family=binomial(link = "logit"))
> summary (pr.logit2)
Call:
glm(formula $=$ redirects ~ tld + resultPosition, family = binomial(link = "logit")
data $=\mathrm{pr}$)
Deviance Residuals:

Min	1Q Median	$3 Q$	Max

$\begin{array}{lllll}-1.2680 & -0.5968 & -0.5355 & -0.4757 & 2.4268\end{array}$

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-2.14012	0.01497	-142.920	< 0.0000000000000002
tld.EDU	1.77355	0.02726	65.072	< 0.0000000000000002
tld.GOV	-0.84060	0.16587	-5.068	0.000000402
tld.NET	-0.53121	0.03321	-15.993	< 0.0000000000000002
tld.ORG	1.05185	0.01512	69.587	< 0.0000000000000002
tldother	0.30033	0.02437	12.322	< 0.0000000000000002
resultPosition	0.01803	0.00070	25.762	< 0.0000000000000002

(Dispersion parameter for binomial family taken to be 1)
> $\exp (c b i n d(0 R=\operatorname{coef}(p r . l o g i t 2)$, confint(pr.logit2)))
Waiting for profiling to be done..
NagelkerkeR2(pr.logit2) \#compute pseudo R^2 on logistic regression \qquad
OR $2.5 \% \quad 97.5 \%$
$\begin{array}{llll}\text { (Intercept) } & 0.1176407 & 0.1142316 & 0.1211375 \\ \text { tld EDU } & 5.8917404 & 5.5852012 & 6.2149893\end{array}$
tld.EDV 0.83144970 .50670920 .2149893
$\begin{array}{llll}\text { tld.GOT } & 0.5878939 & 0.5505610 & 0.6271261\end{array}$
$\begin{array}{llll}\text { tld.NET } & 0.5878939 & 0.5505610 & 0.6271261 \\ \text { tld.ORG } & 2.8629455 & 2.7793345 & 2.9489947\end{array}$
$\begin{array}{lllll}\text { tld.ORG } & 2.8629455 & 2.7793345 & 2.9489947 \\ \text { tldother } & 1.3503082 & 1.2870831 & 1.4161226\end{array}$
$\begin{array}{llllll}\text { resultPosition } & 1.0181977 & 1.0168021 & 1.0195962\end{array}$
> NagelkerkeR2(pr.logit2) \#compute pseudo R~2 on logistic regression
\$N
[1] 175795
\$R2
[1] 0.08329341

Logistic regression \#3: TLD, position, search engine

Notes

> pr.logit3 <- glm(redirects ~ tld + resultPosition + searchEngine, data=pr, family=binomial(link = "logit"))
> pr.logit3 <- g1m(
> sumn
(formula $=$ redirects \sim tld + resultPosition + searchEngine,
family $=$ binomial (link $=$ "logit"), data $=$ pr)
Deviance Residuals:

Min	$1 Q$	Median	$3 Q$

$\begin{array}{lrrrr}-1.3270 & -0.6539 & -0.4812 & -0.3956 & 2.5988\end{array}$
Coefficients:
(Intercept) \quad Estimate Std. Error z value \quad Pr $(>|z|)$
tld.EDU $\quad 1.5001887 \quad 0.0277776 \quad 54.007<0.000000000000002$ ***
tld.GOV $\quad-0.8537354 \quad 0.1666852-5.122 \quad 0.0000000000000002$ ***
$\begin{array}{lrrrr}\text { tld.NET } & -0.8537354 & 0.1666852 & -5.122 & 0.000000303 \text { *** } \\ \text { tld } & 0.0335099 & -12.805<0.0000000000000002 \text { *** }\end{array}$

$\begin{array}{llll}\text { tld.0RG } & 0.3191095 & 0.0246746 & 12.933<0.0000000000000002^{* * *} \\ \text { tldother } & 0.025\end{array}$
$\begin{array}{llll}\text { tldother } & 0.3191095 & 0.0246746 & 12.933<0.00000000000000022^{* * *} \\ \text { resultPosition } & 0.0185985 & 0.0007081 & 26.265<0.0000000000000002 \text { *** }\end{array}$ $\begin{array}{lllll}\text { resultPosition } & 0.0185985 & 0.0007081 & 26.265<0.0000000000000002 \text { *** } \\ \text { searchenginege } & 0.8310798 & 0.0137375 & 60.497<0.0000000000000002^{* * *}\end{array}$ searchEnginegoogle $0.8310798 \quad 0.0137375 \quad 60.497<0.0000000000000002^{*}$ * Signif. codes: 0 *** $0.001 * * 0.01 * 0.05 \cdot 0.1 \quad 1$
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 165287 on 175794 degrees of freedom
Logistic regression \#3: TLD, position, search engine
> $\exp (c b i n d(0 R=\operatorname{coef}(p r . \operatorname{logit3})$, confint(pr.logit3)))
Waiting for profiling to be done..

| (Intercept) | 0.07567444 | 0.0731465 | 0.07827858 |
| :--- | ---: | ---: | ---: | ---: |

tld.EDU 4.482534654 .24496184 .73330372
tld.GOV $\quad 0.425821350 .30226690 .58201442$
tld.NET 0.651098970 .60940520 .69495871
$\begin{array}{lllll}\text { tld.ORG } & 2.48399513 & 2.4099342 & 2.56025578\end{array}$
$\begin{array}{llllll}\text { tldother } & 2.48399513 & 2.4099342 & 2.56025578 \\ \text { tld } & 1.37590197 & 1.3107099 & 1.44382462\end{array}$
tldother $\quad 1.375901971 .3107091 .44382462$
$\begin{array}{lllll}\text { resultPosition } & 1.01877252 & 1.0173601 & 1.02018796 \\ \text { searchEnginegoogle } & 2.29579645 & 2.2348606 & 2.35850810\end{array}$
searchEnginegoogle 2.29579645 2.2348606 2.35850810
$>$ NagelkerkeR2(pr.logit3) \#compute pseudo R^2 on logistic regression
\$N
[1] 175795
\$R2
[1] 0.1166546

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

- After visual exploration and any descriptive statistics, you may want to investigate relationships between variables more closely
- In particular, you can investigate how one or more explanatory (aka independent) variables influences response (aka dependent) variables

Statistical Method	Response Variable	Explanatory Variable
Odds ratios	Binary (case/control)	Categorical variables (1 at a time)
Linear regression	Numerical	One or more variables (numerical or categorical)
Logistic regression	Binary	One or more variables (numerical or categorical)
Survival analysis	Time to event	One or more variables (numerical or categorical)

Censored

$\xrightarrow[\substack{\text { Infection } \\ \text { reported }}]{\substack{\text { Censored } \\ \downarrow}}$

Infection	- - - - I
reported	removed

Infection	-- - Infection
reported	removed

Censored data happens a lot

- Real-world situations
- Life-expectancy
- Criminal recidivism rates
- Cybercrime applications
- Measuring time to remove X (where $\mathrm{X}=$ =malware, phishing, scam website, ...)
- Measuring time to compromise
- Measuring time to re-infection
- Best resource I found on survival analysis in R :
http://socserv.mcmaster.ca/jfox/Courses/soc761/ survival-analysis.pdf

Survival analysis (package survival in R)

- Key challenge: estimating probability of survival when some data points survive at the end of the measurement
- Solution: use the Kaplan-Meier estimator to compute probabilities that account for samples still alive (survfit in R)
- Common question: Are survival functions split over categorical variables statistically different
- Use the log-rank test (survdiff in R)
- Analagous to χ^{2} test
- Cox-proportional hazard model (coxph in R) is a more sophisticated way to see how multiple variables affect the hazard rate
- Hazard function $h(t)$: expected number of failures during the time period t

Pharmacy redirection duration by TLD

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pharmacy redirection duration by PageRank

Statistics disentangle effect of TLD, PageRank on duration

Cox-proportional hazard model $h(t)=\exp \left(\alpha+\right.$ PageRank $x_{1}+$ TLD $\left.x_{2}\right)$				
	coef.	$\exp ($ coef. $)$	Std. Err.)	Significance
PageRank	-0.079	0.92	0.0094	$p<0.001$
.edu	-0.26	0.77	0.084	$p<0.001$
.net	0.10	1.1	0.081	
. org	0.055	1.1	0.052	
other TLDs	0.34	1.4	0.053	$p<0.001$
log-rank test: $Q=159.6, p<0.001$				

Phishing website recompromise

- Full paper: http://lyle.smu.edu/~tylerm/cs81.pdf
- What constitutes recompromise?
- If one attacker loads two phishing websites on the same server a few hours apart, we classify it as one compromise
- If the phishing pages are placed into different directories, it is more likely two distinct compromises
- For simplicity, we define website recompromise as distinct attacks on the same host occurring ≥ 7 days apart
- 83% of phishing websites with recompromises ≥ 7 days apart are placed in different directories on the server

The Webalizer

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Vulnerability searches: phpizabi v0.848b c1 hfp1 (unrestricted file upload vuln.), inurl: com_juser (arbitrary PHP execution vuln.)
- Compromise searches: allintitle: welcome paypal
- Shell searches: intitle: ''index of '' r57.php, c99shell drwxrwx

Search type	Websites	Phrases	Visits
Any evil search	204	456	1207
Vulnerability search	126	206	582
Compromise search	56	99	265
Shell search	47	151	360

One phishing website compromised using evil search

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad /stat/q-mono/pro/www.lloydstsb.co.uk/lloyds_tsb/logon.ibc.html
2: 2007-11-30 no evil search term 0 hits
3: 2007-12-01 no evil search term 0 hits

4: 2007-12-02 phpizabi v0.415b r3 1 hit
5: 2007-12-03 phpizabi v0.415b r3 1 hit
6: 2007-12-04 21:14:06 phishing URL reported: http://chat2me247.com
/seasalter/www.usbank.com/online_banking/index.html
7: 2007-12-04 phpizabi v0.415b r3 1 hit

Let's work with the data

R code: http://lyle.smu.edu/~tylerm/courses/econsec/ code/surviveEvil2.R

Data format:

TLD 1st Compromise 2 nd Compromise \# days Censored Evil searches?					
com	$2008-01-28$	$2008-03-31$	63	0	TRUE
com	$2007-11-23$	$2008-03-31$	129	0	TRUE
IP	$2008-01-16$	$2008-03-31$	75	0	TRUE
com	$2008-01-16$	$2008-03-31$	75	0	TRUE
com	$2007-10-28$	$2007-11-06$	8	1	TRUE
com	$2008-01-20$	$2008-03-31$	71	0	TRUE
jp	$2007-11-12$	$2008-03-31$	140	0	TRUE
nu	$2008-01-31$	$2008-03-31$	60	0	TRUE
net	$2007-12-27$	$2008-03-31$	95	0	TRUE
com	$2008-02-08$	$2008-03-31$	52	0	TRUE
IP	$2007-12-07$	$2008-01-07$	31	1	TRUE
IP	$2008-01-29$	$2008-03-31$	62	0	TRUE
com	$2007-10-22$	$2007-11-14$	22	1	TRUE
com	$2008-01-22$	$2008-03-31$	69	0	TRUE

\#Remember the definition of censored
\# $0=$ has not been recompromised
\# 1 = has been recompromised
> head (webzlt)
dom startdate enddate $1 t$ censored hasevil tld
1 com 2008-01-28 2008-03-31 63 TRUE com
2 com 2007-11-23 2008-03-31 129 TRUE con
3 IP 2008-01-16 2008-03-31 75 TRUE IP
4 com 2008-01-16 2008-03-31 75 TRUE com
5 com 2007-10-28 2007-11-06 $8 \quad 1 \quad$ TRUE com
6 com 2008-01-20 2008-03-31 71 TRUE com
> S.all<-Surv(time=webzlt\$lt, event=webzlt\$censor,type='right')

Working with survival objects

(1) Empirically estimate survival probability overall

- Supply survfit with a constant right-hand side formula
- E.g.:
surv.all<-survfit(S.all~1)
(2) Empirically estimate survival probability compared to single categorical variable
- Supply survfit with a constant categorical variable in right-hand side of formula
- E.g.: survfit(S.all~webzlt\$hasevil)
(3) Regression with survival probability as response variable
- Supply survfit with a constant categorical variable in right-hand side of formula
- E.g.:
coxph(S.all ~ webzlt\$hasevil, method="breslow")
\#1: Empirically estimate survival probability overall

S.all<-Surv(time=webzlt\$lt, event=webzlt\$censor,type='right')
surv.all<-survfit(S.all~1)
plot(surv.all,xlab='t days before recompromise',
ylab='S(t): probability website has not been recompromised within t days', ylim=c($0.4,1$), main='Survival function for phishing websites', 1 wd=1.5)
\#2: Emp. estimate survival prob. for 1 cat. var.
 surv.evil<-survfit(S.all~webzlt\$hasevil plot(surv.evil,xlab='t days before recompromise',
lab='S(t)',ylim=c(0.4,1), lwd=1.5,col=c('blue','red'),
main='Survival function for phishing websites')
legend("topright",legend=c("has evil terms","no evil terms"),
col=c("red","blue"),lty=1)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Is the difference between survival probabilities across categories statistically significant?

	N	Observed	Expected	(0-E) $\sim^{2 / E}$	(0-E) ${ }^{2 / V}$
webzlt\$hasevil=FALSE	746	140	156.7	1.79	13.4
webzlt\$hasevil=TRUE	121	41	24.3	11.55	13.4

\#3: Regression with survival prob. as response variable

S.all<-Surv(time=webzlt\$lt, event=webzlt\$censor, type='right')
evil.ph <- coxph(S.all $\underset{\sim}{\sim}$ webzlt\$hasevil, method="breslow")
summary(evil.ph)
> summary(evil.ph)
Call:
$\operatorname{coxph}(f o r m u l a=\operatorname{Surv}(w e b z l t \$ 1 t$, webzlt\$censor) ~ webzlt\$hasevil, method = "breslow")
$\mathrm{n}=867$, number of events= 181

$$
\begin{array}{rrrrr}
& \text { coef } & \exp (\text { coef }) & \text { se(coef) } & z \operatorname{Pr}(>|z|) \\
\text { webzlt\$hasevilTRUE } 0.6393 & 1.8951 & 0.1778 & 3.595 & 0.000325
\end{array}
$$

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11
$\begin{array}{ccccc} & \text { exp(coef) } & \exp (- \text { coef }) & \text { lower } .95 & \text { upper } .95 \\ \text { webzlt\$hasevilTRUE } & 1.895 & 0.5277 & 1.337 & 2.685\end{array}$
Concordance $=0.539 \quad(\mathrm{se}=0.013)$
Rsquare $=0.013 \quad$ (max possible $=0.932$)
Likelihood ratio test $=11.43$ on $1 \mathrm{df}, \mathrm{p}=0.0007219$
Wald test $\quad=12.92$ on $1 \mathrm{df}, \quad \mathrm{p}=0.0003246$
Score (logrank) test $=13.37$ on $1 \mathrm{df}, \quad \mathrm{p}=0.000256$

One more survival example: Bitcoin currency exchanges

- Bitcoin is a digital crypto-currency
- Decentralization is a key feature of Bitcoin's design
- Yet an extensive ecosystem of 3rd-party intermediaries now supports Bitcoin transactions: currency exchanges, escrow services, online wallets, mining pools, investment services, .
- Most risk Bitcoin holders face stems from interacting with these intermediaries, who act as de facto central authorities
- We focus on risk posed by failures of currency exchanges
- R code: http://lyle.smu.edu/~tylerm/data/bitcoin/ bitcoinExScript.R

"As of July 2011, Mt. Cox handles over 80% of all Bitcoin trade'

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

目 Print Like 28 Tweet 131 Qlert

Linode hackers escape with $\$ 70 \mathrm{~K}$ in daring bitcoin heist
Compromised servers ransacked for digital cash
By John Leyden • Get more from this author
Posted in Security，2nd March 2012 17：05 GMT
Updated Popular web host Linode has been hacked by cyber－thieves who made off with a stash of bitcoins worth $\$ 71,000$（ $£ 44,736$ ）in real money

The crooks pulled off the heist after obtaining admin passwords for Linode＇s network gear．Having infiltrated its systems，the thieves proceeded to target several Bitcoin－related servers，stealing $\$ 15 \mathrm{k}$ （ $£ 9.45$ k）from one merchant and more than 10,000 bitcoins（ $\$ 56 \mathrm{k}, £ 35 \mathrm{k}$ ）from Bitcoinica，a trading exchange for the digital currency．Bitcoinica has promised to reimburse customers for any losses．It said in a statement：

Many of you have heard that several bitcoin services were victims of a recent Linode security breach today．Unfortunately，Bitcoinica is also among the services affected．

arstechnica

A MAINMENU，MY STORIES： 25 ．FORUMS SUBSCRIBE NIOW

LAW \＆DISORDER／CIIIILIZATION \＆DISCONTENTS

Hacker steals \＄250k in Bitcoins from online exchange Bitfloor

Irreversible transactions make Bitcoin security a high－stakes business．
by Timothy B．Lee－Sept 4 2012，8．20pm CDT
The future of the up－and－coming Bitcoin exchange Bitfloor was thrown into question Tuesday when the company＇s founder reported that someone had compromised his servers and made off with about 24,000 Bitcoins，worth almost a quarter－million dollars．The exchange no longer has enough cash to cover all of its deposits，and it has suspended its operations while it considers its options，

Bitfloor is not the first Bitcoin service brought low by hackers．Last year，the most popular Bitcoin exchange，Mt．Gox，suspended operations for a week after an attacker compromised a user account fatd sold all of his Bitcoins in a firesale that temporarilv pushed the price down to zero．The site
and

Notes

M4v3R Hero Member	2．Re：BitMarket．Eu－ownership changed（in a way） December 21，2012，08：53：16 AM
Posts： 524	Hello all．Im terrible sorry for not responding to this earlier．A mix of personal issues with searching for a solution prevented me from it．
	Unfortunately，I have very bad news．I cannot currently proccess your withdrawals．The situation is very complicated and it＇s all my fault，that＇s why I feel terrible about it I Itried to make this up，to keep the site afloat and somehow recove the funds，but it＇s not possible anymore．Right now there are 1786 BTC pending withdrawal，which I can＇t honor．．．

Notes

 was that one day it could just dissapear－taking all the money with it．Whar＇s worse，the funds were shorted when ithappened（converted to USD and sold）－and ater Bitcoinica cissapeared BTC price rose by about 250% until now．So while there is still chance to recover the funds（there is an appointed liquidator assigned to this case and I＇ve already missing（edit：I subtracted my funds that also were deposited on Bitmarket），and Bitcoinica claims total for around 50 K USD（the exact amount is uncertain because the liquidators havent yet stated at what rate they will liquidate positions）．
Sadly，I I alone，I＇m out of options．I don＇t have own money to pay for this loss（Bitmarket never made any real profit and make up for a living by part－time web／mobile programming）．The options for making this up for everyone as I see are：
find an investor（or investors）that is willing to cover at least part of is debt．I would transfer all rights to the website sotware，servers and database to him and also work as a technician，possibly also implementing features he＇d wanted．ityou reading tis have the funds necessuy all current tunds and＂start over＂trading with explicit fees，implementing much－needed featurs system and others．All profits from the fees would go directly to a fund for repaying the debt．I＇m afraid that this option

Notes
\qquad
Cryptoanarchist
Cryptoanarchist
Hero Member
Hero Member
Re: btcex "Maintenance"?
Re: btcex "Maintenance"?
July 25, 2012, 03:56:14 PM
July 25, 2012, 03:56:14 PM
Posts: 554
Posts: 554
Posts: 554 <utare
Posts: 554 <utare
I I personally think the site is closed and wont be reopening. I hope it does i liked the exchange
I I personally think the site is closed and wont be reopening. I hope it does i liked the exchange
Oa
Oa
hope the site does reopening
hope the site does reopening
how can I get back my BTC's and money soon?
how can I get back my BTC's and money soon?

Think were just screwed.

starsoccer9 \Leftrightarrow Re: btcex "Maintenance"?
Full Member
-官
Same, A couple people told me that the owner was a scammer so it would kinda make sense. I really hope not but it would make alot of sense if he did. He was waiting for 10000 btc and finnaly hit
it and locked everyones btc in aswell it and locked everyones btc in aswell
8
Ignore

Data collection methodology

- Data sources
(1) Daily transaction volume data on 40 exchanges converting into 33 currencies from bitcoincharts.com
(2) Checked for closure, mention of security breaches and whether investors were repaid on Bitcoin Wiki and forums
(3) To assess impact of pressure from financial regulators, we identified each exchange's country of incorporation and used a World Bank index on compliance with anti-money laundering regulations
- Key measure: exchange lifetime
- Time difference between first and last observed trade
- We deem an exchange closed if no transactions are observed at least 2 weeks before data collection finished

Some initial summary statistics

- 40 Bitcoin currency exchanges opened since 2010
- 18 have subsequently closed (45% failure rate)
- Median lifetime is 381 days
- 45% of closed exchanges did not reimburse customers
- 9 exchanges were breached (5 closed)

18 closed Bitcoin currency exchanges

Exchange	Origin	Dates Active	Daily vol.	Closed?	Breached?	Repaid?	AML
BitcoinMarket	US	$4 / 10-6 / 11$	2454	yes	yes	-	34.3
Bitomat	PL	$4 / 11-8 / 11$	758	yes	yes	yes	21.7
FreshBTC	PL	$8 / 11-9 / 11$	3	yes	no	-	21.7
Bitcoin7	US/BG	$6 / 11-10 / 11$	528	yes	yes	no	33.3
ExchangeBitCoins.com	US	$6 / 11-10 / 11$	551	yes	no	-	34.3
Bitchange.pl	PL	$8 / 11-10 / 11$	380	yes	no	-	21.7
Brasil Bitcoin Market	BR	$9 / 11-11 / 11$	0	yes	no	-	24.3
Aqoin	ES	$9 / 11-11 / 11$	11	yes	no	-	30.7
Global Bitcoin Exchange	$?$	$9 / 11-1 / 12$	14	yes	no	-	27.9
Bitcoin2Cash	US	$4 / 11-1 / 12$	18	yes	no	-	34.3
TradeHill	US	$6 / 11-2 / 12$	5082	yes	yes	yes	34.3
World Bitcoin Exchange	AU	$8 / 11-2 / 12$	220	yes	yes	no	25.7
Ruxum	US	$6 / 11-4 / 12$	37	yes	no	yes	34.3
btctree	US/CN	$5 / 12-7 / 12$	75	yes	no	yes	29.2
btcex.com	RU	$9 / 10-7 / 12$	528	yes	no	no	27.7
IMCEX.com	SC	$7 / 11-10 / 12$	2	yes	no	-	11.9
Crypto X Change	AU	$11 / 11-11 / 12$	874	yes	no	-	25.7
Bitmarket.eu	PL	$4 / 11-12 / 12$	33	yes	no	no	21.7

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exchange	Origin	Dates Active	Daily vol.	Closed?	Breached?	Repaid?	AML
bitNZ	NZ	9/11-pres.	27	no	no	-	21.3
ICBIT Stock Exchange	SE	3/12- pres.	3	no	no	-	27.0
WeExchange	US/AU	10/11-pres.	2	no	no	-	30.0
Vircurex	US?	12/11-pres.	6	no	yes	-	27.9
btc-e.com	BG	8/11-pres.	2604	no	yes	yes	32.3
Mercado Bitcoin	BR	7/11- pres.	67	no	no	-	24.3
Canadian Virtual Exchange	CA	6/11-pres.	832	no	no	-	25.0
btcchina.com	CN	6/11-pres.	473	no	no	-	24.0
bitcoin-24.com	DE	5/12-pres.	924	no	no	-	26.0
VirWox	DE	4/11- pres.	1668	no	no	-	26.0
Bitcoin.de	DE	8/11- pres.	1204	no	no	-	26.0
Bitcoin Central	FR	1/11-pres.	118	no	no	-	31.7
Mt. Gox	JP	7/10-pres.	43230	no	yes	yes	22.7
Bitcurex	PL	7/12- pres.	157	no	no	-	21.7
Kapiton	SE	4/12- pres.	160	no	no	-	27.0
bitstamp	SL	9/11- pres.	1274	no	no	-	35.3
InterSango	UK	7/11-pres.	2741	no	no	-	35.3
Bitfloor	US	5/12-pres.	816	no	yes	no	34.3
Camp BX	US	7/11- pres.	622	no	no	-	34.3
The Rock Trading Company	US	6/11-pres.	52	no	no	-	34.3
bitme	US	7/12-pres.	77	no	no	-	34.3
FYB-SG	SG	1/13-pres.	3	no	no	-	33.7

What factors affect whether an exchange closes?

- We hypothesize three variables affect survival time for a Bitcoin exchange
(1) Average daily transaction volume (positive)
(2) Experiencing security breach (negative)
(3) AML/CFT compliance (negative)
- Since lifetimes are censored, we construct a Cox proportional hazards model:
$h_{i}(t)=h_{0}(t) \exp \left(\beta_{1} \log (\text { Daily vol. })_{i}+\beta_{2}\right.$ Breached $\left._{i}+\beta_{3} \mathrm{AML}_{i}\right)$.

R code: Cox proportional hazards model

```
cox.vh<-coxph(Surv(time=amlsv$lifetime,event=amlsv$censored,type='right')~
            log2(amlsv$dailyvol)+amlsv$Hacked+amlsv$All,
            method="breslow")
> cox.vh
coxph(formula = Surv(time = amlsv$lifetime, event = amlsv$censored,
    type = "right") ~ log2(amlsv$dailyvol) + amlsv$Hacked + amlsv$All,
    method = "breslow")
```



```
llllll
```

Likelihood ratio test=6.28 on $3 \mathrm{df}, \mathrm{p}=0.0988 \mathrm{n}=40$, number of events= 18

Cox proportional hazards model: results

	coef.		$\exp ($ coef. $)$	Std. Err.)	Significance
$\log \left(\right.$ Daily vol. 2	β_{1}	-0.173	0.840	0.072	$p=0.0156$
Breached $_{i}$	β_{2}	0.857	2.36	0.572	$p=0.1338$
AML_{i}	β_{3}	0.004	1.004	0.042	$p=0.9221$
log-rank test: $Q=7.01(p=0.0715), R^{2}=0.145$					

- Higher daily transaction volumes associated with longer survival times (statistically significant)
- Experiencing a breach associated with shorter survival times (not quite statistically significant)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow

Survival probability for Bitcoin exchanges

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

R code: Survival probability for Bitcoin exchanges

Notes

```
par(mar=c(4.1,4.1,0.5,0.5))
plot(survfit(cox.vh),col="black",lty="solid",lwd=2,
xlab="Days",
ylab="Survival probability",
cex.lab=1.3,
cex.axis=1.3
legend("topright",legend=c("Average"),col=c("black"),1wd=2,1ty=c("solid"))
```


Reminder: data frame structure

> cox.vh

Call:
coxph(formula $=$ Surv(time $=$ amlsv\$lifetime, event $=$ amlsv\$censored,
type = "right") ~ log2(amlsv\$dailyvol) + amlsv\$Hacked + amlsv\$All, method = "breslow")

	coef	exp(coef)	se(coef)	z	p
log2(amlsv\$dailyvol)	-0.17396	0.84	0.0719	-2.4185	0.016
amlsv\$HackedTRUE	0.85685	2.36	0.5715	1.4992	0.130
amlsv\$All	0.00411	1.00	0.0421	0.0978	0.920

Likelihood ratio test=6.28 on $3 \mathrm{df}, \mathrm{p}=0.0988 \mathrm{n}=40$, number of events= 18
> head(amlsv[,c('dailyvol', 'Hacked', 'All')], 10)
Vircurex $\quad 5.6135567$ TRUE 27.866

Crypto X Change $\quad 874.2331200$ FALSE 25.670
World Bitcoin Exchange 220.0284211 TRUE 25.670
btc-e.com 2603.7702724 TRUE 32.330
$\begin{array}{lrr}\text { Mercado Bitcoin } & 67.0104275 \text { FALSE } 24.330\end{array}$
$\begin{array}{lrr}\text { Mercado Bitcoin } & 67.0104275 & \text { FALSE } 24.330 \\ \text { Brasil Bitcoin Market } & 0.1896721 & \text { FALSE } 24.330\end{array}$
$\begin{array}{lrr}\text { Brasil Bitcoin Market } & 0.1896721 & \text { FALSE } 24.330 \\ \text { Canadian Virtual Exchange } & 832.3611224 & \text { FALSE } 25.000\end{array}$
$\begin{array}{llll}\text { Canadian Virtual Exchange } & 832.3611224 & \text { FALSE } 25.000 \\ \text { btcchina.com } & 472.6303602 & \text { FALSE } 24.000\end{array}$
bitcoin-24.com $\quad 923.6339683$ FALSE 26.000

High-volume exchanges have better chance to survive

R code: High-volume exchanges have better chance to survive
coxplots<-survfit(cox.vh,newdata=amlsv)
$\operatorname{par}(\operatorname{mar}=\mathrm{c}(4.1,4.1,0.5,0.5))$
plot (coxplots[15], col="green" , 1ty="dashed" , 1wd=2,
xlab="Days",
ylab="Survival probability",
cex.lab=1.3,
cex.axis=1.3
) \#Mt Gox
lines (coxplots [28], col="blue", lty="dotdash",lwd=2) \#Intersango
lines(survfit(cox.vh), 1wd=2) \#Mean
legend("topright",legend=c("Mt. Gox","Intersango", "Average"),
col=c("green", "blue","black"),lwd=2,
lty=c("dashed","dotdash","solid"))

Low-volume exchanges have worse chance to survive

Yet some lower-risk exchanges collapse, high-risk survive

71/71

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

[^0]: Notes

