Guide to Passing the Construction PE Exam Edition 2

Jason Terrell, P.E. Mark F. DeSantis, P.E., PMP

TOPICS

<u>Topic</u>	Page
TOPIC I: Earthwork Construction and Layout	1-46
TOPIC II: Estimating Quantities and Costs	47-102
TOPIC III: Construction Operations and Methods	103-184
TOPIC IV: Scheduling	185-223
<u>TOPIC V:</u> Material Quality Control and Production	224-265
TOPIC VI: Temporary Structures	266-335
TOPIC VII: Health and Safety	336-363

TABLE OF CONTENTS

How to Use This Guidebook	viii
Schedule for Self-Study	ix
The 9 Construction Design Standards	xi
Practice Problem Books	xii

TOPIC I: Earthwork Construction and Layout

1.	Excavation and Embankment3-	12
2.	Borrow Pit Volumes	22
3.	Site Layout and Control	28
4.	Earthwork Mass Diagrams and haul distance	37
5.	Site and subsurface investigations	46

TOPIC II: Estimating Quantities and Costs

6.	Quantity Take Off Methods	
7.	Cost Estimating	66-74
8.	Cost analysis for resource selection	75-97
9.	Work measurement and productivity	

TOPIC III: Construction Operations and Methods

10.	Lifting and Rigging	106-120
11.	Crane Stability	121-127
12.	Dewatering and Pumping	128-139
13.	Equipment Operations (e.g. selection, production,	
econo	mics)	140-172
14.	Deep foundation installation	173-184

TOPIC IV: Scheduling

15.	Construction Sequencing	187-	194
16.	Activity Time Analysis	195-	198
17.	Critical path Method (CPM) Network Analysis	199-	209
18.	Resource Scheduling and leveling	210-	215
19.	Time-Cost Trade-Off	216-	223

TOPIC V: Material Quality Control and Production

20.	Material Properties and Testing	. 225-229
21.	Weld and Bolt Testing Installation	. 230-239
22.	Quality Control Process (QA/QC)	. 240-246
23.	Concrete proportioning and placement	. 247-259
24.	Concrete Maturity and Early Strength Evaluation	. 260-265

TOPIC VI: Temporary Structures

25.	Construction Loads, codes, and standard	268-276
26.	Formwork	277-295
27.	Falsework and Scaffolding	296-303
28.	Shoring and Reshoring	304-309
29.	Bracing and Anchorage for stability	310-326
30.	Temporary support of excavation	327-335

TOPIC VII: Health and Safety

31.	OSHA Reg and hazard identification/abatement	338-	340
32.	Safety Management and statistics	341-	345
33.	Work zone and public safety	346-	363

***READ FIRST: How to Use This Guidebook**

This Construction PE Exam guide is intended to help walk you through studying for the Construction PM portion of the Civil PE exam. In this manual, you will find all of the study material needed for the construction portion of the exam. We have spent countless hours reviewing material from the Civil Engineering Reference Manual (CERM), the NCEES design standards, study guides, the internet, and other engineering manuals to ensure that we have provided you with the most up-to-date and accurate resource available.

You are encouraged to study the other AM modules before you begin to study this book and prepare for the construction AM and PM. However, the majority of your study time should be on construction related topics. With the new 2015 there are at least 51 questions or 64% of the exam is from the material within this book. If you get 85% on the construction material and just get 50% of the questions right on each of the other sections, you will still pass the PE exam. You should definitely still study for the other parts of the exam. However, you can see why studying for your depth is the most important. Use the self-study schedule to plan out how you are going to study. Over 50% of your time should be dedicated to construction engineering.

When you begin studying from the book use the following approach:

- 1. Buy all required design standard first thing.
- 2. Print out e-book and place in 3" binder. Tab each chapter.
- 3. Go to and sign up for my newsletter and print off the construction engineering cheat sheet and put it in the front part of the book. Add to it as needed.
- 4. Read through one chapter at a time. As you read through and notice references to design standard sections make sure to tab those sections. The last page of each section there is a space for you to write in reference you use and problems from other books. Fill this in as you go. It will come in handy during the test.
- 5. Once you complete each chapter, solve as many problems as you can that relate to the chapter you just covered. Do at least three problems from other sources. If you have any questions on a technique or a concept, ask the questions at either <u>www.learncivilengineering.com</u> or <u>www.engineerboards.com</u>.
- 6. Place those problems inside the construction binder behind the example problems given in the book make a tab labeled "Problems" for each section too.

If you follow this approach, you will have solved multiple problems for every section and you will have all your design standards, notes pages, and problems fully tabbed so that you can easily reference them during the actual exam. Organization is a key for the exam!

Schedule for Self Study

Subject	Start Date	Finish Date	Comments			
Soil Mech	Soil Mechanics (Geotechnical)					
Lateral Earth Pressure						
Soil Consolidation						
Effective and total Stresses						
Bearing Capacity						
Foundation settlement						
Slope stability						
Geometri	cs (Transp	oortation)				
Basic Circular curve elements						
Basic Vertical curve elements						
Traffic volume (e.g., vehicle mix, flow, and speed)						
Hydraulics and Hy	ydrology (Water Re	sources)			
Open Channel flow						
Stormwater collection and drainage						
Storm characteristics						
Runoff Analysis						
Detention/retention ponds						
Pressure conduit						
Energy and/or continuity equation						

Schedule for Self Study - cont

Subject	Start Date	Finish Date	Comments		
Structural Mechanics (Structural)					
Dead and live loads					
Trusses					
Bending (e.g., moments and stresses)					
Shear (e.g., forces and stresses)					
Axial (e.g., forces and stresses)					
Combined stresses					
Deflection					
Beams					
Columns					
Slabs					
Footings					
Retaining Walls					
Mate	erials (Geo	/Str)			
Soil classification and boring log interpretation					
Soil properties (e.g., strength, permeability, compressibility, phase relationships)					
Concrete (nonreinforced, reinforced)					
Structural steel					
Material test methods and specification conformance					
Compaction					

Schedule for Self Study - cont

Subject	Start Date	Finish Date	Comments			
Project Plan	Project Planning (Construction)					
* Quantity Take-off methods						
* Cost estimating						
* Project Schedules						
* Activity identification and sequencing						
Means and Me	ethods (C	Constructi	on)			
* Construction loads						
* Construction methods						
* Temporary structures and facilities						
Site Development (Co	on, Wate	r Resourc	es, Trans)			
* Excavation and embankment						
* Construction site layout and control						
Temporary and permanent soil erosion and sediment control						
*Impact of construction on adjacent facilities						
* Safety (e.g., construction, roadside, work zone)						

Schedule for Self Study - cont

Subject	Start Date	Finish Date	Comments
Construction PM			
Earthwork Construction and Layout			
Estimating Quantities and Costs			
Construction Operations and Methods			
Scheduling			
Material Quality Control and			
Production			
Temporary Structures			
Health and Safety			

* Denotes that this material is also covered in the PM section of the Construction study guide.

The 9 Construction Design Standards

The following are the design standards required for the Civil Engineering PE Exam - Construction Afternoon. These codes have been specified by NCEES effective April 2013 to use for the morning portion and the afternoon depth. NCEES will periodically update the codes that are needed for the exam, so make that sure before you purchase the following books, review the NCEES website to see if the standard have been updated at <u>www.ncees.org/exams/pe-exam/</u>.

* Important: These are the design standard that NCEES will use to test you, so any equations or information from these books are testable. It is highly recommended that you purchase these books early on when studying.

1. <u>ASCE 37-02 Design Loads on Structures During Construction</u>, 2002, American Society of Civil Engineers, Reston, VA, <u>www.asce.org</u>.

2. <u>NDS National Design Specification for Wood Construction</u>, 2012, American Forest & Paper Association/American Wood Council, Washington, DC, <u>www.awc.org</u>.

3. <u>CMWB Standard Practice for Bracing Masonry Walls Under Construction</u>, 2012, Council for Masonry Wall Bracing, Mason Contractors Association of America, Lombard, IL, <u>www.masoncontractors.org</u>.

4. <u>AISC Steel Construction Manual</u>, 14th ed., 2011 American Institute of Steel Construction, Inc., Chicago, IL, <u>www.aisc.org</u>.

5. <u>ACI 318-08 Building Code Requirements for Structural Concrete</u>, 2011, American Concrete Institute, Farmington Hills, MI, <u>www.concrete.org</u>.

6. <u>ACI 347-04 Guide to Formwork for Concrete</u>, 2004, American Concrete Institute, Farmington Hills, MI, <u>www.concrete.org</u> (in ACI SP-4, 7th edition appendix).

7. <u>ACI SP-4 Formwork for Concrete</u>, 7th ed., 2005, American Concrete Institute, Farmington Hills, MI, <u>www.concrete.org</u>.

8. *OSHA Occupational Safety and Health Standards for the Construction Industry*, 29 CFR Part 1926 (U.S. federal version), U.S. Department of Labor, Washington, D.C.

9. <u>MUTCD-Pt 6 Manual on Uniform Traffic Control Devices—Part 6 Temporary Traffic</u> <u>Control</u>, 2009, U.S. Federal Highway Administration, <u>www.fhwa.dot.gov</u>.

Practice Problems Books

Practicing problems is the most important thing you must do to pass the test. The reality is the more problems you solve the better your chances are of passing the test. Below are the recommended books that you should buy for the construction engineering PM exam.

1. <u>The Construction Depth Practice PE Exam</u> by Mark F. DeSantis, P.E. This eBook is available on the <u>www.learncivilengineering.com</u> website.

2. <u>PE Civil: Construction Sample Questions and Solutions</u> by NCEES, 2014. This is a must have book. A good AM exam and PM practice exam.

3. Construction Depth Practice Exams for the Civil PE Exam, Beth Lin Hartmann, P.E.

The above are the suggested buys. You should be prepared if you study this manual, solve the above problems, and review all the design standards. If you really think you need more material, check out the below.

4. <u>**Civil PE Construction Module, Practice Problems**</u>, second edition, 2013 by Ruwan Rajapakse. There are a lot of great problems and clearly explains solutions.

5. Six-Minute Solutions for Civil PE Exam – Construction Problems, Elaine Huang, P.E.