Guide to the Identification of Safety-Critical Hardware Items for Reusable Launch Vehicle (RLV) Developers (1 May 2005)

Prepared by

American Institute of Aeronautics and Astronautics

Abstract

This document provides guidelines for the identification of potentially safety-critical hardware items in RLV designs. Possible risk-mitigating design strategies that may be incorporated into designs are also included. Such risk reduction measures may be necessary if vehicle operation poses risk to the uninvolved public beyond established thresholds of acceptability.

Published by

American Institute of Aeronautics and Astronautics 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

Copyright © 2005 American Institute of Aeronautics and Astronautics All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America.

Contents

Forewor	d	v
1	Introduction	1
1.1	Purpose	1
1.2	Scope	1
2	Interpretation of Safety-critical	1
3	Hazard Contributors	2
4	A Three-Pronged Approach to Assessing Public Safety	4
5	Depth of Analysis Necessary to Identify Safety-Critical Items	5
5.1	Risk Assessment Definitions	6
5.2	Depth of Analysis Examples	8
5.2.1	Sub-orbital Launch In Which the Dispersed IIP Does Not Intersect A Populated Area	8
5.2.2	Sub-orbital Launch in Which the IIP Intersects a Small Number of Populated Areas	11
5.2.3	Sub-Orbital Launch In Which the IIP Intersects a Large Number of Populated Areas	13
5.3	Depth of Analysis Summary	14
6	Risk Assessment Methodologies	15
6.1	Methodologies	15
6.2	Appropriateness of Various Methodologies	15
7	Guidelines for Identifying Potentially Safety-Critical RLV Items	16
7.1	Introduction	16
7.2	Safety-Criticality Guidelines	16
7.3	Safety-criticality Assessment	17
7.3.1	STEP 1: List RLV Subsystems and Operations	19
7.3.2	STEP 2: List Subsystem Components	19
7.3.3	STEP 3: Identify Failure Hazard Conditions	21
7.3.4	STEP 4: Potentially Safety-Critical Items	21
7.3.5	STEP 5(a and b): Preliminary Risk Assessment and Risk Reduction Measures	21
7.3.6	STEP 6: Item-Level Risk Analysis	22
7.3.7	STEP 7: List of Developers' Safety-Critical Items	22
7.4	Potential Safety-Critical Hardware Items	22
Annex A	X-33 Preliminary Casualty Expectation Analysis	51
Figure	S	
Figure 1	- Hazard Contributors	2
Figure 2	— Three Pronged Approach to System Safety	4

Figure 4 — Nominal Flight Path and IIP Trace Superimposed on a Map of Census Blocks	9
Figure 5 — Flight Path and IIP Trace With Dispersion	10
Figure 6 – Flowchart of Safety-Criticality Assessment Methodology	18
Tables	
Table 1 — Examples of Hazard Contributors, Potential Countermeasures, and Cause Categories	3
Table 2 — Simplified Expected Casualty Analysis for Overflight of a Lightly Populated Area	12
Table 3 — Potential Safety-Critical Hardware Items	25

Foreword

Numerous Reusable Launch Vehicle (RLV) systems are currently under development and testing to serve a variety of markets, from sub-orbital personal spaceflight to remote sensing applications. As one part of its mission, the Federal Aviation Administration's Associate Administrator for Commercial Space Transportation (FAA/AST) has been tasked with protecting the uninvolved public from the risk inherent in commercial space launch. The second part of AST's mission involves "encouraging, facilitating, and promoting U.S. commercial space transportation." This project represents an attempt by AST to simultaneously protect public safety and promote the developing RLV industry.

With the support and participation of FAA/AST, the American Institute of Aeronautics and Astronautics (AIAA) formed an industry working group tasked with identifying reusable launch vehicle (RLV) potentially safety-critical systems in August 2003. This Guide is a result of that activity.

Developed through close cooperation between FAA/AST and commercial RLV developers, this document represents a systematic approach to identifying potentially safety-critical items on a vehicle. Possible risk mitigation strategies are currently listed for many of the items identified. It is intended that this list will be expanded in future editions of the document. As more experience is gained in the design and development of reusable launch vehicle systems, this Guide will be updated to reflect increased knowledge and changes in the state of the art.

The following individuals and their organizations were instrumental in the development of this Guide:

Paul Birkeland	Kistler Aerospace
Lyndon Bonaparte	FAA/AST-300 (Systems Engineering and Training)
RandallClague	XCOR Aerospace
Ralph Ewig	Andrews Space, Inc.
Terry Hardy	FAA/AST-300 (Systems Engineering and Training)
Sri Iyengar	Lockheed Martin Corporation
Derek Lang, Pat Bahn	TGV Rockets
Richard Lee	AIAA Consultant
Dan Murray	FAA/AST-300 (Systems Engineering and Training)
Bob Peercy	The Boeing Company
Lorie Scheufule	Northrop Grumman Corporation
Yvonne Tran	FAA/AST-300 (Systems Engineering and Training)

This document represents a consensus of the RLV community represented above and was developed under the administration of AIAA. While this document is not an AIAA Standard, the process followed in the development of this Guide was in accordance with AIAA's Standards Program Procedures which have been accredited by the American National Standards Institute (ANSI).

Comments on the content of the document and suggested changes may be directed to Craig Day, AIAA Standards Program Manager, at <u>craigd@aiaa.org</u>.

1 Introduction

1.1 Purpose

This document provides guidelines for the identification of potentially safety-critical hardware items in RLV designs. Possible risk-mitigating design strategies that may be incorporated into designs are also included. Such risk reduction measures may be necessary if vehicle operation poses risk to the uninvolved public beyond established thresholds of acceptability.

The sole purposes of this document are to:

- assist developers by illustrating a systematic approach to identifying and mitigating the risk associated with safety-critical items;
- identify relevant and more in-depth documentation; and
- enhance understanding and communication.

It is expected that this document will be used by RLV developers in the design process to initiate the identification of potentially safety-critical items early in the development cycle. With this knowledge in mind, sufficient actions can be taken early in a program to bring the risk to the uninvolved public associated with a safety-critical item to an acceptable level.

1.2 Scope

The first iteration of this guide is limited in scope to cover only on-board RLV safety-critical hardware items. It is intended that future editions be expanded to cover other aspects of RLV design and operations (i.e., ground hardware, software, etc.).

2 Interpretation of Safety-critical

The Commercial Space Transportation RLV and Reentry Licensing Regulations, 14 CFR 401.5, provides the following definition of safety-critical.

"Safety-critical means essential to safe performance or operation. A safety-critical system subsystem, condition, event, operation, process or item is one whose proper recognition, control, performance, or tolerance is essential to system operation such that it does not jeopardize public safety."

For the purpose of this document, a definition derived from MIL-STD-882D and 14 CFR 401.5 was utilized to interpret "safety-critical" in the following ways:

A "potentially safety-critical" item is one, the failure of whose proper recognition, control, performance or tolerance could credibly pose a hazard to the uninvolved public.

A "developer's safety-critical" item is one the failure, as shown by analysis, of whose proper recognition, control, performance or tolerance does pose an unacceptable level of risk to the uninvolved public.

The differences in these terms are subtle, yet important. The 14 CFR 401.5 definition is intentionally broad to allow federal regulators necessary leeway in determining what is safety-critical on a given vehicle. For a new developer, it is important to realize that this does not mean that everything in a design is necessarily safety-critical. Rather, it is necessary to work through a systematic process to ensure that all items that could pose a threat to the uninvolved public are addressed in an appropriate manner.

The two interpretations, "potentially safety-critical" and "developer's safety-critical" are terms that are used in the process described in Section 7. "Potentially safety-critical" items are those that a developer has identified through a screening process using the guidelines and criteria outlined in this document. Using this list of potentially safety-critical items as a baseline, the developer applies quantitative and/or qualitative risk assessment techniques to evolve the list of safety-critical items specific to his vehicle. The use of the process outlined in Section 7 should yield a list of items that meet the definition contained in the regulation.

3 Hazard Contributors

There are seven hazard contributors that add to the overall risk a system can pose to the uninvolved public. These hazard contributors are represented in Figure 1.

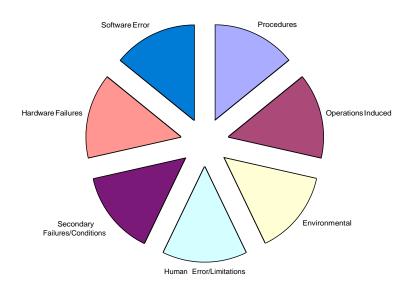


Figure 1 – Hazard Contributors

These seven hazard contributors can be generally categorized into the following higher level cause categories:

- Safety-critical hardware
- Safety-critical software functions
- Safety-critical procedures

Secondary failures/conditions can also occur as a result of problems with primary hardware, software or procedures.

The following table illustrates examples, for each hazard contributor, of a specific hazard, potential risk reduction measures for that hazard, and which higher level cause category that hazard falls into. Every hazard *contributor* can have hazards belonging to any cause category, but each specific *hazard* will belong to only one cause category.

Table 1 — Examples of Hazard Contributors, Potential Countermeasures, and Cause Categories

Contributor	Example(s)	ountermeasures, and Cause Categ Potential Countermeasures	Cause Category	
Human Error/ Limitations	A. Accidental activation of a cockpit switch	 Hooded switch cover Mount switch recessed within panel Pull circuit breaker (CB) until function is needed 	Hardware	
Procedural Problem	A. Incompatibilities or errors within Launch Commit Criteria (LCC), Flight Rules, etc.	 Check hazard controls against procedures Rigorous evaluation of each change to preclude "control erosion" 	Procedures	
Hardware Failure	A. Tank or fluid line rupture B. Loss of power bus	 Apply rigorous safety factors Multiple and/or redundant sources of power 	Hardware	
Secondary Failure/Condition	A. Loss of communication during an emergency	 Alternate modes for each critical function Ground intervention for emergencies 	Hardware	
Environmental	A. Crosswinds at landing siteB. Lightning near launch site	 Put constraints on crosswinds in Launch Commit Criteria (LCC) Put constraints on lightning in LCC 	Procedures	
Software Error(s)	A. Data Corruption in Storage or Transfer	1. Error Correction Codes in Data Storage Units and Communication Systems	Software	
	B. Algorithmic Error	2. Software Development Review / Validation / Test Procedures		
Operations Induced	A. "Go Fever"B. Schedule pressure	 Fully understand and document risk Minimize exposures of this nature 	Procedures	

An RLV developer should consider all of these hazard areas, to ensure a comprehensive safety assessment of the vehicle and its mission. Each of these cause categories involving the RLV hardware, software and procedures can contribute to hazards that may result in injury to, or loss among, the uninvolved public.

This first iteration of these guidelines is limited in scope to cover only on-board RLV safety-critical hardware systems as hazard contributors. It is intended that future editions of this Guide will be expanded to cover the other hazard contributors.

4 A Three-Pronged Approach to Assessing Public Safety

The following approach to assessing system safety is based on proven aerospace industry practice and has been adapted by the FAA/AST for use in licensing commercially launched RLVs. The methodology has proven effective at assuring system safety and, as a result, the safety of the uninvolved public. It is recommended that vehicle developers utilize this approach in their vehicle development program. Figure 2 provides a graphical overview of the process.

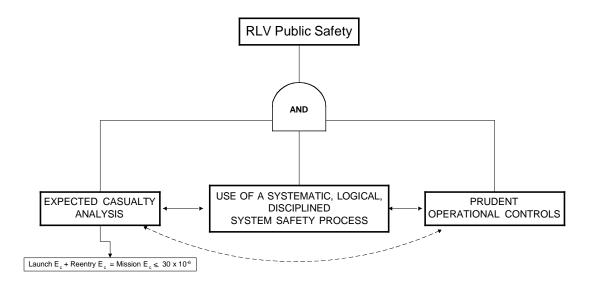


Figure 2 — Three Pronged Approach to System Safety

The three prongs are inter-related throughout the system's development and operation. In particular, a preliminary Expected Casualty analysis will provide an idea of the depth of safety analysis required as part of the System Safety Process, as well as the extent of the Prudent Operational Controls. Section 5.3 presents three examples of different levels of risk and, consequently, levels of analysis for the identification of safety-critical items.

A systematic, logical, disciplined System Safety Process generally consists of analyses and procedures undertaken as part of the design and development effort to ensure system safety. This document is intended to support this aspect of a developer's effort. Such effort may include:

- Failure Modes and Effects Analysis (FMEA)
- Failure Modes, Effects and Criticality Analysis (FMECA)
- Fault Tree Analysis (FTA)
- Sneak Circuit Analysis
- Event Tree Analysis
- Failure Reporting, And Corrective Action System (FRACAS)
- Reliability testing
- Verification and Validation (V&V) testing

Prudent Operational Controls may consist of:

- Allowable weather conditions for operations
- Launch area security requirements
- Launch crew training and certification requirements
- Clearly articulated lines of communications and responsibilities
- Launch commit criteria
- "No Fly" zones
- Abort lines

5 Depth of Analysis Necessary to Identify Safety-Critical Items

The process and procedure for identifying safety-critical items outlined in Sections 6 and 7 below are intended to assist new developers throughout their vehicle design and development. This section represents a preliminary characterization of the level of effort that a developer may need to expend in order to identify their safety-critical systems by outlining three real-world vehicle examples of the process. The first two examples outline systems that lent themselves to a simplified analysis for identification of safety-critical items. The third example is one of a vehicle that requires extensive analysis to identify the safety-critical items.

Many factors such as the size of the vehicle, the history and heritage of vehicle systems, the flight profile, the launch site location, and the developer's business plan's risk tolerance must be considered. Industry experience demonstrates that early assessment of required safety analyses is greatly beneficial to a vehicle developers' long-term design strategy. Should a developer wish to consult a regulatory body for approval to fly a commercial spacecraft in, or around, the vicinity of the uninvolved public, early identification of safety analyses, and the depth of those analyses, necessary to gain approval will allow for sound financial and resource planning.

The depth of analysis that a developer should undertake for safety purposes requires some amount of subjective judgment. Unlike regulations governing other aerospace-related endeavors, the current regulatory regime governing commercial space launch and reentry vehicles is intentionally broad and flexible. While this fact affords new vehicle developers the ability to work together with regulators, traditional aerospace organizations may find the lack of prescriptive regulatory requirements confusing. This section is an attempt to indicate by illustrative example how the developer might determine a sufficient depth of safety analysis early in his design process.

Many factors affect the degree of risk that a flight operation poses to the uninvolved public. However, the choice of launch site, the system's operational scenario and vehicle configurations are fundamental drivers in all flight operations. The launch site is critical because the site's proximity to populated areas strongly affects the level of risk posed. The operational scenario is critical because it determines how close the vehicle approaches that population and how long the hazard persists and, consequently, the level of risk. While the following examples may not apply to the developer's specific vehicle configuration, the three separate examples will explore the effect of these risk drivers on the depth of analysis necessary.

5.1 Risk Assessment Definitions

Expected Casualty Analysis

The launch industry's fundamental method for assessing risk is called the Expected Casualty Analysis, or the Ec (E-sub-c) Analysis. This methodology was developed in the early days of launch system design to determine, through a set of conservative probabilistic models, the possibility of a given flight operation causing a casualty among the uninvolved public on the ground. Accepted industry practice allows no areater than 30×10^{-6} (30-in-a-million) probability of casualty among the uninvolved public on the ground.

Assumptions made in an Ec analysis could result in an oversimplification of the risk assessment, such oversimplification could make the risk assessment less conservative. To account for this, it is important that any assumptions made and their resultant effects on the overall risk be clearly documented in the analysis.

The reader should refer to FAA Advisory Circular 431.35-1, *Expected Casualty Calculations for Commercial Space Launch and Reentry Missions*, for a complete presentation of the Expected Casualty analysis.

Instantaneous Impact Point (IIP)

While risk assessment discussions often refer to the "overflight of populated areas," the physical location of the vehicle actually has less effect on the risk to the uninvolved public than the Instantaneous Impact Point.

The Instantaneous Impact Point (IIP) is the location on the earth's surface where the vehicle would impact if it were to stop thrusting at any given moment. The IIP is used in recognition of the fact that in the event of catastrophic failure, the vehicle is unlikely to impact at the point directly below where the failure occurred. Its energy will carry it away from that point.

In the case of a sub-orbital flight profile, the IIP will move away from the sub-vehicle point due to nominal thrust vectoring in the mission profile, atmospheric disturbances, and performance variations. The extent to which the IIP moves is dependent upon the vehicle's flight profile. Just before landing, of course, the IIP is once again directly beneath the vehicle.

In the case of an exo-atmospheric sub-orbital vehicle, the IIP will loiter in a Reentry Impact Zone (RIZ) during the ballistic portions of the vehicle flight above the atmosphere. During this period, the IIP will move very slowly or not at all. In the interest of public safety, the vehicle operator should operate the vehicle so as not to place the RIZ in a densely populated area.

In the case of an orbital flight profile, the IIP will move downrange ahead of the vehicle due to the vehicle's pitching over to build up lateral velocity to enter orbit. The IIP, which is a mathematical abstract, accelerates ahead of the vehicle and completes one circumnavigation of the earth before the vehicle becomes orbital. (Once a vehicle is orbital, by definition it has no IIP.)

When an orbital RLV is decelerating to return to the earth, its IIP races back toward the vehicle, gradually slowing and coming to rest at the landing site.

In practice, the IIP must be treated as a point with some degree of dispersions around it. Launch day winds, for example, will cause pieces of debris to move off the computed IIP by an uncertain amount. These dispersions are usually accounted for by extending the boundaries of any populated area outward, or by circumscribing a dispersion ellipse about the IIP itself. This provides margins for the unavoidable uncertainties inherent in this kind of analysis.

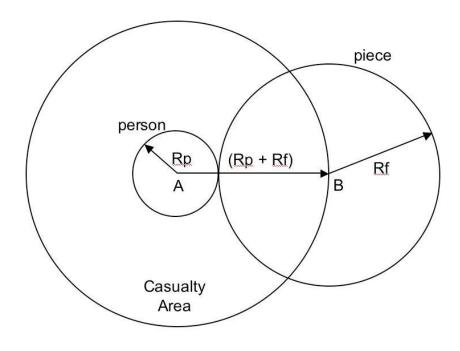
In any event, characterization of the IIP is critical to any flight risk assessment, and control of the location of the IIP is critical to operational flight safety.

IIP Trace

A plot of sequential IIPs as they move over time may be superimposed on a map of the launch area. Such a plot is called an IIP Trace.

Dwell Time

It takes a finite amount of time for the IIP trace to cross any given area on the earth's surface. The amount of time it takes to cross a given area of interest is known as the Dwell Time.


Population Density

The population density is the population of a given census block divided by the area of that block. The United States Census Bureau provides data (population, land area, and water area) for calculating population densities for each census block throughout the United States.

NOTE The U.S. Census Bureau does not generally calculate population densities.

Casualty Area

The casualty area of a given piece of debris is generally assumed to be the sum of the maximum possible area presented by the piece of debris and the area presented by the individual at risk. All other conditions being equal, the larger the casualty area, the greater the risk. In the simplest cases, these values may be assumed in some logical fashion. In more complex cases, there are several probabilistic models that will estimate these values. In either case, it is important to document assumptions and/or the models utilized for future reference. Figure 3 below (taken from FAA AC 431.3-1) is a graphical representation of the casualty area calculation for a piece of vertically falling debris.

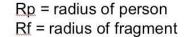


Figure 3 — Casualty area for vertically-falling debris (ref. FAA AC 431.35-1)

5.2 Depth of Analysis Examples

This section presents three flight scenarios that present distinctly different levels of risk to the uninvolved public. As such, one would expect that different depths of analyses would be applied in the design process to identify safety-critical items for different scenarios. The first, and simplest scenario, for example, presents a small, sub-orbital launch. There is no population beneath the dispersed IIP Trace at any time during flight. In this case, some simple system analyses were undertaken and some top-level operational restrictions were applied, the number of safety-critical systems was kept to a minimum.

The second case shows a sub-orbital launch in which its dispersed IIP intersects a small number of populated areas. In this case, one would anticipate that some additional analyses may be required, and, in fact, a simplistic Ec analyses was conducted. It is shown here. Again, however, the identification of safety-critical onboard hardware items as described in Sections 6 and 7 of this document was not required.

The third case presented here is that of NASA's X-33. The vehicle in this example is larger and more energetic, and its flight path more ambitious. As will be shown, the analysis required to identify safety-critical items of this system was quite extensive.

5.2.1 Sub-orbital Launch In Which the Dispersed IIP Does Not Intersect A Populated Area

The first case to be presented here is indicative of a situation where the vehicle size, operational profile, and operation site were such that the simplest analysis was adequate to identify the safety-critical items. The analysis itself does not ensure safety: the safety-critical systems, personnel, and operations do that. This historical example is presented to illustrate the process used by this developer to determine the depth of analysis required to adequately identify his safety-critical items. It involves a small, piloted, winged reusable launch vehicle executing a flight in which its dispersed IIP does not intersect a populated area.

The vehicle is approximately the size of a small airplane with the following characteristics:

- The vehicle is a piloted, winged, horizontally launched and recovered RLV
- Only non-toxic propellants are used in the vehicle
- Engine burns to propellant exhaustion
- Vehicle utilizes mechanical, unassisted flight controls
- The subsonic vehicle experiences moderate acceleration (2-3 g's) throughout the flight regime ensuring that the vehicle can be piloted using visual navigation to a demonstrated level of accuracy

In its operational scenario, it takes off under rocket power, climbs to 10,500 feet MSL (7700 feet AGL) while flying east away from the airport, burns until it has exhausted all of its propellant, spirals down to pattern altitude just east of the airport, enters the pattern, and lands.

In Figure 4, the black, crossed line segments to the left of center are the airport runways. The blue line is the vehicle ground track, climbing off the runway, up to altitude, spiraling back down, and returning to the runway. The red line shadowing the flight path is the vacuum IIP trace. The white irregular shapes west of the airport are populated U.S. Census Bureau census blocks.



Figure 4 — Nominal Flight Path and IIP Trace Superimposed on a Map of Census Blocks

As the first step in determining the depth of analysis that would be required to identify the safety-critical items, the developer used his extensive knowledge of the vehicle subsystems and components, the vehicle operational concept, and engineering experience to identify any possible failure hazard conditions. The developer concluded in this preliminary assessment that the only components of the vehicle whose failure would result in any of the hazard conditions defined in section 7.2 were the pilot and vehicle flight controls.

The developer then undertook a preliminary risk assessment to determine the extent of the risks posed by the failure of systems other than the pilot or vehicle flight controls. The developer already knew from Figure 4 that the nominal flight profile did not overfly any populated areas. But the question remained as to whether or not another failure could cause sufficient perturbation in the trajectory so as to place populations at risk.

The developer then made the following assumptions:

- 1. The Probability of system failure (P_f) is 1.
 - a. This assumption guarantees the maximum possible conservatism for likelihood of failure and is a good practice for an initial look with this simplified analysis. If the risk posed with this failure probability is unacceptably high, then analysis can be undertaken to more accurately bound the value.
 - b. The reader should be aware that regardless of the level of analysis undertaken by the developer, the Federal Aviation Administration will require the assumption of Pf = 1.0 to determine operational restrictions for an unproven RLV at any time the IIP dwells over a populated area for a substantial amount of time. In such cases, the expected average number of casualties to members of the public shall still not exceed 30 x 10-6 (Ec < 30 x 10-6) over that populated area.</p>
- 2. Worst-case wind conditions exist at the launch location
- 3. There is no debris detonation upon impact with the ground
- 4. The pilot will not become incapacitated.

Given the simple, sub-orbital nature of the flight profile and the remoteness of the operational area, the developer realized that the superposition of the vehicle's nominal vacuum IIP trace over the launch area, combined with a worst-case dispersion analysis, could demonstrate that no one on the ground is exposed to the risks associated with these operations, thus demonstrating compliance with the industry practice of a collective risk threshold of 30 x 10⁻⁶.

The dispersion of the IIP of this vehicle, flown under visual flight rules, consists of visual navigation error and wind drift of any vehicle debris. The maximum navigation error for this vehicle for this flight path, derived from a visual navigation demonstration flight, is 1,740 feet. The maximum wind drift for this flight path on credible pieces of lethal inert debris, based on winds aloft data collected over a period of time at the launch site, is 1,845 feet. Their sum, the worst-case dispersion, is 3,585 feet.

The burnout point indicated on the figure represents a point where the vehicle becomes inherently safer due to a decreased level of potential energy.

Figure 5 is the dispersed IIP superimposed on the launch area.

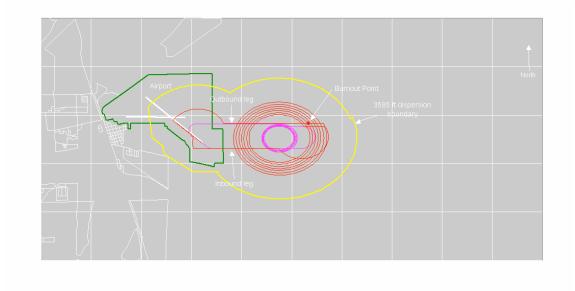
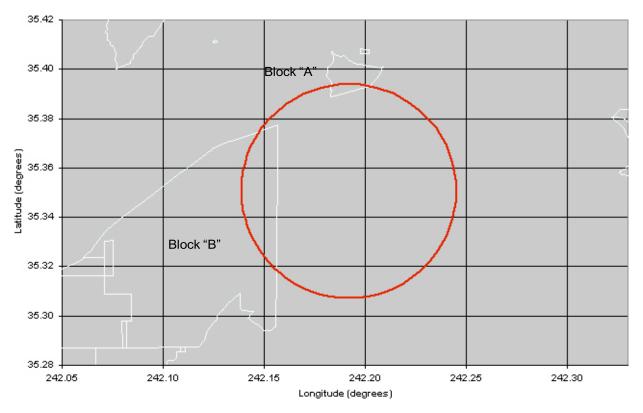


Figure 5 — Flight Path and IIP Trace With Dispersion

A visual inspection of the chart in Figure 5 reveals that the dispersed IIP does not encroach upon a populated census block. The only census block for which visual inspection does not obviously show its distance from the IIP trace to be more than the maximum dispersion is the block to the southwest of the active runway. The vehicle is only on or near the runway during takeoff and landing, during which its altitude, and thus its dispersion, is much lower than the maximum possible. Further, aerial photographs of the area show that the population within this block is clustered in its northeast corner, farthest away from the active runway.


Given the above analysis, the developer confirmed that no further analyses would be necessary to identify safety-critical items. However, it should be noted that any system, the failure of which causes violation of any of the above assumptions or renders the analyses invalid, may be safety-critical and require further analysis as outlined in the rest of the document.

The level of effort necessary to identify safety-critical systems in this example was relatively low since the hazards associated with this vehicle are readily identifiable and its operations can be contained within an area of no population. Given the lack of population overflight, the developer found it unnecessary to perform further analyses to identify safety-critical items. If the population of the area under which the vehicle is flown were greater, the complexity of this analysis would increase.

5.2.2 Sub-orbital Launch in Which the IIP Intersects a Small Number of Populated Areas

The second scenario is for a sub-orbital launch from an inland site in which the vehicle's dispersed IIP intersects a small number of populated areas. The risk posed is low, but obviously greater than the previous example, and one would expect a somewhat more detailed set of risk and safety analyses would be required to identify the vehicle's safety-critical items.

This vehicle was a traditional vertically-launched, fin-stabilized, unguided rocket. Figure 6 shows the computed hazard area (see below) overlying parts of two Census Blocks.

Mojave-Area Populated Blocks

Figure 6 — Hazard Area Superimposed on a Map of Census Blocks

A review of the vehicle operations revealed that in order to contain the dispersed IIP within the identified hazard area, the propellant load on the vehicle at launch could not exceed 4 liters.

In order to approximate the depth of analysis that would be necessary to identify the vehicle's safetycritical items the developer used his knowledge of the vehicle subsystems and components, the vehicle operational concept, and solid engineering experience to identify any possible failure hazard conditions. The developer concluded in this preliminary assessment that the only component of the system whose failure would result in any of the hazard conditions defined in Section 7.2 was the operational control on the fuel load identified above.

The developer then performed a preliminary risk assessment on his vehicle making the assumption that it would fail catastrophically (Pf=1) but that the operational constraint was not violated.

Other assumptions made by the developer in performing the assessment included:

1. worst-case wind conditions (at launch location), and;

2. no debris detonation upon impact with the ground.

The following outline of the preliminary risk assessment is provided for illustrative purposes only.

As a first step, the developer needed to estimate the size of the area put at risk. As shown in column 1 of Table 2, the developer actually made two estimates here. The more conservative estimate is that the vehicle WILL come down inside one of the census blocks. In this case, the at risk area is simply the sum of the areas of each of the census blocks or 125,728,614 square feet.

Alternatively, the developer could make the more realistic assumption that the vehicle could come down anywhere within a hazard circle.

It should be noted here that, so long as the results are acceptable, the more conservative the modeling for the Ec analysis, the less depth of analysis on the system would be necessary. The goal of the Ec analysis is not to accurately predict the risk exposure, but to demonstrate that it is below the various thresholds of acceptability in the face of conservative assumptions and models.

Several probabilistic methodologies are available to determine the size of the hazard circle, but, for the purpose of simplicity, the developer simply calculated the maximum possible ballistic range for the vehicle. This represents a highly conservative estimate for this analysis. This led to an at Risk Area of 788,243,190 square feet as shown in the table.

The developer then overlaid that circle onto a Census map of population to determine the population of Census blocks overlain by the at risk circle.

As shown in Table 2, the developer then proceeded to compute a population density for the relevant Census blocks and At Risk Areas. The population of Block A was 2 persons. The population of Block B was 7 persons. The total population of 9 was divided by the two At Risk Areas to yield a conservative population density of 7.16×10^{-8} , and a nominal population density of 1.14×10^{-8} .

The developer then assumed, per FAA AC 431.35-1, that the radius of the space covered by a human is 1 foot, and that the radius of the crater is also 1 foot. Again, there are sophisticated probabilistic models to determine these values, and these models become rather more necessary with larger vehicles and more complex flight profiles. But for the case at hand, these simple assumptions were conservative.

The analysis then assumed a Probability of Failure (P_f) of 1.0, i.e. the developer made the assumption that the vehicle WILL fail.

These assumptions led to an estimated Casualty Area (AC) of 12.57 square feet as shown in Table 2.

Finally, multiplying the Population Density by the Casualty Area and by the Probability of Failure, the developer determined that the Expected Casualty probability for the conservative case was 9.00×10^{-7} . Likewise, for the nominal case the Expected Casualty probability was 1.43×10^{-7} . These values are both well below the industry accepted maximum of 30×10^{-6} . With the knowledge that the vehicle could not endanger the uninvolved public, further analyses were not performed.

		Fixed Pop. (persons)		Pop. Density (persons/ft2)	Human Radius (ft)	Crater Radius (ft)	AC Radius (ft)	AC (ft ²)	Pf	EC(cas)
Block A	10,596,351	2								
Block B	115,132,283	7								
Total Pop. Area	125,728,614	9	9	7.16E-08	1	1	2	12.57	1	9.00E-07
Total Risk Area	788,243,190	9	9	1.14E-08	1	1	2	12.57	1	1.43E-07

Table 2 — Simplified Expected Casualty Analysis for Overflight of a Lightly Populated Area

Given the above analysis, the developer concluded that there were no on-board hardware items essential to ensuring that the risk to the uninvolved public remained acceptable. However, while not specifically covered by this guide, the operational control identified above was safety-critical in that its violation could put the uninvolved public at risk.

It is further noted that any system the failure of which causes violation of any of the above assumptions or renders the analyses invalid may be safety-critical and require further analysis as outlined in the rest of the document.

The effort necessary to perform this analysis was more complicated than the first example due to the need to account for the small population in the vicinity of the launch site. As this example illustrates, however, the simplified Ec analysis performed was sufficient to provide the developer with confidence that his system, with certain operational constraints implemented, was sufficiently safe to operate from the chosen launch location.

5.2.3 Sub-Orbital Launch In Which the IIP Intersects a Large Number of Populated Areas

Finally, the third scenario is for NASA's X-33 vehicle, a sub-orbital launch in which the vehicle's dispersed IIP intersects a large number of populated areas. The risk posed is more significant because of the flight path and the size of the vehicle, and one would expect a more comprehensive set of risk and safety analyses would be required to identify safety-critical items.

The X-33 was expected to fly from Southern California to Montana. Its IIP passed over a greater population than either of the above cases, and, consequently, a greater level of analysis would be expected. Lockheed Martin, in fact, undertook the entire regimen of safety and reliability analyses for the X-33 before it was cancelled. The following material was derived from <u>X-33 Advanced Technology</u> <u>Demonstrator Program Final Environmental Impact Statement – Appendix G Flight Safety Analysis (NP-1997-09-02-MSFC)</u>

X-33 documents reveal the extent of analyses required to ensure safe X-33 flights between Edwards AFB and sites in Utah, Montana, and Washington. Appendix G states:

"<Edwards Air Force Base> Range Safety, the organization responsible for flight safety, is chartered to protect life and property during vehicle launch, flight, and landing operations for all flights originating within their controlled airspace. In order to satisfy Range Safety's requirements to launch from Edwards Air Force Base and optimally land at one of three landing sites, the Program must provide:

Planning

- best estimate of trajectory
- establish nominal trajectory
- population density studies
- map generation
- launch and landing hazard analysis
- debris fragmentation patterns
- how to handle flight anomalies (deviations, accidents, etc.)
- establish nominal flight envelope
- determine vehicle discretes required for display
- best data source selection
- Range Safety Office and Range Operations Center (best data source) training

<u>Launch</u>

- activate ground support equipment
 - certify configuration
 - sub-system and end to end test
- weather data input
- launch risk analysis
- acoustic overpressure analysis if necessary

<u>Post-Laun ch</u>

- vehicle anomaly investigation if necessary
- support system anomaly investigation if necessary
- evaluate performance of:
 - support system anomaly investigation if necessary
 - evaluate performance of
 - instrumentation systems
 - communications systems
 - computer systems"

It is beyond the scope of this document to fully elucidate the X-33 safety analyses. And, in fact, Appendix G itself is only a topmost level perspective of the tasks required to better ensure safe operations. The full extent of required analyses will probably never be known since the program was terminated before many serious analyses were undertaken. The work presented in the referenced Environmental Impact Statement is merely a preliminary analysis. It was more to explore and get approval for modeling methods and identify the challenges that lay ahead.

It could be said that the developers of the vehicles in section 5.2.2 and 5.2.3 undertook the planning steps outlined above. However, the vehicles' concepts of operations and flight envelopes were such that the depth of the analyses that support these steps was substantially lower than for the X-33 flight. The effort necessary to perform these analyses for the X-33 flight would prove to be large due primarily to the population densities under the vehicle flight path. That being said, it is worth garnering an understanding of the preliminary Expected Casualty analysis planned for X-33. This analysis is presented in Annex A for reference.

While the level of effort that would be necessary to utilize the process outlined in sections 6 & 7 of this document for the X-33's given flight path is quite extensive, the methods would be applicable.

5.3 Depth of Analysis Summary

The identification of safety-critical items as outlined in this document may not be necessary for all developers and vehicles. There are many situations where such analyses may be inappropriate.

The developer does, however, need to make a conscious determination of the appropriate depth of analysis for his or her system as early as possible in his or her development program. Such a determination should take into account the developer's own risk tolerance and applicable laws and regulations.

The above three examples are intended to provide illustrations of situations that require:

- little additional analysis beyond a preliminary Casualty Expectation analysis;
- a moderate amount of additional analyses, and;
- and a significant amount of additional analyses.

While there are no firm rules governing the depth of analysis to undertake, the developer should now have some sense of where his or her specific system falls. Regardless of the depth of analysis found for a particular vehicle, the processes outlined below in sections 6 & 7 for identifying safety-critical items may be used.

6 Risk Assessment Methodologies

As has been discussed earlier, RLV developers should identify the safety-critical items aboard their vehicles. Industry in general, and the aerospace industry in particular, have developed various systematic approaches to identifying safety-critical systems.

The methods referenced below represent a portion of methodologies that have been developed. The developer should select the approach most appropriate to their vehicle and its concept of operations.

6.1 Methodologies

FAA Advisory Circular AC 431.35-2 <u>Reusable Launch and Reentry Vehicle System Safety Process</u> (<u>http://ast.faa.gov/files/pdf/Ac4312a5.pdf</u>) outlines various methodologies for assessing systems safety. Some of the more commonly utilized methodologies include Failure Modes and Effects Analyses (FMEA), Failure Modes, Effects and Criticality Analyses (FMECA), and Event/Fault Tree Analyses. A number of other methodologies exist and developers are encouraged to review AC 431.35-2 in its entirety for a greater understanding of the system safety process, especially as it may be phased in during the vehicle development program.

6.2 Appropriateness of Various Methodologies

As stated in <u>AC 431.35-2 Reusable Launch and Reentry Vehicle System Safety Process</u>, a system's life cycle may be divided into six (6) distinct phases.

- 1. Conception
- 2. Research and Development (R&D)
- 3. Design
- 4. Deployment
- 5. Operation
- 6. Decommissioning and Disposition

The identification of safety-critical systems should be undertaken as early as practical in the system life cycle. The developer should determine the appropriate methodology to use for each given stage of development. Among the considerations in this determination should be:

- 1. the appropriateness of the methodology to the depth of technical detail available;
- 2. the appropriateness of the methodology to the type of system or operation being analyzed;
- 3. the appropriateness of the level of rigor in relation to the severity of the consequences of failure; and
- 4. the best use of available resources.

7 Guidelines for Identifying Potentially Safety-Critical RLV Items

7.1 Introduction

This section contains a set of tools that RLV developers may use to screen their vehicles and concept of operations to identify potentially safety-critical items. These tools include:

- a set of guidelines that may be used to evaluate a specific hardware item or system to determine if it may jeopardize the safety of the uninvolved public;
- an assessment process that may be followed to return a list of a developer's safety-critical items; and
- a representative list of potentially safety-critical items.

7.2 Safety-Criticality Guidelines

The following guidelines may be used by developers to perform an initial screening of their vehicle to make a preliminary assessment of safety-criticality. This screening is performed independent of a structured risk assessment.

In general, if BOTH of the following conditions are true for a particular item, the item is potentially safetycritical and may require further analysis.

(1) If the vehicle is over/in a populated area, or may reach a populated area as a result of failure, and

(2) the system could credibly fail, with the failure resulting in one or more of the five described hazard conditions below.

List of Hazard Conditions

- <u>Failure causes vehicle breakup:</u> The vehicle is broken into fragments.
- <u>Failure causes vehicle loss of control:</u> The vehicle can no longer be controlled by the crew (may be onboard crew or ground crew) or by autonomous means.
- Failure causes uncontrolled debris:

The failure leaves the vehicle intact and controllable, but debris is ejected, without any means of controlling where the debris will impact. For example, an engine failure leaves the vehicle intact and in control, but may cause a fan blade to be ejected from the vehicle; or a structural failure may lead to the separation of a aerodynamic control surface. The intentional jettison of a component (e.g. drop tank) in a designated area during normal or emergency operations is not considered a failure.

- <u>Failure causes uncontrolled discharge of hazardous material:</u> The failure leaves the vehicle intact and controllable, but leads to the discharge of hazardous material (toxic, flammable, cryogenic, etc.)¹. The controlled dumping of propellants in a designated area during normal or emergency operations is not considered a failure.
- Failure prohibits safe landing:

The failure leaves the vehicle intact and controllable in flight, but prohibits the vehicle from either reaching a designated landing location where the public is not endangered (e.g. a missile range), or prevents the vehicle from performing a controlled emergency landing without endangering the uninvolved public (e.g. at a public airport).

¹ As defined by Table contained in 49 CFR 172.101

7.3 Safety-criticality Assessment

This section presents a step-by-step process that an RLV developer may use to generate a list of safetycritical items specific to his vehicle configuration. This process utilizes the guidelines presented in section 7.2. There are five steps in this process.

- 1. List the subsystems and operations of the RLV.
- 2. List hardware elements of each subsystem.
- 3. Question each component to determine if its failure presents a hazard to the uninvolved public.
- 4. If it does, designate it as "potentially safety-critical."

5a. Perform a preliminary risk assessment. If it meets the allowable criteria, no further analysis may be required.

5b. Otherwise, apply risk reduction measures and iterate until risks are within acceptable limits.

6. Using the results of this assessment, determine which items must function correctly in order to ensure an acceptable level of risk to the uninvolved public.

7. Prepare a list of the developer's safety-critical items.

Figure 6 is a graphical representation of this process.

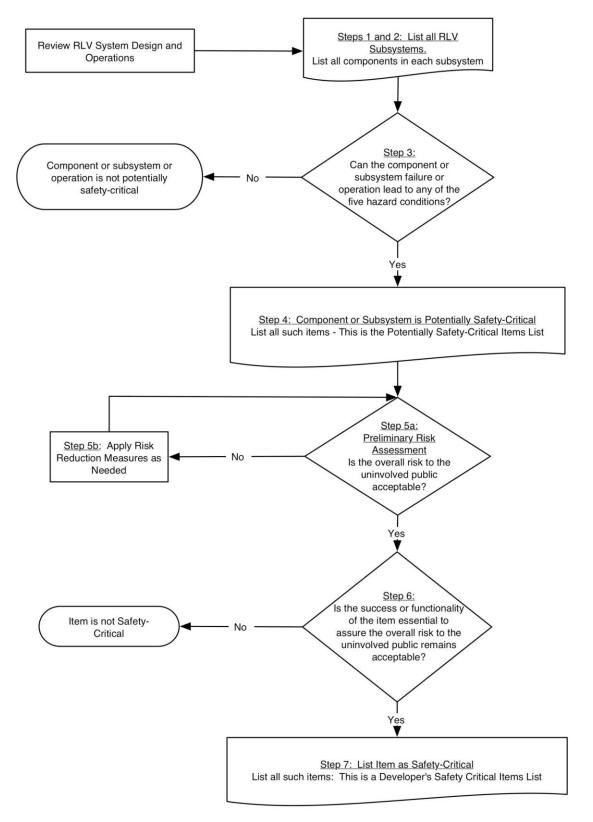


Figure 6 – Flowchart of Safety-Criticality Assessment Methodology

7.3.1 STEP 1: List RLV Subsystems and Operations

A typical RLV may involve some or all of the following systems. This list is included simply as a starting point for developers. Some RLVs may incorporate systems not included in the list below. Therefore, a first step would be the identification of various systems. Add or delete systems as applicable to the systems and operations of the subject RLV.

- a. Structures
- b. Thermal Protection Systems
- c. Propulsion
- d. Pneumatics and Hydraulics
- e. Operational Ordnance
- f. Flight Safety
- g. Flight Controls (Mechanical)
- h. Flight Controls (Electrical/Electronic)
- i. Environmental Control and Life Support Systems (ECLSS)
- j. Recovery hardware

7.3.2 STEP 2: List Subsystem Components

The second step in the process involves the identification of key elements in each system. Add or delete components as applicable to the systems and operations of the subject RLV.

- a. Structures
 - 1. Fuselage
 - 2. Wings
 - 3. Stabilizers
 - 4. Doors
 - 5. Landing Gear
 - 6. Propellant/Pressurant Tanks (if also used as load bearing structures)
- b. Thermal Protection
 - 1. Ceramic Tiles
 - 2. Ablative Materials
 - 3. Composite Panels
- c. Propulsion
 - 1. Engines
 - 2. Propellant Tanks
 - 3. Propellant Dumping Systems
- d. Pneumatics and Hydraulics

- 1. Pressure Vessels
- 2. Piping (Rigid and Flexible)
- 3. Valves (Flow Control, Directional Control, Check Valves)
- 4. Regulators
- 5. Relief Devices (Valves and Burst Discs)
- 6. Pressure Gauges and Transducers
- 7. Temperature Probes
- 8. Pumps
- 9. Accumulators
- 10. Electrical Motors and Solenoids
- 11. Interlocks
- 12. Logic Devices
- e. Operational Ordnance
 - 1. Parachute Deployment Devices
 - 2. Parachute Reefing Devices
 - 3. Drogue Release Devices
 - 4. Stage Separation Arming Devices
 - 5. Stage Separation Charges
- f. Flight Safety
 - 1. Propellant Dumping System
 - 2. Pilot
 - 3. Flight/Thrust Termination Systems
 - 4. Ejection Seats
- g. Flight Controls (Mechanical)
 - 1. Elevators
 - 2. Ailerons
 - 3. Rudders
 - 4. Spoilers
 - 5. Flaps
 - 6. Brakes
 - 7. Drag Devices
- h. Flight Controls (Electrical/Electronic)

- 1. Antenna
- 2. Data Receiver/Transmitter
- 3. GPS Hardware
- 4. Computer
- 5. Voice Communications
- 6. Active Sensors and Vehicle Position Transducers
- 7. Displays
- 8. Wiring/Connectors
- i. Environmental Control and Life Support Systems (ECLSS)
 - 1. Cabin Materials
 - 2. Cabin Atmosphere Regulation Hardware
 - 3. Pressurized Cabin
 - 4. Cabin Atmosphere Controls
 - 5. Cabin Temperature Control System
- j. Recovery Hardware
 - 1. Parachutes
 - 2. Airbags
 - 3. Landing Gear

7.3.3 STEP 3: Identify Failure Hazard Conditions

The third step involves assessing each component to determine if its failure can result in any of the hazard conditions defined in section 7.2:

- 1. Vehicle breakup
- 2. Loss of vehicle control
- 3. Uncontrolled debris
- 4. Uncontrolled release of hazardous materials
- 5. Prohibits safe landing

7.3.4 STEP 4: Potentially Safety-Critical Items

If the answer is yes to any of the conditions in Step 3, the items are included on the potentially safetycritical items list.

7.3.5 STEP 5(a and b): Preliminary Risk Assessment and Risk Reduction Measures

The fourth step involves performing a Preliminary Risk Assessment assuming failures of the above potential safety-critical items and the consequences and likelihood of failure.

If the Preliminary Risk Assessment shows the risk to be below the acceptable limits, no further analysis may be required. If not, Risk Reduction Measures (RRMs) may be needed

Section 7.4 provides a number of generic risk reduction approaches that may be applied to RLV systems. In addition, the table in Section 7.4 identifies specific RRMs for a number of items. Please note that the implementation of these RRMs is an iterative process. Multiple RRMs may need to be applied repeatedly to reduce the risk to an acceptable level.

7.3.6 STEP 6: Item-Level Risk Analysis

Utilizing the results of this preliminary analysis, the developer identifies those systems on his vehicle which must function correctly to ensure that the level of risk to the uninvolved public remains acceptable. These are the developers' safety-critical items. The items on this list should meet the definition of safety-critical published in 14 CFR 401.5.

Industry practice encourages developers to focus their resources on items that provide the greatest reduction in risk to the uninvolved public. As a general rule, only a small percentage of system failures may contribute to a significant portion of the risk.

7.3.7 STEP 7: List of Developers' Safety-Critical Items

The final step in the process is simply the creation of a list containing the items identified by the developer as safety-critical. In addition to this list, the developer should have a set of documentation that details his process, the analyses performed, the results of those analyses, and any conclusions reached by the developer concerning any item's inclusion on this list. Alteration of a vehicle design and/or operational concept subsequent to the identification of safety-critical items may necessitate subsequent analyses to ensure proper recognition of all safety-critical items.

7.4 Potential Safety-Critical Hardware Items

The following table does not present a list of systems, subsystems, components, equipment or items that will always be safety-critical; it simply provides a point of departure for additional analysis. The safety-criticality of each item on the list is highly dependent on the vehicle design and concept of operations. It is impossible to conceive of all possible RLV configurations; therefore, the following table should not be considered an all-inclusive list. However, the guidelines and process outlined above are also applicable to any RLV system or hardware item that may not be included in the table.

As mentioned above, risk reduction measures are often applied to vehicle systems and hardware components to reduce the risk to the uninvolved public to an acceptable level. The table below identifies specific risk reduction measures for some of the components; however there are a number of general risk reduction measures that are applicable to most space transportation systems. These include, but are not limited to:

- increasing safety factors to provide adequate design margins;
- incorporating flight proven design concepts and materials;
- incorporating special design features;
- incorporating manufacturing and processing improvements;
- testing components to maximum limit loads and environments (for nominal and off-nominal conditions);
- isolating critical components from each other and other critical parts;
- conducting subsystem development and qualification tests to demonstrate system performance and verify design analyses; and
- modifying vehicle flight parameters (trajectory, velocity, etc.) to reduce operating loads, avoid populated areas, etc.

For each item indicated in Table 3, the primary hazard condition that could result from a failure of the item is indicated by an "X". In some cases there are secondary hazard conditions that occur as a direct result of the initial hazard; these are noted as well. The majority of the hazard conditions identified are followed by explanations as to why they were included. Some of these explanations utilize examples of real-world vehicles, most notably the X-15, the Space Shuttle, Soyuz, and the Armadillo Aerospace project. The information contained in these examples was taken from the open, publicly available sources identified below.

Space Shuttle Columbia: The Columbia Accident Investigation Board (CAIB) Report, Volume I-VI, August –October 2003 (http://www.caib.us/news/report/default.html)

X-15: Jenkins, Dennis R. and Landis, Tony R., *Hypersonic: The Story of the North American X-15,* Specialty Press, North Branch, MN, 2003.

Soyuz, X-15: <u>http://www.astronautix.com/</u>

Armadillo Aerospace: <u>http://www.armadilloaerospace.com/n.x/Armadillo/Home/News</u>

Table 3 — Potential Safety-Critical Hardware Items

Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²	Prohibits Safe Landing	
			Structures				
Fuselage	Loss of structural integrity	Xa	X (secondary condition)	X (secondary condition)	X (secondary condition)	X (secondary condition)	
	Loss of control surface	X (secondary condition)	Xp	Xc	X (secondary condition)	X (secondary condition)	
 Incorporate rec Use of adequat Hazard Condition E aDesign flaw in deH 	lavilland Comet I (square win	to allow a level of control urface strength and attac	chment		Condition)		
 Incorporate rec Use of adequat Hazard Condition E ^aDesign flaw in deF ^oObvious to most car 	te design margin for control s	to allow a level of control urface strength and attac idows) airliner led to met rolled debris.	chment		Condition)		
Use of adequat Hazard Condition E Design flaw in deH Obvious to most c	te design margin for control s <u>Explanation:</u> Havilland Comet I (square win asual of observers (OMCO)	to allow a level of control urface strength and attac dows) airliner led to met	chment		X (secondary condition)	X (secondary condition)	

^aDuring the final reentry of Space Shuttle *Columbia*, a puncture in the left wing allowed superheated gas into the wing cavity causing a loss of structural integrity of the wing. As a result, the vehicle yawed left and subsequent aerodynamic loads led to vehicle breakup. ^bOMCO

^cA detached control surface can become uncontrolled debris.

² See Hazardous Materials Table, 49 CFR 172.101

25

	Item Failure Mode Hazard Condition/Suggested Risk Reduction Measures (RRMs)						
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ³	Prohibits Safe Landing	
			Structures				
Stabilizers	Loss of structural integrity	Xa	Х	Х	Х	Х	
			(secondary condition)	(secondary condition)	(secondary condition)	(secondary condition)	
	Loss of control surface	Xa	Xp	Xc		X (secondary condition)	
Hazard Condition E	Explanation: ecessary for stable flight, loss of	f a stabilizer could lead	to vehicle tumbling and	subsequent break-up.			
OMCO	3-97, a shock impingement from	n the scramjet motor m	-		s from the aircraft.		
°OMCO °On X-15 flight 2-53	3-97, a shock impingement from	n the scramjet motor m	elted part of the ventral		s from the aircraft.		
² OMCO ² On X-15 flight 2-53 Doors (landing gear, drag chute,		n the scramjet motor m	-		s from the aircraft.	X (secondary condition)	
² OMCO ² On X-15 flight 2-53 Doors (landing gear, drag chute,	3-97, a shock impingement from Premature/Unintended	n the scramjet motor m	elted part of the ventral		s from the aircraft.	(secondary	
² OMCO ² On X-15 flight 2-53 Doors (landing gear, drag chute, etc. doors)	3-97, a shock impingement from Premature/Unintended deployment	n the scramjet motor m	elted part of the ventral	stabilizer, sending debri	s from the aircraft.	(secondary	
^o OMCO ^c On X-15 flight 2-53 Doors (landing gear, drag chute, etc. doors) <u>Specific RRMs:</u> • Add safety latc NOTE: Adding red • Design two doo • Design control Hazard Condition E	3-97, a shock impingement from Premature/Unintended deployment Detachment from vehicle Failure to function thes requiring two independent of lundancy may add risk to the ve ors, inner & outer, with the inner system to handle off-nominal lo	commands (or mechan hicle in order to reduce door taking structural bads from door failure	elted part of the ventral s X ^a hisms) to "full open" e risk to the uninvolved p loads and the outer doo	Stabilizer, sending debri X ^b Dublic. r taking aero loads		(secondary condition) X ^c	

³ See Hazardous Materials Table, 49 CFR 172.101

^N Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material⁴	Prohibits Safe Landing	
			Structures				
Propellant/Pressurant Tanks (if used as a load bearing structure)	Tank burst	Xa	Хр	Xc	Xq	X (secondary condition)	

Specific RRMs:

• Add redundant relief mechanisms (i.e., burst discs in parallel with a relief valve, typically with a lower setting); consider use of non-propulsive venting (i.e., a "T" orifice that provides a neutral thrust)

• Avoid the use of a hazardous media as a pressurant.

Hazard Condition Explanation:

^aHistoric launch vehicles have utilized a design in which the vehicle structural rigidity is attained largely from its pressurized tanks. Loss of pressure in the structure causes the vehicle to crumple, rather than breakup. This loss of structural integrity could lead to a decreased ability to sustain aerodynamic loads which could cause the vehicle to breakup.

^bIn the above configuration, a loss of pressure alone would cause the vehicle to crumple rather than breakup. Such crumpling could lead to a loss of the propulsion, guidance, or other control systems.

^cIn the event of a tank burst with sufficient energy to rupture the vehicle skin, tank and/or other structural debris could be shed.

^dIn the above configuration, a tank containing a hazardous media (e.g., MMH, N2O4) could be damaged as the vehicle crumples.

⁴ See Hazardous Materials Table, 49 CFR 172.101

chment from cle ection process before an	Vehicle Breakup Thermal P X ^a	azard Condition/Sugge Vehicle Loss of Control rotection System (TPS X (secondary condition)	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ⁵ X (secondary condition)	Prohibits Safe Landing X (secondary condition)
ection process before an	Xª	X (secondary		(secondary	(secondary
ection process before an		(secondary	Xp	(secondary	(secondary
	nd after each flight	, , , , , , , , , , , , , , , , , , ,			, , , , , , , , , , , , , , , , , , ,
- superheated reentry gas				make this condition a c	oncern.
nature degradation aterial	Xa	X (secondary condition)	X (secondary condition)	X (secondary condition)	X (secondary condition)
F S	PS tiles are so small as ature degradation terial program to determine he on margin in material thio	PS tiles are so small as to not pose a seriou ature degradation X ^a terial	PS tiles are so small as to not pose a serious debris threat, however ature degradation X ^a X (secondary condition) program to determine heat flux vs. ablation loss data gn margin in material thickness	PS tiles are so small as to not pose a serious debris threat, however future technology may ature degradation X ^a X X X terial (secondary (secondary condition) condition)	PS tiles are so small as to not pose a serious debris threat, however future technology may make this condition a c ature degradation X ^a X X X X terial (secondary (secondary condition) condition) program to determine heat flux vs. ablation loss data gn margin in material thickness

ltem	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)				
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ⁶	Prohibits Safe Landing
		Thermal F	Protection System (TP	S)		
Composite Panels	Detachment from vehicle	Xª	X (secondary condition)	Xp	X (secondary condition)	X (secondary condition)
	Puncture in panel	Xc	Xc	X (secondary condition)	X (secondary condition)	Xq
	Multi-panel seam degradation	Xe		X (secondary condition)		

Specific RRMs:

• Incorporate standard inspection process before and after each flight

Hazard Condition Explanation:

^aDetachment of a composite panel at a critical location could allow reentry plasma to enter vehicle and melt structural elements, leading to vehicle breakup. ^bIf composite panels are of sufficient size to cause concern for the uninvolved public on the ground, this becomes a concern. Note that this hazard is also a secondary condition resulting from vehicle breakup.

^cDuring the final reentry of Space Shuttle *Columbia*, a puncture in the left wing allowed superheated gas into the wing cavity causing a loss of structural integrity of the wing. As a result, the vehicle yawed left and subsequent aerodynamic loads led to vehicle breakup.

^dDuring the final Space Shuttle *Columbia* reentry, had the vehicle not been destroyed, unanticipated drag could have been sufficient to prohibit a safe landing. ^eDegradation of a seam between panels could allow reentry plasma to enter the vehicle and melt structural elements, leading to vehicle breakup.

⁶ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode		Hazard Condition/Sug	gested Risk Reductio	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ⁷	Prohibits Safe Landing
		Р	ropulsion System			
Engine	Engine explosion	Xa	Xp	Xc	Xd	Xe
(Rocket & Air Breathing)	Loss of propulsive capability		X ^f			Xa
	Combustion instability		X ^h	X ⁱ	Xi	X ^k

Specific RRMs:

• Isolate engines from other vehicle critical systems

• Isolate engines from each other, and design for engine-out capability (nominal throttle < 100%, multiple smaller engines, etc.)

- Incorporate a parachute system to minimize impact energy
- Incorporate a steerable parachute system to avoid densely populated areas
- Incorporate debris containment into engine / airframe design
- Incorporate risk reduction design features to minimize impact (automatic cut-off valves, etc.)

Hazard Condition Explanation:

aOMCO

^bIn the case of a Vertical Take-off, Vertical Landing (VTVL) vehicle configuration, a loss of propulsion could result in the inability to control the vehicle's IIP. ^cIn the absence of debris containment, an explosion could result in engine fragments being shed from the vehicle.

^dIf the vehicle utilizes hazardous materials as propellants, an engine explosion could destroy the shutoff valves and allow release of the HAZMAT.

^eEngine explosion could prevent the vehicle from reaching its destination and/or an abort site.

^fLoss of propulsion could cause the vehicle to lose control

^gLoss of propulsion could prevent the vehicle from reaching its destination and/or an abort site

^hA combustion instability can impose side loads and torques greater than the vehicle was designed to tolerate. This can lead to vehicle loss of control if the loads are high enough.

ⁱCombustion instabilities can cause structural failure of a rocket nozzle extension which could become debris.

^jCombustion instabilities can lead to a catastrophic engine failure, which could destroy shutoff valves and allow release of a hazardous material (if used as a propellant).

^kCombustion instabilities can destroy a propulsion system which could prevent the vehicle from reaching its destination and/or an abort site.

⁷ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	H	Hazard Condition/Sug	gested Risk Reductio	on Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ⁸	Prohibits Safe Landing
	-		ropulsion System	1		
Propellant Tanks	Tank burst	Xa	Xb	Xc	Xď	Xe
Specific RRMs:						
	ige data into tank design					
0	cepted industry standards					
	mount is sufficient for expect					
•	ads expected in non-nominal	loperation				
• •	uate design safety factors					
	I (qualification) testing to ver	ify design margins				
 Perform proof tes 	ting at adequate factors					
 Incorporate a para 	achute system to minimize ir	mpact energy				
 Incorporate a stee 	erable parachute system to a	avoid densely populated	d areas			
the vehicle. ^b If the tank burst does Aerospace test flight. ^c In the absence of del ^d If the vehicle utilizes	propellant tanks typically operation: a not destroy the vehicle, the pris containment, a tank burs hazardous materials as prop hk will quickly lead to a loss of Premature/unintentional	loss of propellant in a st could lead to the relea pellants, a tank burst wi	√TVL vehicle would lea ase of debris. ill lead to the release of	nd to loss of vehicle con a HAZMAT.	trol, as in the 8 August 2	004 Armadillo
Systems	activation		~			X
-						
Hazard Condition Exp	lanation.					
		est flight. control of the '	VTVL vehicle was lost	when propellant was ex	hausted.	
5 5	<u>lanation:</u> 2004 Armadillo Aerospace to Izardous materials as propel			· ·		

⁸ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	ŀ	Hazard Condition/Sug	gested Risk Reduction	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of	Uncontrolled	Uncontrolled	Prohibits Safe
			Control	Release of Debris	Release of	Landing
					Hazardous Material ⁹	
		-	matics and Hydraulics			
Pressure Vessels	Tank burst	Xa	Xp	Х		Xc
				(secondary		
				condition)		
	Pressurantleakage		Xp			Xc
Specific RRMs:						
Adequate design s	afety factors for strength, I	eak before burst design	, testing, pressure redu	ction in an emergency		
		-				
Hazard Condition Expla	anation:					
^a During an X-15 ground	d test on 8 June 1960, an o	overpressurization of ar	n ammonia tank caused	the tank to rupture. Th	e tank shot backward a	nd damaged the
	k; the mixing of ammonia a					C
	vehicle would lose propuls		•		•	/L translates to
loss of control.						
^c In a pressure-fed prop	ulsion system vehicle con	figuration, a loss of pres	ssure would lead to a los	ss of propulsive capabil	ity. This could lead to a	n inability to
reach a landing and/or	•	5 / 1			,	5
Piping (Rigid and	Rupture/Leakage		Xa		Xp	Xc
Flexible)						
Hazard Condition Expla	anation [.]					
	sure or pneumatic pressur	re for control surface ac	tuators could lead to a v	vehicle loss of control		
	pipe could allow a hazardo				ffect the uninvolved put	blic
	/or pneumatic pressure fo	-		-		
destination and/or an a	• •			include onlongin to provor		

Item	Failure Mode	Ha	zard Condition/Sug	gested Risk Reductio	n Measures (RRMs)
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁰	Prohibits Safe Landing
		Pneumatics	and Hydraulics			
Valves (Flow Control, Directional Control, Check Valves)	Rupture/Leakage		Xª		Xp	Xc
destination and/or ar	nd/or pneumatic pressure for control n abort site.					0
Regulators	Rupture/Leakage	X (secondary	Xa	Xp	Xc	Xq
Regulators	Rupture/Leakage		Xa	Xb	Xc	Xq

¹¹ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Haz	ard Condition/Sugg	gested Risk Reductio	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹¹	Prohibits Safe Landing
		Pneumatics	and Hydraulics			
Pressure Gauges and Transducers	Rupture/Leakage	Х	Х	Х	Х	Х
	No or faulty data return	Х	Xa	Х	Х	Х
Hazard Condition Exp ^a Loss of or faulty data	lanation: could lead to erroneous guidance o	lata that may affect vel	nicle control. (See Fli	ight Control/Electrical (Category)	
Temperature Probes	No or faulty data return	X ^a	Xa		Xª	X (secondary condition)
^a Loss of/faulty data co Pumps	uld cause a component to thermall	y fail X (secondary	Xa	X	X	X ^b
		condition)				
	Freeze-up or Oscillation (Pogo Effect)		x	X (secondary condition)	X (secondary condition)	X (secondary condition)
^b A loss of hydraulic ar from reaching its dest	nd/or pneumatic pressure for contro nd/or pneumatic pressure for contro nation and/or an abort site.	l surface actuators due	to a pump malfunctio	on could impair perforn	nance enough to pre	
Accumulators	Rupture/Leakage	X (secondary condition)	X	X	Х	X

¹⁰ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Haz	ard Condition/Sugg	gested Risk Reduction	Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹²	Prohibits Safe Landing
		Pneumatics	and Hydraulics			
Electrical Motors and Solenoids	Mechanical/Electrical Malfunction (loss of control)	X (secondary condition)	X	X	Х	X
Interlocks	Unplanned change of state	X (secondary condition)	X	X	Х	X
Logic Devices	Improper command, corrupt signal, etc.	X (secondary condition)	x	X	Х	X
		Operationa	al Ordnance			
Parachute DeploymentDevices	Failure to deploy			X	Х	Xa
 Premature or unin <u>Specific RRMs:</u> Designate and cor 	nent mortars to fire could lead to im tended parachute deployment coul ntrol a safety zone outside the inter r firing mechanism for arming mortar and firing mortar	ld damage parachute a	5	e near parachute attach	points	

¹² See Hazardous Materials Table, 49 CFR 172.101

ltem	Failure Mode	Haz		gested Risk Reduction	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹³	Prohibits Safe Landing
		Operationa	al Ordnance			
Parachute Reefing	Failure to deploy					Xa
Devices	Premature activation					Xp
Redundant disree Hazard Condition Exp	-	Ĵ	ly outside intended la	anding zone		
	of the device could lead to torn or i					
Drogue Release Devices	Failure to release properly or releases prematurely					Xa
Hazard Condition Exp	re could cause interference with lat entry of Soyuz 1 resulted in a simila					
Stage Separation Arming Devices	Failure to arm or arms inadvertently	X (secondary condition)	Xª			Xa
	" arming paths (timer, altimeter, see nd mechanisms feedback	quencer, etc.)				

	Failure Mode	Haz	ard Condition/Sugg	gested Risk Reduction	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁴	Prohibits Safe Landing
		Operationa	al Ordnance			
Stage Separation Charges	Failure to fire/initiate	X (secondary condition)	Xa			Xª
	lanation:	esta Cantral of the such			anatad from the bas	otor This last to
	nunch, the third stage failed to sepand ng in which the crew experienced a	20+ g reentry and land	ed thousands of km f			ster. This led to
an uncontrolled landin	unch, the third stage failed to sepa	20+ g reentry and land				
an uncontrolled landin Propellant Dumping	unch, the third stage failed to sepa ng in which the crew experienced a Failure to unload propellant	20+ g reentry and land	ed thousands of km f			ster. This led to
an uncontrolled landin	unch, the third stage failed to sepa	20+ g reentry and land	ed thousands of km f			

¹⁴ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Ha	zard Condition/Sugg	gested Risk Reduction	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁵	Prohibits Safe Landing
		Flight Sat	ety Systems			
Pilot	Incapacitated	X (secondary condition)	Xa	X (secondary condtion)	X (secondary condtion)	Xa

- Pilot can become safety-critical if his incapacitation leaves the vehicle with no other means of control •
- Pilot may not be on-board vehicle ٠
- Circumstances which could lead to pilot incapacitation include: ٠
 - 0 Injury/illness
 - Human factors/human limitations issues
 - o Contaminated cabin atmosphere or breathing media

Specific RRMs:

- Procedures of contingency operations are identified and incorporated into system prior to launch •
- Multiple fault tolerance in flight control systems •
- Caution and Warning (C&W) available to pilot and ground support ٠
- Alternate sources of coolant for the pilot suit pressure (redundancy) ٠
- Appropriate safety factors of suit oxygen and coolant lines .
- Human limitation considerations integrated into design solutions ٠
- Crew procedure(s) readiness .
- Pre-launch monitoring of vehicle flight systems (thermal, atmosphere, controls) by ground crew ٠
- Launch commit criteria well-defined ٠

Hazard Condition Explanation:

^aOMCO if the pilot is the only means of vehicle control.

¹⁵ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Ha	zard Condition/Sugg	gested Risk Reduction	n Measures (RRMs)	
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁶	Prohibits Saf Landing
		Flight Sat	ety Systems			
Flight/Thrust	Failure to initiate when		Xa			Х
Termination System	commanded					(secondary condition)
	Premature or unintended operation	Xp	Xa			Xc
^b OMCO for a destruct	lanation: destructive thrust termination syst ive flight termination system. s of thrust could prevent a powere					control.
^a In the case of a non-o ^b OMCO for a destruct	destructive thrust termination system.	ed descent vehicle from s		ended landing and/or al	bort site.	X
^a In the case of a non-o ^b OMCO for a destruct ^c An unanticipated loss	destructive thrust termination system ive flight termination system. s of thrust could prevent a powere	ed descent vehicle from s	afely reaching its inte	nded landing and/or a	bort site.	

¹⁶ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Haz	ard Condition/Sugg	gested Risk Reduction	n Measures (RRMs)
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁷	Prohibits Safe Landing
		Flight Contro	ls (Mechanical)			
Elevators	Detachment from vehicle	X (secondary condition)	Xa	Xp		X (secondary condition)
	Mechanical/Electrical/Pneumatic	Х	Xa	Х		Х
	Malfunction (to perform proper operation)	(secondary condition)		(secondary condition)		(secondary condition)
	ol surface could lead to loss of vehicle con ol surface becomes debris.	uoi.				
Ailerons	Detachment from Vehicle	X (secondary condition)	Xa	X ^b		X (secondary condition)
	Mechanical/Electrical/Pneumatic	X	Xa	Х		X
	Malfunction (Failure to perform Failure proper operation)	(secondary condition)		(secondary condition)		(secondary condition)
	n Explanation: In Surface could lead to loss of vehicle con In Surface becomes debris.	trol.				,
Rudders	Detachment from Vehicle	X (secondary condition)	Xa	X ^b		X (secondary condition)
	Mechanical/Electrical/Pneumatic	Х	X ^a	Х		Х
	Malfunction (Failure to perform proper operation)	(secondary condition)		(secondary condition)		(secondary condition)
		trol.				

¹⁷ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Ha	zard Condition/Sugg	jested Risk Reduction	n Measures (RRMs))
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ¹⁸	Prohibits Saf Landing
		Flight Contro	ols (Mechanical)			
Spoilers	Detachment from Vehicle	X	Xa	Xb		Х
		(secondary condition)				(secondary condition)
	Mechanical/Electrical/Pneumatic	X	Xa	X		X
	Malfunction (Failure to perform	(secondary	~	(secondary		(secondary
	proper operation)	condition)		condition)		condition)
^b Detached cont	rol surface could lead to loss of vehicle control surface becomes debris.		Va	Vb I		
^a Loss of a contr	rol surface could lead to loss of vehicle con	X (secondary	Xª	Xb		
^a Loss of a conti ^b Detached cont	rol surface could lead to loss of vehicle control surface becomes debris. Detachment from Vehicle	X (secondary condition)				(secondary condition)
^a Loss of a conti ^b Detached cont	Tol surface could lead to loss of vehicle constrol surface becomes debris. Detachment from Vehicle Mechanical/Electrical/Pneumatic	X (secondary condition) X	Xa Xa	x		(secondary condition) X
^a Loss of a conti ^b Detached cont	rol surface could lead to loss of vehicle control surface becomes debris. Detachment from Vehicle Mechanical/Electrical/Pneumatic Malfunction (Failure to perform	X (secondary condition) X (secondary		X (secondary		(secondary condition) X (secondary
^a Loss of a conti ^b Detached cont	rol surface could lead to loss of vehicle control surface becomes debris. Detachment from Vehicle Mechanical/Electrical/Pneumatic Malfunction (Failure to perform proper operation)	X (secondary condition) X		x		(secondary condition) X
^a Loss of a contr ^b Detached cont Flaps <u>Hazard Conditio</u> ^a Loss of a contr	rol surface could lead to loss of vehicle control surface becomes debris. Detachment from Vehicle Mechanical/Electrical/Pneumatic Malfunction (Failure to perform proper operation) on Explanation: rol surface becomes debris.	X (secondary condition) X (secondary condition)		X (secondary		(secondary condition) X (secondary
^a Loss of a contr ^b Detached cont Flaps <u>Hazard Conditio</u> ^a Loss of a contr ^b Detached cont	rol surface could lead to loss of vehicle control surface becomes debris. Detachment from Vehicle Mechanical/Electrical/Pneumatic Malfunction (Failure to perform proper operation) on Explanation: rol surface becomes debris. Mechanical Malfunction (Failure to perform proper operation) On Explanation: rol surface could lead to loss of vehicle contents Mechanical Malfunction (Failure to stop vehicle)	X (secondary condition) X (secondary condition)		X (secondary		(secondary condition) X (secondary condition)

¹⁸ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Haz	Hazard Condition/Suggested Risk Reduction Measures (RRMs)						
		Vehicle Breakup	Vehicle Loss of	Uncontrolled	Uncontrolled	Prohibits Safe			
			Control	Release of Debris	Release of Hazardous	Landing			
					Material ¹⁹				
Flight Controls (Mechanical)									
Drag Devices	Failure to deploy	Xa	Х	Х	Х	Xp			
			(secondary	(secondary	(secondary				
			condition)	condition)	condition)				
Specific RRMs:									
 Incorporat 	te redundant release system, one c	omponent of which is p	possibly an ordnance	or manual back-up					
Hazard Condition Expl	anation.								
	d be caused by high aerodynamic a	n/or a loads on a vehic	cle resulting from the	failure of a drag devic	e to deploy.				
^b During the Sovuz 1 re	entry, the main parachute failed to	deploy. The reserve p	arachute tangled with	n the drogue chute and	d the capsule crashed	l. A similar			
	ould lead to an impact outside the la		5	<u><u></u></u>					
	•	U							
		Flight Controls (El	ectrical/Electronic)						
Antenna	Failure to receive/transmit		X ^a			Xp			
	correct data								
Hazard Condition Expl									
	node could result in a loss of, and/c	or corrupt, guidance an	d control data which o	could lead to a loss of	control, especially in a	autonomous			
systems.		at a contrata for an a state							
SLoss of, and/or corrup	t, vehicle position data could preve	nt a venicle from safely	y reaching its landing	and/or abort site.					
Data Receiver/	Failure to receive/transmit		Xa			Xp			
Transmitter	correct data					X			
Hazard Condition Expl		1	<u> </u>	1	1				
-	node could result in a loss of, and/c	or corrupt, guidance an	d control data which o	could lead to a loss of	control, especially in a	autonomous			
systems.	- ,								
	t, vehicle position data could preve	nt a vehicle from safely	y reaching its landing	and/or abort site.					

¹⁹ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
	Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²⁰	Prohibits Sa Landing		
		Flight Controls (E	ectrical/Electronic			•	
GPS Hardware	Failure to provide correct position information		Xª			Xb	
Hazard Condition Ex	Loss of Signal		Xa			Xb	
^b Loss of, and/or corr	such as faulty or no signal) could lead upt, position data could prevent a veh		ng its landing and/or				
Computer Notes:	Mechanical malfunction		Xa			Xa	
 Ensure that con Incorporate auto Incorporate use Ensure ground Require position Hazard Condition Example During an Armadillo 	al backup with redundant feedback planation: Aerospace test flight, vehicle vibration	n sustain any two failur quence		ulled from the power bu	s; the vehicle immed	liately went out	
of control and crash	ed. Failure to receive/transmit					Xa	
VOICE	adequate verbal communication						
Communications							
Communications Hazard Condition Ex							

²¹ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²¹	Prohibits Safe Landing	
		Flight Controls (El	ectrical/Electronic)				
Active Sensors and Vehicle Position Transducers	Loss of performance data or control signals		Xª			Xp	
 affects the guidant Sensor/Transduce Specific RRMs: Incorporate redunt 	d Transducers (i.e. pressure gages ce and control of the vehicle. er malfunctions could result in faulty dant sensors/transducers for critica e" with majority logic voting softwar	data being passed to o	on-board systems inc	cluding the pilot and gu guidance of the vehicle	idance and control s		
systems.	<u>anation:</u> node could result in a loss of, and/c ot, vehicle position data could preve				control, especially in	autonomous	
Displays	Faulty or no display of data on monitors		Xa			Xp	
• Employ "distribute <u>Hazard Condition Expl</u> ^a The identified failure r systems.	display screens and associated cir d" processing platform for on-board <u>anation:</u> node could result in a loss of, and/c ot, vehicle position data could preve	computation or corrupt, guidance an			control, especially in	autonomous	

²⁰ See Hazardous Materials Table, 49 CFR 172.101

ltem	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²²	Prohibits Safe Landing	
		Flight Controls (E	ectrical/Electronic				
Wiring/Connectors	"Open" or "Shorted" Circuitry		Xa		X (secondary condition)		
	Faulty installation of wiring or connectors		Xa		X (secondary condition)		

Notes:

• Short circuit or faulty wiring could lead to fire hazard

Specific RRMs:

- Locking type connectors should be used as bent pins can cause mishaps.
- Redundant paths should not go through the same connector
- Wiring should be installed to avoid chafing and/or splicing.
- Insulation resistance should be adequate to withstand any environmental conditions
- Incorporate redundant wiring circuits for critical measurements that affect the control and guidance of the vehicle
- Avoid redundant path wiring in a single wire bundle.
- Complete "end-to-end" continuity and functional checkout tests as part of vehicle final processing operations
- Install circuit breakers and fault interrupters
- Install fiber optics or laser-guided communication systems, where appropriate

Hazard Condition Explanation:

^aFailure of circuitry associated with any guidance and/or navigation function (i.e., flight computer, GPS) could lead to vehicle loss of control.

²² See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)							
		Vehicle Breakup	Vehicle Loss of	Uncontrolled	Uncontrolled	Prohibits Safe			
			Control	Release of Debris	Release of Hazardous	Landing			
					Material ²³				
Environmental Control and Life Support Systems (ECLSS)									
Cabin Materials	Loss of Fire Resistance		Xa			Xa			
Specific RRMs:									
Design cabin mate									
	tion in an atmosphere of 30% or les								
	on in an atmosphere of 30% or less								
•	n in an atmosphere of 30% or less		•						
	als for ability to self-extinguish in atr								
	bgram to determine degradation of r	materials used for fire r	esistance						
 Caution and Warn Install smoke determination 	ing (C&W) to pilot and ground								
 Install shoke deter Install fire extinguis 									
	511615								
Hazard Condition Expl	anation:								
	pacitate a pilot and/or other control	mechanisms, leading	to vehicle loss of con	trol and, possibly, inal	bility to safely reach th	ne landing			
and/or abort site.		J J J J J J J J J J J J J J J J J J J		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	5			
Cabin Atmosphere	Excessive oxygen (in the		X ^a			X ^a			
Regulation	Cabin)								
Hardware									
Notes:									
Malfunction could	lead to excessive oxygen concentra	ation which could incre	ase fire risk						
Specific RRMs:									
Safety factor of 4.0									
5	2.0 for O2/N2 tanks pilot/crew suits and visible to pilot	and around crows							
		and ground crews							
Hazard Condition Expl	anation:								
	nosphere could incapacitate an onb	oard pilot. OMCO if th	e pilot is the only mea	ans of vehicle control.					
			,						
L									

²³ See Hazardous Materials Table, 49 CFR 172.101

4	
1	

Item Failure Mode	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²⁴	Prohibits Safe Landing	
	Environ	mental Control and L	ife Support System	s (ECLSS)			
Pressurized Cabin	Loss of pressure (in the Cabin)		Xa			Xa	
 <u>Notes:</u> Pressure loss cou 	ld be caused by O2 system malfund	tion, cabin leak, debris	s impact, etc.				
 1.5 safety factor of C&W available to Redundant source >2.0 safety factor Planned bird disp Alternate sources 	2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews es of cabin pressure of windows and windshield ersal and/or avoidance techniques of O2 for the pilot suit pressure (red	.,	ring a pressure suit.	OMCO if the pilot is the	e only means of veh	icle control.	
Cabin Pressurization System	Overpressure condition (in the cabin)		Xa	Xp		Xa	
Specific RRMs: 1.5 safety factor of C&W available to >2.0 safety factor Alternate sources <u>Hazard Condition Exp</u> ^a A rapid change in cal	f cabin pressure vessel pilot and ground crews of windows and windshield of O2 for the pilot suit pressure (red <u>lanation:</u> pin pressure could incapacitate an o f the cabin could cause the pressure	nboard pilot. OMCO if		neans of vehicle contro	Ι.		

²⁴ See Hazardous Materials Table, 49 CFR 172.101

Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)						
	Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²⁵	Prohibits Safe Landing		
Environ	mental Control and L	ife Support System.	is (ECLSS)				
Contaminated air in the cabin		Xa			Xa		
ns, and/or improper control of press mination could lead to incapacitatio 0 for O2 lines 2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin <u>anation:</u>	ure system, etc.) n of pilot and/or contro	ller		abin leak, toxic fume	s, excessive		
nosphere could incapacitate an onb	oard pilot. OMCO if tr	ie pilot is the only me	ans of venicle control.				
	Environ Contaminated air in the cabin nction could lead to contamination of ns, and/or improper control of press imination could lead to incapacitatio 0 for O2 lines 2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin <u>anation:</u>	Vehicle Breakup Environmental Control and L Contaminated air in the cabin nction could lead to contamination or loss of breathable at ans, and/or improper control of pressure system, etc.) Imination could lead to incapacitation of pilot and/or control O for O2 lines 2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin anation:	Vehicle Breakup Vehicle Loss of Control Environmental Control and Life Support System Contaminated air in the cabin X ^a Anction could lead to contamination or loss of breathable atmosphere (due to O2 ns, and/or improper control of pressure system, etc.) Imination could lead to incapacitation of pilot and/or controller D for O2 lines 2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin	Vehicle Breakup Vehicle Loss of Control Uncontrolled Release of Debris Environmental Control and Life Support Systems (ECLSS) Contaminated air in the cabin X ^a Contaminated air in the cabin X ^a Inction could lead to contamination or loss of breathable atmosphere (due to O2 system malfunction, cans, and/or improper control of pressure system, etc.) Immination could lead to incapacitation of pilot and/or controller Incontroller D for O2 lines 2.0 for O2/N2 tanks F cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin Inter cabin Inter cabin	Vehicle Breakup Vehicle Loss of Control Uncontrolled Release of Debris Uncontrolled Release of Hazardous Material ²⁵ Environmental Control and Life Support Systems (ECLSS) Material ²⁵ Contaminated air in the cabin X ^a And/or improper control of pressure system, etc.) mination could lead to incapacitation of pilot and/or controller O for O2 lines 2.0 for O2/N2 tanks f cabin pressure vessel pilot and ground crews n regulator systems ing by ground crew nisters to filter cabin anation: anation:		

²⁵ See Hazardous Materials Table, 49 CFR 172.101

Item	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²⁶	Prohibits Safe Landing	
		mental Control and L		s (ECLSS)			
Cabin Temperature Control System	Loss of Cabin Cooling/Heating Control		Xa			Xa	
 coolant tank leak a Excessive cabin te Specific RRMs: Inspection and che Multiple fault tolera C&W available to p Alternate sources Safety factor of 2.0 Operator training in Hazard Condition Expl 	of coolant for the pilot suit pressure) for coolant lines n regulator systems operations	or malfunctions, etc.) pilot and/or controller reservoir, and lines) p ts (redundancy)	rior to launch		or clogging, coolant li	ne leak,	
		Recovery	Hardware				
Parachutes	Failure to deploy or open properly	Xa				Xp	
Designate and cor <u>Hazard Condition Expl</u> ^a Vehicle breakup could ^b During the Soyuz 1 re	argin on parachutes htrol a safety zone outside the inten- anation: d be caused by high aerodynamic a centry, the main parachute failed to buld lead to an impact outside the la	n/or g loads on a vehic deploy. The reserve p				. A similar	

²⁶ See Hazardous Materials Table, 49 CFR 172.101

49

Item I	Failure Mode	Hazard Condition/Suggested Risk Reduction Measures (RRMs)					
		Vehicle Breakup	Vehicle Loss of Control	Uncontrolled Release of Debris	Uncontrolled Release of Hazardous Material ²⁷	Prohibits Safe Landing	
		Recovery	y Hardware				
Airbags	Premature deployment		Xa				
	Failure to deploy					Xp	
result in loss of co	Explanation: I deployment of an airbag at high altitud ntrol of the vehicle. bag to properly deploy on descent could				oads on a vehicle w	hich could	
Landing Gear	Failure to deploy or extend					Xa	
	properly) ch				
Unintentional Deployr	Unintentional Deployment	X (secondary condition)	Xp	X (secondary condition)			
Incorr For exam <u>Hazard Condition</u> ^a OMCO	n gear deployment interlock to prevent porate multiple "non-identical" landing g ple, the Space Shuttle uses a) gravity; b <u>Explanation:</u> 36-63, the main landing gear extended o	ear extension schemes b) hydraulics; and c) Or	s dnance, if needed		difficult.		

Annex A X-33 Preliminary Casualty Expectation Analysis

Below is a list of parameters used in modeling the X-33 Expected Casualty. This list may be compared with the parameters used in the examples in section 5.2.1 and 5.2.2.

Parameters used in the modeling the X-33 Expected Casualty include:

- Trajectory Modeling
 - Potential trajectories from Space Port 2000 and Haystack Butte to potential landing sites
 - Vehicle position and velocity (speed) updated every 10 seconds of powered flight
 - Trajectories "moved" earth-relative in order to evaluate debris risks from other candidate launch sites on Edwards
- Atmospheric Modeling
 - Mean (average) annual winds at Edwards
 - Edwards Air Force Base winds aloft
 - Range Commanders Council Range Reference Atmosphere
 - Population Modeling:
 - Population numbers,
 - Facility shelter types and coverage areas throughout the base and local communities
 - database for downrange cities, towns, and rural population to cover all areas potentially at risk
- Vehicle Reliability Modeling
 - Assumed failure probability 1/250, derived from 220 seconds of powered flight from comparable expendable launch vehicles (Atlas, Delta, and Titan II) and
 Space Shuttle LH2 and LOX main engines used for launch through Main Engine Cut Off
 - Assumed engineering reliability factors based on component data, degree of redundancy, and comparable components used to establish a failure probability of 1/6823 for MECO to landing
- Failure Characteristics Modeling
 - Failure scenario includes both uncontained engine failure and loss of thrust/control failure modes
 - Both failure modes assumed to result in vehicle breakup and explosion

The parameters used for Vehicle Reliability Modeling are worth noting in particular. Note that the assumed vehicle failure probabilities are assumed based upon analogous historical launch activities. The preliminary nature of this analysis made those assumptions acceptable.

However, before the AF were to grant flight approval, vehicle-specific failure probabilities would need to be developed, approved, and applied in the analysis. It is the development of those values that would largely drive deeper systems analysis to identify safety-critical systems as outlined in this document.

In order to perform hazard modeling and risk projections, and "X-33 debris library" was estimated. The evaluation identified X-33 intact debris pieces likely to result from worst-case vehicle breakup (1 ton trinitrotoluene (TNT) equivalent) in-flight explosion.

To create the debris library, engineers consulted with subcontractors and vendors for estimation of subsystem breakup mechanisms for propellant tanks, main propulsion system;, avionics, landing gear,

thermal protection system, ruddervators, rudders, thrust and intertank structure, turboalternators, main engines and engine ramps, etc. From the breakup analysis, 1269 components or intact debris pieces were identified. These pieces accounted for 18,900 kg (41,700 lb.) of 26,600 kg (58,700 lb.) of X-33 dry mass. Basic vehicle composition was expected to be: 30% composites (graphite/epoxy); 21% inconel/MA-754/19% aluminum; 16% steel; 10% titanium; and 4% ORCC.

For each identified piece of debris the following parameters were determined:

- unit weight
- quantity
- dimensions
- approximate shape for ballistic coefficients
- material composition

Figure 7 is a sample of the X-33 debris library created for this preliminary analysis.

With a debris library in place, the next task was to determine the impact point for each piece of debris. This impact point must take into account atmospheric perturbations, winds, the impulse delivered to each piece of debris by a vehicle explosion, the aerodynamic characteristics of each piece of debris and other parameters.

Since the impact point moves with time as the flight progresses, debris impact points must be computed at several time stations along each trajectory under the assumption that a failure may occur at any time in the flight.

Figure 8 is a map of debris impact ellipses for an X-33 flight from Edwards AFB (Haystack Butte) to Malmstrom AFB in Montana. It should be noted that Malmstrom was only one of several candidate landing sites for the X-33 and that this analysis was undertaken for each site.

Finally, with the debris impact points mapped, the population models in place, and the vehicle reliabilities determined to first order, it was possible to derive a preliminary Expected Casualty value for an X-33 flight via a probabilistic combining of these probabilistic models. The X-33 program estimated in this preliminary analysis that their Expected Casualty for this flight was 4.5×10^{-6} .

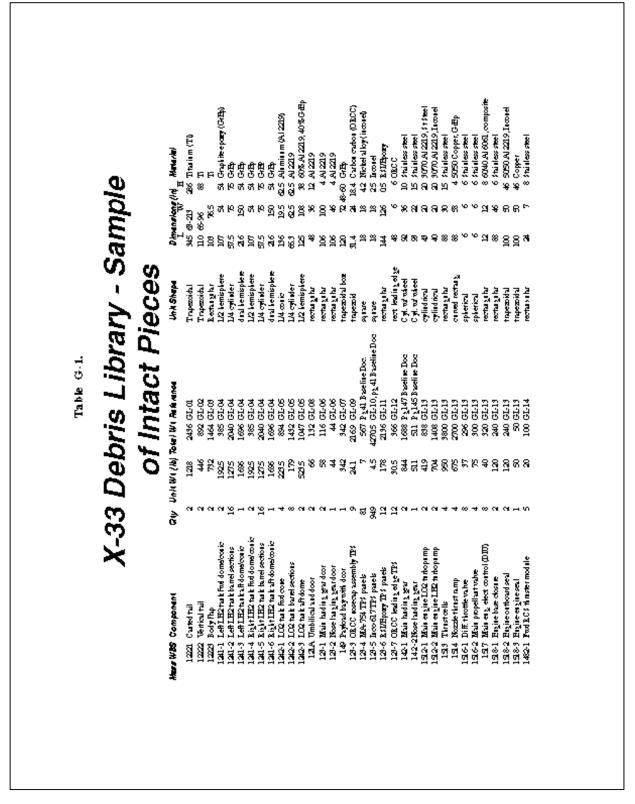


Figure 7 – Sample of the X-33 Debris Library

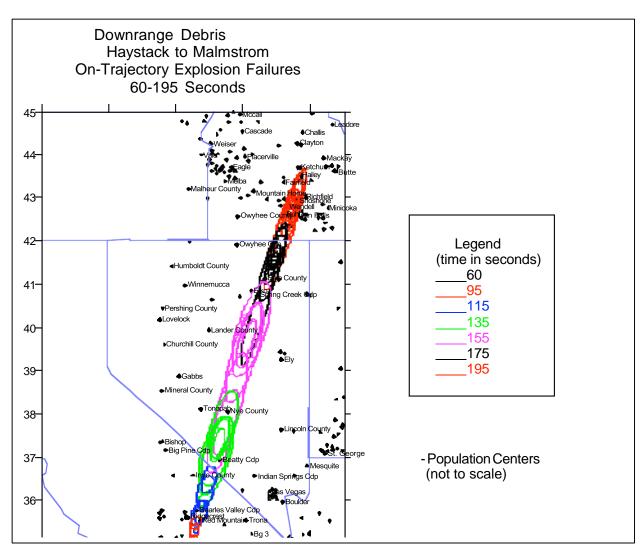


Figure 8 – X-33 Debris Impact Ellipses Haystack Butte to Malmstrom AFB